
 1

 24
th

 BULGARIAN NATIONAL

 OLYMPIAD IN INFORMATICS

Solutions of selected problems

2008

 2

 Round 1

Round 1 / Task A1. FRACTIONS

The fractions that we are going to use can be considered as elements of a structure with two

members, p and q, denoting the fraction numerator and denominator, respectively. To solve

the task, we generate a fraction
a

b
 for which k a b n≤ < ≤ , check if it is non-reducible and if

it is, we add it to the current values of variable s which we use to calculate to final sum. As

initial values of s.p and s.q we assign 0 and 1, respectively. After each addition of two

fractions we make possible reductions.

#include<iostream>

using namespace std;

struct Fract

{ int p,q; };

int nod(int a, int b)

{ int r = a%b;

 while(r > 0)

 { a = b; b = r; r = a%b; }

 return b;

}

int main()

{ int k, n;

 cin >> k >> n;

 Fract s, x;

 s.p = 0;

 s.q = 1;

 for(int a=k; a<n; a++)

 for(int b=a+1; b<=n; b++)

 if (nod(a,b) == 1)

 {x.p = a;

 x.q = b;

 int p = s.p*x.q + s.q*x.p;

 int q = s.q*x.q;

 int d = nod(p,q);

 s.p = p/d;

 s.q = q/d;

 }

 3

 cout << s.p << "/" << s.q << endl;

 return 0;

}

Round 1 / Task A3. BELONGING

The limits allow direct verification for each of the input values, using the rules. 18 decimal

digits fit in an 8-byte integer type. Such approach risks being a little slow for some big

integers (inM1 in the realization).

Here are some properties of the binary representation for each member of M that follow from

the rules:

- The total count of the binary digits is odd. Sure enough: 1 is with one digit; rule 2 adds

two more binary digits, so it doesn’t change the parity, and rule 3 combines two

previous lengths, adding one more digit. As we start at one digit (odd) there is no rule

to change the parity of the total binary digits count – it remains odd.

- Rules don’t arouse numbers with adjacent zeroes. Moreover, zeroes can only occupy

an even place, according to rule 2.

- All numbers with odd total length of the binary representation and zeroes (if any) at

even places are members of M. For length of 1 this is trivial (rule 1). Let’s assume it

true for all odd lengths less than or equal to the odd integer n. Consider now the

numbers with binary representation size of n+2. If there is no zero in it, it is given rise

by the number 1 (rule 1), applying (n+1)/2 times rule 2. If there is (at least) one zero

(at an even place, of course), on its left and on its right there are representations with

odd lengths, less or equal to n, and zeroes (if any) at even places. Using the inductive

assumption there can be all representations with corresponding lengths there. Rule 3

states that such combination belongs to M.

The use of these facts leads to a linear with regard to the binary digits count (i.e., logarithmic

in regard to the candidate) algorithm for determining the membership to M. (function inM2).

Realization
#include <iostream>

#include <stdlib.h>

#include <string.h>

using namespace std;

long long N=5, P, Q;

int rec(char *s,int l)

{if (l<=0) return 0;

 if (l==1) return *s=='1';

 if (s[0]=='1' && s[1]=='1' && rec(&s[2],l-2)) return 1;

 for (int i=1;i<l-1;i++)

 if (s[i]=='0' && rec(s,i) && rec(&s[i+1],l-i-1)) return 1;

 return 0;

}

char *strrev(char *s)

{char c;

 for (int i=0,j=strlen(s)-1;i<j;i++,j--)

 {c=s[i];s[i]=s[j];s[j]=c;}

 return s;

}

 4

int inM1(long long a)

{char b[64],i;

 for (i=0;a;i++)

 {b[i]='0'+ (a&1); a>>=1;}

 b[i]=0;

 strrev(b);

 return rec(b,strlen(b));

}

int inM2(long long a)

{char d[64],c=0;

 do

 {d[c++]=a&1;

 a>>=1;

 }while (a);

 if (!(c&1)) return 0;

 for (c--;c>=0;c-=2) if (!d[c]) return 0;

 return 1;

}

int main()

{cin>>N>>P>>Q;

 //cout<<inM1(N)<<inM1(P)<<inM1(Q)<<endl;

 cout<<inM2(N)<<inM2(P)<<inM2(Q)<<endl;

 return 0;

}

Round 1 / Task B1. MATH

The n numbers on the board can be considerd as elements of one-dimensional array a. The

maximum sum can be obtained if the subtraction signs are placed before the smallest elements

of the array. As we cannot put a sign before the first number we have to find the smallest

integers, k in number, among all numbers on the board except the first one. To solve the

problem, we can do the following:

1. Sort in a descending order the elements of the array, without a[0].

2. Find the sum of the elements of the array from a[0] to a[1n k− −].

3. Subtract from this sum the remaining k elements of the array.

#include<iostream>

#include<algorithm>

using namespace std;

bool comp(int x, int y)

{ return x > y; }

int main()

{ int n, k;

 cin >> n >> k;

 int a[32];

 for(int i=0; i<n; i++)

 5

 cin >> a[i];

 sort(a+1, a+n, comp);

 int s = a[0];

 for(int i=1; i<=n-k-1; i++)

 s = s + a[i];

 for(int i=n-k; i<n; i++)

 s = s - a[i];

 cout << s << endl;

 return 0;

}

Round 1 / Task B2. SUM OF DIGITS

Linear scanning (function sum) works fast enough for these limitations, if well designed. The

sum of the digits in the binary representation is actually the count of the ones in it. We can use

the well-known algorithm which implements a bitwise AND to find this count (function

count1 in the realization).

For bigger numbers the following improvement can be used.

It is easy to realize that if n is with one less than a power of two, i.e. n=2
k
-1, its binary

representation consists of ones only (k times), and together with the previous numbers they

represent, we may say, all the subsets of a k-element set. Thus ones will be met 2
k-1

 times in

each of k places, which means that the desired sum up to any such n will be k.2
k-1

. This idea

can be developed further but in the realization it is used only until here: we find the biggest

integer of the form 2
k
-1 (i.e., containing only ones in its binary representation) not exceeding

n, we calculate the sum up to there using the formula above, and scan the rest numbers up to

n (function sum1).

Realization
#include <iostream>

using namespace std;

int count1(long a)

{int s=0;

 while (a)

 {s++;

 a&=(a-1);

 }

 return s;

}

long sum(long n)

{long s=0;

 for (long i=1;i<=n;i++) s+=count1(i);

 return s;

}

long sum1(long n)

{int k=0;

 long s,t=0;

 while (t<=n) {t=(t<<1)|1; k++;}

 t>>=1;

 k--;

 6

 s=k*((long)1<<(k-1));

 for (long i=t+1;i<=n;i++) s+=count1(i);

 return s;

}

int main(void)

{long n;

 cin>>n;

// cout<<sum(n)<<endl;

 cout<<sum1(n)<<endl;

 return 0;

}

Round 1 / Task B3. ARRANGING FOR A PARTY

Starting with a man, we will realize a “greedy” linear strategy of arranging, which maximally

uses women and minimally uses men. So we place women on the second and the third seat.

While it is not possible to place another woman, the fourth seat will be occupied by a man.

Alas, the next place cannot be for a woman either (this would result in a man with a woman

on each side), so we are forced to use another man. This process continues while there are

men and women: we place two women (one, if there are no two left), followed by two men

(one, if he is the last one). We end up at one of these three possible stages:

- Nobody left at all. If the last seated is a man, the arrangement is good, otherwise it

cannot be realized according the rules;

- One woman (or more) left. No way to arrange the table by the rules;

- One man (or more) left. We place them at the end without hindrance, obtaining a

correct arrangement.

Actually, it appears that a correct arranging can be done when men’s count is greater than

women’s, it cannot be done when it is less and in case of equality it can be done when this

number is even. But the described strategy doesn’t need these considerations. There is one

case when it doesn’t give correct answer: if there are one man and one woman they,

obviously, are placed correct on the table. This case has to be considered separately.

Realization
#include <iostream>

using namespace std;

int M1,N1,M2,N2;

int arr(int M,int W,char *r)

{int i=0;

 r[i++]='1';M--;

 if (!M) {r[i++]='0';

 W--;

 if (!W) {r[i]=0; return 1;}

 return 0;

 }

 while (M>0 && W>0)

 {r[i++]='0';W--;

 if (W) {r[i++]='0';W--;}

 r[i++]='1';M--;

 if (M) {r[i++]='1';M--;}

 }

 7

 if (W) return 0;

 while (M--) r[i++]='1';

 r[i]=0;

 return 1;

}

int main(void)

{char b[256];

 cin>>M1>>N1;

 cin>>M2>>N2;

 if (arr(M1,N1,b)) cout<<b<<endl; else cout<<"NO\n";

 if (arr(M2,N2,b)) cout<<b<<endl; else cout<<"NO\n";

 return 0;

}

Round 1 / Task C1. TRIANGLES

Let the lengths of the sides of the triangle be a, b and c. We can assume that a ≤ b ≤ c.

Besides, for a triangle with lengths of the sides a, b and c to exist, the sum of any two of these

numbers should be greater than the third number. As a ≤ b ≤ c, it is enough that a + b > c.

Now, we have to generate all triples a, b and c, for which a ≤ b ≤ c, a + b + c = P and a + b >

c and to count them.

#include<iostream>

using namespace std;

int main()

{

 int P, a, b, c, s = 0;

 cin >> P;

 for(int a=1; 3*a <= P; a++)

 for(int b=a; a + 2*b <= P; b++)

 { c = P - a - b;

 if (a + b > c) s++;

 }

 cout << s << endl;

 return 0;

}

Round 1 / Task C2. CLOCK

To solve the problem first we transform the two readings in minutes. If the second reading

denotes an earlier time than the first one, we add 1440 minutes (= 24 hours). We obtain the

wanted time in minutes by subtracting the first reading of the clock display from the second.

Then the result should be written in a form of the input data.

#include<iostream>

using namespace std;

 8

int main()

{ char a1, a2, a3, a4 , a5, b1, b2, b3, b4, b5;

 cin >> a1 >> a2 >> a3 >> a4 >> a5;

 cin >> b1 >> b2 >> b3 >> b4 >> b5;

 int a = (10 * (a1 - '0') + (a2 - '0'))*60 + 10*(a4 - '0') +

(a5 - '0');

 int b = (10 * (b1 - '0') + (b2 - '0'))*60 + 10*(b4 - '0') +

(b5 - '0');

 if (a >= b) b = b + 1440;

 int c = b - a;

 if (c/60 < 10) cout << 0;

 cout << c/60 << ':';

 if (c%60 < 10) cout << 0;

 cout << c%60 << endl;

 return 0;

}

Round 1 / Task C3. MINIMAL DIFFERENCE

The problem can be solved using an exhausting algorithm (the cases are 24 in total),

generating, for example, all permutations of the given four digits, and creating form the first

couple a, and from the second couple b, then calculating their difference a-b and memorizing

the minimal positive difference. There exists another, more effective algorithm:

- As we are looking for the minimal difference, the most significant digits have to be

most close one to another, so we can choose one of the couple of digits with minimal

difference to be first digits.

- After selecting the first digits, there is only one reasonable choice for the second ones,

to obtain a less difference: the bigger of them should be for the subtrahend, and the

less one – for the minuend.

- During this process we memorize the least difference. There are at most three possible

choices for the couple of most significant digits, which makes this algorithm more

effective.

Sorting input data makes programming easier, no matter which approach is used.

Realization
#include <iostream>

using namespace std;

int a[4];

int MaxNo(int start)

{int i,m=start;

 for(i=start+1;i<4;i++) if (a[i]>a[m]) m=i;

 return m;

}

void selSort(void)

{int i,j,c;

 for (i=0;i<3;i++){j=MaxNo(i);

 c=a[i];

 a[i]=a[j];

 a[j]=c;

 9

 }

}

int better(void)

{int i,j,m=100,p,q,d=10;

 selSort();

 for (i=0;i<3;i++) if (a[i]-a[i+1]<d) d=a[i]-a[i+1];

 for (i=0;i<3;i++)

 if (a[i]-a[i+1]==d)

 {p=10*a[i];

 q=10*a[i+1];

 switch(i)

 {case 0:{p+=a[3];q+=a[2];break;}

 case 1:{p+=a[3];q+=a[0];break;}

 case 2:{p+=a[1];q+=a[0];}

 }

 if (p-q<m) m=p-q;

 }

 return m;

}

int main(void)

{int i;

 for (i=0;i<4;i++) cin>>a[i];

 cout<<better()<<endl;

 return 0;

}

Round 1 / Task D1. RECTANGLES

Let the lengths of the sides of the rectangle be a and b. We can assume that a ≤ b. S, a and b

are integers. Therefore there exists a rectangle with side a and area S only if S is divisible by a

(otherwise b cannot be an integer). To include only rectangles for which a ≤ b we give a only

values for which a
2
≤ S.

#include<iostream>

using namespace std;

int main()

{ int S, a, sum = 0;

 cin >> S;

 for(int a=1; a*a <= S; a++)

 if (S % a == 0) sum++;

 cout << sum << endl;

 return 0;

}

Round 1 / Task D2. DIVISIBILITY BY 3

 10

Sorting the digits in increasing order a<b<c gives us the candidates for the result

(increasingly): a, b, c, ab , ac ,bc and aaa . Of course, if at least one digit is divisible by 3,

the smallest one is the one-digit solution. Otherwise, we check the two-digit numbers in

increasing order (there is no point in considering other alternatives – if ab is not divisible by

3, neither is ba , according to the divisibility rule; aa is divisible by 3 only if a is. Finally, a

number with three equal digits is always divisible by three (according to the same rule) and

aaa happens to be the smallest three-digit number to be collected using the given digits.

Realization
#include <iostream>

using namespace std;

int main(void)

{int a,b,c,d;

 cin>>a>>b>>c;

 if (a>b){d=a;a=b;b=d;}

 if (b>c){d=b;b=c;c=d;}

 if (a>b){d=a;a=b;b=d;}

 if (a%3==0) cout<<a;

 else if (b%3==0) cout<<b;

 else if (c%3==0) cout<<c;

 else if ((a+b)%3==0) cout<<a<<b;

 else if ((a+c)%3==0) cout<<a<<c;

 else if ((b+c)%3==0) cout<<b<<c;

 else cout<<a<<a<<a;

 cout<<endl;

 return 0;

}

Round 1 / Task E1. ANT

The length of the course that the ant traveled is equal to the double sum of all integers from 1

through n.

#include<iostream>

using namespace std;

int main()

{

 int n, s = 0;

 cin >> n;

 for(int i=1; i<=n; i++)

 s = s + i;

 s = 2*s;

 cout << s << endl;

 return 0;

}

 11

Round 1 / Task E2. NUMBERS

Let us denote the missing digit by i. Then the number * 100. 10.a b a i b= + + . The digit i can

be 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. For any of these possibilities we check if the number

* 100. 10.a b a i b= + + is divisible by k.

#include<iostream>

using namespace std;

int main()

{ int a, b, k, n, s=0;

 cin >> a >> b >> k;

 for(int i=0; i<=9; i++)

 { n = 100*a + 10*i + b;

 if (n%k ==0) s++;

 }

 cout << s << endl;

 return 0;

}

 12

Round 2

Round 2 / Task A1. SUMS OF PRIME NUMBERS

To solve the task we have to take the following steps:

• find the primes smaller or equal to n;

• find the smallest prime p greater than n;

• find the remainder of the division of S(n) by p.

To find the primes smaller or equal to n, we can use the Sieve of Eratosthenes. We write the

primes which we obtain in the array a and their number in the variable cnt. The function

eratosthenes(n) returns a value 1 if n is a prime number and 0 in all the remaining cases.

Second, we check if every natural number greater than n is a prime, until we find p.

For the third step of the solution, we use one-dimensional array s. If i = 1, 2, …, n then s[i] is

the remainder of the division of the number of ways in which i can be written as a sum of

primes by p; if i is a prime then the sum can consist of only one number. s[i] can be obtained

in k steps (k = 0, 1, …, cnt – 1). At the k
th

 step s[i] is the remainder of the division of the

number of ways in which i can be written as a sum of primes by p but the sum must be formed

by the primes from a[0] to a[k]. If n is a prime number, s[n] should be changed to exclude the

writing of n as a sum of one prime number.

#include <iostream>

using namespace std;

int const MAXN = 50010;

bool sieve[MAXN];

long a[MAXN];

long s[MAXN];

long cnt;

int eratosthenes(long n)

{ for(long i = 2; i <= n; i++)

 if (!sieve[i])

 { a[cnt] = i;

 cnt++;

 for(long j = i+i; j <= n; j+= i)

 sieve[j] = true;

 }

 if (a[cnt-1] == n) return 1;

 return 0;

}

int main()

{ long n;

 cin >> n;

 if (n == 1)

 13

 { cout << 0 << endl;

 return 0;

 }

 int is_n_prime;

 is_n_prime = eratosthenes(n);

 long p = n+1;

 bool is_p_prime;

 do

 { is_p_prime = true;

 long i = 0;

 while(is_p_prime && a[i]*a[i] <= p)

 { if (p%a[i] == 0)

 {is_p_prime = false;

 p++;

 }

 i++;

 }

 }

 while(!is_p_prime);

 s[0] = 1;

 for(long k = 0; k < cnt; k++)

 { long x = a[k];

 for(long i = x; i <= n; i++)

 s[i] = (s[i]+s[i-x])%p;

 }

 s[n] = (s[n]+p-is_n_prime)%p;

 cout << s[n] << endl;

 return 0;

}

Round 2 / Task B1. DECIMAL FRACTION

Any common fraction can be written as a terminating or non-terminating periodic decimal

fraction. According to the task, the terminating decimal fractions should be considered non-

terminating periodic decimal fraction with a period (0). To solve the task, it is enough to find

the number in digits of the period and the digits after the decimal point including the digits of

the first period. Let us consider the sequence a0, a1, a2, a3, …, in which a0 = a, and an is the

remainder of the division of 10an-1 by b. As the remainders of the division by b are limited in

number, the members of the sequence will be repeated periodically. Let us denote by m and m

+ t the numbers of the first pair of repeating members of the sequence for which m ≠ 0. Let

the sequence c1, c2, c3, … consist of the first, second, third, … digit after the decimal point of

the decimal fraction in consideration. It is easy to see that cn is the quotient of the division of

10an-1 by b. Then the period of the decimal fraction will consist of t digits and cn + t = cn for

any n > m. Therefore it is enough to find the first m + t members of the sequence c1, c2, c3, …

.

 14

To find m and t, we can use a one-dimensional array d. At the beginning, the values of the

elements of the array are 0. After computing an, if d[an] = 0, then we give d[an] a value n.

Otherwise the sequence a1, a2, a3, … already has an element with value an, its number is

d[an], therefore m = d[an], t = n – m.

We find the p digits that we are looking for in the following way: if n ≤ m, then the value of cn

has already been calculated; otherwise it is equal to the value of ci, where i is the sum of m + 1

and the remainder of the division of n – m – 1 by t.

#include <iostream>

using namespace std;

const long MAXB = 30000010;

long d[MAXB];

short c[MAXB];

int main()

{ long a, b;

 long long k;

 int p;

 cin >> a >> b >> k >> p;

 long m, t;

 bool pr = true;

 long n = 0;

 while(pr)

 { n++;

 c[n] = (10*a)/b;

 a = (10*a)%b;

 if (d[a] == 0)

 d[a] = n;

 else

 { m = d[a];

 t = n - m;

 pr = false;

 }

 }

 for(int j=0; j<p; j++)

 if (k+j < m+1) cout << c[k+j];

 else

 { long x;

 x = (k+j-m-1)%t;

 cout << c[m+1+x];

 }

 cout << endl;

 return 0;

}

 15

Round 3

Round 3 / Task A1 / B1. GRAPH DIAMETER

A solution that is based on the Floyd’s All-shortest paths algorithm, would get 50% of the

scores.

#include <cstdio>

#include <cstdlib>

using namespace std;

const long INF = 1<<25;

int a[1024][1024];

int n;

int main()

{ scanf("%d",&n);

 for(int x=1; x<=n; x++)

 for(int y=1; y<=n; y++)

 a[x][y]=INF;

 for(int i=1; i<n; i++)

 { int x, y, d;

 scanf("%d%d%d",&x,&y,&d);

 a[x][y] = a[y][x] = d;

 }

 for(int x=1; x<=n; x++)

 a[x][x]=0;

 for(int z = 1; z<=n; z++)

 {

 for(int x=1; x<=n; x++)

 for(int y=1; y<=n; y++)

 if(a[x][y] > a[x][z]+a[y][z])

 a[x][y] = a[x][z]+a[y][z];

 }

 int diam=0;

 for(int x=1; x<=n; x++)

 for(int y=1; y<=n; y++)

 if(diam < a[x][y]) diam = a[x][y];

 16

 printf("%d\n",diam);

 return 0;

}

We may use the property that if an undirected graph G with n vertices and n–1 edges is

connected then this graph is a tree.

Consider an arbitrary DFS-spanning tree of G. Let r be the root, and G1, G2, …, Gk be the

subtrees of r with roots r1, r2, …, rk.

Denote by h(x) the height of the DFS-subtree with root x (the longest path from the root to a

leaf), and denote by c(x,y) be the length of the edge {x,y}.

The following formula holds:

diam(G) = max(diam(Gi), c(r,ri)+h(ri) + c(r,rj)+h(rj) | i=1,2,…,k, j=1,2,…,k, i≠j)

The meaning is that for the longest path with length equal to the diam(G) there are two

possibilities:

1) The path is somewhere in a subtree Gi

2) The path is between two leaves belonging to the different subtrees Gi and Gj.

These considerations could be built in the general DFS algorithm.

#include <cstdio>

#include <vector>

using namespace std;

vector<int> a[1024];

int c[1024][1024];

long h[1024],d[1024];

int n;

long diam;

long height(int x, int z)

{ long res = 0;

 for(int i=0; i<a[x].size(); i++)

 { int y = a[x][i];

 if(y != z)

 { long hy = height(y,x);

 if(res < c[x][y] + hy) res = c[x][y] + hy;

 }

 }

 h[x] = res;

 return h[x];

}

void dfs(int x, int p)

{ long h1 = 0, h2 = 0;

 d[x] = 0;

 for(int i=0; i<a[x].size(); i++)

 { int y = a[x][i];

 17

 if(y != p)

 { dfs(y,x);

 if(d[x] < d[y]) d[x] = d[y];

 int k = c[x][y] + h[y];

 if(k>h1) {h2 = h1; h1 = k; }

 else if(k>h2) h2 = k;

 }

 }

 h[x] = h1;

 if(d[x] < h1+h2) d[x] = h1 + h2;

 if(diam < d[x]) diam = d[x];

}

int main()

{ scanf("%d",&n);

 for(int i=1; i<n; i++)

 { int x, y, d;

 scanf("%d%d%d",&x,&y,&d);

 a[x].push_back(y);

 a[y].push_back(x);

 c[x][y] = c[y][x] = d;

 }

 dfs(1,0);

 printf("%d\n",diam);

 return 0;

}

Round 3 / Task A3 / B3. COLORING

We can count all configurations we are interested in by generating them. For the purpose we

can use a two-dimensional array a. The element a[x][y] has a value 0 if the cell in row x and

column y is colored in white and a value 1 when it is colored in black. We generate the

elements of the array a row by row starting from the first and in each row the elements are

generated from left to right. For our convenience we can assume that the table has two

additional rows with numbers 0 and 1n + and two additional columns with 0 and 1k + . We

shall assume that the cells in these rows and columns are colored in white. In this way each

cell from the original table will have a neighbouring cell to the left, to the right, at the top and

at the bottom. There exist the following possibilities for coloring of a given cell:

• the cell can be colored both in black and in white;

• the cell can be colored only in black;

• the cell can be colored only in white;

• the cell can be colored neither in black nor in white.

We decide on the possible ways of coloring using the information about the top, left and right

cells of the given cell. As the current cell is the last of the cells neighbouring of the top one,

 18

the choice of color guarantees the requirement that the top neighbouring cell have exactly one

neighbouring cell, colored in black. Exceptions are the following situations:

• for the cells of the first row of the table the top and right neighbouring cells of the

current one do not lead to any limitations in the choice of colouring;

• for the cells of the first column of the table the left neighbouring cell of the current one

has no information about the way the current one is colored;

• no coloring for the cells of the ()1n +
th

 row of the table is done because they are

colored in white. However, they have to be visited during generation because passing

through them we check if their neighbouring cells (the cells of the n
th

 row of the table)

meet the requirement for a single black neighbouring cell.

#include <iostream>

using namespace std;

const int MAXN = 512;

const int MAXK = 35;

short a[MAXN][MAXK];

short n, k;

int br;

void Gen(short x, short y)

{ if (x == n+2)

 { br++;

 return;

 }

 short nextx, nexty;

 if (y < k) { nextx = x; nexty = y+1;}

 else {nextx = x+1; nexty = 1;}

 short l = 0;

 if (y != 1) l = a[x][y-2]+a[x-1][y-1];

 if (x == 1)

 { a[x][y] = 0; Gen(nextx, nexty);

 if (l == 0)

 {a[x][y] = 1; Gen(nextx, nexty);}

 return;

 }

 short t = a[x-1][y-1] + a[x-1][y+1] + a[x-2][y];

 if (x == n+1)

 { if (t == 1) Gen(nextx, nexty);

 return;

 }

 short r = a[x-1][y+1];

 if (t == 1) {a[x][y] = 0; Gen(nextx, nexty); return;}

 if (t == 0 && l == 0 && r == 0) {a[x][y] = 1; Gen(nextx,

nexty);}

}

int main()

{ cin >> n >> k;

 19

 Gen(1,1);

 cout << br << endl;

 return 0;

}

Round 3 / Task A4 / B4. TABLE

Let’s first consider the concept of equivalence defined in the problem. In each class of

equivalence using row and/or column rearrangement we can achieve the following:

- Place the least of the twelve numbers in the upper left corner of the table;

- Sort ascending the numbers in the first row;

- Sort ascending the numbers in the first column.

It is clear that two equivalent tables turn to be identical in this “canonical” representation.

And vice versa: if two tables are not identical in this representation, they are not equivalent.

So we can create (and count) only “canonical” arrangements – the rest ones are equivalent to

one of them.

One of the obvious necessary existence conditions for correct arrangement is divisibility by 6

of the sum of all numbers, as this sum is even when calculated by rows, and divisible by 3

when calculated by columns. In fact, the remainders of the numbers modulo 6 play in this

problem an exceptional role. We can, for example, avoid working with long integers by

replacing each of them with a less one with the same remainder, however, preserving order

relationships between input data (on account of the canonic representation). So work data can

actually contain numbers no greater than 71. The easiest way to do it is after sorting

(ascending, for example) the input data. We shall follow our considerations supposing that

input data is sorted this way (and replaced, eventually) in an integer array data with smallest

index of 0 and greatest index of 11.

It is important afterwards to evaluate the biggest possible number of canonic tables.

The upper left corner is fixed. We have to select two from

the rest 11 values (c0 and c1) to form the first column and

three from the rest 9 (r0, r1 and r2) to fill in the first row, thus

creating a particular “signature” to every class of

equivalence – {(c0, c1), (r0, r1, r2)}. Selected elements are sorted, so selection order doesn’t

matter. This makes 4620
3

9

2

11
=

possible selections. The rest 6 table cells can be filled in

by the rest 6 numbers arbitrary, and their arrangements give rise of a new equivalence class

each. That makes for each signature 6!=720 possibilities, or in sum at most

4620×720=3326400 possible classes of equivalence. If every input element can be put in

every cell of the table (for example, this is obviously the case when all input numbers have

the same remainder modulo 6), the obtained upper limit turns to be the final result, too.

A good organized backtracking algorithm can solve the problem in virtue of these

considerations. If we manage to optimize it, it will be effective enough for the hardest cases.

Here is a dynamic idea, applied to use already calculated results.

The ordered numbers in the signature modulo 6 form a “reduced signature”: a five digit

hexary number 21010 rrrcc . The possibilities are 6
5
=7776. The non-ordered remainders modulo

6 of the rest numbers (while each of them can take any place) identify the problem. If we

choose to consider these remainders as total counts (b0 – number of remainders 0, b1 – number

of remainders 1, …, b5 – number of remainders 5), then b0+b1+b2+b3+b4+b5=6. However,

data0 r0 r1 r2

c0 rest0 rest1 rest2

c1 rest3 rest4 rest5

 20

even this rather exact estimation requires too much memory resource for directly applying the

dynamic idea (over 13MB, which will not be effectively used), being hard to code in the sane

time. It seems wiser to define a static array of pointers – one for each “reduced signature”

pointing to dynamically designed list of already solved sub-problems with this “reduced

signature”. We can code the remainders count array b with “no economy” (but quickly) in 4

bytes.

It is possible, of course, to make a purely combinatorial realization on the same ideas.

Realization
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct Node {long hash;

 long value;

 struct Node *next;

 }Node;

typedef struct Node List;

int data[12],rem[6];

int used[12]={0};

int c[3][4];

int rowSum[3]={0},colSum[4]={0};

long count=0;

long cc,h;

int s;

List *L[7776]={NULL};

int rem6(char *s)

{int r=0;

 while (*s) r+=*s++;

 return (3*(*--s&1)+4*(r%3))%6;

}

int cmp(const void *a,const void *b)

{char *p=(char *)a,*q=(char *)b;

 int lp=strlen(p),lq=strlen(q);

 if (lp<lq) return -1;

 if (lp>lq) return 1;

 return strcmp(p,q);

}

void inp(void)

{char b[12][64];

 int i,r,t=0;

 for (i=0;i<12;i++) scanf("%s",b[i]);

 qsort(b,12,64,cmp);

 for (i=0;i<12;i++)

 {r=rem6(b[i]);

 rem[r]++;

 data[i]=6*t+r;

 if (i && data[i]<=data[i-1]){data[i]+=6;t++;}

 }

}

void init(void)

{used[0]=1;

 21

 rem[data[0]]--;

 c[0][0]=rowSum[0]=colSum[0]=data[0];

}

void addToList(long h,long v,List **l)

{List *r=(List *)malloc(sizeof(Node));

 r->hash=h;

 r->value=v;

 r->next=*l;

 *l=r;

}

long inList(long h,List *l)

{while (l && l->hash!=h) l=l->next;

 if (l) return l->value;

 return -1;

}

void FreeList(List **l)

{if (*l) FreeList(&(*l)->next);

 free(*l);

 *l=NULL;

}

int makeSign(void)

{int r=c[1][0]%6,i;

 r=6*r+(c[2][0]%6);

 for (i=1;i<4;i++) r=6*r+(c[0][i]%6);

 return r;

}

long makeHash(int *b)

{long r=0;

 int i;

 for (i=0;i<6;i++) r=(r<<4)|b[i];

 return r;

}

void bt(int row,int col)

{int p;

 long r;

 if (row&&col>3) {cc++;

 return;

 }

 for (p=1;p<12;p++)

 if (!used[p])

 {if (col && !row && data[p]<c[row][col-1]) continue;

 if (row && !col && data[p]<c[row-1][col]) continue;

 if (col==3 && (rowSum[row]+data[p])&1) continue;

 if (row==2 && (colSum[col]+data[p])%3) continue;

 c[row][col]=data[p];

 rem[data[p]%6]--;

 rowSum[row]+=data[p];

 colSum[col]+=data[p];

 used[p]=1;

 if (!col && row<2) bt(row+1,col);

 else if (!col && row==2) bt(0,1);

 22

 else if (!row && col<3) bt(0,col+1);

 else if (!row&&col==3)

 {h=makeHash(rem);

 s=makeSign();

 r=inList(h,L[s]);

 if (r>=0) count+=r;

 else

 {cc=0;

 bt(1,1);

 addToList(h,cc,&L[s]);

 count+=cc;

 }

 }

 else if(row<2) bt(row+1,col);

 else bt(1,col+1);

 rem[data[p]%6]++;

 rowSum[row]-=data[p];

 colSum[col]-=data[p];

 used[p]=0;

 }

}

int main(void)

{int i,lin;

 for (lin=0;lin<2;lin++)

 {inp();

 count=0;

 init();

 bt(1,0);

 printf("%ld\n",count);

 for (i=0;i<7776;i++) FreeList(&L[i]);

 }

 return 0;

}

Round 3 / Таsк A5 / B5. MATRYOSHKA DOLLS

Analysis

We can give each room in the labyrinth coordinates (x, y), x being the row of the room and y –

the column (we count from 1 to N from top to bottom and from left to right). Let Mxy be the

size of the doll in room (x, y). We can define path in the labyrinth as a string of rooms, such

that each one, except the first, contains a larger toy than the previous and its coordinates are

not smaller than the coordinates of the previous. Obviously, Peter the Hacker can go through

the labyrinth passing through all the rooms from a single path and collecting all the dolls in

them. This way, we will know the answer of the problem if we can find the length of the

longest path.

 23

Solution
We will solve this problem using dynamic programming. Lets define a sub problem f(i, j),

which finds the length of the longest path that ends in room (i, j). We can calculate the value

of f(i, j) recursively the following way: f(i, j)=1+max{f(k, l) | k≤i, l≤j, (k, l)≠(i, j), Mkl<Mij}.

Direct implementation would be to use a square matrix containing the values of f(i, j).

To calculate each value we can cycle through all the sub problems according to the above

formula and find the maximum. This will lead us to overall time complexity of O(N
4
). Of

course, it will not work on all the tests with the given restrictions and will receive 50 points.

We can optimize the calculations for each sub problem by using a data structure with

logarithmic complexity for update and query (for example binary indexed tree) for finding the

maximal values. Let us take another look to the recursive formula. Obviously, the current

longest path cannot have a negative length, so the maximum we are looking for is at least

zero. Therefore, if we initialize the structure with zeroes, the condition (k, l)≠(i, j) becomes

redundant. There are three more conditions left which leads us to a three-dimensional indexed

tree. Such a solution is quite hard to implement and it has time complexity of O(N
2
.ln

3
 N) and

memory complexity of O(N
4
).

To build a better solution we need to loose one more condition and its corresponding

dimension in the tree. Obviously, every sub problem is influenced only by sub problems

which corresponding rooms contain smaller dolls. Therefore, we can calculate the values in

ascending order of their related toy sizes (the size is unique). This way the condition Mkl<Mij

becomes redundant, too, because in the tree there will be no updates for sub problems with

smaller toys than the toys of the one we are currently calculating. A two-dimensional indexed

tree leads to a solution with complexity O(N
2
.ln

2
 N), which will receive 100 points.

Scoring

If the solution is implemented well enough it will receive points according to its complexity:

brute force – 10; O(N
4
) – 50; O(N

2
.ln N) – 100.

Round 3 / Task C1. GAME

We will use two one-dimensional arrays:

array a in which a[i]=0, when the i-th cell is white, and a[i]=1 when it is black;

array d in which d[i] is the distance (the minimum number of moves needed for moving the

pawn from the initial cell to the current cell); d[i] = –1, when the i-th cell is not accessible.

We start with d[x]=0 and d[i] = –1 for the remaining cells. Now we apply the breadth first

search algorithm. For the current cell z we scan in the four directions (up, down, left, right)

for unvisited white cells. If such a cell is found, its distance should to be updated and the

number of the cell inserted into the queue.

#include <cstdio>

#include <queue>

using namespace std;

int a[1000000];

int d[1000000];

int n;

queue<int> q;

 24

int getRow(int z)

{ return 1+(z-1)/n; }

int main()

{ int x,y,b;

 scanf("%d%d%d",&n,&x,&y);

 scanf("%d",&b);

 for(int i=1; i<=b; i++)

 { int z;

 scanf("%d",&z);

 a[z] = 1;

 }

 for(int i=1; i<=n*n; i++)

 d[i] = -1;

 d[x] = 0;

 q.push(x);

 while(!q.empty())

 { int z = q.front();

 q.pop();

 int p;

 p = z-1;

 while(getRow(p)==getRow(z) && a[p]==0)

 { if(d[p]==-1) { d[p]=d[z]+1; q.push(p); }

 p--;

 }

 p = z+1;

 while(getRow(p)==getRow(z) && a[p]==0)

 { if(d[p]==-1) { d[p]=d[z]+1; q.push(p); }

 p++;

 }

 p = z-n;

 while(p>=0 && a[p]==0)

 { if(d[p]==-1) { d[p]=d[z]+1; q.push(p); }

 p = p-n;

 }

 p = z+n;

 while(p<=n*n && a[p]==0)

 { if(d[p]==-1) { d[p]=d[z]+1; q.push(p); }

 p = p+n;

 }

 }

 25

 printf("%d\n",d[y]);

 return 0;

}

Round 3 / Task C2. TRANSFORMATIONS

Let a have n digits. Then there are 1n k− + groups of successive digits in a which can be

changed at one move. Let us assign numbers to these groups: the first group will be the one

containing the digits from the first to the k
th

 digit of a, the second group – containing the

digits from the second to the ()1k +
th

 digit of a, …, the last ()1n k− +
th

 group – containing

the digits from the ()1n k− +
th

 to the n
th

 digit of a. To calculate the minimum number of

moves with which b can be derived from a, we can do the following: we transform only the

first group of digits with a minimum number of moves until the first digits of a and b are

identical (the number of moves can be 0, 1, 2, 3, 4, 5, 6, 7 or 8). Then we do the same with the

new number, using only the second group of the digits so that its second digit is identical to

the second digit of b. We continue in the same way until the first 1n k− + digits of the

number we transformed and the first 1n k− + digits of b are identical. If at this stage the

transformed number and b are identical, the wanted minimum number of moves is the number

of moves we have performed. If the two numbers are not identical, b can not be derived from

a irrespective of the number of moves.

Now we have to prove that the algorithm we described leads to a correct result. Any sequence

of m number of moves can be considered a sequence of m numbers each of which is between

1 and ()1n k− + and shows which group was used for the move. For example, if a = 12349

and k = 2, the sequence 2, 1, 3, 1 means that we have successively derived the numbers:

13449, 24449, 24559 and 35559. One can easily see that if we exchange the positions of some

of the numbers, the final result will not be changed (for example, the sequence 1, 1, 2, 3

generates the numbers 23349, 34349, 35449 and 35559). Therefore we can make all necessary

moves first with the first group, then with the second etc.

#include<iostream>

#include<string>

using namespace std;

int main()

{

 string a,b;

 int k, n, p, br = 0;

 cin >> k >> a >> b;

 n = a.size();

 for(int i=0; i < n-k+1; i++)

 { p = (9 + b[i] - a[i])%9;

 br += p;

 for(int j=0; j<k; j++)

 a[i+j] = '1' + (a[i+j]-'1'+p)%9;

 26

 }

 if (a == b) cout << br << endl;

 else cout << 0 << endl;

 return 0;

}

Round 3 / Task C3. STRANGE WORDS

The solution of this task is based on organizing a cycle which reads the text word by word till

the input reaches the symbol for the end of the text. For each read word s, the program should

check if it is strange and if it is so – calculates its length d and compares it to the length of the

longest word found till now – md. If the found word has greater length – it becomes the

longest strange word – ms=s.

The check for strangeness is made by the function sword, which uses a stack of chars. The

word is scanned from left to right and the following things are done for each character from it:

– If the stack is not empty, and the character written on its top matches the current one,

it is erased from the stack.

– In the other case, the current character is written on the top of the stack.

As a secondary effect the function transforms the word by replacing all the capital letters into

small ones.

Let’s notice that the function gets as a second parameter the length of the word, so that the

reapeat calculations is avoided.

For the solution we use the standard types string and stack.

#include<string>

#include<iostream>

#include<stack>

using namespace std;

int sword(string &s,int n)

{

 stack<char> st;

 int i,l, d='a'-'A';

 char ch;

 for(i=0;i<n;i++)

 {

 if(s[i]>='A'&&s[i]<='Z')s[i]+=d;

 l=0;

 if(!st.empty())

 {

 ch=st.top();

 if(s[i]==ch){st.pop();l=1;}

 }

 if(!l) st.push(s[i]);

 }

 return (st.empty());

}

int main()

{

 27

 string s, ms;

 int md =0,d ;

 while(cin>>s)

 {

 d=s.size();

 if(sword(s,d))

 if(d>md)

 {

 md=d;

 ms=s;

 }

 }

 cout<<ms<<endl;

}

Round 3 / Task C4. POLYGON

The area of the polygon is calculated by adding or subtracting the areas of rectangles formed

by the horizontal sides and the x-axis. The area of a given rectangle is added, if a vertical line

from point (x + 0.5, y + 0.5), where x and y are the coordinates of the corresponding side left

end, crosses an odd number of the other polygon sides. If the number of intersections is even,

the area is subtracted.

#include <iostream>

using namespace std;

long n, x1[1000], x2[1000], y[1000], s=0;

int cross(double a, long b, long c)

{

 return b<a && a<c;

}

int inside(int k)

{

 double a=x1[k]+0.5, d=y[k]+0.5; int c=0;

 for (int i=0;i<n;i++)

 {

 if (y[i]>d)

 if (cross (a, x1[i], x2[i]))c++;

 }

 return c%2;

}

int main()

{

 double x;

 cin>>n;

 for (int i=0;i<n;i++)

 {

 cin>>x1[i]>>x2[i]>>y[i];

 }

 for (int i=0;i<n;i++)

 {

 28

 long st=y[i]*(x2[i]-x1[i]);

 if (inside(i))s-=st;

 else s+=st;

 }

 cout<<abs(s)<<endl;

 return 1;

}

Round 3 / Task C5. SCALE

The integer m is presented as a sum d[0]*3
0
 + d[1]*3

1
 + d[2]* 3

2
 + d[3]* 3

3
 + … +d[k]3

k
,

where the coefficients d[i] have values –1, 0 or 1. The object with weight m and the masses

preceded by a coefficient –1 are put on the left hand scalepan, while the masses preceded by a

coefficient 1 are put on the right hand scalepan. The masses preceded by a coefficient 0 are

not used.

#include <iostream>

using namespace std;

int main()

{

 long n, i=0, d[20];

 long m, x;

 cin>>n>>m;

 x=m;

 while (x>0)

 {

 d[i]=x%3; if (d[i]==2)d[i]=-1;

 x=(x-d[i])/3; i++;

 }

 cout<<m;

 x=1;

 for (int i=0;i<n;i++)

 {

 if (d[i]==-1)cout<<" "<<x;

 x*=3;

 }

 cout<<endl;

 x=1;

 for (int i=0;i<n;i++)

 {

 if (d[i]==1)

 if (i<n-1)cout<<x<<" ";

 else cout<<x;

 x*=3;

 }

 cout<<endl;

 return 1;

}

 29

Round 3 / Task C6. DANCE

Obviously, if x or y are odd numbers the result of the program is 0 because the dancer will

either not reach or pass by his partner. Since one dance step consists of two foot steps, we

may change x and y to x/2 and y/2.

Some participants could model this task to another one, where the aim is to calculate

the number of movements on a grid from the bottom-left to the top-right corner with limited

movements only to the right or up. This number is equal to the binomial coefficient C(x+y, x).

However, calculating this using a recursion will be a mistake because of the time limit.

So, the whole number of ways to reach the spot from the initial position of the dancer

(i, j) is the sum of the number of ways from position (i–1, j) and those from position (i, j–1).

Using dynamic programming technique, this number could be calculated using one

two dimensional array or even one dimensional array, where every new number comes from

the number being previously saved in place j plus the number saved in place j–1.

 #include<iostream>

 using namespace std;

 int main()

 {

 int x, y, i, j, temp ;

 long long t[101];

 cin>>x>>y;

 if (x>y) {temp=x; x=y; y=temp;}

 if (x%2 || y%2) { cout<<0<<endl; return 0;}

 x/=2;

 y/=2;

 for (i=0; i<=y; i++)

 t[i]=1;

 for (i=1; i<=y; i++)

 for (j=1; j<=x; j++)

 t[j]=t[j-1]+t[j];

 cout<<t[x]<<endl;

 return 0;

 }

Round 3 / Task D2. TREASURE

We consider all given N lines as elements of an array of strings. In every string we find the

smallest character. In the program, the function char search(string s, int m)

returns the smallest character, which does not occur in s and which is greater than the

 30

smallest character m in the same string, or returns '.' in case the string s contains all letters

from the alphabet.

 To determine if a given character belongs to the string, we use an auxiliary array b with

123 elements, because all considered characters are letters and the greatest one of them by the

alphabetical order is ‘z’, and it has an ASCII code 122. Starting with all zeros, the values of

the elements of b is either 0, when the corresponding character does not belong to the string,

or 1, otherwise. We do not consider characters with ASCII codes between the sets of all

capital and all small letters, assigning 1’s to their positions. After having filled all the

positions in b, we can find the desired character by searching for the first element in b which

is placed after the position of m and which is equal to 0.

 #include <iostream>

 using namespace std;

 int b[123];

 string a[10000];

char search(string s,int m)

{

 int k=0;

 for(int i=0;i<=122;i++)

 b[i]=0;

 for(char ch='Z'+1;ch<'a';ch++) b[ch]=1;

 while(k<s.length()) {b[s[k]]=1;k++;}

 for(int i=m;i<=122;i++)

 {

 if(b[i]==0) return (char)i;

 }

return '.';

}

int main()

{ int n;

 int min;

cin>>n;

for(int i=0;i<n;i++)

cin>>a[i];

for(int i=0;i<n;i++)

{ min=200;

 for(int j=0;j<a[i].length();j++)

 {if(min>a[i][j]) min=a[i][j];}

 cout<<search(a[i],min);

 }

cout<<endl;

}

 31

Round 3 / Task D3. DIGIT

We are modeling the process using the string stream tool in C++. In the first loop, we put all

integers from 1 to 3000 into the string stream buffer a. Then we get n characters, one by one

from the buffer.

#include <iostream>

#include <sstream>

using namespace std;

int main()

{ int n;

 cin >> n;

 stringstream a;

 for(int x=1; x<=3000; x++)

 a << x;

 char ch;

 for(int i=1; i<=n; i++)

 a >> ch;

 cout << ch << endl;

 return 0;

}

Round 3 / Task E1. RHOMBS

The program reads integer N that shows how many inscribed rhombs are formed the figure.

The number of printed rows is 2N+1. Each row contains two parts: definite number spaces

(sp) and definite number (br) *. The first row consists of N spaces and one asterisk.

1. Through the first cycle for, we draw the first N rows, such that the number of spaces

decreases by one for every next row, and the number of astersisks increases by 2.

2. Follow the row with N asterisks one space and N asterisks are added:
for (i=1; i<=2; i++) {

 for(j=1; j<=n;j++) cout <<'*';

 if (i==1) cout <<' '; }

cout<<endl;

3. Through the next cycle for, we draw the next N rows, such that the number of spaces

increases by one for every next row, and the number of asterisks decreases by 2.

#include <iostream.h>

using namespace std;

int main()

 { int i,j,n,sp,br=1;

 cin >>n;

 sp=n;

 for (i=1;i<=n;i++)

 32

 { for (j=1;j<=sp;j++)

 cout <<' ';

 for (j=1;j<=br;j++)

 cout <<'*';

 cout <<endl;

 sp--;

 br+=2; }

 for (i=1; i<=2; i++) {

 for(j=1; j<=n;j++)

 cout <<'*';

 if (i==1) cout <<' '; }

 cout<<endl;

 sp=1;

 br=2*n-1;

 for (i=1;i<=n;i++)

 {

 for (j=1;j<=sp;j++)

 cout <<' ';

 for (j=1;j<=br;j++)

 cout <<'*';

 cout << endl;

 sp++;

 br-=2;

 }

}

Round 3 / Task E3. IRREDUCIBLE FRACTION

Due to the bounds 0 < a < b < 1000 it follows that any common denominator d is less or equal

to 500. So, we try all possibilities for d from 2 to 500.

#include <iostream>

using namespace std;

int main()

{ int a,b,d;

 cin >> a >> b;

 for(d = 2; d<500; d++)

 while(a%d == 0 && b%d == 0)

 { a = a / d; b = b / d; }

 cout << a << " " << b << endl;

 return 0;

}

