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PREFACE

Bulgaria is a country with long traditions in mathematical competitions.
There are numerous regional competitions connected with important dates in
Christian calendar or in Bulgarian history. These competitions range in format
and difficulty and give opportunity to all students in lower and secondary school
to test their abilities in problem solving. Great many of them being fascinated
by problem solving in such competitions start working hard in order to acquire
new knowledge in mathematics.

The most important and prestigious national competitions in Bulgaria are
Winter Mathematical Competition, Spring Mathematical Competition and Na-
tional Olympiad. The organization of these competitions is responsibility of the
Ministry of Education and Science, the Union of Bulgarian Mathematicians
and the local organizers. The problems for the competitions are prepared by
so called Team for extra curricula research — a specialized body of the Union
of Bulgarian Mathematicians.

Winter Mathematical Competition. The first Winter Mathematical
Competition took place in year 1982 in town of Russe. Since then it is held
every year at the end of January or the beginning of February and about 1000
students from grades 4 to 12 take part in it. Four Bulgarian towns Varna,
Russe, Bourgas and Pleven in turn host the competition.

Spring Mathematical Competition. The first Spring Mathematical
Competition took place in year 1971 in town of Kazanlyk. The competition is
being held annually at the end of March. Every year about 500 students from
grades 8 to 12 take part in the competition. Two Bulgarian cities, Kazanlyk
and Tambol in turn host the competition. The competition in town of lambol
is named after Atanas Radev (1886 — 1970). He was a famous teacher in math-
ematics who at the time of his life contributed enormously to mathematics
education.

The results from Winter Mathematical Competition and Spring Mathe-
matical Tournament are taken into consideration for selecting the candidates
for Bulgarian Balkan Mathematical Olympiad team. Two selection tests then
determine the team.

National Olympiad. The first National Mathematical Olympiad dates
back in 1949-1950 school year. Now it is organized in three rounds - school,
regional and national. The school round is carried out in different grades and is
organized by regional mathematical authorities. They work out the problems
and grade the solutions. The regional round, which is also carried in different
grades, is organized in regional centers and the problems are now given by
National Olympiad Commission. The grading is responsibility of the region-
al mathematical authorities. The national round is set in two days for three
problems each day. The problems and organization are similar to these of the
International Mathematical Olympiad (IMO). The best 12 students are invited

Vil



to take part in two selection tests. As a rule, each selection test is executed in
two days, three problems per day. The results of these tests determine the six
students for Bulgarian IMO team.

Bulgaria and international competitions in mathematics. Bulgar-
la is among the six countries (Bulgaria, Czechoslovakia, German Democratic
Republic, Hungary, Romania and Union of the Soviet Socialist Republic) that
initiated in year 1959, now extremely popular, International Mathematical
Olympiad. Since then Bulgarian team took part in all IMO’s. Bulgarian stu-
dents take part also in gaining popularity Balkan Mathematical Olympiad and
in the final round of the All Russian Mathematical Olympiad.

This book contains all problems for grades 8 to 12 from the above mentioned
national competitions in the period 2003-2006. The problems from all selection
tests for BMO and IMO are also included. Most of the problems are regarded
as difficult IMO type problems. The book is intended for undergraduates, high
school students and teachers who are interested in olympiad mathematics.

Sofia, Bulgaria, The authors
May, 2007
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Bulgarian Mathematical Competitions 2003

Winter Mathematical Competition
Varna, January 30 — February 1, 2003

Problem 9.1. Let ABC be an isosceles triangle with AC = BC and let k be
a circle with center C and radius less than the altitude CH, H € AB. Lines
through A and B are tangent to k at points P and @ lying on the same side
of the line C'H. Prove that the points P, Q and H are collinear.

Oleg Mushkarov

Problem 9.2. Find all values of a, for which the equation

2a a+1 2(a+1)z—(a+3)

- —0
(x+1)2+x+1 2r2 —z -1

has two real roots x; and x5 satisfying the relation x% —azry =a“—a-—1.

Ivan Landjev

2

Problem 9.3. Find the number of positive integers a less than 2003, for which

there exists a positive integer n such that 32003 divides n3 + a.
Emil Kolev, Nikolai Nikolov

Problem 10.1. Find all values of a, for which the equation

Vax? +ax+2=azx+2

has a unique root.
Alexander Ivanov, Emil Kolev

Problem 10.2. Let k; and k3 be circles with centers Oy and O3, 0,05 = 25,
and radii R; = 4 and Ry = 16, respectively. Consider a circle k& such that k;
is internally tangent to k at a point A, and kj is externally tangent to k at a
point B.

a) Prove that the segment AB passes trough a constant point (i.e., inde-
pendent on k).

b) The line 010, intersects k; and kg at points P and @), respectively, such
that Oy lies on the segment PQ and O3 does not. Prove that the points P, A, Q
and B are concyclic.

c¢) Find the minimum possible length of the segmentAB (when k varies).

Stoyan Atanasov, Emil Kolev

Problem 10.3. Let A be the set of all 4-tuples of 0 and 1. Two such 4-tuples are
called neighbors if they coincide exactly at three positions. Let M be a subset
of A with the following property: any two elements of M are not neighbors and
there exists an element of M which is neighbor of exactly one of them. Find

the minimum possible cardinality of M.
Ivan Landjev, Emil Kolev



1
Problem 11.1. Let ¢y = 1 and apy1 = an + C for n > 1. Prove that:

n
ayn<ai<n+ In; b) nh'm(an—\/?_{)zO.
—00
Nikolai Nikolov

Problem 11.2. Let M be an interior point of AABC. The lines AM, BM
and CM meet the lines BC, CA and AB at points A, B, and C|, respectively,
such that Scp,m = 2Sac,m. Prove that A; is the midpoint of the segment

BC if and only if Spa,m = 3Sac, M-
Oleg Mushkarov

Problem 11.3. Aleksander writes a positive integer as a coefficient of a poly-
nomial of degree four, then Elitza writes a positive integer as another coefficient
of the same polynomial and so on till all the five coefficients of the polynomial
are filled in. Aleksander wins if the polynomial obtained has an integer root;

otherwise, Elitza wins. Who of them has a winning strategy?
Nikolai Nikolov

Problem 12.1. Consider the polynomial f(z) = 42* + 62® + 2% + 2003z —
20032, Prove that:
a) the local extrema of f’(x) are positive;
b) the equation f(x) = 0 has exactly two real roots and find them.
Sava Grozdev, Svetlozar Doychev

Problem 12.2. Let M, N and P be points on the sides AB, BC and CA of
AABC, respectively. The lines through M, N and P, parallel to BC, AC and
AB, respectively, meet at a point T. Prove that:

.. AM BN CP : : .
a) if B - NC - PA’ then T is the centroid of AABC;
b) Sunp < 35amc.

Sava Grozdev, Svetlozar Doychev

Problem 12.3. In a group of n people there are three that are familiar to
each other and any of them is familiar with more then the half of the people

in the group. Find the minimum possible triples of familiar people?
Nickolay Khadzhiivanov



Spring Mathematical Competition
Kazanlak, March 28-30, 2003

Problem 8.1. Is it possible to write the integers 1,2,3,4,5,6,7,8 at the ver-
tices of a regular octagon such that the sum of the integers in any three con-
secutive vertices is greater than:
a) 13; Db) 11; «c¢) 127
Tvan Tonov

Problem 8.2. Let A;, B; and C; be respectively the midpoints of the sides
BC, CA and AB of AABC with centroid M. The line trough A; and parallel
to BB; meets the line B1C) at a point D. Prove that if the points A, By, M
and C| are concyclic, then xADA, = ¥CAB.

Chavdar Lozanov

Problem 8.3. Find the least positive integer m such that 2209 divides 2003™—

1.
Ivan Tonov

Problem 9.1. Find all real values of a such that the system

axr +Yy ay—l—ac_a
y+1  z4+1
azx? + ay? = (a —2)zy — 2

has a unique solution.
Peter Boyvalenkov

Problem 9.2. Let ABCD be a parallelogram and let X BAD be acute. Denote
by E and F the feet of the perpendiculars from the vertex C to the lines AB
and AD, respectively. A circle through D and F is tangent to the diagonal AC
at a point @ and a circle through B and E is tangent to the segment QC at
its midpoint P. Find the length of diagonal AC if AQ = 1.

Ivaylo Kortezov

Problem 9.3. The dragon Spas has one head. His family tree consists of Spas,
the Spas parents, their parents, etc. It is known that if a dragon has n heads,
then his mother has 3n heads and his father has 3n+1 heads. A positive integer
is called good if it can be written in a unique way as a sum of the numbers of
the heads of two dragons from the Spas’ family tree. Prove that 2003 is a good
number and find the number of the good numbers less than 2003.

Ivaylo Kortezov

2

Problem 10.1. a) Find the image of the function
m —

b) Find all real numbers a such that the equation

*—ax*+ (a+1)2?-224+1=0



has no real roots.
Aleksander Ivanov

Problem 10.2. Three nonintersecting circles k;(O;,7;), 1 = 1,2,3, where r; <
re < r3, are tangent to the arms of an angle. One of the arms is tangent to
k,; and k3 at points A and B and the other one is tangent to kg at point C.
Let K= ACNnk;, L=ACNky, M = BCNky and N = BCNks. The four
lines through C and P = AMNBK, @ = AMNBL, R = AN N BK and
S = ANNBL, meet AB at the points X, Y, Z and T, respectively. Prove that

XZ=YT.
Emal Kolev

Problem 10.3. Three of n equal balls are radioactive. A detector measures
radioactivity. Any measurement of a set of balls gives as a result whether 0,
1 or more than 1 balls are radioactive. Denote by L(n) the least number of
measurements that one needs to find the three radioactive balls.

a) Find L(6).

)
b) Prove that L(n) < 2

2

.

Emil Kolev

Problem 11.1. Let a > 2 be a real number. Denote by x; and x3 the roots
of the equation 22 ~ax +1=0and set S, = z} + 2%, n=1,2,....

S o0
a) Prove that the sequence { - } is decreasing.
Sn+1 n=1
b) Find all a such that

S1 S Sn
Sy 53 Sn+l

>n—1

foranyn=1,2,....
Oleg Mushkarov

Problem 11.2. The incircle of AABC has radius r and is tangent to the sides
AB, BC and CA at points Cy, A; and By, respectively. If N = BC'n B1C,
and AA; = 24, N = 2rv/3, find XANC.

Sava Grozdev, Svetlozar Doychev

Problem 11.3. Find all positive integers n for which there exists n points in

the plane such that any of them lies on exactly % of the lines determined by

these n points.
Aleksander Ivanov, Emil Kolev

Problem 12.1. Consider the functions

COS2 i

1+ cosx +cos?z and g(x) = ktan z + (1 — k)sinz — z,

fz) =

where k is a real number.



(1 —cosz)(k — f(z)) .
f(z)
b) Find the image of f(z) if z € [o; g)

c¢) Find all k such that g(z) > 0 for any x € [O; g)
Sava Grozdev, Svetlozar Doychev

Problem 12.2. Let M be the centroid of AABC with XAMB = 2XACB.
Prove that:

a) AB* = AC* + BC* — AC?.BC?

b) xACB > 60°.

a) Prove that ¢'(z) =

Nikolai Nikolov

Problem 12.3. Let R be the set of real numbers. Find all @ > 0 such that
there exists a function f : R — R with the following two properties:
a) f(z) =ax+ 1—a for any z € [2,3);
b) f(f(x)) =3 — 2z for any x € R.
Oleg Mushkarov, Nikolai Nikolov



52. Bulgarian Mathematical Olympiad
Regional round, April 19-20, 2003

Problem 1. A right-angled trapezoid with area 10 and altitude 4 is divided
into two circumscribed trapezoids by a line parallel to its bases. Find their
inradii.

Oleg Mushkarov
Problem 2. Let n be a positive integer. Ann writes down n different positive
integers. Then Ivo deletes some of them (possible none, but not all), puts the
signs + or — in front of each of the remaining numbers and sums them up.
Ivo wins if 2003 divides the result; otherwise, Ann wins. Who has a winning

strategy?
Ivailo Kortezov

Problem 3. Find all real numbers a such that 4{an| = n + [a[an]] for any

positive integer n ([x] denotes the largest integer less than or equal to x).
Nikolat Nikolov

Problem 4. Let D be a point on the side AC of AABC such that BD = CD.
A line parallel to BD intersects the sides BC and AB at points £ and F,

respectively. Set G = AE N BD. Prove that ¢ BCG =<4 BCF.
Oleg Mushkarov, Nikolai Nikolov

Problem 5. Find the number of real solution of the system

x+y+2z=3xy
2 4+ y2 4+ 2% = 322
3+ 93 + 23 = 3y=.

Sava Grozdev, Svetlozar Doychev

Problem 6. A set C of positive integers is called good if for any integer k there
exist a,b € C, a # b, such that the numbers a + k& and b + k are not coprime.
Prove that if the sum of the elements of a good set C equals 2003, then there

exists ¢ € C for which the set C'\ {c} is good.
Alexander Ivanov, Emil Kolev



52. Bulgarian Mathematical Olympiad
National round, Sofia, May 17-18, 2003

Problem 1. Find the least positive integer n with the following property: if
n distinct sums of the form xp + x4 + 2, 1 < p < ¢ <7 < 5, equal 0, then
ry =29 =x3 =24 = x5 = 0.

Sava Grozdev, Svetlozar Doychev

Problem 2. Let H be a point on the altitude CP (P € AB) of an acute
AABC. The lines AH and BH intersect BC and AC at points M and N,
respectively.
a) Prove that ¢ MPC =4 NPC.
b) The lines M N and CP intersect at O. A line through O meets the sides
of the quadrilateral CN HM at points D and E. Prove that 4 DPC =4 EPC.
Alezander Ivanov

Problem 3. Consider the sequence
yi=y2=1, yny2 = 4k —5)yn41 —Yn +4 -2k, n> 1.

Find all integers k such that any term of the sequence is a perfect square.
Sava Grozdev, Svetlozar Doychev

Problem 4. A set of at least three positive integers is called uniform if re-

moving any of its elements the remaining set can be disjoint into two subsets

with equal sums of elements. Find the minimal cardinality of a uniform set.
Peter Boyvalenkov, Emil Kolev

Problem 5. Let a, b and ¢ be rational numbers such that a + b + ¢ and
a? + b? + c? are equal integers. Prove that the number abc can be written as a

ratio of a perfect cube and a perfect square that are coprime.
Oleg Mushkarov, Nikolai Nikolov

Problem 6. Find all polynomials P(z) with integer coefficients such that for

any positive integer n the equation P{x) = 2" has an integer solution.
Oleg Mushkarov, Nikolai Nikolov



Team selection test for 20. BMO
Kazanlak, March 3, 2003

Problem 1. Let D be a point on the side AC of AABC with AC = BC,
and E be a point on the segment BD. Prove that XxEDC = 2¢CED if BD =

2AD = 4BE.
Mediteranian Mathematical Competition

Problem 2. Prove that if a, b and ¢ are positive numbers with sum 3, then

a N b N c >3
2+1 241 a24+1°- 2

Mediteranian Mathematical Competition

Problem 3. At any lattice point in the plane a number from the interval (0, 1)
is written. It is known that for any lattice point the number written there is
equal to the arithmetic mean of the numbers written at the four closest lattice
points. Prove that all written numbers are equal.

Mediteranian Mathematical Competition

Problem 4. For any positive integer n set
An={j:1<ji<n, (in) =1}
Find all n such that the polynomial

Po(z) = Z 21

JEAn

is irreducible over Z[z].



Team selection test for 44. IMQO
Sofia, May 29-30, 2003

Problem 1. Cut 2003 rectangles from an acute AABC such that any of them
has a side parallel to AB and the sum of their areas is maximal.

Problem 2. Find all functions f : R — R such that
fE®+y+ fy) =2y + (f(2))?

for any =,y € R.

Problem 3. Some of the vertices of a convex n-gon are connected by segments
such that any two of them have no a common interior point. Prove that for any
n points in general position (i.e., any three of them are not collinear) there is
an one-to-one correspondence between the points and the vertices of the n-gon
such that any two segments corresponding to the respective segments from the
n-gon have no a common interior point.

Problem 4. Is it true that for any permutation a;, ag,...,a2020f1,2,...,2002
there are positive integers m and n of the same parity such that 1 <m < n <

2002 and a,, + ap = 2a@_}2.

Problem 5. Let ABCD be a circumscribed quadrilateral and let P be the
orthogonal projection of its incenter on the diagonal AC. Prove that 4 APB =
J APD.

Problem 6. Prove that there are no positive integers m and n such that

m(m + 1)(m + 2)(m + 3) = n(n + 1)%(n + 2)3(n + 3)4.



Bulgarian Mathematical Competitions 2004

Winter Mathematical Competition
Rousse, January 30 - February 1, 2004

Problem 9.1. Find all values of a such that the equation
(a?—a—9)z?—-6x—a=0

has two distinct positive roots.
Ivan Landjev

Problem 9.2. The diagonals AC and BD of a cyclic quadrilateral ABCD
with circumcenter I intersect at a point E. If the midpoints of segments AD,

BC and IE are collinear, prove that AB = CD.
Stoyan Atanasov

Problem 9.3. Find the least number of colors with the following property: the
integers 1,2...,2004 can be colored such that there are no integers a < b < ¢

of the same color for which a divides b and b divides c.
Alexander Ivanov

Problem 10.1. Let f(x) = z* — 23 + 8ax? — ax + a? and 9(y) = y? —y + 6a.
a) Prove that f(x) = (m2 —y1z+ a)(alc2 — yax + a), where y; and yg are the
roots of the equation g(y) = 0.
b) Find all values of a such that the equation f(z) = 0 has for distinct

positive roots.
Kerope Tchakerian

Problem 10.2. Let ABCDE be a cyclic pentagon with AC||DE. Denote by

M the midpoint of BD. If § AMB =<4 BMC| prove that BE bisects AC.
Peter Boyvalenkov

Problem 10.3. Find the largest positive integer n for which there exists a set
{a1,0a9,...,an} of composite positive integers with the following properties:
(i) any two of them are coprime;
(i) 1<a; <@Bn+1)2fori=1,...,n
Ivan Landjev

Problem 11.1. Find all values of a such that the equation

4% — (a? + 32— 2)2" 4+ 3a® — 222 = 0

has a unique solution.
Alexander Ivanov, Emil Kolev

Problem 11.2. The point M on the side AB of AABC is such that the
inradii of AAMC and ABMC are equal. The incircles of AAMC and ABMC

10



have centers O; and Oy, and are tangent to the side AB at points P and Q,
respectively. It is known that Sapc = 65pgo,0, -

a) Prove that 10CM + 5AB = 7(AC + BC).
AC + BC

b) Find the ratio 1B

Emil Kolev

Problem 11.3. Let a > 1 be a positive integer. The sequence a;,ay, ...,
an,... is defined by a; = 1, ag = a and a,42 = a.apy1 — ap for n > 1. Prove
that the prime factors of its terms are infinitely many.

Alezxander Ivanov

Problem 12.1. Let a; > 0 and ap41 = an + Zz-ri for n > 1. Prove that:

n
a) a, >n forn>2;

b) the sequence {%} converges and find its limit.
n>1
Oleg Mushkarov, Nikolai Nikolov

Problem 12.2. In triangle ABC with orthocenter H one has that
AH.BH.CH =3 and AH?+ BH? +CH?*=1.

Find:
a) the circumradius of AABC;
b) the sides of AABC with maximum possible area.
Oleg Mushkarov, Nikolai Nikolov

Problem 12.3. Prove that for any integer a > 4 there exist infinitely many

squarefree positive integers n that divide a™ — 1.
Oleg Mushkarov, Nikolai Nikolov

11



Spring Mathematical Competition
Yambol, March 30 - April 1, 2004

Problem 8.1. The bisectors of 4 A, 4 B and 4 C of AABC meet its circum-
circle at points Ay, By and C, respectively. Set AA\NCC, =1, AA\NBC =N
and BB; N A1C; = P. Denote by O the circumcenter of AIPC| and let
OPNBC = M. If BM = MN and 4 BAC = 2 4 ABC, find the angles

of ANABC.
Chavdar Lozanov

Problem 8.2. In a volleyball tournament for the Euro- African cup the Euro-
pean teams are 9 more than the African teams. Every two teams met exactly
once and the European teams gained 9 times more points than the African
teams (the winner takes 1 point and the loser takes 0 point). What are the

maximum possible points gained by an African team?
Ivan Tonov

Problem 8.3. In every cell of an n X n table one of the numbers —1, 0 and 1 is
written. [s it possible the sums of the numbers in every row and every column
to be 2n mutually different numbers, if:

a)n=4; b)n=>57

Ivan Tonov
?+y?=a?+2
Problem 9.1. Consider the system | 1 n 1 a , where a is a real
r y

number.
a) Solve the system for a = 0.
b) Find all a, for which the system has exactly two solutions.
Svetlozar Doychev, Sava Grozdev

Problem 9.2. Let I be the incenter of AABC and M be the midpoint of the
side AB. Find the least possible value of S CIM if CI = M.
Svetlozar Doychev, Sava Grozdev

Problem 9.3. Find all odd prime numbers p which divide the number 1771 +
2P~1 4 ... 4 2004P~1,
Kerope Tchakertan

Problem 10.1. Let f(z) = 22 —ax + a? — 4, where a is a real number. Find
all a, for which:
a) the equation f(z) = 0 has two real roots z; and x3 such that |23 — x| <
4;
b) the inequality f(x) > 0 holds for all integers .
Peter Boyvalenkov

Problem 10.2. Let ABCD be a cyclic quadrilateral. Denote by I and J
the incenters of AABD and ABCD. Prove that ABCD is a circamsribed

12



quadrilateral if and only if the points A, I, J and C are either collinear or

concyclic.
Stoyan Atanasov

Problem 10.3. See Problem 9.3.

Problem 11.1. Find all real numbers a such that the equation

1 3
10g4ax (m - 3a) + "2" logx_ga daxr = -2-

has exactly two solutions.
Emal Kolev

Problem 11.2. Let AA;, BB; and CC; be the altitudes of an acute AABC
(A1 € BC, By € CA and C; € AB). Denote by O the circumcenter of AABC,
and by H; the orthocenter of AA;B;C}. Prove that the midpoint of the seg-
ment OH; coincides with incenter of the triangle with vertices at the midpoints
of the sides of AA; B C}.

Alexander Ivanov

Problem 11.3. Let k be an integer, 1 < k < 100. For every permutation

ai,as,...,a00 of the integers 1,2, ..., 100, set aj01 = 0 and choose the least in-
teger m > k such that a,, is less than at least k—1 of the numbers a;,az, ..., a.
100!

Find all k& for which the number of permutations with a,, = 1, is equal to —.
Peter Boyvalenkov, EFmil Kolev, Nikolat Nikolov

Problem 12.1. Find all real numbers a such that the graphs of the functions
2? — 2ax and —22 — 1 have two common tangent lines and the perimeter of the

quadrilateral with vertices at the tangent points is equal to 6.
Oleg Mushkarov, Nikolai Nikolov

Problem 12.2. The incircle of AABC is tangent to the sides AC and BC,
AC +# BC, at points P and @, respectively. The excircles to the sides AC u
BC are tangent to the line AB at points M and N. Find 4 ACB if the points
M, N, P and @ are concyclic.

Oleg Mushkarov, Nikolai Nikolov

Problem 12.3. See Problem 11.3.
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53. Bulgarian Mathematical Olympiad
Regional round, April 17-18, 2004

Problem 9.1. Find all values of a such that the equation

Va2 —4a—1)z2 —2azx + 1= 1-az — z*

has exactly two solutions.
Sava Grozdev, Svetlozar Doychev

Problem 9.2. Let A; and B; be points on the sides AC and BC of AABC
such that 44A,;.BB; = AB?. If AC = BC, prove that the line AB and the

bisectors of XxAA; B; and ¥xBBjA; are concurrent.
Sava Grozdev, Svetlozar Doychev

Problem 9.3. Let a,b,c > 0 and a + b+ ¢ = 1. Prove that

9 a b C

— < 1.
10_1+bc+1+ca+1+ab<

Sava Grozdev, Svetlozar Doychev

Problem 9.4. Solve in integers the equation
23 +10x -1 =193 + 62
Sava Grozdev, Svetlozar Doychev

Problem 9.5. A square n x n (n > 2) is divided into n? unit squares colored
in black or white such that the squares at the four corners of any rectangle
(containing at least four squares) have no the same color. Find the maximum
possible value of n.

Sava Grozdev, Svetlozar Doychev
Problem 9.6. Consider the equations
[2]® + 22 = 23 + [2]? and [2%] 4+ 2% = 2® + [2?],
where [t] is the greatest integer that does not exceed t. Prove that:

a) any solution of the first equation is an integer;

b) the second equation has a non-integer solution.
Sava Grozdev, Svetlozar Doychev

Problem 10.1. Solve the inequality

V2 —141v/222 -3+ 2v3 > 0.

Peter Boyvalenkov
Problem 10.2. Let M be the 02entroid %f ANABC. Prove that:
21 CA?—-5AB
2) cot xAMB = 2& 4 .
1254BC
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b) cot XAM B + cot XBMC + cot XCMA < —/3.
Peter Boyvalenkov

Problem 10.3. In a school there are m boys and j girls,m > 1, 1 < j < 2004.
Every student has sent a post card to every student. It is known that the
number of the post cards sent by the boys is equal to the number of the post
cards sent by girl to girl. Find all possible values of j.

Tvailo Kortezov

Problem 10.4. Consider the function
f(x) = (a® + 4a + 2)z® + (® + 40® + a + 1)x? + (20 — a*)z + a2,

where a is a real parameter.
a) Prove that f(—a) = 0.
b) Find all values of a such that the equation f(x) = 0 has three different

positive roots.
Ivan Landjev

Problem 10.5. Let O and G be respectively the circumcenter and the centroid
of AABC and let M be the midpoint of the side AB. If OGLCM, prove that

ADABC is isosceles.
Ivailo Kortezov

Problem 10.6. Prove that any graph with 10 vertices and 26 edges contains

at least 4 triangles.
Ivan Landjev

Problem 11.1. Find all values of € (—x,w) such that the numbers 251"%,

Q — 28INTHCOST 4nd 25T are consecutive terms of a geometric progression.
Emil Kolev

Problem 11.2. The lines through the vertices A and B that are tangent to
the circumcircle of an acute AABC meet at a point D. If M is the midpoint

of the side AB, prove that XACM = XBCD.
Emil Kolev

Problem 11.3. Let m > 3 and n > 2 be integers. Prove that in a group of
N = mn — n + 1 people such that there are two familiar people among any
m, there is a person who is familiar with n people. Does the statement remain
true if N <mn—n+17

Alexander Ivanov

Problem 11.4. The points D and E lie respectively on the perpendicular
bisectors of the sides AB and BC of AABC. It is known that D is an interior
point for AABC, FE does not and XADB = YCEB. If the line AE meets the
segment C'D at a point O, prove that the areas of AACO and the quadrilateral

DBEO are equal.
Emil Kolev
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Problem 11.5. Let a, b and ¢ be positive integers such that one of them is
coprime with any of the other two. Prove that there are positive integers x, y

and z such that 2% = yb + 2°.
Alexander Ivanov

Problem 11.6. One chooses a point in the interior of AABC with area 1 and
connects it with the vertices of the triangle. Then one chooses a point in the
interior of one of the three new triangles and connects it with its vertices, etc.
At any step one chooses a point in the interior of one of the triangles obtained
before and connects it with the vertices of this triangle. Prove that after the
n-th step:

a) AABC is divided into 2n + 1 triangles;

6) there are two triangles with common side whose combined area is not
2

on+1

less than
Alexander Ivanov

Problem 12.1. Solve in integers the equation
2% + 8b° — 3¢ = 283.

Oleg Mushkarov, Nikolai Nikolov

Problem 12.2. Find all values of a such that the maximum of the function

f(z) = ar — 1

m is equal to 1.

Oleg Mushkarov, Nikolai Nikolov

Problem 12.3. A plane bisects the volume of the tetrahedron ABCD and

meets the edges AB and CD respectively at points M and N such that g_]\]\fl -
CN

DN # 1. Prove that the plane passes through the midpoints of the edges AC
and BD.

Oleg Mushkarov, Nikolai Nikolov

Problem 12.4. Let ABCD be a circumscribed quadrilateral. Find ¢ BCD if
AC=BC,AD=5E=ACNBD, BE=12 and DE = 3.
Oleg Mushkarov, Nikolai Nikolov

Problem 12.5. A set A of positive integers less than 2 000 000 is called good
if 2000 € A and a divides b for any a,b € A, a < b. Find:
a) the maximum possible cardinality of a good set;

b) the number of the good sets of maximal cardinality.
Oleg Mushkarov, Nikolai Nikolov

Problem 12.6. Find all non-constant polynomials P(x) and Q(x) with real
coeflicients such that P(z)Q(z + 1) = P(x + 2004)Q(x) for any x.
Oleg Mushkarov, Nikolat Nikolov
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53. Bulgarian Mathematical Olympiad
National Round, Sofia, May 15-16, 2004

Problem 1. Let I be the incenter of AABC and let A;, B; and C| be points
on the segments Al, BI and CI. The perpendicular bisectors of the segments
AA,, BB and CC] intersect at points Ag, By and Cs. Prove that the circum-
centers of AA9ByCy and AABC coincide if and only if I is the orthocenter of
AA B C,.

Oleg Mushkarov, Nikolai Nikolov

1 1
Problem 2. For any positive integer n the sum 1 + 5 + -+ -~ is written in
the form Pﬁ, where p, and ¢, are coprime numbers.

n
a) Prove that 3 does not divide pg7.
b) Find all n, for which 3 divides py.
Nikolai Nikolov

Problem 3. In a group of n tourists, among every three of them there are at
least two that are not familiar. For any partition of the group into two groups,
there are at least two familiar tourists in some of the groups. Prove that there

is a tourist who is familiar with at most = tourists.
Ivan Landjev

Problem 4. In any word with letters @ and b the following changes are allowed:
aba — b, b — aba, bba — a and a — bba. Is it possible to obtain the word
?
baa...a from the word ga...ab"
2003 2003
Emil Kolev
Problem 5. Let a, b, ¢ and d be positive integers such that there are exactly
2004 ordered pairs (z,y), =,y € (0,1), for which ax + by and cx + dy are
integers. If (a,c) = 6, find (b,d).
Oleg Mushkarov, Nikolai Nikolov

Problem 6. Let p be a prime number and let 0 < a; < as < - < apm <p
and 0 < b < bp < --- < bp < p be arbitrary integers. Denote by k the number
of different remainders of the numbers a; + b;, 1 < i < m, 1 < j < n, modulo
p. Prove that:
a)ifm+n>p, thenk=p;, b)if m+n<p,thenk>m+n-—1
Vladimir Barzov, Alexander Ivanov
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Team selection test for 21. BMO
Sofia, March 30-31, 2004

Problem 1. [s there a set A D {1,2,...,2004} of positive integers such that
the product of its elements is equal to the sum of their squares?

=

k
Problem 2. Prove that if ay,ag,...,an,b1,b2,...,b, > 0 and ¢, = Hbi,
=1
1< k< n,then Z
n n
nen + Z k(ar — l)cr < Zaﬁbk.
k=1 k=1
Problem 3. Let A = {1,2,...,n}, n > 4. For any function f: A — A and

any a € A define fi(a) = f(a), fi+1(a) = f(fi(a)), ¢ > 1. Find the number of
the functions f such that f,_g is a constant function but f,_3 is not.

Problem 4. Let A;As... A, be a convex polygon and let p; be the length of
its orthogonal projection on the line A;A;41, 1 < i < n (Apt1 = Ay). Prove

n

A A;

that if Z ;pzf—l = 4, then the polygon is a rectangle.
i=1 s

Problem 5. Let p(z) and ¢(z) be polynomials with m > 2 non-zero coeffi-
cients. If -Zim—) is not a constant function, find the least possible number of the
non-zero (?(g:f)ﬁcients of the polynomial f(u,v) = p(u)q(v) — p(v)q(u).

Problem 6. Let M be a point on a circle k. A circle k; with center M meets
k at points C and D. A chord AB of k is tangent to k; at point H. Prove that

the line C'D bisects the segment M H if and only if AB is a diameter of k.
Problem 7. Let A;,Aq,..., A, be finite sets such that

n—2
AN A > A;
I 7 z+1| n—ll z+1|
for any ¢ = 1,2,...,n (Ap41 = A1). Prove that their intersection is a non-

empty set.
Problem 8. Let a, b and n be positive integers. Denote by K(n) the number

of the representations of 1 as a sum of n numbers of the form T where &

is a positive integer. Let L(a,b) be the least positive integer m such that

m
: 1 a Co P
the equation E — =3 has a solution in positive integers and set L(b) =
Z;

i=1

max{L(a,b),1 < a < b}. Prove that the number of the positive divisors of b
does not exceed 2L(b) + K(L(b) + 2).
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Team selection test for 45. IMO
Sofia, May 27-31, 2004

Problem 1. Let n be a positive integer. Find all positive integers m, for which
there exists a polynomial f(z) = ap + a1z + -+ + apx™ € Zlz], a, # 0, such
that (ao,ar,...an,m) =1 and f(k) divides m for any integer k.

Problem 2. Find all primes p > 3 such that p — [-ﬂ q is a square-free integer
for any prime ¢ < p.

Problem 3. Find the maximum possible value of the inradius of a triangle
with vertices in the interior or on the boundary of a unit square.

Problem 4. Find the maximum possible value of the product of different
positive integers with sum 2004.

Problem 5. Let H be the orthocenter of AABC. The points A; # A, By # B
and C; # C lie respectively on the circumcircles of ABCH, ACAH and
ANABH,and AiH = BiH = C1H. Denote by Hy, Ho and H3 the orthocenters
of AABC, AB,CA and AC)AB, respectively. Prove that AA;B1C; and
AH{HyHj3 have the same orthocenter.

Problem 6. In any cell of an n x n table a number is written such that all the
rows are different. Prove that one can remove a column such that the rows in
the new table are still different.

Problem 7. The points P and @ lie respectively on the diagonals AC and BD

of a quadrilateral ABCD and %—g— + —g—g— = 1. The line PQ meets the sides

AD and BC at points M and N. Prove that the circumcircles of the triangles
AMP, BNQ, DMQ and CNP are concurrent.

Problem 8. The edges of a graph with 2n vertices, n > 4, are colored in blue
and red such that there is no a blue triangle and there is no a red complete
subgraph with n vertices. Find the least possible number of the blue edges.

Problem 9. Prove that among any 2n + 1 irrational numbers there are n + 1
numbers such that the sum of any 2, 3, ...,n+1 of them is an irrational number.

Problem 10. Find all £ > 0 such that there is a function f: [0,1] x [0, 1] —
[0, 1] satisfying the following conditions:

a) f(f(z,y),2) = f(=, f(v,2));
b) f(z,y) = f(y,z);
c) f(z,1) =z

d) f(zz,2y) = 2" f(z,9),
for any z,y, z € [0, 1].
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Problem 11. Prove that if a,b,c > 1and a+b+c =9, then

Vab + bc + ca < va+ Vb + Ve

Problem 12. A table with m rows and n columns is given. At any move one
chooses some empty cells such that any two of them lie in different rows and
columns, puts a white piece in any of these cells and then puts a black piece
in the cells whose lines and columns contain white pieces. The game is over if
it is not possible to make a move. Find the maximum possible number of the
white pieces that can be put on the table.
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Bulgarian Mathematical Competitions 2005

Winter Mathematical Competition
Bourgas, January 28-30, 2005

Problem 9.1. Find all values of the real parameter a for which the equations
r?—(2a+1)z+a=0and 22 + (a—4)z +a— 1 = 0 have real roots z;, x5 and
x3, x4, respectively, such that

zL N T4 z124(21 + 22 + T3 + X4)

I3 x9 a
Peter Boyvalenkov

Problem 9.2. A circle k through the vertices A and B of an acute AABC
meets the sides AC and BC at inner points M and N, respectively. The tangent
lines to k at the points M and N meet at point O. Prove that O is the

circumcenter of ACMN if and only if AB is a diameter of k.
Peter Boyvalenkov

Problem 9.3. Find all four-digit positive integers m less than 2005 for which
there exists a positive integer n < m, such that mn is a perfect square and
m — n has at most three distinct positive divisors.

Peter Boyvalenkov, Ivailo Kortezov

Problem 9.4. Ivo writes consecutively the integers 1,2,...,100 on 100 cards
and gives some of them to Yana. It is known that for every card of Ivo and
every card of Yana, the card with the sum of the numbers on the two cards
is not in Ivo and the card with the product of these numbers is not in Yana.
How many cards does Yana have if the card with number 13 is in Ivo?

Ivailo Kortezov

Problem 10.1. Consider the inequality |22 — 5z + 6] < = + a, where a is a
real parameter.

a) Solve the inequality for a = 0.

b) Find the values of a for which the inequality has exactly three integer

solutions.
Stoyan Atanassov

Problem 10.2. Let k£ be the incircle of AABC with AC # BC, I be the
center of k and let D, E and F be the tangent points of k to the sides AB,
BC and AC, respectively.
a) If S = CINEF, prove that ACDI ~ ADSI.
b) Let M be the second intersection point of k and C'D. The tangent line
to k at M intersects the line AB at point G. Prove that GS L C1.
Stoyan Atanassov, Ivan Landjev
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Problem 10.3. Solve in integers the equation
22+ 1 = zy(zy + 2y — 22 — 4).
Ivan Landjev

Problem 10.4. In every cell of a table n x n, n > 2, one of the numbers +1
and —1 is written. The cell on i-th row and j-th column is denoted by (3, ),
t,7 = 0,1,...,n — 1. The neighbors of the cell (7, j) are the cells (¢,5 — 1),
(3,7 + 1), (( — 1,7) and (¢ + 1, j), where the numbers are taken modulo n. At
each step one replaces the number in each cell with the product of the numbers
in the four neighbors of that cell. For example,

F1]—1]+1 F1[=1]-1
F1[ =1 =1|—]—1[+1[+1
“1] +1 ] -1 —1[+1[+1

A table is called "good” if after finitely many steps one obtains the table with
+1 in every cell. Find all values of n such that every table n x n is "good”.

Ivan Landjev

Problem 11.1. The sum of the first n terms of an arithmetic progression
with first term m and difference 2 is equal to the sum of the first n terms of a
geometric progression with first term n and ratio 2.

a) Prove that m + n = 2™;

b) Find m and n, if the third term of the geometric progression is equal to

the 23-rd term of the arithmetic progression.
Emil Kolev

Problem 11.2. Find all values of the real parameter a such that the equation
lg(az + 1) = lg(z — 1) + 1g(2 — z)

has exactly one solution.
Aleksander Ivanov

Problem 11.3. In an acute AABC with CA # CB and incenter O denote
by A; and B; the tangent points of its excircles to the sides CB and CA,
respectively. The line CO meets the circumcircle of AABC at point P and the
line through P which is perpendicular to CP meets the line AB at point Q.

Prove that the lines QO and A B; are parallel.
Aleksander Ivanov

Problem 11.4. In an internet chess tournament 2005 chess players took part
and everyone played one game against any other. After the tournament it
appeared that for every two players A and B who had drawn their game every
other player had lost his game with A or with B. Prove that if there were at
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least two draws in the tournament then the players can be ordered in such a
way that everyone has won his game with the next one in the sequence.
Emil Kolev

Problem 12.1. The sequences (an)n~; and (bp)5>; are such that a,y, =
2bn, — ap and bpy41 = 2a, — b, for every n. Prove that:
a) Gnt1 = 2(a; + by) — 3ay;
b) if a, > 0 for every n, then a; = b;.
Nikolai Nikolov

Problem 12.2. A circle through the vertex A of AABC, AB # AC, meets
the sides AB and AC at points M and N, respectively, and the side BC at
points P and @, where @ lies between B and P. Find & BAC, if M P||AC,

BP AB

d — = —.

NQ||AB an Co -~ AC
Oleg Mushkarov, Nikolai Nikolov

Problem 12.3. Find all values of the real parameter a such that the image of

the function )

sin“r —a
f(=) = sin®z — (a2 + 2)sinz + 2
contains the interval B-, 2}
Nikolar Nikolov
Problem 12.4. Find all triangles ABC with integer sidelengths such that the

side AC is equal to the bisector of ¥ BAC and the perimeter of AABC is equal

to 10p, where p is a prime number.
Oleg Mushkarov
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Spring Mathematical Competition
Kazanlak, March 25-27, 2005

Problem 8.1. Solve the equation

Ivan Tonov

Problem 8.2. Let k& be the circumcircle of AABC with XACB > 90°, and
BD be the diameter of k through B. The circle k; with center D and radius
DC meets k at point E and AB at point G. If F' is the intersection point of
GE and BD, prove that ¥DCG = XEF'D.

Chavdar Lozanov
Problem 8.3. Prove that the equation

2 2 2 _
22+ 242 19822 =77...7
2005

has no integer solutions.
Ivan Tonov

Problem 8.4. Fifteen circles form an equilateral
triangle as shown in the figure. Prove that:

a) it is possible to choose 8 circles such that
no three of them are vertices of an equilateral

triangle; °c o o o o

b) amongst any 9 circles there are three that are vertices of an equilateral

triangle.
Ivan Tonov

Problem 9.1. Let f(x) = z? + (2a — 1)z — a — 3, where a is a real parameter.
a) Prove that the equation f(x) = 0 has two distinct real roots z; and x,.

b) Find all values of a such that z} + 2§ = —72.
Peter Boyvalenkov

Problem 9.2. A triangle ABC with centroid G and incenter I is given. If

AB =42, GI =2 and AB||GI, find AC and BC.
Ivailo Kortezov

Problem 9.3. Four players A;, A, A3 and A4 have the same amounts of
money and play the following game with seven dices: A; throws the seven

1
dices and then pays to each of the other three players T of the money that the

corresponding player has at the moment, where & is the sum of the points on
the seven dices. Then the same action is performed consecutively by Ao, As
and A4 and the game is over. Find the sums of the points on the dices thrown
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by each player if after the game their money are inratio 3: 3: 2: 2 (the money
of Ay to the money of Ay to the money of A3 to the money of Ay).
Peter Boyvalenkov

Problem 9.4. The positive integers M and n are such that M is divisible by
all positive integers from 1 to n but it is not divisible by n+ 1, n+2 and n+ 3.
Find all possible values of n.

Tvailo Kortezov

Problem 10.1. Solve the equation
(2 +6)5! =l — g = (z + 1)[5% — 1] + 55+ + 1.

Ivan Landjev

Problem 10.2. Find all values of the real parameter a such that the inequality
Vit3r>z+a

has no an integer solution.
Stoyan Atanassov

Problem 10.3. Let ABC be a triangle with altitude CH, where H is an
interior point of the side AB. Denote by P and @ the incenters of AAHC and
ABHC, respectively. Prove that the quadrilateral ABQP is cyclic if and only
if either AC = BC or 4 ACB = 90°.

Stoyan Atanassov

Problem 10.4. Prove that for every positive integer n there exist integers p

and ¢ such that
|p? + 2¢% — n| < Von.

Ivan Landjev

Problem 11.1. The sequence {a,}52., is defined by a; = 0 and apy; =
an +4n+3,n 2> 1.

a) Express a, as a function of n.

b) Find the limit

lim Van + 04n + \/Qg2,, + - + /0410,
n—00 \fan + \/A2p + /2, ++*+ + \/Agi0,

Emil Kolev
Problem 11.2. Solve the inequality
log, (2® — 2 — 2) > log, (3 + 2z — z?)
if it is known that £ = a + 1 is a solution.
Emil Kolev
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Problem 11.3. Let M and N be arbitrary points on the side AB of a triangle
ABC such that M lies between A and N. The line through M parallel to AC
meets the circumcircle of AMNC at point P, and the line through M parallel
to NC meets the circumcircle of AAMC at point Q. Analogously, the line
through N parallel to BC meets the circumscircle of AMNC at point K and
the line through N parallel to MC meets the circumcircle of ABNC at point
L. Prove that:

a) the points P, @ and C are collinear;

b) the points P, @, K and L are concyclic if and only if AM = BN.

Alexander Ivanov

Problem 11.4. Let ¢ be a positive integer and let {an}32 ; be a sequence of
positive integers such that a, < apy1 < ap + ¢ for every n > 1. The terms
of the sequence are written one after another and in this way one obtains an
infinite sequence of digits. Prove that for every positive integer m there exists
a positive integer k such that the number formed by the first k digits of the

above sequence is divisible by m.
Alezander Ivanov

Problem 12.1. Let ABC be an isosceles triangle such that AC = BC =1
and AB = 2z, x > 0.
a) Express the inradius » of AABC as a function of x.

b) Find the maximum possible value of r.
Oleg Mushkarov

Problem 12.2. The excircle to the side AB of a triangle ABC is tangent to
the circle with diameter BC. Find 4 ACB if the lengths of the sides BC, CA

and AB form (in this order) an arithmetic progression.
Oleg Mushkarov

Problem 12.3. Find the number of the sequences {a,}52, of integers such
that
Ap + Gpy1 = 20p 420043 + 2005

for every n.
Nikolat Nikolov

Problem 12.4. Let a,b;,cy,..., by, ¢, be real numbers such that
2 Laz? !l L a2 4 pard 1= ($2+b1$+01)---($2+bn$+0n)

for every real number x. Prove that ¢; =--- =¢, = 1.
Nikolar Nikolov
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54. Bulgarian Mathematical Olympiad
Regional round, April 16-17, 2005

Problem 9.1. Find all values of the real parameters a and b such that the
remainder in the division of the polynomial z*—3az® +ax +b by the polynomial
x? — 1 is equal to (a? + 1)z + 3b2.

Peter Boyvalenkov
Problem 9.2. Two tangent circles with centers O; and Oy are inscribed in a
given angle. Prove that if a third circle with center on the segment 0,0 is
inscribed in the angle and passes through one of the points O; and Og then it

passes through the other one too.
Peter Boyvalenkov

Problem 9.3. Let a and b be integers and k be a positive integer. Prove that
if x and y are consecutive integers such that
a*r —b*y =a — b,

then |a — b| is a perfect k-th power.

Peter Boyvalenkov
Problem 9.4. Find all values of the real parameter p such that the equation
|x2 —px —2p+ 1| = p — 1 has four real roots =1, 2, 3 and x4 such that

x? 4+ 23 + 22 + 22 = 20.
Ivailo Kortezov

Probl_Q,n 9.5._L§t ABCD be a cyclic quadrilateral with circumcircle k. The
rays DA and CB meet at point N and the line NT is tangent to k, T € k.
The diagonals AC and BD meet at the centroid P of ANTD. Find the ratio

NT : AP.
Ivailo Kortezov

Problem 9.6. A card game is played by five persons. In a group of 25 persons
all like to play that game. Find the maximum possible number of games which
can be played if no two players are allowed to play simultaneously more than

once.
Ivailo Kortezov

Problem 10.1. Solve the system

3-4% 4+ ovtl.3y — ¥ = 0
2:4* — 5.2%7.3Y + O = -8 °

Ivan Landjev

Problem 10.2. Given a quadrilateral ABCD set AB=a, BC=5b,CD =c,
DA =d, AC = e and BD = f. Prove that:
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a) a + 0%+ 2 +d? > e + %
b) if the quadrilateral ABCD is cyclic then |a — ¢| > |e — f].
Stoyan Atanassov

Problem 10.3. Find all pairs of positive integers (m, n), m > n, such that

[m? + mn, mn — n?] + [m — n, mn] = 22905,

where [a, b] denotes the least common multiple of a and b.

Ivan Landjev

Problem 10.4. Find all values of the real parameter a such that the number
of the solutions of the equation

3(52% — a*) — 22 = 2a%(62 — 1)

does not exceed the number of the solutions of the equation
1
9223 + 6z = (35 — 9)y /28 — 5~ (Ba— 1)%12°.

Problem 10.5. Let H be the orthocenter of AABC, M be the midpoint of
AB and H; and Hj be the feet of the perpendiculars from H to the inner and
the outer bisector of 4 ACB, respectively. Prove that the points H;, Hs and
M are colinear.

Ivan Landjev

Stoyan Atanassov

Problem 10.6. Find the largest possible number A having the following prop-
erty: if the numbers 1,2, ..., 1000 are ordered in arbitrary way then there exist

50 consecutive numbers with sum not less than A.
Ivan Landjev

Problem 11.1. Find all values of the real parameter a such that the equation
a(sin2z + 1) + 1 = (a — 3)(sinx + cos x)

has a solution.
Emal Kolev

Problem 11.2. On the sides of an acute AABC of area 1 points A; € BC,
By € CA and C| € AB are chosen so that

XCC B = YAA,C = ¥BB,A = o,

where the angle ¢ is acute. The segments AA;, BB; and CC; meet at points

M, N and P.
a) Prove that the circumcenter of AM N P coincides with the orthocenter

of AABC.
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b) Find ¢, if Synp =2 — V3.
Emil Kolev

Problem 11.3. Let n be a fixed positive integer. The positive integers a, b,

¢ and d are less than or equal to n, d is the largest one and they satisfy the
equality

(ab + cd)(be + ad)(ac + bd) = (d — a)*(d — b)*(d — ¢)2.

a) Prove that d =a + b+ c.
b) Find the number of the quadruples (a, b, c,d) which have the required

properties.
Alexander Ivanov

Problem 11.4. Find all values of the real parameter a such that the equation
1085(37 +47) = 1og (g2 (77(4° — 3%)) + log(gg)s 8

has a solution.
Emil Kolev

Problem 11.5. The bisectors of XBAC, XABC and XACB of AABC meet
its circumcircle at points Ay, By and Cj, respectively. The side AB meets the
lines C1 B, and Cj A; at points M and N, respectively, the side BC meets the
lines A;C} and A, B, at points P and @, respectively, and the side AC meets
the lines B A; and B;C) at points R and S, respectively. Prove that:
a) the altitude of ACRQ through R is equal to the inradius of AABC,
b) the lines M@, NR and SP are concurrent.

Alexander Ivanov

Problem 11.6. Prove that amongst any 9 vertices of a regular 26-gon there
are three which are vertices of an isosceles triangle. Do there exist 8 vertices

such that no three of them are vertices of an isosceles triangle?
Alexander Ivanov

Problem 12.1. Prove that if a, b and ¢ are integers such that the number

a(a—b)+b(b—c)+c(c—a)
2

is a perfect square, then a = b = c.
Oleg Mushkarov

Problem 12.2, Find all values of the real parameters a and b such that the
graph of the function y = x® + ax + b has exactly three common points with

the coordinate axes and they are vertices of a right triangle.
Nikolar Nikolov

Problem 12.3. Let ABC D be a convex quadrilateral. The orthogonal projec-
tions of D on the lines BC and BA are denoted by A; and C}, respectively.
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The segment A;C; meets the diagonal AC at an interior point B; such that
DB; > DA,. Prove that the quadrilateral ABCD is cyclic if and only if

BC  BA _ AC
DA, ' D¢, DB,

Nikolat Nikolov

Problem 12.4. The point K on the edge AB of the cube ABCDA,B,C, D,
is such that the angle between the line A1 B and the plane (B1CK) is equal to
60°. Find tan «, where « is the angle between the planes (B;CK) and (ABC).

Oleg Mushkarov

Problem 12.5. Prove that any triangle of area v/3 can be placed into an
infinite band of width v/3.
Oleg Mushkarov

Problem 12.6. Let m be a positive integer, A = {—m,—m+1,...,m—1,m}
and f: A — A be a function such that f(f(n)) = —n for every n € A.
a) Prove that the number m is even.
b) Find the number of all functions f : A — A with the required property.
Nikolai Nikolov
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54. Bulgarian Mathematical Olympiad
National round, Sofia, May 14-15, 2005

Problem 1. Find all triples (z,y, 2) of positive integers such that

\/2005 . \/2005 . 2005
r+Yy rT+z y+z

is a positive integer.
Oleg Mushkarov

Problem 2. Two circles k; and kg are externally tangent at point T. A line
meets k; at points A and B and is tangent to kg at point X. The line XT

meets k; at point S and let C be a point on the arc T'S which does not contain
A and B. Let CY be the tangent line to ko (Y € ko) such that the segments
CY and ST do not intersect. If I is the intersection point of the lines XY and
SC, prove that:
a) the points C, T, Y and I are concyclic;
b) I is the center of the excircle of AABC tangent to the side BC.
Stoyan Atanassov

Problem 3. Let M be the set of the rational numbers in the interval (0, 1).
Does there exist a subset A of M such that every number from M can be
represented in a unique way as a sum of one or finitely many distinct numbers

from A?
Nikolai Nikolov

Problem 4. Let AA’B’C be the image of AABC under a rotation with center
C. Denote by M, E and F the midpoints of the segments BA’, AC and B'C,
respectively. If AC # BC and EM = FM, find xEMF.

Ivailo Kortezov

Problem 5. Let ¢, a and b be positive integers. We call a (¢;a,b)-game the
following game with two players: the first player subtracts a or b from ¢, then
the second player subtracts a or b from the number obtained by the first player,
then again the first player subtracts a or b from the number obtained by the
second player and so on. The player who obtains first a negative number looses
the game. Prove that there exist infinitely many ¢ such that the first player
has a winning strategy for any (¢; a, b)-game with a + b = 2005.

Emil Kolev

Problem 6. Let a, b and ¢ be positive integers such that ab divides c(c? —c+1)
and a + b is divisible by ¢ + 1. Prove that the sets {a,b} and {c,c® —c + 1}

coincide.
Alexander Ivanov
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Team selection test for 22. BMO
Sofia, March 29-30, 2005

Problem 1. Find all positive numbers a and b such that
lajbn]] =n—1

for every positive integer n.

Problem 2. The points P and @ lie in the interior of AABC, 4 ACP =
4 BCQ and 4 CAP =<4 BAQ. The feet of the perpendiculars from P to the
lines BC, CA and AB are denoted by D, E and F', respectively. Prove that if
4 DEF = 90°, then Q is the orthocenter of ABDF'.

Problem 3. Does there exist a strictly increasing sequence of positive integers
{an}s2, such that ap < n3 for every n and every positive integer can be written
in a unique way as a difference of two terms of the sequence?

Problem 4. A real number is assigned to every point in the plane. Let P be
a convex n-gon. It is known that for every n-gon similar to P the sum of the
numbers assigned to its vertices is equal to 0. Prove that all numbers assigned
to the points in the plane are equal to 0.

Problem 5. If ag = 0 and a, = a{g] +[g], n>1, find nHTm%.
Problem 6. Let ay, aq, ..., a,, be arbitrary positive integers. Prove that there
exist distinct positive integers by, b, ..., by, n < m, such that the following
two conditions are satisfied:

(1) all subsets of {by,ba,...,bs} have distinct sums of elements;

(2) every number ay,ag, ..., an is the sum of the elements of some subset

of {bl,bg,. . ,bn}
Problem 7. The extensions of the sides AB and C' D of a convex quadrilateral
ABCD meet at point P and the extensions of the sides BC and AD meet

at point Q. The point O from the interior of the quadrilateral is such that
XBOP = «DOQ. Prove that xAOB + ¥COD = 180°.

Problem 8. In a group of B boys and G girls it is known that G > 2B — 1.
Some boys know some girls. Prove that it possible to arrange a dance in pairs
in such a way that all boys will dance and every boy who does not know the
girl in his pair knows only girls who do not dance.
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Team selection test for 46. IMO
Sofia, May 18-19, 2005

Problem 1. Let ABC be an acute triangle. Find the locus of the points M
in the interior of AABC such that

MF.AG + MG.BF
CM ’

where F' and G are the feet of the perpendiculars from M to the lines BC and
AC, respectively.

AB—-FG =

Peter Boyvalenkov, Nikolat Nikolov

Problem 2. Find the number of the subsets B of the set {1,2,...,2005}
having the following property: the sum of the elements of B is congruent to

2006 modulo 2048.
Emil Kolev

Problem 3. Let R* be the set of non-zero real numbers. Find all functions

f: R* — R* such that

f(zy)
f(@®+y) = ) +

for all z,y € R*, y # —x2.

Alexander Ivanov
Problem 4. Let ay,a9,...,a0s, b1, by, ..., bapos be real numbers such that
the inequality

2005
(a;x — bi)2 > Z (ajx — by)
j=Lj#i

holds true for every real number x and alli = 1,2, ..., 2005. Find the maximum
possible number of the positive numbers amongst a; and b;, 1 = 1,2,...,2005.

Nazar Agakhanov, Nikolat Nikolov

Problem 5. Let ABC (AC # BC) be an acute triangle with orthocenter H
and incenter I. The lines CH and CI meet the circumcircle of AABC at points
D and L, respectively. Prove that < CITH = 90° if and only if 4 IDL = 90°.

Stoyan Atanassov

Problem 6. In a group of 9 persons it is not possible to choose 4 persons such
that every one knows the three others. Prove that this group of 9 persons can
be partitioned into four parts in such a way that nobody knows anyone from
his part.

Emil Kolev

33



Bulgarian Mathematical Competitions 2006

Winter Mathematical Competition
Pleven, February 3-5, 2006

Problem 9.1. Find all pairs (a, b) of non-negative real numbers such that the
equations 22 + a?x + b® = 0 and 22 + b%z + a® = 0 have a common real root.
Peter Boyvalenkov

Problem 9.2. Let b and ¢ be real numbers such that the equation z2+br+c =
0 has two distinct real roots x; and x9 with r; = :cg + x9.
a) Findband cifb+c=4.

6) Find b and c if they are coprime integers.
Stoyan Atanasov

Problem 9.3. Given a triangle ABC, let BL, L € AC, be the bisector of
XABC and AH, H € BC, the altitude to BC. Prove that YAHL = ¥ALB if

and only if ¥BAC = YACB + 90°.
Stoyan Atanasov

Problem 9.4. Tokens are placed in some of the cells of a table of size 8 x 8
such that:

(1) there is at least one token in any rectangle of size 2 x 1 and 1 X 2;

(2) there are two neighboring tokens in any rectangle of size 7x 1 and 1x 7.

Find the minimum possible number of tokens.
Peter Boyvalenkov

Problem 10.1. Consider the inequality v/ + v2 — 2 > \/a, where a is a real
nurmber.

a) Solve the inequality for a = 3.

6) Find all a, for which the set of solutions of the inequality is a segment

(possibly, a point) of length less than or equal to V3.
Kerope Chakaryan

Problem 10.2. Let ABCD be a parallelogram. The points E and F' on the
sides AB and BC, respectively, are such that DE is the bisector of < ADF
and AE + CF = DF. The line through C and perpendicular to DFE meets the
side AD at L and the diagonal BD at H. Set N = DEN AC. Prove that:

a) AE = DL,

b) BC =CD if HN||AD;

c) ABCD is a square if HN||AD.

Tvailo Kortezov

Problem 10.3. Find all positive integers ¢, z, y, z such that
2t = 3%5Y 4 7%

Kerope Chakaryan
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Problem 10.4. There are 40 knights in a kingdom. Every morning they fight
in pairs (everyone has exactly one enemy to fight with) and every evening they
sit around a table (during the evening they do not change their sits). Find the
least number of days such that:

a) the fights can be arranged in a way that every two knights have fought
at least once;

b) round the table arrangements can be done in a way that every two
knights have been neighbors around the table.

Tvailo Kortezov

Problem 11.1. Solve the equation
log, (a2 +®) 1 02) = 22 4 z 4 log,(a® + 1),

where a is a real number.
Emal Kolev

Problem 11.2. Given a triangle ABC with XxAC B = 60°, define the sequence
of points Ag, Ay, ..., Agog in the following way: Ag = A, A; is the orthogonal
projection of Ag on BC, Ay is the orthogonal projection of A; on AC, ...,
Agoos is the orthogonal projection of Aggps on BC and Aggog is the orthogonal
projection of Aggos on AC. The sequence of points By, By, ..., Bagog is defined
in a similar way: By = B, B is the orthogonal projection of By on AC,
Bs is the orthogonal projection of By on BC and so on. Prove that the line
A2006 B2oog is tangent to the incircle of AABC if and only if

AC 4 BC 22006 ;1
AB 2%

Aleksandar Ivanov

Problem 11.3. Let a be an integer. Find all real numbers z,y, z such that
a(cos 2z + cos2y + cos2z) + 2(1 — a)(cos ¢ + cosy + cos z) + 6 = 9a.

Aleksandar Ivanov

Problem 11.4. A positive integer a whose decimal representation has 2006
digits is called “bad” if 3 does not divide any integer formed by three consecutive
digits of a.
a) Find the number of all bad integers whose digits are equal to 1, 2 or 3.
b) Let a and b be different bad integers such that o +b is also a bad integer.
Denote by k the number of positions, where the digits of @ and b coincide. Find

all possible values of k.
Emil Kolev

Problem 12.1. Consider the function

2 — 2006z + 1
fl@) = 2 +1 '
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a) Solve the inequality f'(x) > 0.
b) Prove that |f(z) — f(y)] < 2006 for all real numbers x and y.
Oleg Mushkarov

Problem 12.2. Let k be a circle with center O and radius /5 and let M and
N be points on a diameter of k such that MO = NO. The chords AB and

AC, passing through M and N, respectively, are such that

1 1 _ 3
MB2 T NC?  MN?

Find the length of MO.
Oleg Mushkarov

Problem 12.3. Find the maximal cardinality of a set of phone numbers sat-
isfying the following three conditions:

a) all of them are five-digit numbers (the first digit can be 0);

b) each phone number contains at most two different digits;

c) the deletion of an arbitrary digit in two arbitrary phone numbers (pos-
sibly in different positions) does not lead to identical sequences of digits of

length 4.
Ivan Landjev

Problem 12.4. Let O be the circumcenter of a triangle ABC with AC = BC.
The line AO meets the side BC at D. If the lengths of BD and C D are integers,

and AO — CD is a prime number, find these three numbers.
Nikolai Nikolov

36



Spring Mathematical Competition
Yambol, March 24-26, 2006

Problem 8.1. Find all integers a, b, ¢, d such that ac—3bd = 5 and ad+bc = 6.
Ivan Tonov

Problem 8.2. Let A and B be given points on a circle k. For an arbitrary
point L on k denote by M the point on the line AL such that LM = LB and
L is between A and M. Find the locus of the points M.

Chavdar Lozanov

Problem 8.3. Let m be a positive integer and u,, = 11... 1. Prove that there

m
is no a positive integer multiple of u,, such that the sum of its digits is less

than m.
fvan Tonov

Problem 8.4. Each side of a sheet of paper is a map of 5 countries. The
countries on one of the maps are colored in 5 different colors. Prove that it is
possible to color the countries on the other map in such a way that every two
are colored in different colors and at least 20% of the sheet is colored in the

same color on both sides.
Chavdar Lozanov

Problem 9.1. Find all real numbers a for which the equation 22 + ax + 3a2 —
7a — 19 = 0 has real roots x; and x9 such that

1 N 1 __2a
Ty —2  x9—2 13

Peter Boyvalenkov

Problem 9.2. In an acute AABC the altitudes AA; (A, € BC) and BB
(B1 € AC) are drawn, I is the incenter and the line C'I meets AB at L. It is
known that I lies on the circumcircle of AA; B1C.
a) Prove that L is the center of excircle of AA; B;C tangent to the side
A1 By.
b) If CI = 2IL, find xACB.
Stoyan Atanasov

Problem 9.3. The sets M = {1,2,...,27} and A = {a1,a2,...,a;} C
{1,2,...,14} have the following property: every element of M is either an
element of A or the sum of two (possibly identical) elements of A. Find the

minimum value of k.
Peter Boyvalenkov

Problem 9.4. For any positive integer n denote by f(n) the smallest positive
integer m such that the sum 1+ 2 + --- + m is divisible by n. Find all n such
that f(n) =n— L

Kerope Chakarian
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Problem 10.1. Consider the equations

32x+3 _ 2x+2 — 2x+5 — gz+l (1)

and
a.5% + |a — 15 = 1, (2)

where a is a real number.
a) Solve the equation (1).
b) Find the values of a such that the equations (1) and (2) are equivalent.
Kerope Chakarian

Problem 10.2. Let AA’, BB’ and CC’ be the angular bisectors of a triangle
ABC with incenter I. The segments CI and A’ B’ meet at D and the midpoints
of the segments Al and BI are denoted by M and N, respectively.

a) I[fa=BC, b= AC’ and ¢ = AB, ﬁnd the ratio CD : DI.

b) If K = ACN C”M and L = BCnN C”N prove that D is the incenter of
AKLC.

Ivailo Kortezov

Problem 10.3. Forty thieves are to distribute 4000 euro amongst them. A
group of five thieves is called poor if they have no more than 500 euro all
together. What is the minimum number of poor groups amongst all possible

groups of five thieves?
Ivailo Kortezov

Problem 10.4. See Problem 9.4.

Problem 11.1. Let aj,a3...,a,,... be a geometric progression with a; =
n

— 2a 3
, where a # 5 2 is a real number. Set S, = Z a;,
i=1
n > 1. Prove that if the sequence {S,}52, is convergent and its limit is S, then
S<1

3 — 2a and ratio ¢ =

Aleksandar Ivanov

Problem 11.2. Solve the system
(4V77F% 4 7.0V — 1) sin(ny) = 7|sin(ny)|

22+ 4z + y2 =0
Aleksandar Ivanov

Problem 11.3. Consider the excircles of a triangle A BC tangent to the sides
AB and AC. Denote by M, N and P the tangent points of the first circle to
the side AB and the extensions of the sides BC and CA and by S, @ and R
the tangent points of the second circle to the side AC and the extensions of
the sides AB and BC. Let X be the intersection point of the lines M N and
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RS and Y be the intersection point of the lines PN and RQ. Prove that the
points X, A and Y are colinear.

Emil Kolev
Problem 11.4. Let n be a positive integer. Find the number of all finite
strictly increasing sequences ap = l,a;,...,a; = 2.3" of positive integers with
—1
the following property: H [a’ +:’ -1 } = 2.3", where [z] is the integral
i—1

i=1
part of z.
Aleksandar Ivanov

Problem 12.1. Thesequence {z,}52 , is defined by 2; = 2 and 2,41 = 14az,,
n > 1, where a is a real number. Find all values of a for which the sequence is:
a) an arithmetic progression;

b) convergent and find its limit.
Oleg Mushkarov

Problem 12.2. Let ABC be a right triangle and D be a point on the hy-

pothenuse AB.
AC? BC?
AD+CD "BD+CD

a) Prove that the expression does not depend on

D.

b) Let DE (E € AC) and DF (F' € BC) be the bisectors of xADC and

CF CE

XBDC| respectively. Find the minimum value of the expression TA + OB

Oleg Mushkarov

Problem 12.3. Find all complex numbers a # 0 and b such that for every
complex root w of the equation 24 —az3—bz—1 = 0 the inequality |a—w| > |w|

holds.
Nikolat Nikolov

Problem 12.4. See Problem 11.4.
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55. Bulgarian Mathematical Olympiad
Regional round, April 15-16, 2006

Problem 9.1. Find all real numbers a such that the roots 1 and x9 of the
equation
22+ 62 +6a—a%=0

satisfy the relation zo = x:f — 821
Ivan Landjev

Problem 9.2. Two circles ky and kg meet at points A and B. A line through
B meets the circles k; and kg at points X and Y, respectively. The tangent
lines to k; at X and to kg at Y meet at C. Prove that:
a) 4 XAC =4 BAY.
b) S XBA =4 XBC, if B is the midpoint of XY
Stoyan Atanasov

Problem 9.3. The positive integers [,m, n are such that m — n is a prime
number and 8(12 — mn) = 2(m? + n?) + 5(m + n)l. Prove that 11/ + 3 is a

perfect square.
Ivan Landjev

Problem 9.4. Find all integers a such that the equation
28+ 228 + (a2 —a—9)2% —4zx +4=0

has at least one real root.
Stoyan Atanasov

Problem 9.5. Given a right triangle ABC (4 ACB =90°), let CH, H € AB,
be the altitude to AB and P and @ be the tangent points of thﬁ1 Ii:?circle of
AABC to AC and BC, respectively. If AQ L HP find the ratio B

Stoyan Atanasov

Problem 9.6. An air company operates 36 airlines in a country with 16 air-

ports. Prove that one can make a round trip that includes 4 airports.
Ivan Landjev

Problem 10.1. A circle k is tangent to the arms of an acute angle AOB at
points A and B. Let AD be the diameter of k through A and BP L AD, P €

AD. The line OD meets BP at point M. Find the ratio %
Peter Boyvalenkov

Problem 10.2. Find the maximum of the function

gz lgx? +1gxd +3
f(x): 2 2
lg“x +lgx + 2
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and the values of x, when it is attained.
Ivailo Kortezov

Problem 10.3. Let Q% be the set of positive rational numbers. Find all func-
tions f : Qt — R such that f(1) = 1, f(1/x) = f(z) for any 2 € Q* and
zf(x)=(x+1)f(x—1) forany r € Qt, z > L

Ivailo Kortezov

Problem 10.4. The price of a merchandize dropped from March to April by
%, and went up from April to May by y%. It turned out that in the period
from March to May the prize dropped by (y — x)%. Find 2 and y if they are
positive integers (the prize is positive for the whole period).

Ivailo Kortezov

Problem 10.5. Let ABCD be a parallelogram such that xBAD < 90° and
let DE, E € AB, and DF, F' € BC, be the altitudes of the parallelogram.
Prove that

4(AB.BC.EF + BD.AE.FC)<5.AB.BC.BD.

Find XBAD if the equality occurs.
Ivailo Kortezov

Problem 10.6. See problem 9.6.

Problem 11.1. Let k be a circle with diameter AB and let C € k be an
arbitrary point. The excircles of AABC tangent to the sides AC and BC are
tangent to the line AB at points M and N, respectively. Denote by O; and Og
the circumcenters of AAMC and ABNC. Prove that the area of AO1COq

does not depend on C.
Alexander Ivanov

Problem 11.2. Prove that t2(xy + yz + 2z) + 2t(x + y + z) + 3 > 0 for all
z,y,z,te[—1,1].
Nikolai Nikolov

Problem 11.3. Consider a set S of 2006 points in the plane. A pair (4, B) €
S x S is called "isolated” if the disk with diameter AB does not contain other

points from S. Find the maximum number of "isolated” pairs.
Alexander Ivanov

Problem 11.4. Find the least positive integer a such that the system

r+y+z=a
PP+l —a

has no an integer solution.
Oleg Mushkarov
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Problem 11.5. The tangent lines to the circumcircle k of an isosceles AABC,
AC = BC, at the points B and C meet at point X. If AX meets k at point

Y, find the ratio -g—-}};
Emil Kolev

Problem 11.6. Let aq, ag,... be a sequence of real numbers less than 1 and
such that apt+1(an +2) = 3, n > 1. Prove that:

a) —3 <an,<-—2; 6)a,=-3"forany n.
Nikolai Nikolov

Problem 12.1. Find the area of the triangle determined by the straight line
with equation £ —y+ 1 = 0 and the tangent lines to the graph of the parabola

y = 22 — 4z + 5 at its common points with the line.
Emil Kolev

Problem 12.2. See problem 11.5.
Problem 12.3. Find all real numbers a, such that the inequality

x4+2ax3+a2x2—4x+3>0

holds true for all real numbers x.
Nikolar Nikolov

Problem 12.4. Find all positive integers n for which the equality

sin(na)  cos(na)
sin o COs &

=n—1

holds true for all a # %7[, keZ.
Emil Kolev

Problem 12.5. A plane intersects a tetrahedron ABCD and divides the me-
dians of the triangles DAB, DBC and DCA through D in ratios 1:2,1:3
and 1:4 from D, respectively. Find the ratio of the volumes of the two parts

of the tetrahedron cut by the plane.
Oleg Mushkarov

Problem 12.6. See problem 11.6.
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55. Bulgarian Mathematical Olympiad
National round, Sofia, May 20-21, 2006

Problem 1. Consider the set A = {1,2,3,4,...,2"}, n > 2. Find the number
of the subsets B of A, such that if the sum of two elements of A is a power of
2 then exactly one of them belongs to B.

Aleksandar Ivanov

Problem 2. Let Rt be the set of all positive real numbers and f: R+ — R+
be a function such that

flz+y)— flz—y) =4V f(x)f(y)

forallz >y >0.
a) Prove that f(2z) = 4f(zx) for all x € R*.
b) Find all such functions.
Oleg Mushkarov, Nikolai Nikolov

Problem 3. An infinite sequence of digits is obtained by writing all positive
integers one after another in increasing order. Find the least positive integer
k such that among the first k& digits of the above sequence every two nonzero
digits appear different number of times.

Aleksandar Ivanov, Fmil Kolev

Problem 4. Let p be a prime number such that p? divides 2P~! — 1. Prove
that for any positive integer n the integer (p — 1)(p! + 2") has at least three
distinct prime divisors.

Aleksandar Ivanov

Problem 5. Let ABC be a triangle with XBAC = 30° and xABC = 45°.
Consider all pairs of points X and Y such that X and Y lie on the rays
AC™ and BC™, respectively and OX = BY, where O is the circumcenter
of AABC. Prove that the perpendicular bisectors of the segments XY pass

through a fixed point.
Emil Kolev

Problem 6. Let O be a fixed point in the plane. Find all sets of points S in
the plane, containing at least two distinct points, and such that for any point
A€ S8, A # O, the circle with diameter OA is contained in S.

Nikolai Nikolov, Slavomir Dinev
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Team selection test for 23. BMO
Sofia, April 1-2, 2006

Problem 1. Are there exist two triangles whose angles (in some order) form
an arithmetic progression with nonzero common difference.

Problem 2. Let CL and CK be the inner and the outer bisectors of angle
ACB in AABC, AC > BC and let CM be its median. A point P on CM is
such that the points C, A;, B; and P are concyclic, where A; = AP N BC
and By = BP~ N AC. Prove that the points C, K, L and P are also concyclic.

Problem 3. Prove that if z, y and a are real numbers from the interval (0, 1),
then

lz—yl o |2% ~ 7

1—2y — 1—xoye
Problem 4. Ivan and Peter play the following game. Ivan chooses a secret
number from the set A = {1,2,...,90}. Then Peter chooses a subset B of A
and Ivan tells Peter whether his number is in the set B or not. If the answer is
"yes” then Peter pays Ivan 2 leva, and if the answer is "no” then he pays Ivan 1
lev. Find the least amount of leva that Peter needs so that he can always find
Ivan’s number.

Problem 5. Two real numbers a and b satisfy the inequality b® + b < a — a3.
Find the maximum possible value of a + b.

Problem 6. Find the number of pairs (m,n) of positive integers such that
m < 2006, n < 2006 and the equation

25 37

(¢ —m)P = (2~ y)* + @y —n)

has an integer solution.

Problem 7. The incircle k of AABC is tangent to the sides AB, BC and
CA at points Cy, A; and By, respectively. The points Cy, Ay and B, are
diametrically opposite to C;, A; and By in k.

a) Prove that the lines AAg, BBy and CCjy are concurrent.

b) If the line AAg meets k at Az, find the ratio in which the tangent line
to k at Az divides BC.

Problem 8. After a volleyball tournament (every two teams played exactly
once) with n teams it turned out that for any two teams A and B, such that B
wins over A, there exist positive integer ¢t and teams Cy, Cy, ..., C;, such that
A wins over Cy, C; wins over Cy, ..., C; wins over B.

Prove that for any k = 3,4,...,n there exist k teams Ay, Ag, ..., Ak, such
that A; wins over Ay, Ay wins over Ag, ..., Ax_; wins over A, and A, wins
over A;.
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Problem 1. In the cells of a square table the numbers 1, 0 or —1 are written in
such a way that there is exactly one 1 and exactly one —1 in every row and in
every column. Is it always possible to obtain the opposite table by rearranging
the rows and the columns of the initial table? (Two tables are called opposite
if all the sums of the numbers in the corresponding cells equal 0.)

Emil Kolev

Problem 2. Find all pairs (P, Q) of polynomials with real coefficients such

that
P(x) Plx+1) 1

Qlz) Q(x+1) 2z2(z+2)
for infinitely many x € R.

Nikolai Nikolov, Oleg Mushkarov

Problem 3. Let ABC be a non-equilateral triangle and let M and N be
interior points of it such that  BAM =4 CAN, 4 ABM =<4 CBN and

AM.AN.BC = BM.BN.CA=CM.CN.AB = k.

Prove that:
a) 3k = AB.BC.C A;
b) the midpoint of the segment M N is the centroid of AABC.
Nikolar Nikolov

Problem 4. Let k be the circumcircle of AABC and D be a point on the arc
AB, which does not contain C. Denote by I4 and Ig the incenters of AADC
and ABDC, respectively. Prove that the circumcircle of AI4IgC is tangent

to k if and only if
AD AC+CD

BD BC+CD’

Stoyan Atanasov
Problem 5. Prove that if a,b,¢ > 0, then

ab N be 4 ca a+b+c
3a+4b+5¢ 3b+4c+5a  3c+4a-+5b — 12

Nikolai Nikolov

Problem 6. Let p > 2 be a prime number. Find the number of the subsets B
of the set {1,2,...,p— 1} such that p divides the sum of the elements of B.
Ivan Landjev

Problem 7. Let D and E be points on the sides AB and AC of AABC such
that DE||BC. The circumcircle k of A ADE meets the segments BE and CD
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at points M and N. The lines AM and AN meet BC at points P and Q such
that BC = 2PQ and P lies between B and Q. Prove that the circle k, the line

BC and the bisector of 4 BAC are concurrent.
Nikolat Nikolov

Problem 8. Let {a,}32, be a sequence of integers greater than 1 and let
x > 0 be an irrational number. Denote by x,, the fractional part of the product
anan_l .o (llm.

a) Prove that z, > for infinitely many n.

An+1
b) Find all sequences {a,}52; such that there exist infinitely many z €

(0,1) for which z, > for all n.

an+1
Nikolai Nikolov, Emil Kolev
Problem 9. Let n > 3 be a positive integer and M be the set of the first

n prime numbers. For every nonempty subset X of M denote by P(X) the

P(A
product of the elements of X. Let N be a set of fractions of the form —P—E-E;—,
where A C M, B C M, AN B = ¢ such that the product of any 7 elements of
N is an integer. What is the maximum possible cardinality of N?

Alexander Ivanov

Problem 10. Find all sequences of positive integers {a,} 3, such that ay = 4
and the identity

1 1 1 3
. _ (043

+ + =
a1a2a3 aa3a4 Unln41an42 40p 410042

holds true for every positive integer n > 2.
Peter Boyvalenkov

Problem 11. Denote by d(a, b) the number of the divisors of a positive integer
a, which are greater than or equal to b. Find all positive integers n such that

d(3n+1,1)+d(3n+ 2,2) +--- + d(4n, n) = 2006.

Ivan Landjev

Problem 12. Let m > 5 and n be positive integers and M be a regular (2n+1)-
gon. Find the number of convex m-gons with vertices among the vertices of M

and having at least one acute angle.
Alexander Ivanov
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9.1. First solution. Since CP = CQ,
CA = CB and XAPC = XBQC = 90°, then

ANAPC = BQC. Hence XCAP = XCBQ. Set- C

ting APN BQ = T, it follows that the quadri- Q
lateral ABTC is cyclic. Then xBAC = xQTC k T
and now XTQC = xAHC = 90° implies that

XQCT = XACH. The equalities XAHC = P

XAPC = CPT = ¥CQT = 90° show that
AHPC and CPTQ are cyclic quadrilaterals.
Thus XAPH = YACH and ¥QPT = XQCT
which means that XAPH = XQPT. Hence the
points H, P and @ are collinear. A H B

Second solution. Set S = HQ N k. Since the quadrilateral BHCQ is cyclic,
and the triangles ABC and CQS are isosceles, it follows that ¢{BAC =
XABC = YHQC = ¥CSQ. Then AHSC is a cyclic quadrilateral and there-
fore ¥ASC = XAHC = 90°. Hence S = P, i.e., the points H, P and @ are
collinear.

9.2. The given equation is equivalent to

az? + (1—2a)z + (1—a) =0,

1 :
where x # —1, —3 1. Hence this equation has two real roots x; and z3 such

that

x%—amlzag—a—l.

2a — 1

Since r; + 29 = we get that

2—a+2=0.

x% +ary —a
This together with the identity
0x2 +(1—2a)zy+1—a=0
implies that
(a® +2a—Drz =a® +a?—3a+1=(a?+2a—1)(a—1).

The coefficient of xq vanishes if a = —1 £+ /2.
If a = —1+ 2, then

(—14+V2)z3 4+ (3 —2V2)z3 4+ (2—V2) =0
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which is impossible, since the discriminant of this quadratic equation equals
33 — 244/2 < 0, i.e. it has no real roots.
If a = —1— /2 we get the equation

(—1—=V2)z + 3+ 2V2) 22 + (2+V2) =0

: 1
that has two real roots, which are not equal to +1 and ~3

Let now a # —1 £ V2. Then 23 = a — 1 and hence a(a — 1)(a — 3) = 0.
Since a # 0,1 we get a = 3. In this case the roots of the given equation are

—3 and 2, and they satisfy the given condition.
Thus the desired values of a are —1 — v/2 and 3.

9.3. We shall prove that the desired number have one of the forms 9k + 1,
33(9k £+ 1) or 3(9k £ 1).

Suppose that 3 does not divide a. Since n® = 0,£1 (mod 9), then a = +1
(mod 9).

Conversely, let a = £1 (mod 9). Since 9 divides 12 — 1 and 2% + 1, then
there is ng such n} + a = 3%, where s > 2 and ¢ is not divisible by 3. We shall
prove that if n; = ng + 2.3°71¢, then 3°*+! divides n:f + a. We have that

(no+237") +a = 3%(2nd + 1) + 4ng3% 1% 4-8.3% 732,

Since 3 does not divide ng, then 2ng+1 is divisible by 3. Moreover, 2s—1 > s+1
and 3s — 3 > s+ 1. Hence n:f + a is divisible by 35+l but 3 does not divide
n1. Repeating the same argument, we get a positive integer n, such that 32003
divides ng + a.

Let now 3 divides a < 2003. Then a = 3°b, where s < 6. Hence n is divisible
by 3, i.e., n = 3Png, where p > 1 and 3 does not divide ng. If p > 3, then 3°
divides n® and does not divide a which implies that 3209% does not divide n®+a.
Hence p =1 or p =2 and it is easy to see that s = 3 or s = 6, respectively.

In the first case we get that 32090 divides n3 + b, where 3 does not divide b
and 27b < 2003. It follows as above that b = £1 (mod 9).

In the second case we get similarly that 3197 divides ng + b, where 729b <
2003 and b = £1 (mod 9).

The number of the positive integers b = +1 (mod 9) such that b < 2003,
27b < 2003 or 729 < 2003 equals 2.222 + 1 = 445, 28 + 1 = 17 or 1,
respectively. Hence the desired number is equal to 445 + 17 + 1 = 463.

10.1. If ax + 2 < 0, then the equation has no real roots. If ax +2 > 0, it
is equivalent to az? + ax + 2 = (ax + 2)?, ie., (a® — a)z? + 3azx + 2 = 0. The
last equation has a unique real root in the following three cases.

Case 1. The coefficient of x? vanishes and the respective linear equation
has a root x such that ax + 2 > 0.

If a = 0, then 2 = 0 which is impossible. If a = 1, then z = —% and
2 4
ar + 2 = ~3 +2= 3 > 0. Hence a = 1 is a solution of the problem.
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Case 2. The coefficient of z2 is non-zero, i.e., a # 0,1, and the respective
quadratic equation has a unique real root r with ax + 2 > 0. Then D =

1
9a% — 8(a? —a) = a® + 8a = 0 and hence a = —8. Then x = g and ax + 2 =
1
_8'6 +2= g >0, i.e., a = —8 is a solution of the problem.
Case 3. The coefficient of x2 is non-zero, i.e., a # 0,1, and the respective

quadratic equation has two real roots x; < xg such that ax1 +2 < 0 < axg+2,

ie., -= € (z1, za)-

a a a a

2
If _2_ g, then (a? — a) (—2> + 3a (—2> + 2 = 0. Hence 1 0,a

contradiction. Therefore —— € (z1,x2) which is equivalent to
a

-0 (@ =0 (-2) +aa (-2) v2) <0

It is easy to see that the solutions of the above inequality are a > 1. So, the
given equation has a unique real root fora=—8 and a > 1.

10.2. a) We shall prove that the position of the point $ = 0,0, N AB
does not depend on k. Let O3 be the center of k. It follows by the Menelaus
theorem for AO; 003 and the line AB that

03B 025 014 _
BO, 50; AO;
0,S BO; Ry 16

i O3B = = =—=—=4.
Since O3B = AO3, we get S0, O A " R 1

1.

Hence S is a fixed point and the equalities 0109 = 25 = O35 + O, S imply
that 095 = 20 and OS5 = 5.
b) Setting ¥0,0305 = x and ¥0;0203 = y, then A0S = x + y. Since

ANO AP is isosceles, we have YAPS = z ;— v On the other hand, the triangles

AO3B and BOy(Q) are also isosceles; hence £SBO; = 90 — g and ¥QBO, =
z v Therefore XAPS = <SBQ, i.e.

90 — % which implies that ¥SBQ =

PBQA is a cyclic quadrilateral.
c) Note that SP.SQ = SA.SB and SP.5Q = (SO, + R,)(SO3 — Ry) =
9.4 = 36. The inequality

AB=SA+SB>2VSA.SB =2,/SP5Q =12

implies that the minimum of AB equals 12 and it is attained if SA = SB.
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It remains to show that there is a circle k with SA = SB. Take a point
A € ky such that SA = 6. Since the power of S with respect to k; equals
50? - Ri? =52—-42 =9 and SA? =36 > 9, it is easy to see that there is a
circle k passing through A and satisfying the conditions of the problem. Then

SB =+/SP.5Q =6, ie,SA=SB.

10.3. Consider a table with rows corresponding to the elements of A and
column corresponding to the elements of M. We write X in a cell if the element
of A in the respective row is adjacent to the element of M in the respective
column. Let |M| = k. It follows from the given condition that there are no two
equal rows which means that M has at least 16 different subsets. Since a set
with n elements has 2" subset, we get k > 4.

Any row has exactly five adjacent and thus any column contains exactly
five X, i.e., the total number of x is 5k. A minimal number of X by rows is

L : . k
attained if one row contains no X, k rows contain one X, (2 rows contain

two X, etc.

If £ = 4, then all the subsets of M are 16 and hence any subset of M appears
exactly once as a adjacent set to some element of A. Then we have one row
with no X, 4 rows with one X, 6 rows with two X, 4 rows with three x and one
row with four X. The total number of x becomes 32 > 20, a contradiction.

For k = 5 one has 25 x. Their minimal number by rows is attained when
one row contains no X, 5 rows contain one x and 10 rows — two x. Since
5.1+ 10.2 = 25 the distribution of X must be exactly the one described above.
This means that any two elements of M are simultaneously adjacent to some
element of A.

It is easy to see that if two elements of M do not coincide at at most two
positions, then there is no an element of A that is adjacent to them. Hence any
two elements of M do not coincide at one or two positions. If there are two
elements which do not coincide at one position, we may assume that they are
a = 0000 u b = 1000. The adjacent to a and b in M are 0000 and 1000. So the
rows of a and b coincide, a contradiction. This shows that any two elements
of M are different at exactly two positions. We may assume that 0000 € M.
Then the remaining 4 elements are among 0011, 1100, 0101, 1010, 1001 and
0110. But among any of the pairs (0011, 1100), (0101, 1010) and (1001, 0110)
at most one element can be chosen, a contradiction.

For k = 6 the set M = {0000,1111,0111,0100,1001,0101} separates any
two elements of A.

Hence the desired minimal number is 6.

11.1. a) We have that

2 2 1
an+1=an+1+m‘

n

In particular, a2, ; > a2 + 1 and it follows by induction that a2 > n.
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We shall prove the other inequality by using induction again. It is obvious
1 ,
for n = 1. Suppose that a2 < n+ ¥n. Then a,; < n+ In+ 1+ 1 and it
is enough to check that

1
\3/5+R<3n+1 = —<\/n+ — n
= Vn +\/nn+ +f/n+ 1)2 < 4n

= 1+\/1+ +\/ 1+ <4\/_

This inequality follows by the inequalities 1 + —<2and 1+ V2+ V4 =
1
< 4.
vV2-1
b) The statement is a consequence of the inequalities
In In 1
0<apn—vVn</n+n—vn= = .
" Vit n+yn Vrno In

11.2. Let A; be the midpoint of the segment C
BC. Then Ceva’s theorem implies that

ACy ~BA, CB
CiB AC B)A

i.e. AG, _ B4 Hence we have B C; || BC,

1B BC’
i.e. Spcym = Soym = 254¢; M and we get that

Sapim = Sac,m- Then

=1,

A C, B

1 B Sac,Mm _ C\M _ Spoym . 2540, M

3 Samc MC ~ Sauc  2SBam
and therefore Sps, m = 3Saci M- ‘

Conversely, let Sacym = 1, Scgym = 2, Spaym = 3, Speym = =,
Sca,m =3y and Sap,m = 2z. We have to show that y = 1. Note that

1  Saam _GM _ Somp _ __ x
2(z + 1) Samc CM ScumB 3(y + 1)'

Analogously,
3 3y 2 2z

= d = .
z+1 2(z+1) an 3y+1) =x+1
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Multiplying these equalities gives xyz = 1. Hence z = L and the first
xy

equality implies that

3y? + 3y —2
(1) xy = Y 2y :

Analogously, the second equality gives

1
(2) 2(1+—-)=xy+y.
zy
Plugging (1) in (2) leads to
By +3y—2)? +2y(3y° + 3y —2) — 12y(y + 1) = 0,

ie.,
(v — D3y + 2)(3y* + 3y + 2) + 6y* — 16) = 0.

It follows by (1) that 392 + 3y > 2 and since y > 0 we get
3(y + 2)(3y? +3y +2) +6y% — 16 > 6(3y%2 +3y +2) — 16 > 8. Thus y = 1,

r=2and z = 5 which completes the solution.

11.3. We shall prove that Elitza has a winning strategy. If the polynomial
is agr? + a1z + agx? + asx + a4 and Alexander writes ag, a;, ag or ag, then
Elitza writes respectively a; = ag, ag = a1, a3 = ag or ag = ag; if he writes
a4, she writes a; = 1.

In a similar way Elitza is able to get a; < ag and a3 < ay after her second
move. Suppose that the polynomial obtained has an integer root —y. Then
y > 1 and hence a4 = y3(a1 — apy) + a3 — agy < 0, which is a contradiction.

12.1. a) Since liril fi(x) = +00 and lim f'(z) = —o0, it is enough
z—+o0 T——00
to show that the local minimum m of f'(x) is positive. Since the equation
f"(z) = 0 has two real roots x; > x9, it follows that m = f'(x1) > 0. Now it
is easy to check that x; € (—1;0) and m > 0.

b) It follows from a) that the equation f’(x) = 0 has a unique real root.
Since lirf f(x) = lim f(x) = +o00 and f(0) < 0, we conclude that the
r—+00 r——00
equation f(x) = 0 has exactly two real roots. To find them, set y = 2003 and
consider f(xz) = 0 as a quadratic equation with respect to y. We have

x + x(4x + 3)
y1,2 = 2 3

and then either 2y =  — z(4x + 3) or 2y = = + z(4x + 3). For y = 2003
the first equation has no real roots and the second one has two real roots
—1 4 /4007

5 .

r1,2 =
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12.2. Set PT N BC = P, NTNAB = Ny and MT N AC = M,. The

triangles NyMT, PT'M, and TP,N are similar to AABC. Set k; = j—vAl—g—([-,
PT TP
]{12 = E and kg = Z'E- Then
(1) ki + ko + ks =1,
since
ko k Ic—NlM PT TP1_N1M+AN1+MB_1
L+t = g Y ABTAB T AB T AB TAB
, AM  PT+NiIM ki +k N
k a) It is clear that B = B " = ., 1]%3 : A:alog]:usly,kNCk—
1 +ks CP ko + ks 1+ K2 1 + K3
= . == t t = 3
W PA T [t follows by B - NC ha ks =

i.e., (ko — k3)(ky + ko + k3) = 0. Hence ky = k3. We get in the same way
that k; = ko and then k; = kg = k3. Hence PT = TP, and since PP, ||AB,
it follows that the line CT meets AB at its midpoint. Analogously, the lines
BT and AT meet AC and BC at their midpoints. Hence T is the centroid of
ANABC.

b) We have

SMnp = SuNT + SNPT + SpMT = SMBT + STNC + SPAT

1 SaBc
= 5 (Suppr + SrvoM, +Spamt) = =5 (1— K — K — ).

(ky + kg + k3)?
3

It follows by the inequality k? + k2 + k3 > and (1) that k¥ +

k3 + k3 > %— Then

SABC 1 1
< — em = = .
Sunp < 5 (1 3) 3SABC

12.3. Denote by A, B and C the three familiar people in the group.

Let n =2k + 1 be odd integer. Then any of A, B and C has at least k + 1
familiar (k— 1 of them are not A, B or C). Denote by T the set of all people
except A, B and C a let a;, ¢ = 0,1,2,3, be the set of the people in T who
have exactly ¢ familiar among A, B and C.

Then ag + a1 + ag + a3 is the number of all members of T', i.e. we have

ag + a; +ag + az = 2k — 2.

On the other hand, a; + 2ag + 3as is the number of all familiar to A, B and
C, i.e. we have
a; + 2a9 + 3a3 > 3k — 3.
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Hence

3k—3 < a1+ 2a3+3a3=ap+a +ay+az+ ag + 2a3
= 2k—2+ a9+ 2a3

and therefore ag + 2a3 > k — 1.

Since any familiar to two of A, B and C is a member of a triple of familiar
people and any familiar to A, B and C is member of three such triples, then the
number of these triples is at least 1 +ag + 3az. Thus 1+ ag +3as > ag +2a3 >
k — 1, which means that the number of the triples is not less than k.

[t remains to construct an example with k triples of familiar people. Let
there are no familiar people in T'. If A is familiar to exactly & — 1 people of T,
and B and C — to the remaining k — 1, then the number of the triples is k.

Let n = 2k be even number. As in the previous case , we get that the
number of the triples of familiar people is at least k& + 1. If A and B have
exactly one common familiar person from T (it is possible, since |T| = 2k — 3
and the familiar to A and B are at least k — 1) who is not familiar to C, then
the number of the triples is exactly &k + 1.

So the answer of the problem is k for n = 2k+ 1 and k + 1 for n = 2k.

Remark. The problem can be solved applying of the inclusion-exclusion
principle to the sets of persons which are familiar to A, B and C, respectively.
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Spring Mathematical Competition

8.1. a) The answer is no. Suppose that the numbers written in the vertices
of the octagon are ay, aq, ..., ag and

a; + ag + ag > 14,
az + a3z + aq > 14,
ar + ag +a; > 14,
ag + a; + ag > 14.

Summing up these inequalities gives
3(ay +ag +---+ag) >8.14 = 112.

On the other hand, a; +ag+---+ag=1+2+---+8 = 36. Hence 108 > 112,
a contradiction.
b) The answer is yes as the following example shows:

ap =1, a9=5,a3=6, a4=2, a5=4, ag =7, ay =3, ag = 8.

c) The answer is no. Assume the contrary. The numbers 2 and 3 cannot
be at adjacent vertices; otherwise, the numbers written on the left and on the
right of them must be at lest 8 which is impossible. On the other hand, we
may assume that a; = 1. Then it is easy to see that a4 = 2 and ag = 3 or
as = 3 and ag = 2, and hence a5 = 8. Now, considering the four cases for the
vertex, where 4 is written, we see that the number 8 must appear again, which
is a contradiction.

8.2.Since A; D || M B, and A, By, M,C; €k,

it follows that
D

XAA D = XAMB, = XAC,B; = <ABC.

4 C
Using that B, C) || BA; and A D || BB we con- ‘A A
C

clude that BA; DB, is a parallelogram. Hence 1

BA, = BiD = B;C;. On the other hand,

AB, = B;C and therefore ACiCD is a paral-

lelogram. In particular, AD || CC; and then
XDAA;, = XCMA; = YAMC, A ! B

== {ABICI = {ACB

Therefore
XADA; = 180° — ¥DAA, — ¥DA;A = 180° — YABC — YACB = XCAB.
8.3. Set m = 2%p, where p > 1 is an odd integer. Then

2003™ — 1 = 20032°7 — 1 = (2003%* — 1)K,
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where K is a sum of p even integers and 1; in particular, K is odd. Hence m
must be of the form m = 2*. In this case we have that

2003%" —1 = (2003%"" — 1)(2003%*"" 1 1)
= (2003%°7" 4+ 1)(2003%" " + 1)... (2003 + 1)(2003 — 1).

Since 20032 + 1 = 2 (mod 4), then 2%+2 divides 20032" — 1 but 2%+2 does
not (use that 2003 + 1 = 4 (mod 8) and 2003 — 1 = 2 (mod 4)). Therefore
k + 2 = 2000, i.e. k = 1998. Thus the desired number is equal to 21998,

9.1. If x # —1 and y # —1, we easily get that y = a. Plugging it in the
second equation gives

(%) ax® — (a* = 2a — 1)z +a® = 0.

If a = 0 the system has a unique solution (0;0). If a # 0, we consider the
following two cases.

Case 1. —1 is a root of (). Then (x) gives that a = 1 or —1. In both cases
the system has no a solution.

Case 2. The equation (*) has a double root. Thena = —1,a=1lora = —%—.

In the first two cases we get that y = —1 or x = —1, i.e., the system has no a
. 1 . : 1 1
solutions. If a = —3 the system has a unique solution (z;y) = 373
Thus the desired values of a are 0 and —%.

9.2. Let DH 1 AC (H € AC). Then
AAHD ~ AAFC and ACHD ~ AAEC.
Hence

AC? = AH.AC + HC.AC
— AFAD + AE.CD
= AQ®+ AE.AB = AQ? + AP?.

Setting QP = PC = x, we get the equation A B\"/ E
(1+22)2=1+(1+2) < 32°+22—1=0,
which has a unique positive root r = 3 Therefore AC = 1+ 2x = 3"

9.3. We shall say that the order of Spas is 1, the order of his parents is
2, the order of their parents is 3, etc. Write the number of the heads of any
dragon in ternary base: Spas has 1 head, his mother — 10 heads, his father 11
heads , etc. It follows by induction on the order of the dragons that the heads
of the dragons of order n are n-digits numbers which ternary representation
contains no the digit 2. It follows that if two dragons have a +b =k (a > b)
heads in total and k is written in ternary base, then a and b have 0 at the
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positions, where k has 0 and 1 at the positions, where k has 2. Moreover, if k
has 1 at some position, then one of a and b has 1 and the other one has 0 at the
same position. So if the ternary representation of k contains no 1, then a = b
and hence k is not a good number. If this representation contains at least two
I's (k= ..1..1...), we have two possibilities: (a = ...1...1..., b= ...0...0...) and
(a = ..1..0..., b = ..0...1...). Such a k is not a good number except for the
case when £ contains exactly two 1’s and the other digits are 0.

If k contains exactly one 1, then a has 1 and b has 0 at this position and
the other digits of a and b are uniquely determined. The only exception is the
case when the remaining digits of &k are 0. All the numbers with one 1 and at
least one 2 are good.

Since 2003 = 22020123, the number 2003 is good. Let us count all good

numbers with at most 7 digits. One has (;) = 21 numbers with exactly two

1’s and 0 at the other positions. There are 26 — 1 = 63 non-zero numbers with
at most 6 digits equal to 0 or 2. There exist 7 possibilities to put 1 in such
numbers. So we get 7- 63 = 441 numbers and adding the above 21 numbers,
we obtain 462 good numbers with at most 7 digits.

We shall count the 7-digit good numbers greater than 22020123. They
are 22020213, 22021003, 22021023, 22021203, 22021223, 22022013, 22022103,
22022123, 22022213, 16 numbers of the form 221mnpqs, where m,n,p,q €
{0;2} and 4 - 8 = 32 numbers of the form 222mnpq;, where exactly one of the
digit m, n, p, q is equal to 1. Thus, there are 1 + 9+ 16 + 32 = 58 7-digit good
numbers greater than 22020123. Hence we have 462 — 58 = 404 good numbers

smaller than 2003.

2
Then z? — tx + t = 0. This quadratic equation has

10.1. a) Set t = xx_ T
a real root if its discriminant is non-negative. Then t? — 4¢ > 0 which shows
that the desired range is (—oo; 0] U [4; +00).

b) Write the equation in the form f(x) = z* — az?(x — 1) + (x — 1)2 = 0.

Obviously = = 1 is not a solution. Then dividing both sides by (z — 1)? and
2

x

setting t = 1 we get the equation t2 —at+ 1 = 0. If its discriminant a2 — 4
x —

is negative, i.e. a € (—2;2), the equation f(x) = 0 has no real solutions. If

a € (—oo; —2] U [2; +00), denote by ¢ and tp the roots of the above equation.
Now a) implies that f(z) = 0 has no real roots if and only if ¢, s € (0;4).

g(0) >0
Setting g(t) = t2 — at + 1, this is equivalent to 9(4)a> 0 which gives
0< =<4
17 ?
a € ( 4> Having in mind that a € (—o0;—2] U [2; 4+00), we get that

el2 )
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10.2. If E and F' are the second tangent points of k1 and ko with the arms of
the angle, then the equalities AF? = AL.AC, CE? = CK.CA and AF = CE
imply that AL = CK. Hence AK = CL and analogously CM = BN. On the

other hand, Ceva’s theorem gives

AX AKCM and AT ALCN
XB KC.MB TB LC.NB’
Multiplying these equalities gives % = i—? and therefore

AX+XB TB+ AT
XB AT
Analogously AZ =Y B which implies that XZ =YT.

10.3. a) We shall prove that 4 measurements are enough. Denote the balls
by 1,2,3,4,5,6 and measure consecutively {1,2}, {1,3}, {1,4} and {1,5}.

Case 1. If all the measurements show radioactivity, then 1 is a radioactive
ball. If {1, a}, a = 2, 3,4, 5, contains two radioactive balls, then a is radioactive;
otherwise, it is not. Hence we know which of the balls 1, 2, 3, 4, 5 are radioactive
and hence we also know whether 6 is radioactive or not.

Case 2. If some of the measurements shows no radioactivity, then 1 is
not a radioactive ball. Hence we again know which of the balls 1,2, 3,4, 6 are
radioactive and then whether 6 is radioactive or not.

Assume that L(6) < 3, i.e, three measurements are enough. After two mea-
surements we have 32 = 9 possibilities. After the first measurement 1,2, 3, 4,5
or 6 balls can be chosen. It is clear that among any 5 or 6 balls there are at
least 2 radioactive; so a measurement with 5 or 6 gives no information.

Let x, x < 4, balls are chosen in the first measurement. If x = 1 and the
answer is “one radioactive ball”, then the possibilities for the radioactive balls

5)
are (2) = 10. On the other hand, the number of the possibilities for the other

«— AT = BX < AX = BT.

two measurements are 3% = 9. Analogously, for a first measurement of:
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— two balls and answer “one radioactive ball”, the number of the possibilities

(-

— three balls and answer "more than one radioactive ball”, the number of

the possibilities is (2) (:1))) + (2) = 10> 9;

— three balls and answer "more than one radioactive ball”, the number of

the possibilities is (;1) (?) + (g) =13>0.

Thus three measurements are not enough and so L(6) = 4.
5)
b) We shall show that ﬁ;— measurements are enough for finding the

three radioactive balls which will imply the desired inequality. Let n = 2t — ¢,
where € € {0,1}. Let us either pair the balls (if € = 0) or take a ball and pair
the remaining (if € = 1). In both case we check any pair and the taken ball (if
e = 1) for radioactivity. Two cases are possible.

1. There is one set with two radioactive balls and one set with one radioac-
tive balls

2. There are three sets with one radioactive ball.

In both cases three measurements are enough to find the radioactive balls.

The total numbers of the measurements ist — 14+ 3 =t + 2. Since

n+5 B 2W—e+5
2 | 2

J=t+2+[——EJ —i+2,

2

2

11.1. If a > 2, then the roots x; and x2 of the equation 2 —ar+1=0
are positive and xzyx9 = 1. In particular, S, >0forn=1,2,....
a) We have
Sn—1 Shn n—1 n—1 n+t n+l n n\2
2 <= (2 ez )T +xp7) > (2 + 23)
Sn n+1

we get that L(n) < [n i 5}.

n+1

n—1_n+l n—lml Z 2%?%3

& Xy X9 T+ Ty
= (mlxg)"_l(xl—mg)QzO,

which obviously holds.
b) Let a > 2 have the desired property. Then a) implies that

Si S

n

2 >n—1,
S2 Sy Sn+1

.S 1 . .

ie., -S_; >1-— - Since nll)rr;o% = 0, the last inequality gives %:; > 1. Using
Vieta’s formulas we get S| = a, S = a? — 2 and therefore 5 >1

a —

a+1)(a—2

( a2)£a2 ) < 0. Since a > 2 we get a = 2.
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Conversely, if a = 2, thenz; =29 =1and S, =2 forany n = 1,2, ...,

Hence g g s
1 2 n
52 S3 Sn+1

11.2. We shall use the standard notation for the elements of AABC. We
may assume that b > c¢. Denote by I the incenter of AABC. Then the condition
AN = r+/3 implies that TN A, is a right-angled triangle with XNITA; = 60°.
We shall prove that AA; L IN. If so, then ¥xAA; N = 60°. Now, if M is
the midpoint of the segment AA;, then AM N A; is equilateral and therefore

ANANM is isosceles with XANM = <M AN = 30°. Thus XANC = 90°.

A

=n>n—1.

¢,

C A, B N

To prove that AA; 1 IN, note that this is equivalent to the equality
AI? — JA? = AN? — A|N?. The Cosine theorem for AAN B gives

a? + ¢ — b?

AN?2 =2+ BN? + 2¢.BN cosf3 = c® + BN? + 2¢.BN o

On the other hand, the Menelaus theorem for AABC and the line B;C} implies

that
CB, ACi BN _ |
BiA CiB NC
p—c BN a(p—b) . o
Hence —7 BN +a =1,ie, BN = - , where p is the semiperimeter

of AABC Then AyN = BN + p — b and therefore

2 2 12 2
AN? — AN? = & —(p—b)?+ BNEFE 0 _ ac+ ab

_ P (p-bP— a(bp_—cb) 2(0- czl(p —a)

= = (p-b0)’-2(p—a)(p-b) = (p—a)’
= AI?—IC% = AI* - I A?

which completes the proof.

Remark. The fact that AA; L IN holds true for any AABC. It can be
proved as above or using complex numbers or inversion. Note also that if P is
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the second common point of the line AA; and the incircle of AABC, then the
line NP is tangent to this circle. The data of our problem give P = M.

11.3. We shall prove that n = 6. If we take 6 points in general position
(no three are collinear), then the lines are 15 and any point lies on 5 lines, i.e.
n = 6 is a solution of the problem.

Denote by k the number of the lines defined by the given n points. Assume
that there is a line | containing 4 of the given points. Any of the points belongs

to E— 1 lines different from ! which means that there are at least 4 Z;— — 1) +1

3
4(;——1)-&—131@

lines. Then

i.e., £ < 9. On the other hand, any point lying no on [ belongs to at least four
lines (the lines through the point and the four points on {) and hence k > 12, a
contradiction. So any line contains at most 3 points. Let a of the lines contain
2 points. Then each of the other k£ — a lines contains 3 points.

k
The number of the points (any of them counted — times) is equal to 2a +

3
k
3(k — a) and then 2a + 3(k — a) = %— On the other hand, since n points

n(n—1
define —(—————) lines (some of them may coincide) and any line containing

three points is counted three times, then a + 3(k —a) = mzi—}l Thus
n(n—1)(9—n) L — 3n(n—1)

YT T -9 " 2@n-9)

Since k < M, then 2n—9 > 3, i.e., n > 6. Now a > 0 implies that n < 9.
For n = 7 the values of a and k are not integers and hence n = 8 or n = 9. For
n = 8 one has that k = 12,a = 4 and for n = 9 we get that k = 12,a = 0.

Denote by [ the maximal number of points in general position among the
given n points. Then the remaining points belong to lines defined by these [
points.

Case 1. Let [ = 3 and let the respective points be Ay, Ag, A3. Any of the
other points lies on one of the lines A; Ag, A; A3 and AgAs. Since any line
contains at most 3 points, then we have at most 6 points, a contradiction.

Case 2. Let | = 4 and let the respective points be A, Ag, Az, A4. Since the
total number of the points is at least 8, we may find a point belonging to exactly
one of the lines defined by Ay, Ag, A3, As. We may assume that the point is As
and As € A;Ag. Then the points As, A4, A1, A5 as well as Ag, Ay, Ao, Ag are
in general position. Hence all the points must belong to the lines defined by
Ay, Ao, A3z, Ay; As, Ay, Ay, As and As, Ay, Az, As. The only common lines are
A3Ay and A AgAs, i.e., all the points lie on two lines. This is a contradiction
to the fact that any line contains at most 3 points.
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Case 3. Let [ = 5 and let the respective points be A;, Ay, A3, A4, As. Any
of the points A, A, A3, A4, As belongs to exactly 4 lines. This means that
AgA;, 1 = 1,2,...,5, is one of these lines. We may assume that Ag € A; As.
Then AgAs is one of the lines A3A4, A3A; or A4As. Let us have, for example,
Ag € A3A4. Then AgAs is a new line, a contradiction.

12.1. a) We have

1 — cosz)[k(1 + cosx + cos? ) — cos?
foy = U comnli(lyoon ) — cos’a]
x
1—cosz)(1+ cosx+ cos®x
= {rema)ild o )
(L cosa)lk — /()]
f(z) '
b) Set cosx = ¢ Then ¢t € (0;1] for z € [O;g) and f(x) = h(t) =
t—g- Since h'(t) = —-t2+_2t— we see that h'(t) > 0 for t € (0; 1] and
1+ t4 12 (L4t 22 » Hl A

therefore h(t) increases in this interval. Having in mind that A(0) = 0 and

1
h(1) = 30 e conclude that the range of h(t) for ¢ € (0; 1], i.e., the range of

1
f(z) for z € [O; g), is the interval (O; §J
c) If k< 0,then lim g(x) = —o0, i.e, any k < 0 is not a solution of

o-%a<]
the problem. It is also easy to see that k = 0 is not a solution of the problem.

1
It follows by b) that if & > 3 then ¢’(z) > 0 for z € (O; g), i.e., the
function g(x) increases in this interval. Now ¢(0) = 0 implies that g(x) > 0 for

€ [O;g).

1
Ifke |0 3 ) then the equation ¢’(x) = 0 has a unique root zg in the

interval (O; g) . The considerations above show that ¢’(z) < 0 for 2 € (0;z0),
i.e., g(x) decreases in this interval. Then g(0) = 0 implies that the given
inequality is not true.

Thus, the desired values of k are k € [%—;oo).

12.2. a) We shall use the standard notation for the elements of AABC.
The Cosine theorem for AABM gives
AM? + BM? — AB? a2 + b2 — 5c2

A = =
Ot SAM B = e BsnSAMB — 125150

2cos?y—1

, , the condition X AM B = 2+ becomes
2sIny cosvy

Since cot 2y =
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a? + b? — 5c2

3ab = 2cosy - cos 7y
— a2+62—5c2_a2+52—62__ 2ab
3ab ab a2 4 b2 — 2
a2+62+c2_ ab
= 3ab _a2+b2—c2
= (a +b2) — ¢t = 3422
= ' =a'+0b"— a2

b) It is easy to check that a* 4+ b* — a?b? > (a? + b2 — ab)? for any a,b > 0.
1
Then a) implies that a? + % — 2abcosy = ¢? > a? + b2 — ab. Hence cosvy < 3
ie., v > 60°.

Remark. The inequality in b) follows also by the fact that M lies on the
segment with endpoints the circumcenter O and the orthocenter H of AABC.
Indeed, since XAMB = 2y = XAOB, then H does not lie in the interior of
the circumcircle of AAOB. Then the inequality v < 90° shows that the points
O, H and C lie on the same side of the line AB. Hence 180° — v = SAHB <
XAOB = 24, i.e. v > 60°.

12.3. Setting h(z) = f(x + 1) — 1, it is easy to see that the conditions for
f(x) are equivalent to h(z) = ax for any z € [1,2) and h(h(z)) = —2x for any
z € R. Then h(—2z) = h(h(h(z))) = —2h(x); in particular, h(0) = 0.

It follows by induction that h(4"z) = 4"h(z) and hence h(z) > 0 for x €
[47,2.4™), where n is an arbitrary integer. Since 0 > —2x = h(h(x)) = h(ax)
for z € [1,2), then [a, 2a) C [2.4%,4%*1) for some integer k. Therefore a = 2.4*.

Conversely, if a has this form, then it is easy to check that the function

ar, <z € [4",2.4"),
_2 o€ [ anty,
a
h(zx) = J 0, x=0,
ar, x € (—4"*tl —2.4"],

~Z ze (—24m,—4m,
a

where n runs over all integers, has the desired properties. One can easily show
that this is the only function with the above properties.
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52. Bulgarian Mathematical Olympiad
Regional round

1. Let ABCD be a right-angled trapezoid
with area 10 and altitude AD = 4. Let the line
MNI||AB, M € AD, N € BC, divides it into two
circumscribed trapezoids. Set AB =a, CD = b
(a >b), MN = ¢, AM = hy and DM = hy.
Then h? + (a—¢)? = (a + ¢ — h1)? and we get

that h; = 2ac .
a—+c
2b h b

Analogously hg = E:c(_: which implies that -}é = g((T::__—Z%. On the other
B _

hand, h_l = Z z and therefore (a + b)(ab — c?) = 0. Hence ¢ = ab and we
5 _

get that

_ 2k 2bVa
T Ja+vb T Ja+ b

Then vab = 2 and a + b = 5, i.e., a and b are the roots of the equation

hi

h 4
22 — 52 + 4 = 0. Consequently a = 4, b = 1 and the radii equal 71 =3 and
hy _ 2
2 3

2. For n < 10 Ann wins writing the numbers 1,2,...,2"!. Indeed, the
result [vo can get is a non-zero integer between —1023 and 1023, since it has
j—1
the same sign as the largest remaining number (27 > 27— 1= 222)
;=0
For n > 11 the set C of Ann’s numbers has 2" — 1 > 2003z different non-
empty subsets. Hence the sums of numbers of two of them, say A and B, are
congruent modulo 2003. If Ivo puts + in front of the numbers of A\ B, — in

front of the numbers of B\ A and deletes the remaining numbers of C, he wins.

3. It follows by the given condition that 4(an — 1) < n + a(an) and 4an >
n+alan—1)—1,ie,

1 4
11a?2— 27" cqa<ct1ra2s 2
n n

Letting n — oo gives 1+a2:4a, soa=2—+3ora=2++3.
The given equality for n = 1 yields that the first case is impossible.
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In the second case set b = [ﬁ] and ¢ = = —b. Since a = 4 — l, then
a a a
n
n+ [alan])] = [n+a [4n— E]] = [n+a(dn—b—1)]
= [a(dn—1+¢)] = [(4— é) (d4n—1 +c)]

_ [4(477,—1)—4 =)+ 1_CJ:4(4n—1—b)

a

= 4 [4n— g] — 4fan).

Therefore a = 2 + /3 is the only solution of the problem.

4. Let H = AC N EF. Then 4 CDG =
4 FHC and

C
ch BD FH FH
DG DG HE HC
It follows that ACDG ~ AFHC which implies
that § GCD =4 CFH. Hence D
4 BCG = 4 BCD— 4GCD A B

— JCEH- JCFH =4 BCF.

5. Note first that the the triple (0, 0,0) is a solution of the system.
If y = 0, then it follows from the first equation that x = —2z and the second
one gives that x = z = 0.
If y+#0, set a = 5 and b = 5 Then the system becomes
l1+a+b=3ay
1+ a? +b% = 3ab
y(1+a® +b%) = 3b.

Hence y = 1—+§(ﬂ and therefore
a

(14 a+b)(1+a®+ 6% = 9ab
1+ a? + b2 = 3ab.
Set = a+ b and v = ab. Then
(14 w)(1+u3 —3uv) =
14+ 4?2 — 20 = 3,

u“+1
a and plugging it into the first equation gives

O=u!+u®—6u?+u—2=(u—2)(u®+3u?+1).
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The case u = 2 leads to v = 1, a = b = 1 and gives the solution (z,y,2) =

(1,1,1). The function f(u) = u® + 3u? + 1 has a local maximum at v = —2

and a local minimum at v = 0. Since f(0) = 1 > 0, the equation f(u) =0 has
2 2

only one real root up and ugp < —2. Then ug —4 = = > 0 which
shows that the system
a+b=1u
2
U - 1
ab =
o
has two solution.
Thus the given system has four real solutions.
6. Let p1,p2,...,pn be all prime divisors of all possible differences of two

distinct numbers of C.

Suppose that for any p; there exists an integer o; such that ¢ = o; (mod p;)
for at most one ¢ € C. It follows by the Chinese remainder theorem that there
is an integer k such that £ = p; — a; (mod p;) for any . Then the condition
of the problem implies that p; divides a + k and b + k for some j and some
a,b€ C. Then a = b = o (mod p;), a contradiction.

We conclude that for some prime number p each reminder modulo p appears
at least twice. Assuming that any remainder appears exactly twice we get that
the sum of the elements of C equals

pr+20+1+---+p—1)=plr+p—1), r>1

This is a contradiction, since 2003 is a prime number. Hence some remainder
appears at least three times. Removing an element of C giving this remainder
we obtain a new good set C’. (Indeed, for any k we can find a,b € C’, a # b,
such that p divides a + k and b+ k.)
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52. Bulgarian Mathematical Olympiad
Final round
1. If xy = 2 and 290 = 23 = £3 = 5 = —1, then all six sums of the form
z1 + g+ xr, 2< g <r < 5are equal to 0 and therefore n > 7
Let now 7 sums of the form x, + x4 +x,, 1 <p < qg<r <35, be equal to
7.
0. Since —3 > 4, there exists x; which occurs at least 5 times in these sums.

We may assume that ¢ = 1.
The sums of the form x; + x4 + x,, 2 < ¢ < r < 5, are 6. Hence at most

one of them is non-zero. So we may assume that

x1+txo+x4 = X1 +22+2T5=2x1+ 23+ 24
= 21 +2x3+x5=2x1 +24+ 25 =0.

x
It follows that 29 = 23 = 24 = x5 = — 2L 306 all the 6 sums x; + x4 + Zr,

2 < g < r <5 equal 0. Since the 7-th sum which equals 0 has the form
Tp+ g+ 2, 2 < p<q<r <5, we get that 3z, = 0, which implies that
Ty =X =23=24=25=0.

2. a) Set XNPC = ¢y and XM PC = 3. Then

CN _ Snpc CPsin ¢y
AN  Sypa APsin(90° — o)

and hence

: _ CN.AP
M= UNCP
Analogously
ta _CM.BP
"= BMCP
Hence the equality ¢1 = 2 is equivalent to
CN.AP.BM !
AN.BPCM
which follows from Ceva’s theorem for AABC A P B

and the lines AM, BN and CP.

b) Set XINPC = SMPC = ¢, XFEPO = x and <DPO = y. It is easy to
see that

sin(p—2x)  sin(p—y)
sinz  siny

r=19y <> cotxr =coty <=

.
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Assume that £ € NH and D € CM. Then
ME Sygp MPsin(p —x) — sinfp—x) ME.PH

EH Syggp = PHsinx sinx  EHMP’
, sin(p — DN.CP , ,
Similarly i}gy y) :OC PN Hence using that PO is the bisector of
M M
XNPM,ie., PN — No e have to prove that
ME CD PH NO _ !
EH DN CP MO
Set XNOD = 6 and XEFOP = . Then
MFE SMEO MOsiné an CD . Scpo COsiny
EH Sygo OHsiny DN  Spno ONsiné’
OC.PH

Hence it remains to show that =1.

Applying the Menelaus theorem for ABHC and the line MN, ACHM
and the line AB, and ABHM and the line AC, we get that

BN.HOCM . CPHAMB  HNBCMA
NHOCMB = PHAMBC ~“YBNCMHA

Multiplying these equalities gives the desired result.

3. Let k have the given property. We have that y3 = 2k —2 = 4a? (a > 0),
i.e., k= 2a? + 1, Further y4 = 8k% — 20k + 13 and y5 = 32k® — 120k? + 148k —
59 = 256a% — 96a* + 8a2 + 1.

If a = 0 we get that £k = 1 and the given sequence is 1,1,0,1,1,0,....
Hence k = 1 is a solution of the problem.

Let a > 0. Its is easy to check that

(16a3 — 3a)? > y5 = 256a° — 960 + 8a% + 1 > (16a® — 3a — 1)%.

Since ys is a perfect square, the first inequality must be equality, i.e., a = 1
and then k£ = 3.

We shall prove that k& = 3 is a solution of the problem. In this case the
sequence is defined by y1 =y2 =1 and yny2 = Tynt1 — yn — 2 for n > 1. Since
Yys = 22, Yqg = 52 and Ys = 132, it is natural to conjecture that y, = u%n_g,
for n > 2 where {u,}52, is the Fibonacci sequence: u; = ug = 1 and up42 =
Unt+1 + Un for n > 1. To prove this, we first note that u,49 = 3up — up—g and
UntoUn—2 — u2 = 1 for any odd n > 3. It follows that (unyo + Un_2)% = 92
and thus

2 2

— 2 2 2
Unio = YUy —uy_ o — 2Up_gUpio = Tu;, —uy_o — 2.

Hence y, = u3, 5 for n > 2.
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4. Let A = {a1,0a2,...,0n} be a uniform set. Set S = a1 +ag + - + an.
It follows from the given condition that S — a; is an even number for any
i =1,2,...,n Suppose that the number S is even. Then all the numbers a;
are even. Set a; = 2b;, ¢ = 1,2,...,n. Then it is easy to see that the set
B = {b1,bs,...,b,} is uniform, too. So, we may assume that S is an odd
number and whence ay,as,...,a, and n are also odd numbers.

We shall prove that n = 7. It is not difficult to check that {1,3,5,7,9, 11,13}
is a uniform set. It remains to show that there are no unform sets with 5 ele-
ments, since it is is obvious that the sets with 3 elements are not uniform.

Suppose that A = {a;, a2, a3,04,0s5} is a uniform set and let a; < ag <
ag < a4 < as. Considering the set A\{a1} we see that either as-+as = az+aq or
ags+as+aq = as. Considering the set A\ {aa} we get that either a1 +as = az+ay
or ay; +ag+ a4 = as.

o If ay + a5 = ag + a4 and a; + a5 = a3z + a4, then a; = as.

o If ag + a5 = a3 + a4 and a; + a3 + a4 = as, then a; = —ag

o If ay + a3 + a4 = a5 and a; + as = az + a4, then a; = —as.

o If ap + asz + a4 = as and a; + a3 + a4 = as, then a; = aq.

Since all the above possibilities lead to a contradiction, we conclude that
there are no unform sets with 5 elements.

5. Let a+b+c=0a%+b2+c¢2 =t Then t > 0. On the other hand, the
Root mean square — Arithmetic mean inequality implies that

a? +b2 4 (a+b+c)?
3 - 9
Hence t € {0,1,2,3}. If t=0o0r¢t =3, thena=b=c=0o0ora=b=c=1,
respectively, and the the statement is trivial.
Let t = 1. Denote by d the product of the denominators of |a|, [b6] and |c|.
Then x = ad, y = bd and z = cd are integers for which x +y + 2 = d and
22 +y? + 22 = d2. We may assume that z > 0. Note that

> 3t >t

2

(z+y+2P°=2*+92+22 = sy+yr+22=0 <= (z+2)(y+2)=2>

It follows that x4+ z = rp?, y + z = r¢® and z = |r|pq, where p and q are
coprime positive integers, and r is a non-zero integer. Sinced =z +y+ 2z =
r(p? + ¢?) — |r|pg > 0 we get that » > 0. Then

oo t__pe—9 ,_y__ala—p _Z_ Pq
d p*+¢?2—pqg’ d p*+q¢>—pg d p*+¢®—pq
o2
and thus abe = [pq(p2 q)]2 3.
(pg — p? — ¢?)

It remains to show that pg(p — ¢) and p? + g2 — pq are coprime integers.
Suppose that s is a prime divisor of pg(p — ¢) and p? + ¢ — pq. Let s|p. Since
s|p? + ¢* — pq, then s|q, a contradiction. Analogously, s { ¢. Hence s|p— g. Then
s|(p— )% — (9* + ¢* — pq) = pq, which is impossible.
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The case t = 2 can be reduced to the case { = 1 by setting a; = 1 — g,
by = 1—band ¢ = 1 —c. Indeed, it is easy to check that a; + b; + ¢; =
a? 4+ b2+ c? =1 and a1bjc; = —ab
1T T64 101¢1 = —avc.

6. Denote by m and a the degree and the leading coefficient of P(x),
respectively. Let x, be an integer solution of the equation P(z) = 2™. Since

Zn|™ N
lim |z,| = +o0c, then lim oen™ _ 1 and hence lim | 2| = /3.
n— oo n— 00 on n—oo | Iy

On the other hand, 2n41 — 2, divides P(2n41) — P(zn) and thus |zny; —
Ln| = 2% for some ky,, > 0. Then

Tntl 2kn

Tn

+5n,

~ Janl

where €, = +1 and we get that

V2 = lim +en| = lim { 2% 7 —-{—en X
n—oo I nl n—o0 2n

Note that £, equals either 1 or —1 for infinitely many n. Since the two cases
are similar, we shall consider only the second one. Let 1 = ¢;; = ¢, = ---

Then
Y2+ 1= %/a lim 2% 7%

J—00

and hence the sequence of integers k;; —1; converges to some integer £. It follows
that ( ¥/2+ 1)m = a2™ is a rational number. According to the Eisenstein
criteria, the polynomial x™ —2 is irreducible. Hence (x—1)™ —2 is the minimal
polynomial of §/2+1. It follows that (z—1)™—2 = ™ —a2™¢ which is possible
only form = 1.

Let P(x) = ax + b. Then a(xg2 — x1) divides 2 and thus a = £1, +2. Now
it follows easily that all polynomials with the desired property are of the form
P(xz) = a(x +b), where a = £1, 42 and b is an arbitrary integer.
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Team selection test for 20. BMO
1. Note that
JEDC=2 JCED < DI=EI,

where DI (I € CE) is the bisector of $ CDE. C
Setting BD = 2AD = 4BFE = 4z and AC =
BC =y we get

_ VEDCD((ED + CD)? — CE?)
N ED+CD

_ VBz(y —2z)((x +y)? — CE?) A B
B r+Yy ’
ED 3x
—_—=C .
ED+CD Em+y

DI

EI =CE

[t is easy to deduce from here that
DI = El < CE?=(z+y)(y—2z).

The last identity follows by Steward’s theorem for ABCD :

2 QBE
CE? — BC*DFE +CD — BEDE
BD
32 —9 2
_ Y +(g m) —3%22 (m+y)(y—2x)

2. We have
a+b+c— @ __ b __°c = —b———ab+ ¢ be + ca

24+1 241 a2+1 241 24+ 1 a2+ 1

<ab+bc+ca < (a+ b+ c)?
- 2 - 6
and it remains to use thata + b + ¢ = 3.

3. Let f(z,y) be the number written at the lattice point (x,y). Then

flz,y) = flz+ 1,y)+f(m—1,y):f(m,y+1)+f(m,y_1)'

Assume that not all the numbers are equal. Then there are two points at
distance 1 apart such that the numbers written there are different. Rotating
the plane, if necessary, we may assume that f(zo +1,y0) > f(x0,y0) for some
x0,Yo € Z. Set

g(z,y) = f(z + Ly) — f(z,v).
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Then M = sup g(z,y) € (0,1] and
z,yeL

x+1Ly)+g(z—Ly)+g(x,y+ 1)+ ,y—1
o(z,y) = L&+ LY) +9( y)4g( y+1D)+o=y—1)

In particular, if g(a,b) > M — e, where £ > 0, then
gla+1,6) = 4g(a,b) —g(a—1,b) —g(a,b+1)—g(a,b—1)
> 4(M—¢e)-3M =M —4¢
and we get by induction that g(a + n,b) > M —4"¢ for any n € N.
2
Choose now n > — ¢ € (O,

M 2.4n-1

g(a,b) > M —e. Then

} and integers a and b such that

1> f(a+m,b)> f(a+n,b)— f(a,b) = g(a+k,b)>n
k=0

n—1
M
—_>1
2 — ?

which is a contradiction.

Remark. One can show that the statement of the problem remains true if
the numbers at the lattice points are uniformly bounded from above or below.

4. We have Pi(z) = Py(z) = 1, P3(x) = 2+ 1, Py(z) = 22 + 1 and
Ps(x) = x* 4 1. Hence the integers n = 1,2, 3,4, 6 have the desired property.
We shall prove that these are the only solutions of the problem.

It is enough to show that for n > 3 the polynomial P,(z) has a divisor of
the form 1 4+ 2", r > 1, which is proper divisor for n =5 and n > 7.

If n > 3 is a prime, this follows by the decomposition

Po(z)=(Q+2) 1+ 22+ 2+ 4 2773).

Note also that Py(x) = z2 + 1.

Now we shall use induction on n. Suppose that the statement is true for
all m > 3 that are less than n. If n > 6 is a composite integer, then n = mp,
where p is prime and m > 3. Two cases are possible.

Case 1. p divides m. Then we have that A, = Uf;ol (Am + im) and hence

p—1
Po(z) = Pp(x) Zmim. It remains to use that P, (x) has a divisor of the form
i=0
1+
Case 2. p does not divide m. Using that

An = (U2 (A + i) ) \ (PAm)

and z*P~1 = xP~1(xP)k—1 it follows that



By the induction assumption, Pp,(x) has a divisor of the form 1+2x". Therefore
1 4 xP" divides Pp,(xP). We shall consider two subcases.

a) If p > 3, then pis odd and 1 + z" divides 1 4+ zP” Hence 1 + =" divides
Pp(z).

b) If p = 2, we may assume that m is prime (otherwise, m has an odd
prime divisor and we may go either to a) or to the first case). Then

Po(z)=(Q+ ™Y1+ 2242+ 4273,

It remains to observe that P,(x) = 1+ z" only for n = 3,4,6 which
completes the solution.
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Team selection test for 44. IMQO

1. It is not difficult to see that the rectangles must be placed one over
another so that any of them has two vertices on the sides AC and BC, and
the first one has a base on the side AB.

Now we shall prove by induction that the sum of the areas of n such rect-
angles is maximal when the side AC is divided into n 4 1 equal parts by the

vertices of the rectangles lying on it. Then the sum equals S, where

n+1
S = SaBc.
Let M N PQ be a rectangle with M, N € AB, P € BC, Q € AC. Setting
CQ _ it easily follows that
ac o Y
Sunpg = 2z(1 —2x)S.

1
Hence Sy npg is maximal if x = —, i.e., when @ is the midpoint of the side

AC. This proves our statement for n = 1.
Assume that the statement holds true for some k and consider k + 1 rect-
angles M;N; P,Q; with M3, N; € P,1Q;—1 (R =A, Qo =B) and P, € BC u

C
Q; € AC,7=1,2,..., k+1. Setting CQ _ x, we get Sy N gy = 22(1 — x)S.

AC
k+1
The induction assumption implies that » " Sy, n,p,q; is maximal if QQa =
i=2
Q2Q3 = -+ = QrQry1 = Qr4+1C. Therefore
k+1
kSo.pc kx2S
SM.N:P.o:. < - - :
; M,,N,,P,,Q,,_ k+1 k+1
Then
kis < (230(1—:6)-{— ke )5
k+1 k+2 k4 1)2
= — r— — S
k+2 k+1 k+2
< k+1 '
— k42
- . . k+1 | ‘
The equality is attained if x = T i.e., when the points Q;,Q2,. .., Q1

divide the side AC into equal parts.
2. It follows by

(1) F@ +y+ F®) =2y + (f(2))?
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that the function f is surjective. Note also that (f(z))? = (f(—x))?. In par-
ticular, we may choose a such that f(a) = f(—a) = 0. Setting x = 0, y = £a

2
in (1) gives 0 = f(&a) = (£(0))? £ 2a, i.e,, a = 0. Plugging y = —(f—(;—))— in

(1), we get that f(z% +y + f(y)) = 0 and therefore y + f(y) = —z2. Thus the
function y + f(y) takes any non-positive value. Since f(0) = 0, it follows from
(1) that
(f(z))* >0 and f(y+ f(y)) = 2v.

Setting z = 2%, t = y + f(y), and using again (1) we deduce that f(z +1t) =
f(z) + f(¢t) for any z > 0 > t. For z = —t we get f(—t) = —f(f) and then it is
easy to check that f(z +t) = f(2) + f(t) for any z and ¢. Since f(t) > 0 for
t > 0. it follows that f is an increasing function. Suppose that f(y) > y for
some y. Then f(f(y)) > f(y) and we get

2u=fly+ f) = fy) + f(f(y)>2f(y),

a contradiction. Hence f(y) < y. We see in the same way that f(y) > y, so
f(z) = z. This function obviously satisfies (1).

3. Let A1 Ag... A, be a convex n-gon. Denote by B the set of the connected
vertices and let B;By... B, be its convex hull. We shall prove by induction
on n that there is a map with the desired properties that in addition sends
two given adjacent vertices of the n-gon to two given adjacent vertexes of
B1B;y...By.

The base of the induction n = 3 is obvious. Suppose that our statement is
true for any k < n. To prove it for n, it is enough to find a map for n that
sends A; and Ag to By and Bs, respectively. Note that there is a unique point
A; that is connected with A; and Ag (otherwise, some segments will have a
common interior point). Consider the points X;, Xa,..., X, from B such that
any of the triangles By X; By contains no points of B. It is easy to find a point
among them, say X, such that the interiors of By Ba X; and By B; X, contain
at most n — ¢ and 7 — 3 points of B, respectively. It is clear now that there
are a line through X; and an interior point of the segment B Bj that divides
the set B into two subsets By and Ba, containing n — i 4+ 1 and 7 — 2 points,
respectively. Let By X; and By X be sides of the convex hulls of these two sets.
If A; is the corresponding point to X, then applying the induction assumption
to the sets AgAs... A; and BoU{X;}, and to A;Ai41 ... AnAr and B U {X}},
we see that the statement is true for n points. This completes the solution of
the problem.

4. The answer is no. We shall prove by induction that for any k& > 3 there
is a permutation a;,as,...,ax of 1,2, ..., k such that

(1) O + On # 2am_24ﬁ for any 1 < m < n < k of the same parity.
For k = 3 and k = 4 take the permutations 1,3,2 and 1,3, 2,4, respectively.

Assume that our statement is true for any integer less than k. Start with the
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following permutation of 1,2,...,k : the odd numbers are in the first block,
the even numbers that are not divisible by 4 are in the second block, etc. For
example, if £ = 12, then we have 1,3,5,7,9,11; 2,6, 10; 4,12; 8.

If a,, and a, are in different blocks, set a,, = 2°b and a, = 2'¢, where
t> s> 0 and b, c are odd integers. Then —= +an _ 2°71(b 4+ 2'7%¢) is in the
block before that of a,,, whence Gmin is in a block between these of a,, and
an. So (1) holds.

It remains to reorder the integers in any block in such a way that (1) is satis-
fied for the numbers in this block. Consider the (r+1)-th block: 27,3.27, ... (2d—
1)27, where 2d — 1 < k. By the induction assumption there is a permutation
by, ba,...,bgof 1,2,..., d satisfying (1). Set ¢; =2b; —1fori=1,2,...,d and
consider the permutation 27¢;,27¢g,...,2"cog—1. Then

Cm + Cn
2

which completes the proof.

:bm+bn_17é2bm_;-_rl_1:Cm+n,

2

5. We shall use the following fact: if «, 3, v
and ¢ are angles such that sinasind = sin #sinvy
and a+8 = v+06 < 180°, thena = yand B = 6.

Denote by M, N, R and S the tangent points
of the incircle of ABCD centered at O with the
sides AB, BC, CD and DA, respectively. Then
the points A, M, O, P and S lie on the circle
AM _AS _ 4 M B

2 2

with diameter AO and XAPM =

XAPS.
Analogously, XCPR = ¥CPN and hence <SPR = <M PN The Sine theorem
for ABPM and ABPN gives

sinxMPB BM BN sinxBPN
sinxPMB BP BP sinXBNP
sin<xMPB sin<xPMB
sin XNPB  sinXPNB’
XPMB = 180° — XAMP = 180° — XAOP,
XPNB = 180° — XCNP = 180° — XCOP,

singMPB  sinYAOP ,
then SnXNPB ~ snxCOP’ We get in the same way that

sin XxSPD _ sin XAOP
sin XRPD sinXCOP’
Applying the fact mentioned above witha = XMPB, 3= <NPB,v= «<SPD

and 6 = XRPD we conclude that XMPB = XSPD and therefore XAPB =
XAPM + XM PB = XAPS + XSPD = XAPD.

and therefore Since
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k
6. We shall use that if (\/a§ -1+ 1) = zxVa2 — 1 + yg, then all the

solutions of Pell’s equation (a® — 1)2% + 1 = y? are (xx, yx). This implies that
(a2 — 1)x? + 1 is a perfect square if and only if 2 is a term of the sequence
defined by 20 =0, 1 = 1 and x40 = 20z, — 2% for £ > 0.

Since m(m + 1)(m + 2)(m +3) + 1 = (m? 4+ 3m + 1)?, then n(n + 1)%(n +
23 +3% +1 = [(n+ 12 —1[(n+ D(n +2)(n+3)% +1 is a perfect
square. Applying the property mentioned above with a = n + 1 gives that
(n+1)(n+2)(n+3)? is a term of the sequence defined by g = 0, z; = 1 and
ZTrro = (2n + 2)xpyy — 2k for k > 0. Now it is easy to see by ‘induction on k
that the remainders of any x modulo 2n + 1 and 2n + 3 are 0, 1 or —1. Hence
(n+1)(n+2)(n+3)2=0,£1 (mod 2n + 1) and then

(2n+2)(2n+4)(2n +6)% =0,+16 (mod 2n + 1).

Using that 2n+2 =1 (mod 2n+1),2n+4 =3 (mod 2n+ 1) and 2n+6 =5
(mod 2n + 1), it follows that 2n + 1 divides 75, 59 or 91. Repeating the same
arguments, we get that 2n + 3 divides 7, 9 or 25. The only numbers satisfying
both conditions are n = 1,2, 3. Now direct verifications complete the solution.
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9.1. The equation has two distinct positive roots if and only if

D=a®—a2—-9a+9>0
m1+m2=——6——>0
a?—a—9
—a
m1$2=:1—2_—at"'9'>0

The first inequality is satisfied for a € (—3,1) U (3, +00), the second one -
for a € ((1 — v/37)/2,(1 + v/37)/2), and the third - for every a € (—o0,0).
Therefore the required values of a are a € (=3, (1 — v/37)/2).

9.2. Denote the midpoints of AD and BC by
M and N, respectively. Without loss of general-
ity we may assume that [ lies in the interior of
AMNB and F lies in the interior to M DCN.
Then we have

SMIN = SaAMNB—SaBr— Samr— SBNI

1
= Samns—Sar — 5(Sapr + Sper)

1 1

= SAMNB — '2'SABI — '2‘(SABCD — Scpir).

Analogously, Suen = Supnc — 5SpcE — 5(SaBep — Sasg). Now using
SmMIN = SMEN we get

1 1 1
SAMNB— ‘2‘SABI_ ‘2‘(SABCD —Scpr) = SmMpNc— ‘2‘SDCE_ -2-(5ABCD—5ABE),

1 1 1 1 1

—S - _ - _Z -
5SADN + 2SABC 2SABI 2(SABCD + 2SCDI)
1 1 1 1 1

= 554pN + 55c8D — 55pcE — 5(SaBcp + 5548E),
SaBc — ScBp + Spce — SaBE = SaBr — Scpi,
SaBE — ScpE + Spce — SaBe = Samr — Scpr-
Therefore Sapr = Scpr, whence AB = CD.
9.3. Denote by f(n) the least number of colors such that the integers

1,2,...,n can be colored in the required way. We shall prove that
f(n) = |(k + 1)/2], where 21 < n < 2k Observe that in the sequence
1,2,22 ... 271 we have no three numbers of the same color. This means that

f(n) = |(k + 1)/2].
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Consider the following coloring by | (k+1)/2] colors (each color is identified
with an integer among 1,2,...,[(k+ 1)/2]. If m = p"p3?...pf* < n, where
p; are primes, then we have h(m) := a; + -+ + o4 < k and we can correctly
color m by the color [(h(m) + 1)/2]. If a divides b and b divides ¢, then we
have h(a) < h(b) < h(c), i.e., h(c) — h(a) > 2. This means that the numbers a
and c have different colors. Hence f(n) = | (k+ 1)/2]. Now applying the above

formula for n = 2004 we get f(2004) = 6.
10.1. Since y; + y2 = 1 and y1y2 = 6a, we have

(x2 —yx+ a)(ac2 — Yo + a)

= 2% — (y1 + y2)2% + (20 + v192)2? — a(y1 + y2)x + a® = f(2).

b) The roots of f(x) = 0 are the roots x;, z2 and x3, x4 of the equations
> —yix+a=0 and 2 —yxr+a=0,

respectively. It is easy to see that x;, x2, £3 and x4 are real, distinct and positive
exactly when the following three conditions are simultaneously satisfied:

1)1a7é0,y17£y2 arereal <> a #0, D=1—24a >0 < a # 0,
a< Zl-;
2) Dy =y} —4a>0and Dy = y2 —4a >0 < y; > 10a and y2 > 10q;
Ny +xo=y1 >0, 2129 =a>0, 23+ 24 =y >0and z324 =a >0
<> Y1 >0,y2>0and a>0.

|
These conditicns are equivalent to 0 < a < 51’ y; > 10a and yo > 10a,

1 1
whichisthesameasO<a<512,9(100,)>0and 10a<§  0<a< 57’

4a(25a—1) > 0and a < 2% Hence the required values of a are a € (2—15-, 2—14->
10.2. Let BE meet AC at point N and P be E D

the midpoint of AB. Set 4 BAC =4 BDC =

a, 4ABE =4 CBD = 3 and ¢ ADB = F

4 ACB = ~. Then AABN ~ ADBC, and we

conclude that ABPN ~ ABMC.
Let 4 AMB =<4 BMC = . We have from A C

the above that < BPN = ¢. P p

We shall use the following fact: if two chords of a circle bisect a third one
and determine equal angles with it, then they are equal and their intersection
point divides them into respectively equal parts (use congruent triangles or
symmetry through a line). Let the ray AM ™ meet the circle at point F'. Then
CM = FM and therefore ABMC =~ ADMF. Hence we have BC = DF and
4 MAD =4 BDC = q.
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It follows from AAM D that ¢ = a++ and using AAPN weget 3 ANP =
¢ —a =v=g ACB. Hence NP||BC, which means that N is the midpoint of
AC. This completes the proof.

10.3. Suppose that n has the required property. For every j =1,2,... n
denote by g; the least prime divisor of a; and let ¢ = Juax g;. Without loss of
<i<n

generality we may assume that ¢ = ¢q;. Then
Bn+1)° 2> a >¢f 29},

where p, is the n-th prime number. Therefore we have p, < 3n + 1. It is easy
to show (by induction) that p, > 3n + 1 for every n > 15. Hence n < 14.
Since the set {22, 32 52 ... ,pf4} has the required properties, we conclude that
n = 14.

11.1. Setting y = 2% we have to find all values of a such that the equation
:¢/2—((12-4—3a—2)y-{—3a3—2(12 =0 < (y—ag)(y—3a+2) =0
has exactly one positive root. Obviously a = 0 is not a solution. For a # 0 the
equation has a positive root y; = a® It is unique if either y2 = 3a—2< 0
. 2 .
or yo = 1. In the first case we obtain a < 3 and in the second one we have

a® = 3a— 2, whence a; = 1 and ag = 2.
2
Finally, a € (—o0;0) U (0; §) u{1}u{2}.

11.2.Set AB=¢,BC=0a,CA=0b,2p=a+ ¢
b+ ¢ and let the inradii of AAMC and ABMC
be equal to r. 0, 0,
a) Since Sape :r(a—_{%tf-l—CM) and k
A PM (Q B

SPQOQO] = T(MQ-I— MP) =

MB+CM—-a MA+CM-—-b c a+b
=7 5 + 5 =7 CM+-2-— 5 )

+CM=6(CM+§—“'2H’

a+b+c
2

required equality.
b) First we shall prove that CM = /p(p —¢). If $ AMC = ¢, then

we get ) . This is equivalent to the

2
PM-I—QM:r(cotf + tan f) ==
2 2 sin ¢
and hence
a+b

: c
2r = PQsiny = (CM+-2—— 5

) sing = (CM — (p — ¢))sin .
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We have also that
(CM —(p—c))sing

Sapc=r(p+CM)= 5 (p+CM).
.CM si
Since Sapc = -(E—-Q-w, we get

cCM=(CM~—-(p—2c))(p+CM)

which is equivalent to CM = /p(p — ¢).

Therefore

10CM + 5¢="T(a+b) and 4CM? = (a+b+c)(a+b—c).

Setting —C—’CA{ — m and = +b = n gives
10m+5=7n and 4m’=(n+1)(n—1)=n*—1.
: , 3 5 2 5
This system has solutions m = 3"=7 and m = 3 n=3 Therefore the
o

. .. o
required ratio is equal to 1773

11.3. We shall prove by induction on m that apym = GpmGni1 — Gm_10y
for every two positive integers n,m > 2. For m = 2 this is the given recurrence
relation. If for some m > 2 the equality is satisfied for every n, then

Am+14n = Omi(n+l) = OmOn42 — Am—-10n41 =
= am(aan+l — Qn) — Qp—10p41 =

= (aam - am—l)an+l —AmOn = Om10n41 — Qplnp,

which completes the induction.

The recurrence relation shows that gcd(an,,an—1) = 1 for every n > 2.
This and anym = GmOns+1 — AGm—10n imply that gcd(amin, am) = ged(am, ar).
Using induction again we conclude that for every two positive integers m and
n we have gcd(am,an) = Agcd(mm): Non the assertion follows immediat.ely:
ifl<ng <ng <---<ng < --- is an infinite sequence of relatively prime
integers then ged(ap,, an;) = Ogcd(nimg) = M = 1, ie, any,@ngy---,0ny,---
are relatively prime. Therefore the set of their prime factors is infinite.

1
12.1. a) We have ag = a1 + — > 2. If ap > n, then
1

an+1—n—1=an+f——n—1= (0 — 1)(an — ) >0
an an

and the assertion follows by induction.
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b) Let n > 2. It follows from a) that ap41 < ap+ 1. Then a, < ag +n —2
an ag — 2 ’
whence 1 < - <1+

and its limit equals 1.

a :
. Therefore the sequence (-—ﬁ) 1s convergent
n/n21

Remark. One can prove the stronger statement that lim (a, —n) = 0.
n—oo

12.2. a) If AABC is acute, then by the Law of cosines for AAH B we get
that

AB* = AH? + BH? — 2AH.BH cos(t — v).
Since AB = 2Rsinvy and CH = 2R cosy (by the Extended Law of sines), we
obtain AB? + CH? = 4R?. Therefore

AHBHCH

4R?* = AH? + BH? + CH? + 5

Then 4R® = TR+ 3, i.e. (R+1)(2R+ 1)(2R—3) =0, whence R = %
If AABC is obtuse, then we get analogously that

AH.BH.CH
R

and therefore 4R® = 7R — 3, i.e. (R — 1)(2R — 1)(2R + 3) = 0. Since
3= AH.BH.CH < (2R)3, we conclude that R = 1.

The existence of AABC with R = % and R =1 follows from b).
AB.BC.CA
4R

(4R% — AH?)(4R? — BH?)(4R? — CH?)
16R2

Setting x = AH? y = BH? 2z = CH? and t = 4R?, we get

4R? = AH? + BH? +CH? -

b) Denote by S the area of AABC. Since S =

, we have

5% =

3 —Tt2 4 t(xy +yz + 2x) — 9

5% =
4t

: . 7
Without loss of generality we may assume that x > y > 2. Then z > 3 and

therefore

9
xy+yz+zx=;+x(7—x)=15—

where the equality is attained if x = 3. Hence

&2 < 3 —7t2 +15¢—9
< T :
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Since R = E or R =1, we conclude that Syqez = v/8 and it is achieved for an

acute AABC with R = g- AH = BH = /3 and CH = 1. The sides of this

triangle are v/6, v6 and /8.

12.3. First we shall prove the following:
LEMMA. Let p > 3 be an odd divisor of b. Then there exists an odd prime

q that divides (b + 1)P — 1 but does not divide b.
Proof of the lemma. If b = pc, then

b+1)P—1 = b((b+1)P 14+ +b+1)

- b(Bb'~’+p(p2_ 1)b+p)=bp(b(Bc+p;1)+1))=de

and it remains to choose a prime divisor of d. Note that d is odd (if b is even,
then d = bK + 1 is odd; if b is odd, then (b+ 1)P — 1 is odd, and hence d is
odd, too).

We shall prove now that if a 4 2% + 1, then there exists a sequence of odd
primes pp,p2,... such that p; divides a — 1, and if P, = aPP! P» — 1 (here
po = 1), then p,, divides P,, but does not divide P,_;, n > 1.

Let p; be an odd prime divisor of a — 1 and we have already chosen the
primes py,...,pr. Applying the lemma for b = P, and p = pg, we find an odd
prime pg, that divides P, but does not divide Pj_;.

Since P, _; is divisible by py, pe, . .., Pk, we conclude that p, ., differs from
them. Therefore the numbers py, pa, . .. px have the required property.

Ifa=241,1>2 then a® # 2™ + 1 and it remains to multiply by 2 the
numbers already found for a?.

Remark. It can be proved that if n divides 2" — 1, then n = 1, and if n
divides 3" —1then n = 1, n = 2, or n is divisible by 4. The above solution shows
that for a = 34 there exist infinitely many positive square-free odd integers n
such that 4n divides 34" — 1.

84



Spring Mathematical Competition

8.1. Set S CAB = o, 4 ABC = 3 and
4 BCA = . Then
1 ~~ ~~
<>(IPC1 = 5(3141—}—0131)

1 ~

= §(BA1 + AC + ABl)

1
= §(a+ﬁ+’7)=90°

Hence O is the midpoint of the segment IC; and
it follows that

JIOP =2 3ICP =CA; = a.

We also have ¢ CC1B = « and therefore OP||C1B. Since C10 = OI and
BM = M N, we conclude that IN||C; B, i.e. < CIA; = o. On the other hand,

(a+"y)=90°—§.

1 ~~

N =

This implies that o = 90° — g _ ¢ ‘; Y

that o = v = 72° and 3 = 36°.

, i.e. & = 7. Since o = 23, we obtain

8.2. Denote by x the number of African teams. Then the number of Euro-
(r—1)x
2

+ k, where k is the number

pean teams equals £+ 9. The African teams played each other

(x — Dz
2

games

and therefore the points won by them are

of wins over Kuropean teams.
(x +8)(x+9)
2

Further, the points won by the Europeans are +z(x+9)—k.

Thus,

g(ww) _ e 8Er9) L o)k,

2 2
and so 3z — 22z 4 10k — 36 = 0. Since x is a positive integer, we have that
121 — 3(10k — 36) = 229 — 30k is a perfect square. Then k < 7 and a direct
verification shows that we obtain perfect squares only for k = 2 and k = 6. For
k = 2 we have x = 8 and therefore the best African team could have at most
7+ 2 =9 points.

For k = 6 we get x = 6 and therefore there are 6 African and 15 European
teams. In this case the best African team has at most 5+ 6 = 11 points, which
happens if it wins over all other African teams and 6 European teams (the
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other African teams lost their games against all European teams). Finally, the
answer is 11.

8.3. a) Yes. Here is an example:

1 0 1 1
1 -1 -1 -1
1 -1 1 O
1 -1 1 -1

b) No. We have 11 possibilities for these sums: 0,+1,£2 £3,+4 u *5.
Denote by a; the sum of the numbers in the i-th row and by b; — the sum of
the numbers in the j-th column. Obviously

a1 +ag +ag + ag + as = by + by + b3 + by + bs,

which shows that the number of odd sums a; and the number of odd sums b;
are of the same parity. Therefore all odd sums must be achieved.

Without loss of generality we may assume that b; = 5 and then none of
a; equals —5. Thus, we may suppose that by = —5. At least one of the sums
equals 4 or —4 and suppose it is 4. This is possible only if there is a column
with four 1’s and one 0. Let b3 = 4 and the zero is in the last row. Therefore
a; # —3 for every 1 and we may assume that by = —3. Then in the fourth
column we have at least three -1’s. If they are in the first four rows we may
assume that they are in the first three rows. So ay, a9, a3 is a permutation of
—1,0,1. Therefore bs # 3 and since as # 3, it follows that a4 = 3, i.e., there
are 1’s in the last two cells of the fourth row. Since by = —3, the number in
the last cell of the fourth column is —1. Now every possibility for the number
in the 5-th row and 5-th column leads to a contradiction.

[t remains to consider the case when there are at most two —1’s in the first
four cells of the fourth column. We may assume that the numbers in the fourth
column are consequently —1, —1, 0, 0 and —1. Since the sum of the first four
numbers of the rows equal 0, 0, 1, 1 and —1 we have that none of the rows
equals 3 and therefore bs = 3. We must use different numbers for rows 1 and 2
and for rows 3 and 4, so we may have at most three 1’s. Hence we may assume
that the numbers in the fifth column are 1,0, 1,0, 1 and thena; = a4 =1, a
contradiction.

9.1. a) If a = 0, then x = —y and hence 222 = 2. It follows that (z,y) =
(1,-1) or (z,y) = (—1,1).

b) We know from a) that a = 0 is one of the desired numbers. Let a # 0.
Setting x +y = p, zy = ¢, we have p = aq and p? — 2¢ = a® + 2. Then

a?+2 a®+2

a%q?—2¢—a®—2 = 0 and hence (p,q) = (—a,—1) or (p,q) = , —5 )
Note that these pairs of numbers are different. The first case %c +y il —a,
ry = —1 leads to the quadratic equation 22 +az— 1 = 0 which has two distinct

real roots z; and zp. It follows that (x,y) = (21,22) and (z,y) = (z2,2;) are
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solution of the given system. Thus we have to find all a for which the second
case is impossible.This means that the discriminant of the quadratic equation

242 242
ALt P _; = 0 is negative, i.e., a € (—v?2,v2)\ {0}. So the answer

a a
to b) is a € (—v2, V2).

9.2. We may assume that AC < BC. Since 4 ACI and 4 AMI are acute,
then AACT = AAMI.

Hence AC = AM and 4 AIC =4 AIM, i.e. C

J CIM =360°—2 J AIC = 180°— J ABC.

Note that 4 ABC is maximal if BC is tan-
gent to the circle with center A and radius AM. A M B

Then ¢ ACB = 90°, 4 ABC = 30°, and hence the least possible value of
J CIM is 150°.

9.3. Note that kP~! = O(mod p) if p divides k and kP~! = 1(mod p) other-
wise (by Fermat’s little theorem). Then

0=1P"1 4 2771 ... 4 200471 = 0. [-2—01-)05-] +1 (2004 — [-2%?-4}) (mod p),

which implies
2004 = [2(;04J (mod p) (1)

(in particular, p < 2004). Let 2004 = ¢p + r, where 0 < r < p— 1. Then

2004
[TJ = [q + %J = ¢ and (1) is equivalent to r = g(mod p).
For ¢ < p, this congruence gives r = ¢. Then

2004 = (p+1)g < p?—1

and therefore p > 47. Since p + 1 divides 2004 = 3.4.167, we get
p = 2003 which is a solution of the problem.

For g > p, we have that 2004 > pg > p?, i.e., p < 43. A direct verification
of (1) shows that p = 17 is the only solution in this case.

10.1. a) Using Vieta’s formulas we get 24z z9 +22 = (21 4+29)2—zy20 =
4. Hence |23 — 23] < 4 < |z — x| < 1. Let D = 16 — 3a? be the
the discriminant of f(z). Then D > 0 and |z; — 2| = vV D.It follows that

0< 16 — 3a? < 1, and therefore a € l:—% — 5] U l:\/g, %@}
b) If D = 16 — 3a% < 0, i.e. a € (—oo,—é-;/_—3 U [i oo), then

f(z) > 0 for every z. If D > 0, then |z; — 23] < 1 (since otherwise there is an
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4v3 4v/3
integer x € (x1,x2), i.e., f(z) < 0). Hence a € ——-3£,—\/5 U [\/5, —;/_—-}
and we have to find all a from these intervals such that f(x) > 0 for every
integer x.

a
If f(z) < O for some integer z, then the distance between x and 5 Is at

1 3 2vV3 _a V5 3_2V/3_a 5

—. S — —— L = —1 - —_—— >
mostQSmce 2< 5 S35 S 2< or2>3__2__2>1,
we conclude that x = £1 and by the inequalities f(—1) > 0 and f(1) > 0

43 —1-/13 1+ /13 43
3’ 2 Y 2 7 3

we get a € [— } . In conclusion, the desired

values of a are

ac€ (—oo,-_—l——;—@:l U [1+2\/T§,+oo).

10.2. It is easy to see that if the points A,
I, J and C are colinear, then AB = AD and
BC = CD. Hence ABCD is a circumscribed
quadrilateral.

Suppose that the points A, I, J and
C are concyclic. Since 4 AIC >4 AIB or
4 AIC >4 AID, it follows that 4 AIC >
90°. Analogously 4 AJC > 90° and therefore
4 AIC+ ¢ AJC > 180°. It follows that the
points I and J are on the same side of the line

AC.
Let § = AI N CJ and let the lines Al and CJ meet the circumcircle of

ABCD at points P and @, respectively. Since P and Q are the midpoints of

the arcs BCD and BAD, respectively, it follows that PQ L BD.

On the other hand, 4 SJI =<4 CAI =< CQP, which implies that IJ||PQ.
Therefore IJ 1 BD, which means that the incircles of AABD and ABCD
are tangent to each other at a point T' € BD. Then

AD+BD—-AB BD+CD-BC
2 B 2

i.e. ABCD is a circumscribed quadrilateral.

Conversely, assume that ABCD is a circumscribed quadrilateral. Note that
if I € AC, then J € AC. Suppose that I ¢ AC. It follows from the equality
AB + CD = BC + AD that the incircles of AABD and ABCD are tangent
to each other at a point of BD. Hence IJ L BD = 1J||PQ =3 SJI =
J CQP =<4 CAI, and therefore ACJI is a cyclic quadrilateral.

10.3. See Problem 9.3.

DT = <= AB+ CD = BC+ AD,
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11.1. The equation is defined if

4ax > 0,4ax # 1,2 —3a > 0,2 — 3a # 1. (%)
Setting ¢t = logy,,(r — 3a) we get the equation ¢ + 512 = -g— with roots £, = 1
and to = }-
2 3a 1
If logge,(x —3a) = 1, then 2, = a2 ¢ # 1

1
If logg., (x — 3a) = 5 we obtain the equation 2 — 6azx + 9a® = 4azx with

roots 9 = 9a and x3 = a.
Hence we have to find all a for which exactly two of the numbers x; =
3a
1 —4a
equation. It is clear that a # 0. We shall consider two cases.
1. Let @ > 0. Then 3 — 3a = —2a < 0, which implies that x; and xq

1
(a # 1) xo2 = 9a and r3 = a are different solutions of the given

. . a . .
have to be the solutions. Since x; = satisfies (), it follows that 4ax; =
a

1 —
1242 1242 3a
0 = —3a = — dz —3a =
154a> , 4axy 1_4(17&1,301 3(11 1—4a1 3a > 0 and z; — 3a
7 _a4a — 3a # 1. This implies that a < 1 and a # 5 [t is easy to check that

if a # 5 then x1 # x2 and xzg satisfies (x). So the desired numbers a in this

case aré
a€ 01 U L1
"6 6'4)"

2. Let a < 0. Then 29 —3a = 6a < 0, which implies that x; and x3 have to
3a

1 —4a
1
first case that a # 5 Now it is easy to check that x; # r3 and 3 satisfies

(x). Thus )
a€ (—oo,—%) U (—%,0) :

Combining both cases, it follows that the answer of the problem is

e (m)o(390 () ()

11.2. Denote by H the orthocenter of AABC, and by G the centroid of
A A B1C). Let O1 be the midpoint of the segment OH. It is well-known that O
is the circumcenter of AA; B;C;, and H is its incenter. Then H,G; = 2G 0.

1
Note that the dilation with center G; and ratio —5 maps AA B C) into

AAyByCs formed by the midpoints of the segment B;C;, A;1C; and A, B;.
Hence the image of H under this dilation is the incenter I of A Ay ByCsy. Since

be the two solutions. Since z; = again satisfies (x), we find as in the
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G| is the centroid of AOH H,, it follows that I, is the midpoint of the segment
OH,.

11.3. Consider the more general problem for n + 1 numbers instead of 100
and denote by pg 41 the probability that a,, be equal to 1. If 1 is not the last
number of a permutation of the positive integers 1,2,...,n+ 1, then a,, = 1
with probability pr, (we assume that p,n» = 0). Otherwise, a,, = 1 only if 2
and 3 are among the first k numbers of the permutation. Then

n 1 k k-1

Pkn+t = n+1pk’"+n+1';’;'n—1
and hence
n
(n+ Dpkner = (5 + Dprjr — pr;)
j=k
- 1 k(n+1—k)
=k(k-1 — = :
( )Z;NJ—D n
]_
— 1
It follows that pr, = %E—Z——-I]c_—; and therefore pg 100 = 1 for k = 45 and k = 55.

12.1. The equation of a common tangent line to the graphs of f(z) and
g(x) at points (zy, f(x;)) and (xq, g(x2)) has the form

y = fz1) + (1)@ — 21) = g(z2) + ¢'(22)(z — x2).

Hence f'(z1) = ¢'(xz2) and f(x1) — f'(z1)z1 = g(x2) — ¢'(x2)xa. Since
f'(z) = 22—2a and ¢'(x) = —2x, we get that 1 +x3 = a and x}+23 = 1. Then
a?—1

iy
22 —az 4+ 2 5 = 0. Since the graphs of f(z) = 22 —2ax and g(z) = —z?—1
have two common tangent lines, it follows that they are disjoint, £; # z9,

1Ly = and hence x; and xy are the roots of the quadratic equation
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a? < 2, and the tangent points are M(zxy, f(x1)), N(x2, f(z2)), P(xq, g(22))
and Q(x1,9(x1)). Then

PQ* = (z1—z2)" +(g9(z:1) — g(22))?
= (mf + x3 —2m1x2)2(1 +x; +x2) =(2— ag)(l + a?),

MQ = |f(z1) — g(z1)| = Imf—anl +xf+1| —92 g2

and similarly
MN? = (2—a*)(1 +a?), NP =2-d%

Hence M N PQ is a parallelogram with perimeter
2(v/(2 —a?)(1 + a2) +2—a?) = 6.

2
Then /(2 —a?)(1 + a?) = 1 +a? and we get that a = :i:\/T_.

12.2. The perpendicular bisector of the segment AB and the bisector of

J ACB meet at the midpoint D of the arc AB of the circumcircle of AABC
which does not contain C.

B N

I

|

'

'

'
D

Next we use the standard notation for the elements of AABC. Since AM =
BN = CP = CQ = p — ¢, the condition of the problem is equivalent to the
equality DM = DP. The Cosine theorem gives

DP? = DC? + CP? —2DC.CP cos

b2

?

DM? = DA% + AM? + 2DA. AM cos %
Subtracting these equalities, we get

(1) DC—-DA=2(p— ¢ cos%.
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b)DA
On the other hand, we have DC = (_ai_)_lz_ by the Ptolemy’s theorem.

c
a+b v 1

. N i i @l _ -
20052 ow (1) implies that cos 5= 5

Since DA =

Le. v = 90°.
Remark. The solution above shows that the points M, N, P and Q are
concyclic if and only if AC = BC or 4 ACB = 90°.

12.3. See Problem 11.3.

—, we gel DC =
2 cos %
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53. Bulgarian Mathematical Olympiad
Regional Round

9.1. Squaring the equation
(1) Vv(4a? —4a—1)x2 —2ax +1=1—ax — 2*

gives 1he equation
2%(x% 4+ 2ax —3a® +4a—1) =0

with roots £y = 0, xr9 = 1 —3a and 3 = a — 1. [t is clear that z; = 0 is a
root of (1) for any a. On the other hand, zo = 1 — 3a is a root of (1) if its
right-hand side is non-negative, i.e., if

1—a(l—3a)—(1-3a)?>0 < 5a—6a2>0 < ac [0,%}.

Analogously, 3 = a is a root of (1) for a € [0, g-J . Two cases are possible.

Case 1. Some of the numbers x, r9 and z3 are equal. This implies that

1
a= % o) or 1. It follows from above that a = 3 and a = 3 are solutions of the
problem.

Case 2. The numbers x;, x9 and x3 are pairwise different. Then il is easy

10 see that a € ( }\{1}

1 1 5 3
So, the desired valuesof a are a= -, a= - and a € \ {1}.
3 2 6'2
9.2. Denote by M the midpoint of AB. I
follows that 22 — A4 pyen AaMA
o _AE M MAn AA1 ¢
1 Lo, A4
?/IBBIM and hence B BIM’ € Zor
Mgl' Moreover, XAA M = XBMB; and A,
therelfore B,
{AIMBl = 180° — {AMAI — {BMBI A M B
= 180° — xAMA; — XAAM
= XA AM.

Thus AAMA; ~ AMB;A, which implies that YAA M = xMAB;.
Since ABB{M ~ AAMA; ~ AM B A, i\ follows that ¥xBBiM = XM B A,.
Hence M is the intersection point of the bisectors of ¢ AA1B; and 4 BB A;.

9.3. To prove the right inequality, it is enough 1o use thatl the denominators
are greatler than 1. Hence

a b

_ 1.
T 0e T 17ea T Tgap S0 H0+e
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To show the left inequalily, we may assume that a < b < c. Then

1 < 1 < 1
14+bc~ 14ca— 1+ab

Applying consecutively the Chebyshev inequalily, the Arithmetic mean — Har-
monic mean inequality and the well-known inequality (a + b + ¢)? > 3(ab +
bc + ca) we gel that

3a+b+c>(a+b+c)1+1+1
1+bc 1+ca 1+4+ab/ — 1+b 1+ca 1+ab

1 1 1 9 9 27
= + + > 2 3~ 10
l14bc 1+ca 14ab ™ 3+ab+bc+ca 3+(a+b+c) 10

3

9.4. It is clear that x and y have different parity. Then k = x—y is an odd
number and

(3k — 6)y® + (3k% + 10)y + k* + 10k — 1 = 0.
The discriminant of this equation is equal 1o
D = —3k* + 24k3 — 60k? + 252k + 76

and must be a perfect square. Since D = —k?(k? — 24k + 60) + 252k + 76,
then D < 0 for k < —1. On the other hand, D = 3k3(8 — k) +2(38 — k?) +
2k(126 — 29k) and therefore D < 0 for k > 8. Since D = -7l <0 for k=17, it
remains to check the cases k = 1,3,5. We have D = 289 = 172, D = 697 and
D = 961 = 312, respectively, that give the solutions x = 6,y = 5 and = = 2,
y= -3

9.5. We shall show that the desired value is equal to 4.

Let (%,7) be the unit square in the i-th row and the j-th column of a
4 x 4 square. It is easy 1o check that if the squares (1,1), (1,2), (2,1), (2,3),
(3,2),(3,4),(4,3),(4,4) are white and the other - black, then the condition of
the problem is satisfied.

To prove that for n > 5 there is no a coloring with the required properties
it is enough to deal only with the case n = 5 (any n X n square contains a 5 x 5
square). Consider an arbitrary black-white coloring of a 5 x 5 square. Al least
13 of the unit squares have the same coloring, for example, black. Three cases
are possible.

Case 1. One of the rows, say [, contains only black squares. Then one of the
other rows contains at least 2 black squares. Hence the corners of the rectangle
with two vertices at these squares and the other two in [ are black.

Case 2. One of the rows, say [, contains exactly 4 black squares. Then one
of the other rows contains at least 3 black squares. Then at least two of them
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do not correspond 1o the white square in [. Hence the corners of the rectangle
with two vertices at these squares and the other two in [ are black.

Case 3. Any row contains al mosl 3 black squares. Then atl least 3 rows
contain exactly 3 black squares, say the rows 1,2,3 from above. We call a
column black (white) if its upper square is black (white). There are exactly 3
black columns. If a row contains 2 black squares that lie in black columns, then
obviously there is a rectangle with black corners. Otherwise, two of the black
squares in row 2 and iwo of the black squares in the two white columns are
black corners of a rectangle.

The solution is completed.

9.6. a) Lel x satisfies the equality [2]® + 2% = 23+ [z]*. Then setting t = [x]
and o = —t € [0, 1) one has that

- =(t+aP - (t+a)? <= afe?+3t—1a+3t>—2t)=0.

Hence either o = 0, or « is a root of the equation in the brackets. In the second
case the discriminant (3t + 1)(1 —t) of this equation must be non-negative.
Since t is an integer, it follows that t = 0 or ¢ = 1. Then either « =0, o =1
or a = —1. Now «a € [0,1) implies that o = 0, i.e., x is an inleger.

b) The degree of the polynomial y3—y?—1is odd. Hence this polynomial has
areal zero a. Obviously, « is not an integer (in fact, « is unique and o € (1,2)).
Then [®] = [a? + 1] = [a?] + 1 and hence [¢®] — [¢?] = 1 = a3 — a2,

10.1. The inequalily makes sense for x € (—oo, —ﬁ} U [?

5 , -l—oo) Al

: 6
x in the second interval are solutions of the inequalily. Lel x € (—oo, —% :

Then the inequality is equivalent to

V(2 —1)(222 -3)>2 = 2x?—522 — 1> 0.

5+\/§§)

Solving the last inequalily gives x € | —o0, — 5

So, the solutions of the given inequalily are

10.2. We shall use the standard notation for the elements of AABC.
a) The Cosine theorem for AAM B gives

AM? + BM? — AB?

cos YAM B = 95AM.MB
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2S5

This together with the equalily sin XAMB = SAM MEB and the median for-

mula implies that

2 2 _ 2 2 2 _ 5,2
wor xAM B~ SAM? + BM? — AB?) _ a® 4B —5¢

45 128
b) It follows as above that
b? + ¢* — 502 c® + a® — 5b°
cotXBMC 55 , cotXCM 155
Hence
a? + b? 4 ¢

cot XAM B + cot XBMC 4+ cot XCMA = — 15

It remains 1o show that a® + b + ¢ > 45v/3. The Heron formula and the
Arithmetic mean- Geometric mean inequalily give

—a — - 3
ngp(p—a)(p—b)(p—C)SP(p +p3b+p c) -3

Therefore
p? (a+b+c)2<a2+b2+62

3V3  12v3 43

by the Rool mean square inequality.

5<

10.3. It follows by the given condition that m(m +j — 1) = j(j — 1) and
hence m? = (j —m)(3 —1). If p is a prime divisor of j —m and j — 1, then it
divides m. Therefore p divides j and 1. This contradiction shows that j — m
and j — 1 are coprime. Then j —m = u? and j — 1 = v?, where u and v are
non-negative integers. It follows that uv = m and u?+uv = j =v?+1, and the
condition 1 < j < 2004 gives 0 < v < 44. So, we have 10 solve in non-negative
integers the equation

(%) u? +uv=v?+ 1.

If v =0, then v = 1. Assume that the pair (ug;v0) is a solution of (x)
and vg > 1. Then ug > 1. Since ugvg > 1, it follows that ug < vy. Moreover,
it is clear that vg < 2ug. Set v; = vg — ug, 0 < v; < vg. We have that ug =
vo(vo—uo)+1 = (uo+v )1 +1 = uovl—l—vf-l—l. Set u; = ug—v; = 2ug—vg > 0.
Then

(uy +vl)2 = (u1 + vy vy +0f 4+ 1 uf +uvy = vf + 1,
i.e., we obtlain a new solution of (x). If vy = 0, then u; = 1. If v; > 1, then

up > 1. Selling vo = v; —u; < vy and ug = u; — vy, we gel in the same way a
new solution. So, we gel a sequence of non-negative integers vg > v; > ---. If
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vk = 0 for some k, then ux = 1 and wriling ug_1,vk—1,. .., ug, vy, we gel the
Fibonacci sequence.

Thus solutions of (x) are (u;v) = (1,0), (1;1), (2;3), (5;8), (13;21), and
for the other solutions we have that v > 44. The first solution of (x) gives
j=v*+1=0%2+1=1and then m = v = 0, which does not satisfy the
given condition. The other solutions give the following solutions of the problem:
§j=1241=2,7=324+1=10,j=824+1=65and j =212 + 1 = 449,

10.4. a) It follows by a direct verification.
6) Writing the equation in the form
(z +a)((a®* +4a +2)z? + (1 —a)z 4+ a) = 0, (3)

we gel thal a < 0. Moreover, the quadratic polynomial in (3) must have two
distinct real zeros, i.e. D = (1—a)?—4a(a®+4a+2) > 0 < (a+1)(—4a*—
1la + 1) > 0. Solving this inequalily and having in mind that a < 0, we get

that
—11 — /137
a€ (—oo, 3 3 ) u(—1,0). (4)
The roots of the quadratic polynomial in (1) are positive if and only if
a l—a
——— > 0and ~————— : —2 —v2,-2 2) and
a2+4a+2> an a2+4a+2>0Thena€( V2,—2 +V?2) an
using (4), we obtain that
11 =
a€ (—2—\/5, 2 137) u(—l,—2+\/§). (5)

It remains 1o see when —a is a zero of the quadratic polynomial in (3). We
have that

(a®> +4a+2)(—a)* + (1 —a)(—a) +a =0 < a?(a® +4a+3) =0,

and hence a = —3,—1,0. So, the answer of the problem is
—11 -1
ae (—2—\/5,—3)u (—3, - 37) u(—l,—2+\/§).
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10.5. Set ¢ = OA, b = OB, & = OC. We
have that OM = %(d‘ + b) and hence ¢
1 )
OC = £(3a +5+20) Y
A M B

— 1 .
On the other hand, CM = 5((’1‘ +b—2¢). Then

0 = OG.CM = (3a+b+28)(@+b-2¢)
— 3R? 4 3db — 6ac + ab + R® — 2b¢ + 2ac + 2b¢ — 4R*
and therefore 0 = 4a(b — &). Hence OALBC, i.e. AB = AC.

10.6. Denote by V and E the sets of the vertices and the edges of G,
respectively. For any vertex x € V, let I'(z) be the set of the edges of G, which
are adjacent 1o x and let d(z) = |I'(z)|. Then for x,y € V one has that

ID(z) NT(y)| = [T(z)| + IT@)| = [T(z) U T (¥)] 2 d(z) + d(y) — [V|.
Summing up these inequalities for all the edges (x,y) € E, we getl that

3G) = Y IN@)NT@I> ) (dz)+d) - V]|E|

(z,y)eE (z,y)EE

= S (@) [VIIE]

zeV

(here t(G) is the number of the triangles in G). Hence

2
34(G) > (Zd(m) _VLIE| = 4:5: _VIIE|

xzeV

In our case we have that |V| = 10 and |E| = 26. Therefore t(G) > % and
hence t(G) > 4.
11.1. The numbers form a geometric progression if and only if
23inx.2005x — (2 . 25inx+cosx)2.
This is equivalent 1o 45in®+c0s& _ 5 gsina+cosz | 4 — (), Selting y = 28ine+cosz
gives y? —5y +4 =0, i.e., y=4 or yg = 1.
If 2sin@+cosz — 4 {hen sinx + cosz = 2, i.e., sin (x + %) = /2, which is

impossible.
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If gsin@+cosz — 1 then sinx + cosz = 0, i.e., sin (x+ %) = 0. Hence

xr = —% + km, where k is an integer. Since z € (—m, m), we get finally that
r=—=andz= 37
4 4°

11.2. The Sine theorem for AAMC and ABMC gives
AM  sinxACM BM _ sin(y— YACM)

CcCM sinae ' CM sin 3
Since AM = BM, we gel that S %:ACM = sinfy — XACM) and therefore
sin o sin 3
sin o sin 7y
A = .
(1) tan XACM sin 3 + sin o cos y C
The Sine theorem for AADC and ABDC
implies that
AD  sin(y— ¥BCD)
CD sin(fa +7) ' A Y B
BD  sin¥BCD
CD — sin(B+7)
Then the equality AD = BD shows that D
sin(y — ¥xBCD) sin¥BCD .
sin 3 TP
@) tan XBCD — sin o sin 7y

sin 3 + sin acosy

It follows by (1) and (2) that tan XACM = tan ¥BCD. Since these angles
are acute, they are equal.

11.3. Consider a group with maximal number of people such that any two
of them are not familiar. It is clear that if there are [ people in this group, then
[ < m — 1. Moreover, the maximality of [ implies that any of the other N —{
people is familiar 1o al least one of the [ people in the group. Hence some of

these [ people is familiar to at least people. Since

NoUN Nt
l l m—1 m—1

there is a person who is familiar to n people.

Let N =mn —n = (m — 1)n and consider m — 1 groups by n people such
that any two people from one group are familiar and there are no familiar
people from different groups. Then among any m people there are two from
one and the same group, i.e. they are familiar. On the other hand, any of the
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people is familiar 1o n — 1 of the other and hence the statement is not true if
N<mn—n+1

11.4. Since the isosceles triangles ABD and CBFE are similar, we have

%g _ %_ Using that XABC = XDBE, we gel that AABC ~ ADBE and

%g = 2 cosp, where ¢ = XABD. Hence YACB = xDEB = 7.

Then
1
Sice = §AC.CE. sin(p + ) C

1 a .

= §b~200590-sm(g0+”y) E

and \
1 , /
Seppc = §CB.DE. sin(¢ + ) A B
= 1a- b -sin(yp + v)
27 2cosgp LA

Hence Sace = Sgppc, which implies the statement of the problem.

11.5. We consider 1wo cases.

Case 1. Let (a,b) = (a,¢) = 1. Then (a, bc) = 1 and hence there are integers
u and v such that ua + vbe = 1. This means that a divides —vbe+ 1. If k> 1
is a posilive integer such that a divides —v — k, then a divides kbc + 1, i.e.
kbc + 1 = at. Hence setting x = 2¢, y = 2*¢ and z = 2*® we have that

yb 4 2¢ = okbe 4+ gkbe _ ogkbetl _ (Qt)a iy

Case 2. Let (¢,a) = (¢,b) = 1. Then (¢,ab) = 1 and as above we find a
positlive integer k such thatl ¢ divides kab + 1, i.e., kab + 1 = ct. Hence selling
2 =2(2% — 1)k 4 = (2% — 1)k@ and z = (2% — 1) one has that

% — ,yb — 2a(2a _ 1)kab _ (2a . 1)kab — (2a . 1)kab+1 — ¢

11.6. a) Al each step the triangle from which we choose a point, is divided
into three new {riangles, i.e. the numbers of the triangles increases by two.
Hence at the n-th step we have 2n + 1 triangles.

b) We shall prove by induction on n that removing any triangle then there
is a pairing of the remaining triangles such that the triangles in any pair have
a common side.

The statement is trivial for n = 1. Assume that it is true for n = k. We
shall prove it for n = k+1. Let a point O in AMNP is added at the (k+1)-th
step. Remove any AXY Z. If it is some of AOMN, AOMP or AONP (we
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may assume AOMN), we consider the configuration obtained by removing
AMN P at the k-th step.

By the induction hypothesis, the remaining triangles can be paired in such
a way thal the triangles in any pair have a common side. Adding the pair
(AOM P, AON P) we oblain the desired pairing.

If AXY Z does not coincide with AOMN, AOMP and AONP, we con-
sider the configuration obtained by removing AXY Z at the k-th step. Assume
that AM N P is paired with AQM N. Then replacing the pair (AMNP, AQM N)
with the pairs (AOM N, AQM N) and (AOM P, AOPN) completes the induc-
tion.

Since the area of AABC equals 1, then the minimal area of a triangle does

. Remove a triangle of minimal area. Then as we proved

nol exceed
2n +

above the remaining triangles can be paired such that the triangles in any pair
have a common side. Since the number of the pairs is equal 10 n, there is a
“me 2
n C2n+4+ 1

12.1. It is easy 10 see that a, ¢ > 0. Since 3¢ is congruent 1o 1 or 3 modulo
8,then 0<a<2 Ifa=0o0ra=1, then 2 divides 3¢ or 8 divides 3¢ + 1, a
coniradictlion.

Let a = 2, i.e., 8% — 3¢ = 279. The cases ¢ = 0, 1 are impossible and hence
¢ > 2. Then 3 divides b and selling b = 3d gives 8d? — 3°2 = 31. If ¢ > 3,
then 3 divides d% + 1, a contradiction. Therefore c=2 and d = £2, i.e. a = 2,
b= +6 and c= 2.

pair of total area at least

12.2. Since the denominator of the function is positive, the given condition
means that axr — 1 < 2% — 22 + 1 for any z, and that the equalily is attained
for some x.

Let @ > 0. Then ax < 0 for < 0 and hence a is the minimum of the

4 _ .2 9 9 1
function g(x) = x—ijL—Q for z > 0. Since ¢'(z) = (327 + )(a;;t DI )’

it follows that this minimum is equal 1o g(1) = 2. The case a < 0 can be
reduced 10 the previous one replacing a by —a and x by —z. So a = 2.

12.3. Lel a plane 7 bisect the volume of ABCD and meet the edges AA?,
BC, CD and DA atl points M, Q, N and P, respectlively. Set x = A

BM’
yz%%,z:-g—gandt:%. If T =710 AC (we assume T = oo if 7||AC),
then the Menelaus theorem impli thtE—AT—z i Yy = 2t

n orem implies tha t_CT_y’l'e" y = zt.
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On the other hand,
1 Vamgene _ Vamqer + Vocnp  Samqc AP n Sqcn DP

2 VaBcp VaBcD ~ Sapc AD ' Spcp AD
(1_ BM BQ) AP, CN CQ DP

B AB BC/AD CD CB AD

(1_ 1 ) z n yt ’
A+z)(1+t)/1+2z  (Q+y) (1 +t)(1+2)

and hence
(1) 2z(1+y)(z+t+at)+2yt(l+z)=1+2)(1+y)(1+2)(1+1).

Let now the plane from the condition of the problem meet the edge BC in
an interior point. Then it meetls the edge AD. Since x = y and zy = 2¢, then
(1) easily implies that (z — 1)(t? + t(x + 1)2 + 2%) = 0. But z # 1 and the
second faclor is positive. Hence this case is impossible.

Thus the given plane meets the edges AC and BD. Replacing C by D and D
by C, we get zy = 1 = 2t and the inequality still holds. Then (z—1)(t*—1) = 0,
i.e. t = 2 = 1, which completes the solution.

12.4. If the perpendicular bisector of CD
meets BD at point O, then D

JCOD = 180°—2 J0ODC
— 180° —2 4 BAC E C
= JACB=4 ADO

E CcO
and therefore AD||CO. Hence O— =

OF +3 3 92—5 )
hs , which implies that OF = 5 This

shows that O is the midpoint of BD and then
J BCD = 90°.

12.5. a) Let a1 < - < ap—1 < ap = 2000 < apyy < -+ < @ be the
elements of a "good” set. Since a;y; > 2a;, then 2 000 000 > a,, > 2™ "2000
and hence m —n < 9.

On the other hand, the equality 2000 = 2453 shows that a; = 2k5% for
t<n—1, where 0 < k; <kjy1 <4,0<; <liy1 <3 and k; + [; < 6. Hence
n < 8 and so A has al most 8+ 9 = 17 elements. An example of a "good” set of
17 elements is obtained by setting a; = 2071, 1 <i < 5,a; = 2455, 6 < i < 8,
a; = 207453 9 < < 17.

b) For a "good” set of maximal cardinalily one has that m = 17 and n = 8,
i.e. ag = 2000. Moreover, k; +1; =i—1for 1 <4 <7, which shows that a; = 1
and that the subset {ag,...,a7} is determined by the numbers 1 < i; < iy <
?:3 < 7 such that lz'1 = 0, li1+1 = 1, liz = 1, li2+1 = 2, lia =2 and li3+1 =3.

B
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7
There are (3) = 35 possibilities for this subset. Since 2% < 28.3 < 1000 <

210 it follows that either a; = 2¢7452 for 9 < i < 17, or there is an index Js
9< j < 17suchthat a; = 207453 for 8 < i < jand a; = 273533 for j < < 17.
Hence there are 10 possibilities for the subset {ag,...,a17}. So, the number of
the the "good” sels of maximal cardinalily equals 35.10 = 350.

12.6. Set R(z) = P(x)P(x + 1)... P(x + 2003). It follows by the given

condition that if x is greater than the largest real rootl of P(x), then

Qz)  Q(z+1)
(1) R(z) R(z+1)

Qx) _ Qz+n)
R(x)  R(x+n)

is either a finite number, independent of z, or oo.

We get by induction that for any positive integer n.

. Qx+n)
Note that nlergo Rz 1 n)

On the other hand, this limitl is equal to %Ez; Hence Q(x) = cR(z) for any

x, where ¢ # 0 is a constant.
Conversely, it is clear that if Q(x) = cP(z)P(z + 1)... P(x +2003), then
the condition of the problem is satisfied.

Remark. Gelling equality (1), the solution can be completed by comparing
the coeflicient of the respective polynomials.
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53. Bulgarian Mathematical Olympiad
National Round

1. Let O be the circumcenter of AABC. Suppose that O coincides with
the circumcenter of AA2ByCs.

C A,
B2
C
] B
A O
A B
G,

Then 4 Co0By = 2 4 CoAgBy = 2(180°— ¢ BIC) =4 B+ 4 C. Conse-

quently,

A
%(180°— J CLOBy) = i?.. =3 JAC.

Thus OBy 1L AC, i.e. OBj is the perpendicular bisector of AC. Then the points
A, Ay, C, and C lie on a circle with center By. Il follows that 4 A;C\I =

C B
J AAC = %14— and 4 C1 A I = —<I—— Analogously 4 B1 Al = -<I—2— Hence

2

J 0BGy =

JA+ 4B+ 4 C
2
ie., Ci1I L A;B;. Analogously BiI L AC; and A, I L BiC,, ie., I is the

‘orthocenter of AA;B,C;.
Conversely, let I be the orthocenter of AA;BC. Then 4 B1A;C) =

180°— 4 B, ICy = <I B —<—I—- Consequently g A,C1I =90°— 4 B1A;,C; =

— 90°,

%: ICi A+ %: Ci1A B, =

A
—<—I—2——. Then the quadrllateral AA,CiC is cyclic and therefore By lies on the

perpendicular bisector of AC.
Let O be the circumcenter of AABC. Since O lies on the perpendicular

A
bisector of AC we conclude that 4 OBoCy =4 CAI = —<)—2—— Analogously,

4 OCyBy =4 BAI = %14— and therefore OBy = OCs.
We prove in the same way that OAq = OC; and therefore O is the circum-
center of AAyByCs.
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1 1
a)SetSn=1+§+ -I——Wehavethath—Q,Sr{_?'ﬁ‘%l

6 g Ll 1. 1 1 1 1 1 1 1 1
R Tt e T T Tt T Ty T T T

1,11 1 1 30 51 _ 3
9 12 15 18 '21 b ' 140 d°
where (a,b) = (¢,d) = 1. It is easy 1o see that a = b (mod 3). Hence 3 { ¢, d,

¢ # d (mod 3), pe2 = 3phy and 3 /[ph,. Similarly, we have thal Sg; — Spq =

90
_f_e + 2, where 31 f. It follows thatl 31 pg7, ge7-
k
6) Set S, = 3m:ln’ where 31 ky,l,. Then
S 1 1 1 1
S. = P14,
3n 3+ +2+4+5+ ++3n_2+3n_1
B ky, L3 an _ kpb, + 3mnt2l an
- 3matl], by, - 3mat+1l b, !

where 3 ¢ by,. Therefore, if m, > —1, then m3, = m, + 1. Analogously, we have

that mgn 0 = mp + 1 for my > —1 and mgpy; = my + 1 for my, > 0. Since
my = 0, mg = my = mgg = —1 and mgy = 0, it is easy to see thatl the answer
isn=27,22.

3. Consider a graph G with n vertices corresponding to the tourists and
two vertices connecled when they are familiar.

The first condition of the problem means that there is no triangle in G.

The second condition of the problem means that there is a cycle of odd
length in the graph. Indeed, if all cycles are of even lengtlh, then the vertices
can be partitioned into itwo groups such that there is no edge in any of them.

Let Ay, Ag,..., A} be a cycle with minimal odd length in G. Since there
is no a triangle in G, and because of minimality, it follows thal every vertex
outside this cycle is connected with at most 1two vertices from the cycle. Hence
the number of edges of the form (X, A4;), X # A;, j = 1,2,...,k does not
exceed 2(n — k). Denote by d(A;) the degree of the vertex A; and sel § =

k

1r<nzléllc d(A;). Obviously ;d(Ai) = |E*| + 2k, where E* is the set of edges
X A;. We have that

k
2n—k) > |E*| =) d(A;) — 2k > kb — 2k.

2n
Hence 6 < " and k > 5 implies that 6 < 2?”'

4. The answer is no.
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We shall prove that applying any of the given changes the number of a’s
in odd (even) positions does not change its parity. Indeed, let the replacement
aba — b be applied Lo the word w;abaws. In the new word wybwy all a’s in
w; do not change their positions and all a’s in wy shift by two position to the
left. Hence such a’s keep the parily of their positions. Deleting both a’s in aba
decreases the number of a’s in odd (even) positions by two.

Analogously, the same is {rue by applying the operation bba — a 10 the
word wybbaws.

Since the replacements a — aba and a — bba are converse 10 the above,
they have the same property.

[t remains to observe that the number of a’s in even positions in the words
bga...a and ga...ab is 1002 and 1001, respectively.

\-\,—/ \-\,—/

2003 2003

5. The answer is 1, 7 or 49.

Suppose first that ad # be. The set of points (ax + by, cx + dy), z,y €
(0, 1), coincides with the interior of the parallelogram with vertices A = (0, 0),
B =(a,c), C = (b,d) and D = (a+b,c+ d). Its area S equals |ad — bc|. The

. m .
Pick formula implies that S = n + 5~ 1, where n (respectively m ) denotes

the number of lattice points (i.e., with integer coordinates) in the interior
(respectively on the boundary) of the parallelogram. Set e = (a,¢), f = (b, d),
a=ea,c=ec, b= fb and d = fd;. The interior points of the side AB
have coordinates (ax,cz), € (0,1). Thus the number of such lattice points is
e — 1. Analogously, the number of the interior lattlice points on BD, C'D and

AC equals f — 1, e— 1 and f — 1, respectively. Consequently %1- = e+ f and
the first condition of the problem can be written as

(1) eflayd; —byer| = 2003 + e+ f.

Since e = (a,¢) = 6, it follows that f divides 2009 = 72.41 and 6f divides
2009 + f. This is possible only for f = 1,7,49. For each of these values of f
the numbers e = 6, a; = 1 + @55}_4-1, by = ¢1 = d; = 1 satisfy (1) and hence
(b,d) =1,7 or 49.

Suppose now that ad = be. It is easy 10 see thal a; = b; and ¢; = d;. For

1 ze < l Then ax + by = a; and cx + dy = ¢; are

1
x € (0,—) sel y =
e
integers, and ex + fy = 1. It follows that in this case there are infinitely many
pairs (z,y) satisfying (1), a contradiction.

6.a) Lett € {0,1,2,...,p—1}. Consider the remainders of t—a;, 1 <i <m
and b;, 1 < j < n, modulo p. Their number is m + n > p and hence two of
them are equal. Since the remainders of { —a; and t—aj, b; and by, respectively,
1 # j, are different, it follows that t—a, = by (mod p), i.e., a,+bs =t (mod p)
for some r and s. Since t is an arbitrary remainder modulo p, we conclude that
k=p.
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b) Let A = {a1,a2,...,am} and B = {by,bs,...,b,}. For any iwo sets X
and Y denote X +Y = {z +y (mod p)|x € X,y € Y}. We have 1o prove that
k=|A+ B| > m+n—1. To do this, we may assume that m < n and we shall
use induction on m.

For m = 1 and any n the statement is irue, since a; +b; # a; +b; (mod p)
fi#jand |y +B|=|Bj=n=1+n-1.

Suppose that the statement is true for any two sets X and Y such that
|X| <m, |X| <|Y|and |X|+|Y| < p. Let |A] =m > 1 and |B| = n, where
m < nand m+n < p. Then n < p and hence there exists ¢ € B. Take
different a;,ag € A. As the sequence c+t(ag—ay) (mod p),t=1,2,... p—1,
contains all remainders except ¢, then b = ¢ + t(aa — a;) € B for some t.
Let ¢ be the minimal number with this property. The set A’ = {b— a2} + A
contains the elements b —ag + a; and b —ag + ag = b. Note that b—ay + a0 =
c+ (t—1)(ag —a1) € B. Since |A" + B| = |{b — a2} + A + B}, it is enough 1o
prove that |A'+ B|>m +n— 1.

Set F = AANnBand G = AUB. Sinceb e F,b—aa+a; ¢ F and
b— ay +a; € A, then F' is a proper non-emptly subset of A’. So B is a
proper subsel of G. It follows that 0 < |F| < m < n < |G|. On the other
hand, m + n = |A'| + |B| = |A'n B| + |A’ U B| = |F| + |G|. Note also that
F+GcC A+ B (for f € Fandg € G, we may assume that g € A’ and
then f € F' C B implies that f + g € A’ + B). Thus |A'| + |B| > |F| + |G|
Then the inequalities 0 < |F| <m <n < |G|, |F| + |G| < p and the induction
hypotheses imply that the statement is true for the sets F' and G. Hence

|A+B|=|A"+B|>|F+G|>|F|+|G|—1=|A+|B|-1=m+n—1

which completes the induction.
Remark. This problem is known as the Cauchy-Davenport theorem.
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Team selection test for 20. BMO

1. There exists. Lel us take ag = 1, a; = 2004!apay ... a;—; — 1,7 > 1 and
A;={2,3,...,2004,a9,0a1,.-.,a:}, 1 > 0. Then

(HaEAi_l a— ach ag) — (HaeAi a = gea, ag) —1
= a%—l—(ai—l) H

acA;
= (a;—1)(a; +1—2004!aga; ...a;—1) = 0.

H a= Zagforn: Ha——ZaQ.

a€An a€A, a€ Ay acAg

Hence

2. The Arithmetic mean — Geometric mean inequalily (for any k = 2,3,
...,n implies that

11 1
kager = kagbf cf | ...ck_ < afby 4+ (k— 1)ep_y.
e

k-1 1imes

Summing up these inequalities and adding the equality ajc; = a1b; gives the
desired inequality.

3. Define an oriented graph G with vertices the elements of A and oriented
edge zy if f(x) =y. We have 1o count the graphs G such that:

— there are no cycles with length greater than 1;

— there is a chain ag...a, with length n — 2 and there is no chain with
length n — 1;

— the only edge outside this chain has the form aja;, where 3 < j < n;

— there is a unique loop anay.

The chain can be chosen in n! ways, and the edge outside il — in n—2 ways.
Note that the graphs for which this edge is a;ag, are counted {wo times and

hence their number is equal 1o (Z) (n — 2)!. So the answer of the problem is

nl(n —2) — (’;) (n—2)! = w”;_—f’)

4. Since the polygon A is convex, the sum of the projections of its sides
—_— —_—

on the line A;A;;; is 2p;. Consider the veclors A; Ag, AgAgz,..., ApA; and

—_—

their opposite vectors. Putl al the end of the vector A;As the vector forming

minimal positive angle with this vector {if these vectors are iwo we choose that
—_—

of the form A;A;41). Do the same with the new vector, etc.
In this way we get a convex polygon B = By By... By, wilth equal and
parallel opposite sides. Hence ils main diagonals have a common point, say O.
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Let g; be the length of the projection of B on the line B; B;1. Considering the
reclangle with sidelengths ¢; and dist(B;B;+1, BiynBitn+1), containing B, we
get that

| Bi Bi+1] < 4SAB1~B1~+1O

G Sp
So )
Zn: |A;A;41] _ Zn: |BiBit1] <4.
i1 P i1 &

The equalily is atlained if and only if B is a reclangle, i.e., A is a rectangle.

5. Considering the polynomials p(z) = ™ ! + 2™ 2 4+ ... + 2 + 1 and
g(z) = 2™ 14+ 2™ 2 +... 4+ x4 a, a # 1, shows that the desired minimal
numbers does not exceed 2m — 2 (one has that f(u,v) = (a — 1)(u™ 1 +
u™ 2 4.t u)+ (1—a)(v™ ! +0™ 2 4. .. 4 v)). We shall prove by induction
on m thal the number of the non-zero coefficient is at least 2m — 2.

If p(x) or ¢(z) contains a monomial which does not appear in the other
polynomial, then the non-zero coefficient in f(u,v) are at least 2m. So we
may assume that p(x) and ¢(z) contain the same monomials. Note also that
multiplying some of p(z) and g(z) by non-zero number does not change the
non-zero coefficient of f(u,v).

For m = 2 one has that p(z) = az™ + bz*, ¢(x) = cx™ + dz* and ad — be #
0. Then f(u,v) = (ad — be)u™v* + (bc — ad)u*v™ has exactly iwo non-zero
coefficients. Let m = 3 and let p(z) = z* + ax™ + bz’ q(x) = 2* + cx™ + dxt
and ad — be # 0. Then

flu,v) = (ad—be)utv* + (be— ad)ulv™ + (¢ — a)u*v™ + (a — c)u™v* +

+(d — byurv® + (b — d)ulo*.

The first two coefficients are non-zero. Since the equalities a = c and b = d do
notl hold simultaneously, then at least two of the last four coefficients are also
non-zero.

Let now m > 4 and let p(x) = p; (x) +ax™ +bz*, g(z) = q1(z) +cx™ +dzF,
ad—bc # 0 and any of the polynomials p; (z) and ¢ () has m—2 > 2 non-zero
coefficients. Then f(u,v) = fi(u,v) + fo(u,v) + f3(u,v), where

filv,v) = pr(v)a(v) — p1(v)qi(w),

folu,v) = (au™ + bu¥)g (v) + (cv™ + dv*)p1(u)
—(av™ + bv*)q (v) — (cu™ + du¥)p, (v),
f3(u,v) = (ad — be)u™* + (be — ad)u*v™,

and the different polynomials have no similar monomials. If p;(x) # ag(z),
then, by the induction hypothesis, f(u,v) has at least 2(m —2)—2=2m—6
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non-zero coefficients. Moreover, fa(u,v) has at leas two non-zero coefficients

and f3(u,v) has two non-zero coefficients.
If p1(z) = agi(x), o # 0, then

fo(u,v) = q1(v) [(a —ca)u”™ + (b — da)uk] +q1(u) [(ca —a)v" + (do — b)vk] .

Since the equalities a—ca = 0 and b—da = 0 do not holds simultaneously, the
polynomial fa(u,v) has at least 2m — 2 non-zero coeflicients (1wo times more
than these of ¢;(x)). Counting the 1wo non-zero coefficients of f3(u,v), we get
the desired results.

6. Let AB be a diameter of k. Since
XDHA = DCH = «a, XCHB =
XCDH = 3, «DMH = 2a, <CMH =
283 and XM DC = 90° — o — (3, the Sine
theorem for ADMO gives

rcos(a + f3)
cos(a —f3) °

where r is the radius of k; and O = MHN
CD. On the other hand, if MH Nk = P,
then

(1) MO =

{MAP:%]T([?):%(5174+573)=<):D0M=90°—a+ﬁ.

Applying the Sine theorem for AAPM we getl that 2r = M P = 2R cos(a—f3),
where R is the radius of k. The Sine theorem for ADMC implies that

r= MC = 2R cos(a + 3),

and hence 2 cos(a + ) = cos(a — ). Now (1) shows that O is the midpoint of

MH.
Conversely, it is easy 1o see that if O is the midpoint of M H, then H is

the midpoint of M P, i.e. AB is a diameter of k.

Alternative solution. Let AB be a diameter of k and M H meets k for (the)
second time al the point P. It is clear that MH = HP = r, where r is the
radius of k;. Consider the inversion with respect 1o the circle with center M
and radius r. Then P is the image of the midpoint T of M H. The image of k
is the line DC. Hence the image of P lieson DC, i.e. T € DC.

Considering the same inversion also implies easily the converse statement.

7. We may assume the set A; has maximal cardinalily. Denote A;NA;; =
Bi;,i=1,2,...,n. Since A, D B,_1 U B,, then

|An| > |Bp—1U Bp| = |Bn-1| + |Bnr| — |Bp-1 N By|

B n—2 n—2
1|An| + — 1|A1|—|Bn_1 N By

>
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Hence

n—2 1 n—3
: n—3 :

Ap_1 D CUBp_9 and

[An—1] 2 |Ba2UC| = |Bpg| +|C| = |Bn2NC]

n—2 n—3
|An—1| + |A1| — |Br—2N C|.
n—1 n—1
n—3 1 n—4 )
So IBn—2 ﬂCI > IA[I - —IAn_ll > |A1|, 1.€.
n—1 n—1 n—1
n—4
|[Ap—a N Ap_1 NA, N A > n_1|A1|.
We getl by induction that
n—k—2
IAn—k NAp g1 N---NA_1 NA N All > —_1'—|A1|

for k=1,2,...,n—2. In particular, |A2NAzN---NA,_; NA, N A | > 0.

n
1
8. The function K (n) is increasing for n > 3, since Z == 1 implies that

i=1

e~ x;  Tp+1  zp(zp+1) '

Thus it is enough 1o find ¢t < L(b) such that K(t + 2) + 2L(b) > d(b), where
d(b) is the number of the distinct positive integers that divide b. Letl ¢ be the
t
1
minimal positive integer, for which the equation Z o= 1— 7 has a solution.
i=1
. Then t < L(b). Fix now ¢, b, xq, ..., x;.
1
Note that the numbers of the solution of the equation 5— + 5— =3 such
1 2

1 1 1

that b divides yo and y; < y9, is equal to d(b). Indeed, if 7= 5— + s for
1

some k > 2, then y; = b+ % So k — 1 divides b and there are exactly d(b)
possibilities for k.
Hence K(t + 2) is not less than d(b) minus the number of the cases, when

y; = x;. This cases are al most 2L(b) which implies the desired inequality.
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Team selection test for 45. IMO

1. We shall use the following well-known facts.

LEMA 1. For any integer x and any positive integer t the number t! divides
(x+1D)(x+2)...(x+1).

Proof. The statement is obvious for x € {0,—1,—2,...,—t}. We have to
prove it for > 0. Let p be a prime divisor of t!. Then the power of p in the

t t
prime factorization of t! is [EJ + [;5} + +++. This power does not exceed the

t
power of p in the prime factorization of (z + 1)(x +2)...(x +¢) = (ac+ )
since the last power equals [m;—t} + [xp_g t} 4. [ } — [%J

x+1 x x+t x
— =+ —|=|—"--- and [a + b] > [a] + [b].
[pJ[pJ[pg}[ng o+ 2 (o] +

LEMMA 2. For g(x) € R|z] with degg = n one has that g(Z) C Z f and
only if g(z) = Y1 o bi(5), where bg, by, ..., b, € Z.

Proof. Obviously, if g has the above form, then g(Z) C Z.

Conversely, let g(Z) C Z. Set g(i) = o € Z, 7= 0,1,...,n and apply the
Lagrange interpolation formula with knots 0,1,... n. Then

o= zz—) . (z—i+ D) x—i—1)... (x—n)a;
B ;z'(z'—1)...(2’—(2’—1))(i—(z’+1))...(z’—n)

= En:(_l)nﬂ'ai(n + 1)(nf—1) .

g(z)

i=1
It remains to use that any polynomial

x
(n+1)<n+1) Cz{z—1)..(z—i+D)(x—i+1)...(x—n)
x—1 B n!

can be written in the given form (compare the respective coefficients). The
lemma is proved.

Let now m be a divisor of n! and consider the polynomial f(z) = (z +
1)(x+2)...(z+mn). It follows by lemma 1 that m divides f(k) for any k € Z.
Moreover, f is a monic polynomial (i.e, the leading coefficient of f equals 1) and
hence (ag, a1, ... an, m) = 1. So all divisors of n! are solutions of the problem.

Assume that m does not divide n! and m is a solution of the problem.

Set r = -(_n_::nT') It is clear that » > 1 is an integer and (r,n!) = 1. Let

f(z) = ag -l—) ax + - + ax2", a, # 0, be a polynomial with the desired

properties. Then for g(x) = f(=) one has that g(Z) C Z and, by Lemma 2,
T

- Zb(f) where bo, by, ..., bn € Z.
=0
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n
Hence f(z) = Zmbi (f) and using that (r,i!) =1fori=10,1,... n, we
i=0
get that r divides all the coefficients of f, a contradiction.

2. It is easy to see that the remainder p modulo g is equal to p — P qg. A

direct verification shows that p = 3, 5, 7 and 13 are solutions of the problem.
Assume that p > 11 is a solution and let ¢ be a prime divisor of p — 4. If
q > 3, the remainder under consideration is 4 — not square-free. So ¢ = 3 and
p = 3% +4 for some k € N. Analogously, the prime divisors of p— 8 are 5 or 7,
and these of p—9 are 2 or 7. Since 7 cannot be a divisor in both cases, we get
that p=5" +8 or p=2" +9. Hence 3* = 5™ + 4 or 3* =27 +5.

In the first case, 3¥ = 1(mod 4), i.e. k = 2k;, and so (31 —2)(3%1 +2) = 5™
which gives ky = 1, m = 1, i.e. k = 2. In the second case one has that n > 2
and we conclude as above (using modulo 4 and 3) that k = 2k; and n = 2n,
are even integers. Then (3% — 271)(3%1 4 2m) = 5 which implies k; = n; = 1,
i.e. k =n = 2. Thus, in both cases, new solutions do not appear.

3. It it easy to see that if a triangle contains another triangle, then its
inradius is greater than the inradius of the second one. So we may consider
triangles with vertices on the boundary of the square. Moreover, we may assume
that at least one vertex of the triangles is a vertex of the square and the other
two vertices belong to the sides of the square containing no the first vertex.
So we shall consider AOAB such that O = (0,0), A = (a,1) u B = (1,b),
0<ab<1.

Consider also AOCD, where C = (a+b, 1) and D = (1, 0). Denote by S and
P the area and perimeter of AOAB, respectively. Set x = OA = V1 + a2,y =
AB = /(1—a) 2 +(1-b)2, 2= 0B = V1+b2, u = OC = \/1+ (a+b)?
and v =CD = \/1+(1—a—b)2. Note that OD =1, u> 22> 1, x> 1 and
v> 1.

Comparing the perimeters of AOAB and AOCD gives

u? — 22 v2—y2 1— 22
+

Utz v+y + 142
2ab+b2+ 2ab b2
u+x v+y 1+z2
2ab + b? 2ab b2

(u+v+1l)—(z+y+2) =

< —
- 1+2 +v+y 1+z2
1 1
= 2ab< + )S3ab§(u+v+1)ab.
v+y 142z
Hence
1 1—ab 2S
(utv+1) )szT+y+ u+v+1l  x+y+z P "
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On the other hand,
ut+v+1= \/1+(a+b)2+ﬁ+(1—a—b)2+12m>ir11F(:r),
x_

where F'(z) = V1 +z2+ /1 + (1 — )% + 1. Since m>inF(x)= V5 + 1, we get
x>

1

that r < 1 _ \/3_1.

V5 41 4

4. Let ¢y +xo+---+x, = 2004, 2y, 29,..., 2, EN, 21 < 29 < -+ < x4 and
the product rizg ... 2 is maximal. Assume that for some ,7, 1 <i<j <k
one has that z; < x;41 — 2 and z; < xj41 — 2. Then replacing x; and x; by
z;+ 1 and x; — 1, respectively (the sum is the same, i.e. 2004), we get a larger
product since

(i + 1) (x5 — 1) = 2525 + 25 — 25 — 1 > 2425,

a contradiction. Hence x1, 29, ...,z are consecutive integers but at most one.

Let the numbers be {z1,xz2,..., 2%} = {z, 2+ 1,..., 2+ Lz + L+ n,2 +
4+n+1,...,2+k+n—2}and k=n+£—2. If n > 3, we replace x + £ and
x+f+nbyx+£+1and x+ £+ n— 1, respectively, and, as above, we get a
larger product.

Let n = 1 and the numbersbe z,z+1,..., 2+ k— 1. If x > 5 we replace
by the numbers £ —2 and 2. The sum remains 2004 and the product increases,
since 2(x—2) > z. If 1 < x <4, a direct verification shows that either we have
a larger product or the sum is not equal to 2004 (for x = 2 and = = 3).

It remains to consider the case n = 2. Let the numbers be

z,x+1,...,x+4x+0+2,x+£4+3,....c+k, £2>20k>2+2.

As above, we get a larger product for xt =1 and x > 4.
fx=2then24+3+---+({l+2)+({+4)+---+(k+2)= 2004 and

hence (k + 2)(k + 3) = 2(2008 + ¢). Since 0 < £ < k — 2, it follows that

4016 < (k+2)(k+3) <4012 4 2k and then k = 61, £ = 8. So the numbers are

!
2,3,...,10,12,13,..., 63 with product fi—?)l
For + = 3 we get analogously £k = 60, £ = 5 and the nu'mbers are
!
3,4,...,8,10,11, ..., 63 with product % which is smaller than %

5. Let R, Ry, Ro u R3, O, O1, Oy n O3 be the circumradii and circumcen-
ters of AABC, AAHB, ABHC and ACHA, respectively. The Sine theorem
implies that R = Ry = Rg = R3. Then

CH AH

2R1 = 2R2 :SIH{AlBH

sin XxC1AH =

and analogously

sin ¥CiAH = sinA;BH =sin XA;CH =sin xC;BH = sin¥B;AH.
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Let XC1AH = ¥xA\BH = {BCH = ¢. Since XAHB = a+ 3 = 180° —
then <):ACIB 7, and hence {AH3B = 180° — 7. Analogously, XBA,C = «,
¥BH,C = 180° — o, ¥CB1A = B u xCHyA = 180° — 3. It follows that the
points Hy, Hy and Hjs belong to the circumcircle of AABC.

Now we shall use now vectors. Denote by [a] the image of the vector @ under
rotation through 360° — 2. We get from the proved above that ¥C;AH; =
90° — v = xCAH. Hence ¥CAH3 = ¢ and then XCOH3 = 2¢. Analogously,
XAOH, = XBOH; = 2.

Let S and T be the orthocenters of AA1B1Cy and AH, HyHj, respectively.

We shall prove that HS HT
One has that

—

HS = HA, + HB, + HC,=HO + HA, + HO + HB, + HO + HC,
— 3 HO + 00, + O1A; + 003 + O3B, + 003 + 03C,
— 3 HO +2(0A + OB + OC)+ O1 Ay + O3B, + 035G,
— HO +[O\H] + [O2H) + [O3H] =HO +[010 + 030 + 030 +3 O]
= I—f5+[2(0_/'1+0_1)3+0_(),‘)+30_1'{]=1{_é+[5f{],
HT = HO +OT=HO + OH, + OHy + OH;
= H_é+[0_/'1+0_1§+0_(3]=1{_é+[0_f{],

which means that S=T.
The case ¥C1AH = €xA,CH = «<B{CH = ¢ can be considered in a similar
way and we omit the details.

6. Consider a graph with vertices the lines of the table and edges that joint
two vertices if the respective lines are different exactly in one position. Write
on the edges the respective elements that are different.

Assume that the given statement is not true. Then the graph has n vertices
and n edges. It is not difficult to prove by induction on n that there is a cycle
in the graph. We may suppose that this cycle is A; As ... Ag Starting from A,
we remove x1 to get Az, then remove or add xg to get As, etc. When we turn
back to Aj, we obtain a second copy of A; which does not contain z; (any
edge contains no x1), a contradiction.

7. Let ACN BD = O and X be the second intersection point of the cir-

cumcircles of AAOB and BOC. Set ¥ XBO = ¥XCO = o and X AO =
XD BD

xXDO = . Since AAXC ~ ADXB, then Y4 — Ao This and the
condition of the problem implies that %—g =1- gg = gg and hence

AP AC XA
Dg ~ BD ~ XD Lnen AAPX ~ ADQX and so ¥APX = ¥DQX. The

last equality means that the points X, Q, O and P are concyclic and thus
XXQP = xXOP = XXDA.
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This implies that the points X, @, D and M are concyclic, i.e. the circum-
circle of ADMQ pases through X. Then ¥ XMN = &8 and hence the points
X, A, P and M are concyclic, i.e., the circumcircle of AAM P passes through
X.

It follows in the same way that the circumcircle of ACN P passes through
X and then analogously the circumcircle of ABNQ passes through X.

8. We call a graph, satisfying the given condition, n-purple. Let f(n) be
the smallest possible number of blue edges in an n-purple graph.

Suppose that f(n) < n+ 5 for n > 5. If any vertex of a n-purple graph
G with f(n) blue edges is a head of at least two blue edges, then the total
number of the blue edges is at least 2n. Since 2n > n+5 > f(n) forn > 5, we
may find a vertex a of G that is the head of at most one blue edge. If a is not
head of a blue edge, then there is vertex b of the graph G\ {a} that is a head
of a blue edge and hence G\ {a,b} is a (n — 1)-purple graph. If @ and b are
jointed by blue edge, then G \ {a,b} is a (n — 1)-purple graph. In both cases
the obtained (n — 1)-purple graph has at least one blue edge less than G and
so f(n) > f(n—1)+ 1. Then f(n—1) < n+4, in particular, f(4) < 9.

Now we shall compute f(4). It is well-known that there are 3-purple graphs.
Then the above arguments show that any vertex of a 4-purple graph is a head
of at least two blue edges. Hence f(4) > 8. If f(4) = 8, then any vertex is a
‘head of exactly two blue edges. There are two such graphs containing no blue
triangles but these graphs are not purple. If f(4) = 9, the two vertices are
heads of three blue edges, and the remaining six vertices are heads of two blue
edges. There are six such graphs containing no blue triangles but they are not
purple. The following example shows that f(4) = 10 — a regular octagon with
blue sides and two blue adjacent main diagonals, and the remaining diagonals
are red.

So f(n) > n+5 for n > 5. It is easy to see that the graph with 2n vertices
such that its blue edges form three disjoint cycles with lengths 5, 5 and 2n—10
is n-purple. Hence f(n) =n +5 for n > 5.

9. Let the given numbers be ay,aqg,...,a2p4+1. Choose first 1 and then
choose at any step (if it is possible) a number that is not a linear combination
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with rational coefficients of the already chosen numbers. We may assume that
the chosen numbers are ag = 1,a1,a9,...,a5, 1 < k< 2n+ 1. It is easy to
see that any linear combination with rational coefficients of the given numbers
can be uniquely presented linear combination of these numbers.

k

Let a; = Zaijaj, where a;; € Q,1<i<2n+1,0<j<k. Then a sum

3=0
of a}s is a rational number if and only if the sum of the corresponding numbers
bi = a; — a;o vanishes. Since by, be, ..., bapyy are irrational numbers, they are

non-zero. In particular, at least n + 1 of them have the same sign and hence
the corresponding a}s have the desired property.

10. Using (d) for y = 1 and (c) we see that f(zx,2) = zFx. Set 22 = y.
Then f(y,2) = yz*~! for y < z. Conversely, if y < z, then we set y = 2z,
z € [0,1], and f(y,2) = f(zx,2) = 2kzx = y2k-L.

Now letx <y < z,z,y,2 € (0,1). Then using (a), we get that f(acyk_l, 2) =
f(x,yz*~1). Hence it follows from the above that

1 ke 1 (k—1)2 21 (k=102 k— _
(oyk—1ok=1 gh=1y (k1) 2} {ayt L k=1)? gh—ly k—1y o o

This easily implies that either k = 1 and f(z,y) = min{z,y} or k = 2 and
f(z,y) = zy. A direct verification shows that both functions are solutions for
the respective k.
92 Oy? 922
1. Set @ = 5—o—7, b = y €= , wh
R T R it C T gLl e
xz,Y,2> 0 and x +y+ 2 = 1. We have to prove that

2% +y? + 22 > 9(x?y? + y22? 4 2222,
Since a > 1, then

12
9x2=a(x2+y2+z2)2x2+y2+z22(x+++”)=%,
T.€. m>——1—— Analogously y > ! nz> !
3V3 W W
We may assume that x > y > z. Then
1 5351, lsm+y_1—z_3\/§—1
33 3" 3 2 2 63
2

—_ a\2

It is enough to prove that f(¢,¢,1—2t) > 0, where t = acT-l—y One has that

ft6,1—2t) = 262+ (1—2t)% —9(¢* +2t2(1 — 2t)?)

_ 2
= (—p3—1)(3 +2p— 3p?) >0,

117



— — 10
wherep=3t(1§p§§§\/—§—l),i.e.,3+2p—3p2>0¢:> 3\/_<p<
14++/10 3v3—1 1++v10
————3C. [t remains to check that \g— 73 < 3\/_.

In fact, we have proved the inequality under the weaker conditions a+b+c =
9 and a,b, c > —82:%\/—1-_0

12. We put m + n — 1 white pieces by m + n — 1 movies consecutively in
the cells (1,1),(2,1),...,(m,1),(1,2),(1,3),...,(1,n).

We shall call a closed chain of cells such that at least two numbers of rows
and columns change alternatively a zig-zag cycle.

Note that there is at least one black piece in the cells of a zig-zag cycle.
Indeed, assume the contrary and consider the last white piece. Its neighbors
(in the zig-zag cycle) are white pieces that have been put before it. Then the
last piece must be black, a contradiction.

Assume now that the game is over and there are more than m +n — 1
pieces. Remove a row or a column with at most one white piece, repeat the
same operation, etc. Since such a removing can be done at most m+n—1 times,
any row and column in the new table will contain at least two white pieces.
This new table, and hence the given table, has a zig-zag cycle, a contradiction
to the proved above.
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9.1. For a # 0, a # 1, the given equality is equivalent to

a(r1x2 + 1314) = T12223%4(21 + T2 + 23 + 24)
= 2a—1=(a—1)(a+5) = a*+2a—-4=0
= a12=—1%5

It is easy to check that for these values of a both equations have real roots.
The case a = 0 is excluded by the condition and a = 1 implies £4 = 0, whence
21 = 0, which is a contradiction.

9.2. If AB is a diameter of k, then AN and BM are altitudes of AABC.
Let H be the orthocenter of AABC and let the tangent line to k at M meet the

altitude CH at O;. Then <CMO, = xABM = 1—4—21\—4— and XABM = XACH.

Thus XCMO; = XMCOy, i.e. CO; = MO;. On the other hand <O HM =
90° — {OICM = 90° — {CMOI = {OIMH, i.e. OIM = OIH Therefore 01
is the midpoint of CH. It can be seen analogously that the tangent line to k
at N passes through Oy, i.e. O = Oy and OM = ON = OC = CH/2.

Let O be the circumcenter of ACMN. Then <CMO = xMCO = xABM
and XCNO = ¥XNCO = £BAN. Hence

SACB = xMCO + {NCO = xABM + <BAN.

Therefore

24ANB = <YANB + <AMB
= 180° — XABC — XBAN +180° — XBAC — <ABM
= 360° — (XABC + xACB + ¥xBAC) = 180°.
Hence XAN B = 90° and AB is a diameter of k.

9.3. The number m — n has at most three different positive divisors if and
only if m—n = p*, where p is a prime and k € {0,1,2}. If k=0thenm =n+1
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and n(n+1) is a perfect square, which is impossible. Let m—n = pk, mn = 2,
where k € {1,2} and ¢ is a positive integer. Then

n(n+p*) = < (2n+p* —2t)(2n + p* + 2t) = p**.
Therefore 2n + p* — 2t = p® and 2n + p*F + 2t = p”, where = and s are integers,
such that 0 < s<r <2k and r + s = 2k.
For k = 1 we have the unique possibility 2n+p—2t=1,2n+p+2t = p.
Hence ) )
o (p—41) Cmenip= (zHL-ll) _
Taking into account that 1000 < m < 2005 we obtain the solutions m = 1764,
1600, 1369, 1296 and 1156 (for p = 83, 79, 73, 71 and 67, respectively).
For k = 2 we have (r,s) = (4,0) or (r,s) = (3, 1). In the first case we get
(p* — 1) (p* +1)°

2
'n,:——-————-——’ m=n =
1 P 1

Now the inequalities 1000 < m < 2005 imply that p = 8 which is not a prime.
In the second case we have m = p(p+1)? /4, which gives the solutions m = 1900
and 1377 (for p = 19 and 17, respectively).

9.4. Yana has at least one card, say k # 1. If Ivo has 1, then the product
1.k = k does not belong to Yana, a contradiction. Therefore Yana has 1.

If 12 is in Ivo, then the sum 13 = 1 + 12 belongs to Yana, a contradiction.
Therefore 12 belongs to Yana. Since the sum 13 = 6 + 7 is in Ivo, both cards 6
and 7 belong to one and the same person. They are not in Ivo since otherwise
the sum 1 4+ 6 = 7 is in Yana. Using similar arguments we conclude that all
cards 1,2,...,12 belong to Yana. Further, all cards 13k, k = 1,...,7, are in
Ivo, and all the others belong to Yana. Therefore Yana has 100 — 7 = 93 cards.

10.1. a) We consider two cases. If x € (—o0, 2]U|[3, 00), then the inequality
becomes x2 — 6x + 6 < 0, whence = € [3— /3, 3 -+ /3]. Therefore the solutions
of the inequality are = € [3 — v/3,2] U [3,3 + V3.

If x € (2,3), then the inequality becomes z%—4x + 6 > 0, which is satisfied
for every z € (2,3). Thus z € [3 — V3,3 + \/§]

b) If the inequality |z? — 52 + 6] < x + @ has an integral solution x then
x € (—o00,2] U [3,00) and therefore

m2—6m+6—a50.

This inequality has a solution if and only if a > —3 and in this case we have
that z € [3 — va+ 3,3 + va + 3. This interval contains the number 3 and is
symmetric with respect to 3. Therefore it contains exactly three integers if and
only if 1 < va+3 <2, ie a€[-21).

10.2. a) From the right ACE! we have EI? = SI.CI = DI?. Then we get

br_cl d therefore ACDI ~ ADSI
S[ - D_[ an ererore ~ .
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b) The quadrilateral DIMG is cyclic. Since a) implies that 4 /SD =
4 IDC =4 IMD we conclude that S lies on the circumcircle of DIMG. It is
now obvious that 4 GSI =4 GM T = 90°.

Remark. It easy to see that b) implies that the points E, F and G are
colinear.

10.3. Weset t =u— 1,y = v+ 1 and obtain the equation
2 41= (-1 -1).

It is easy to see that u, v and » must be even. Hence, if |u| > 1, then u? —1
has a prime divisor p such that p = 3 (mod 4). Therefore 22 + 1= 0 (mod p),
which is impossible (it is well known that if p is a prime such that p = 3
(mod 4) and p divides 22 + y? then p divides both z and y). Thus u = 0.
Analogously we get v = 0 and therefore 2 = 0. Hencex = -1,y =1,z = 0.

10.4. We first prove that for any odd n > 3 there are n x n tables that are
not "good”. Consider an arbitrary n x n table and denote by P;, 1 =1,2,...,n,
the product of the numbers in the ¢-th row at the second last step. Then
PPa=PP =---=P, 1P =P,P,=1 and since n is odd, it follows that
P, = P =---= P,. This argument shows that the row products in the initial
table must be equal. Therefore any table which has not this property is not
"good”.

We now consider a table of order n = 2¥m, where m is an odd number and
k > 1. After the first two steps the number in the position (2, j) becomes equal
to the product of the numbers in the positions (1 —2, 7), (¢,7—2), (,7+2) and
(2 + 2,7). Therefore the resulting table after every even step can be obtained
by applying the operation on the following four tables of order 2%¥~Im:

— the table of all (¢, 7) with ¢ = j = 0 (mod 2);

— the table of all (¢,7) with ¢ = 0 (mod 2), 7 =1 (mod 2);

— the table of all (¢,7) with¢ =1 (mod 2), j =0 (mod 2);

— the table of all (¢, 7) with¢ =37 =1 (mod 2).

Now it follows by induction that the number n = 2¥m has the required
property if and only if the number 2¥~1m does. It is also easy to see that every
table of order 2 is "good”.

Therefore the required n are n = 2%, where k is a positive integer.
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11.1. a) Using the formulas for the sums of arithmetic and geometric pro-
gressions we obtain the equality

n[2m + 2(n —1)]
2

= n(2™— 1),

whence m +n = 2™,

b) It follows that 4n = m + 44. Using a), we obtain 2™*+2 = 44 + 5m. It
is easy to see that m = 4 is a solution. If m < 4 then 2™*+2 < 25 < 44 + 5m.
If m > 4 then it follows by induction that 2™*2 > 44 + 5m. Therefore m = 4
and n = 12,

11.2. The equation is equivalent to x € (1,2) and ax + 1 = (z —1)(2 — ),
which can be written as x2 + (a — 3)z + 3 = 0. Therefore we have to find the
values of a, such that the equation

fl®)=2*+(a—3)z+3=0

has exactly one root in the interval (1,2). This is possible exactly in the fol-

lowing four cases:

1

Case 1. f(1)f(2) < 0, which is equivalent to a € (—1, —-2—)

Case 2. f(1) =0, i.e. a = —1. Then z; = 1 and xo = 3, which shows that
a = —1 1s not a solution.

1 3
Case 3. f(2) =0, i.e.a = —3- Then z; = 2 and z9 = 3 which shows that

1
a= ~3 is a solution.
Case 4. D=0, i.e. (a —3)? — 12 = a®? — 6a — 3 = 0, whence a = 3 + 2V/3.
For a = 3 +2v/3 we have 2; = 2 = —v/3, i.e. a = 3 + 2/3 is not a solution.

For a =3—2v3 we get 21 = 20 = V3 € (1,2), i.e. a = 3 — 2+/3 is a solution.
Finally, a € (—1, —-;-J U {3-2v3}.

11.3. Let K = CON AB and XAKC = ¢. Denote by M and N the
intersection points of QO with CB and CA, respectively. The Sine theorem

for AAPQ gives
AQ  sin(90° + B)  cosf

PQ  sing ~sing’
From the right AK PQ we find
KQ 1
PQ  sing’
Hence
(1) AQ  cosfsing
QK  sind
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It follows from AAKC (AO is the bisector of XK AC) that

@) KO AK sin{
OC  AC  sing’

On the other hand applying the Menelaus theorem for AAK C and the line
0Q we get

3) AQ KO CN _ :
QK OC NA
Now plugging (1) and (2) in (3) we obtain oN _ 1 Hence it follows that
N piugging . NA~ wosh e
C 1 . 2Rsin Ié]
CA 1+4cosp’ he 20052'g 2Rtan 2

Similarly, CM = 2Rtan %. Therefore

tan 8
(4) CN _ an 7
CM tan ¥

It is well known that CB; = p—a=1rcot% and CA; =p—b= rcot%. Hence
using (4) we get

CB, cotg tgg _CN

CA; cot'g tg§ CM’

Therefore A; By || MN.

11.4. Note that a chess player could not have more than one draw. Indeed,
if A had draws with B and C, then the condition for A and B implies that B
defeated C and the same condition for A and C implies that C defeated B, a
contradiction.

123



Let Ay, Ag,..., Ar be the longest sequence such that each chess player

has defeated the next one, i.e. A; has defeated A;y; for i =1,2,...k— 1. If

= 2005, then we have the required sequence. Assume that k& < 2005 and
consider a chess player B who is not amongst A, A, ..., Ag.

If B has defeated A; then the sequence B, Aj, Ag,..., A of length k£ + 1
has the above property, which is impossible.

If A; has defeated B, then B and Ag had not draw because A; has defeated
both. If B has defeated Ag then the sequence A;, B, Ag, ..., Ay of length k+1
has the above property, a contradiction. Therefore A has defeated B. We see
analogously that all players As, A4, ..., A have defeated B. Then we obtain
again a contradiction by considering the sequence A;, Ag, ..., Ag, B of length
k+ 1.

The above argument shows that outside the sequence A, Ay, ..., Ay there
is only one chess player B, and A; and B made a draw. Then this is the only
draw of B. If Ag has defeated B, then we obtain as above that B has lost from
A; for 1 = 3,4,... k and we have again sequence Ay, Aqg,..., Ax, B of length
k + 1. Therefore Ay has lost from B and the same holds for A;, 1 =3,..., k.

On the other hand, there is at least one more draw, for example between
A; and A;. But A; and Aj; have lost from B, which is a contradiction.

12.1. a) Since anyq + bpyr = 2by, — an + 204 — by = ap + by, we have

b) Using a), we obtain

a1+b1_ ( a1+b1)
n+1 — =—=3{a,— )

2 2
whence ; ;
ap + ai +
an+1 _ 1 2 1 — (_3)11 <a1 _ 1 2 1) .
. Since lim 3" = 4oo, it follows that if a; > by, then lim a9, = —o0, a

n—o0 n-—+00

contradiction. Analogously, we see that it is not possible to have a; < b;.
Therefore a; = b;.

12.2. Set BC =a, CA=band AB = c. Then BA.BM = BP.BQ), and
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C a

c? b2 P

Hence BQ = — and analogously CP = —.
a Q

2 12 2 2 N

ThenBP:aab,CQ:a ¢ and the
a
ition — = — A M

condition o~ AC becomes B

b(a® — b%) = c(a® — ¢?), ie. (b—c)(a® —b* —c* —be) = 0.
Since b # ¢, we get a® — b* — ¢ — bc = 0 and the Cosine theorem gives

cos 4 BAC = —%. Therefore ¢ BAC = 120°.

Second solution. Since the quadrilateral AM PN is a cyclic trapezoid, it
follows that AM = NP. Also, if T = MPN NQ, then AMTN is a parallel-
ogram and AM = NT. Then NP = NT and in the same way MQ = MT.

Hence TPN and TQM are similar isosceles triangles and we have

. TP _ TN
) TQ TM’
Using the Sine theorem, we obtain Mp _ BP NG = e and since

sinf  sina’ siny  sina

p .
BP B _ siny we conclude that M P = NQ. From here and (1) it

CQ ~ AC ~ singp’
follows that

TM+TQ%=TN+TQ e (TM —TN)(TM - TQ) = 0.

Assume that TM = TN. We have MQ = NP and NA = M A. The first of
these identities shows that M N||PQ and by the second one we obtain AC =

AB, a contradiction.
Therefore TM =T0Q, i.e. AMTQ is equilateral. Hence

4 BAC =4 MTN = 120°.

t2 —a

33— (a® +2)t +2

[f the nominator and the denominator of g have a common root then a > 0
and t = +,/a. If t = —\/a we obtain \/a(a® —a +2) = —2, which is impossible
since a® —a +2 > 0 for every a. If t = \/a we obtain /a(a(a— 1) +2) = 2 and
it is easy to see that @ = 1 is the only solution of this equation (for a € [0,1)
the left hand side is less than 2, and for a > 1 it is greater than 2). For a =1
we have

12.3. Set t = sinx and ¢(t) =

2 —1 t+1
t) = — <0
9(?) B —3t+2 (t—1)(t+2)
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for every t € [—1, 1) which implies that this value of a is not a solution.
We now look for a # 1 such that the equation g(f) = c, i.e.

h(t) = c(t® — (a®* +2)t+2) +a—t* =0,
. . 1 1
has a solution in the interval [—1, 1] for every c € 3 2|.Fore> 5 we have

2 2
1 1
h(—1)=ca2+a+3c—1z%+a+-2-= (a+2 iy

whence h(—1) > 0 for every a. Also, h'(t) = 3ct?> — 2t — c(a® +2) and therefore
h'(1)=c—ca®—2<0force€ %, 2| and every a. Hence the equation A'(t) = 0

has real roots t; and t such that t; < 1 < .
Thus the function h(t) is decreasing in the interval ¢1, t2] 3 1 and increasing
in the interval (—oo, ¢1]. Since h(—1) > 0, it is easy to see that h(¢t) = 0 has a

solution in the interval [—1, 1] for every c € 1, 2| if and only if

2

h(1)=(a—1)(1—c(l+a)) <0

1
for every such c. For a > 1 this inequality is satisfied since 1 — 5(1 +a) <0,
1
and for a < 1 it is equivalent to 1 —2(1 +a) > 0, i.e. a < ~5

1
Finally, the required values of a are a € (—oo, —5} U (1, +00).

Second solution. Using the same reasoning as above we reduce the problem
to finding of those a such that [%, 2} C g([-1,1]).

Set h(t) = t3 — (a? + 2)t + 2. Then A/(t) = 3t — (a® + 2) and for a? > 1
it follows that A'(t) < 0 for t € (—1,1). Therefore h(t) is a strictly decreasing
.continuous function in the interval (—1, 1]. Since

h(1)=1—a?<0<a®+3=h(-1)

if follows that h(t) has a unique zero ¢y € (—1,1].
We now consider several cases. )
—a

Case 1. Let a > 1. Then & # 1, t_l]tﬂ-og(t) = +oo and ¢(1) = 1 — a2

1 1
Tt a < 7 Since the function ¢(t) is decreasing and continuous in (to, 1], it
follows that

[%2} c [%,m) C g((to. 1)) C (1, 1))
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Case 2. Let a < —1. Now lim 0g(t) = +oo and g(—1) =

t—tg—
last inequality is equivalent to (a + 1)2 > 0). Then

[%QJ c [%,m) C 9((-1.t0)) € a([~1, 1)).

Case 3. Let a = 1. Then we see as in the first solution that g(t) < 0 for
te[—1,1).

Case 4. Let a € (—1,1). We first check that hA(t) > 0 for ¢ € [—1, 1], which
implies that g(t) is a continuous function in that interval.

Indeed, if t € [—1,0], then h(t) > t3 +2 > 0 and if t € (0,1], then
h(t) >3 —3t+2=(t—1)%(t+2)>0.

1 l1—a 1 1
1 -z 1) = - _
Case 4.1 IfaE( , 2},theng( 1) a2+3<2,g(1) 1+a22
1
and therefore [5,2J C g([-1,1]).

Case4.2. If a € (—%, 1) , we shall show that g(t) < 2 forevery ¢t € [—1, 1].
Since h(t) > 0 in this interval, we have to check that

t2 < 2(t3 — (a® + 2)t + 2),
1.e.
(1) m(t) =23 — 12 —2a® + 2t +a+4>0, t €[-1,1].
We have

m/(t) = 6t* — 2t — 2(a® + 2) < 61> — 2t — 4 = (6t +4)(t — 1)

2
and therefore m/(t) < 0 in the interval [—-?-)-, 1}. Hence m(t) is a decreasing

function in this interval which implies that

m(t) >m(1)=—2a? +a+1=(1+2a)(1—a)>0

2
for any t € [_5," 1}. On the other hand, we have

1
m(t)22t3—t2+a+42—2—1—§+4>0

for t € [—1,0], which completes the proof of (1).
The cases considered above cover all possibilities for a and we conclude

()

4

that the answer is a € (—oo,—-l-} U (1, +00).
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12.4. Using the standard notation for the elements of AABC we have

a?be
b2 = lg = be — m Hence
(1) a’c = (c — b)(c+ b)%

b
Let % = % (m,n) =1, and - = -’Si (r,s) = 1. Then (1) implies that

m? (s —r)(s +r)?
n? s3 '

Since both sides are irreducible fractions, we obtain m? = (s — r)(s + r)?
and n? = s3. The first equality shows that s — r is a perfect square and the
second one implies that s is a perfect square. Set s = t? and s —r = k2. Then
r=12— k% m = k(2> — k?) and n = t3.

We now set a = mx, ¢ = nx, b = ry and ¢ = sy. Then nx = sy, i.e. y = tz.
Therefore a = zk(2t? — k?), b = 2t(t*> — k%) and ¢ = xt3, where ¢t > k and
(t,k) = 1. Moreover, one can easily check that these a, b and c satisfy the
triangle inequality.

Now the condition a + b+ ¢ = 10p becomes z(k + t)(2t> — k?) = 10p. Note
that (k+¢,2t2—k?) = 1. Then it is easy to see that we have only the following
possibilities:

r=1 =1 r=2
k+t=5 , | k+t=10 , [(k4+t=5
22 — k% =2p 202 —k?=p 202 —k? =p

A direct verification shows that (z, k,t) = (1,2,3), (x, k,t) = (1,3,7) and
,€) =

(x,k,t) = (2,1,4). Therefore (a,b,c) = (28,15,27), (a,b (267,280, 343)
and (a,b, c) = (62, 120, 128).
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Spring Mathematical Competition

8.1. Since both sides of the equation are non-negative, it is equivalent to

51 3\*
—=l—=] = — 5z +4)2,
(m 2‘ 2) (x z +4)
Hence
5| 3
(m——l———m2+5m—4)(x—-2—l—§+m2—5x+4)=O
and we have to solve the equations
5 9 11
— — — __:O
x 2‘ x° + o 5

and

5 5
m—§‘+x2—5x+-2-20.

5) o 11
For x < 5 we have respectively that 3%~ 2 + 52— 5 = 0 < z%—

o o
4x+3 =0,ie.z=1lorzx=3and -2-—m+x2—5m+-2- =0 « 22— 6x+5=0,
l.e. £ = 1 or £ = 5. Therefore x = 1 is the only solution of the given equation
in this case.

5) 5) 1
Analogously, for = > 5 we have x—-2——x2+5m—71 =0 < z°—6x+8=

5) 5)
0,ic.z=20orz=4andz—~+2°—52+==0 «= 22 —42=0, ie.
z = 0 or x = 4. Therefore x = 4 is the only solution of the given equation in

this case.
Hence the given equation has two solutions x; = 1 and z, = 4.

8.2. Since XACB > 90°, the points G and
E lie on different sides to the diameter BD. If
¥DCG = FEFD, then ¥DCG + XDFG =
180°, i.e. it is enough to prove that the quadri-
lateral CDFG is cyclic. On the other hand,
CFE L BD and D is the center of k;. There-

1 —~
fore XCDF = 5 CGEy, (as a central an-
gle), ¥CGF = CGE is inscribed in k; and
1 —~
XCGF = 5(360°— CGEy,).

Then ¥CDF + CGF = 180°, i.e. the quadrilateral CDFG is cyclic,
whence X DCG = < EFD.
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8.3. Assume that the equation has a solution (xg, yo, z0). Then 2 + 2y2 is
divisible by 7. Since the remainders modulo 7 of the perfect squares are 0, 1,
2 and 4, it follows that both z¢ and yg are divisible by 7.

Then the left hand side of the given equation is divisible by 72 and hence
the number 11...1 is divisible by 7. But this is a contradiction since 111111

2005
is divisible to 7 and 2005 = 6.334 + 1.

8.4. a) The eight black circles shown on Fig.
1 have the required property.

b) Suppose that it is possible to choose 9
circles such that no three of them are vertices of
an equilateral triangle. Then the following three

cases are possible.
Case 1. There are no chosen circles which are vertices of the small central

triangle. Then we must have at least 4 more non-chosen circles — one in each
of the small equilateral triangles at the vertices if the large triangle and one
in the triangle with vertices at the midpoints of the sides of the large triangle.
Hence we have at least 7 no chosen circles, a contradiction.

Case 2. There is exactly one chosen circle in the central triangle. Without
loss of generality we may assume that this is the black circle on Fig. 2. Then,
apart from two non-chosen circles in the central triangle, we must have at least
two non-chosen circles amongst these denoted by «, at least one amongst these
denoted by o, at least one amongst these denoted by 1 and at least one amongst
the vertices of the large triangle — at least 7 in total, a contradiction.

% o
* % o ©
* & % o o ©
< o} o 90 % Y e %
o1l o 1 o 6 x 0 % o
Fig. 2 Fig. 3

Case 3. There are exactly two chosen circles in the central triangle. Without
loss of generality we may assume that they are the black circles in Fig. 3. Then,
apart from the non-chosen circle in the central triangle, we must have at least
two non-chosen circles amongst these denoted by %, at least two amongst these
denoted by o, at least one amongst the vertices of the large triangle and the
circle below the two chosen central circles — at least 7 in total, a contradiction.

9.1. a) The discriminant of f(x) is equal to 4a® + 13 > 0.

b) We consecutively have

—72 = 2z} 423 = (2 +22)[(x1 + 22)% — 3z129)
= (1-2a)(4a* - a + 10) = —8a® + 6a® — 21a + 10.
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Therefore the required values of a are the real solutions of the equation
8a® —6a® +21a — 82 = 0.
Since a = 2 is a solution of this equation, we obtain
8a® — 6a% + 21a — 82 = (a — 2)(8a? + 10a + 41).

The equation 8a? + 10a + 41 = 0 has no real roots. So the only solution of the
problem is a = 2.

9.2. Let CM be the median and CL be the bisector of AABC (I € CL).
Using the standard notation for AABC we have éé = -1-4—9- = -13, whence
. BL BC a

AL = 5.
a+b
Since Al is the bisector of AALC through A
we get Cl CA a+b c
© ge IL AL ¢ ~ cl  cC
h h h - =
By the Thales theorem we have 177 oM
ie. a+ b= 2¢ w3hence a+b=284. Fora < b
we have LM = -Q-IG' = 3, AM = 21, AL = c Hi
AM + LM = %ﬁiandLlLB = BM - LM = 18.
Therefore =R 3 Hence 3z +4x = 84, 1.e.
=12 AC =48 and BC =36. Forb>awe A M L B

get BC = 48 and AC = 36.

9.3. Denote by S,(cm) the money of the k-th player, k = 1,2,3, 4, after the
move and payment of the m-th, m = 1,2,3,4, and S,(co) = S in the beginning,
k = 1,2,3,4. Denote by a; the sum of points on the dices thrown by A;. It

follows from the game rules that S,(cm) = S,(cm_l) + 1 S,(cm_l) = Sl(cm_l)_l_'li"_‘
a
for k # m (i.e. when Ay gets money) and " "

k k—1 1 k—1 k—1 1 k—1
s® = gt )—a—stg ) = 8¢ ’—a—k(4s—s,§ )
ik
1+ ag B 4S5
ak ax’

_ Sl(ck—l)

when Aj pays.
Using these formulas we find the money of the four players in the end of
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the game. We obtain that

1
?ﬁ _ S§4)=PS—4S( +a2)(1+a3)(1+a4)’
5 a1090304
85 _ g _pg_ 250 +a)(1+ag)
S a9a304
45 S§4):PS— 4S(1+a4)’
5 aza4
45 L@ _ 45
= = S, =PS e

where

p— (1+a1)(1+a2)(l+a3)(1+ a4).

a1a9a304

By the first two equations we get a2 = a1 — 1, and by the last two we have
a4 = az — 1. Now by the second and third equations we obtain

2_4 4149 (4,4 10)(10 — ) = 120,
) a4 a0y

It follows from the later equation that as < 10. We also have a4 > 7 since
the dices are 7 and therefore the minimum sum is 7. It remains to check
the possibilities a4 = 7, 8 and 9. The only solution appears for ag = 7 (the
maximum sum is 42) which gives az = 8, a2 = 30 and a; = 31.

9.4. We shall prove that n + 1, n + 2 and n + 3 are prime powers. Assume
the contrary and let some of them has the form ab, where a > 2, b > 2 and
(a,b) = 1. Since ab does not divide M, then a or b does not divide M. Let
a does not divide M. Then it follows that a > n + 1, i.e. ab— a < 2. Since
ab—a =a(b—1)>2fora> 2 62> 2 it follows that a = 2,6 = 2, which
contradicts to (a,b) = 1.

Therefore n + 1, n + 2 and n + 3 are prime powers. At least one of them is
even, so it has the form 2. Analogously, at least one of them is divisible by 3,
so it has the form 3Y. By parity arguments we conclude that

2 =3Y £ 1.

Case 1. Let 2* = 3Y 4 1. Since 2* = 1(mod 3) for = even and 2% = 2(mod 3)
for £ odd, we see that x = 2z, where z is a nonnegative integer, and (2* —
1)(2% + 1) = 3Y. Then 2* — 1 and 2% 4 1 are powers of 3, which is possible only
for z = 1. Therefore 3Y = 3, 2% = 4, whence n = 1 or n = 2. These solutions
are achieved for M = 1 and M = 2, respectively.

Case 2. Let 2% = 3Y — 1. We may assume that x > 2 because for x = 1 we
obtain one of the above answers for n. We have 3¢¥ = 1(mod 4) for y even and
3¥ = 3(mod 4) for y odd. Therefore y = 2z and 2* = (3* — 1)(3% + 1). Then
3* — 1 and 3% 4+ 1 are powers of 2 which is possible only for z = 1. Therefore
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3% =9, 2% = 8, whencen = 6 or n = 7. The solution n = 6 is achieved, for
instance, if M = 60. For n = 7 we obtain n + 3 = 10, which is not a prime
power.

Finally, the solutions aren =1, n =2 and n = 6.

10.1. For > 1 the equation becomes (z + 6)(5% — 52=%) = 0, whence
r=2—z e =1 For 0 <z <1 the equation becomes an identity, i.e.
every = € [0, 1) is a solution. For < 0 we obtain 2(5% —1)(x + 1) = 0, whence
x=—1

The solutions of the problem are z € [0, 1] U {—1}.

10.2. It is enough to find all reals a such that the converse inequality
Vi+3z<zr+a

is satisfied for every integer x > —1. In particular, since x = 0 is a solution of
V4 + 3z < z +a, then a > 2 is a necessary condition.

We shall prove that it is also a sufficient condition. Indeed, for a > 2 we
have x +a > x + 2 and it is enough to prove that z + 2 > /4 + 3z for every
integer x > —1. We consecutively have

r+2>2V4+3x

4
The later system of inequalities is satisfied for = € [—-§, —1] U [0,00), i.e. for
every integer * > —1. Therefore the solutions of the problem are a € (2, c0).
10.3. (<) If AC = BC, then the quadrilateral ABQP is cyclic since it is
an isosceles trapezoid. If 4 ACB = 90°, then we have 4 ACI =<4 BCI = 45°,

where I is the incenter of AABC. We have also 4 APC =<4 BQC = 135°,
i.e. § JPC =94 1QC = 45°. Therefore AIPC ~ AICA and AIQC ~ AICB.

Hence
IPIA=1IC?*=1Q.IB

and therefore the quadrilateral ABQP is cyclic.

AN

e
A

H B

(=) We consider the circumcircle of AAPC. If it is tangent to CI at the
point C, then 4 ACI =4 IPC = 45° and thus ¢ ACB = 90°. Now let us
assume that this circle intersects CI again at some point R. Then we have
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IPJA = IRIC and IPIA = IQ.IB. Therefore IR.JC = IQ.IB and the
quadrilateral BCRQ is cyclic. Thus

4 BRC =4 BQC =135°=4 APC =4 ARC.

Hence AARC = ABRC and AC = BC.
10.4. Let q be an integer such that

202 <n< 2(q + 1)2
Then
n—2q2<4q+2£4\/§+2=2(\/2n+1).

Further, let ¢ be an integer such that t? < n — 2¢% < (t 4+ 1)2. We choose p
to be either the number t or ¢ + 1 depending on the location of n — 2¢* with
respect to the midpoint of the interval [t2, (¢ + 1)?]. More precisely, we set

[t if n—2¢%2—¢2<¢
P=Y t+1, ifn—2¢2—12>1t

Then we have

p% +2¢% —n| <t < Vi —2¢2 < 1/2(V2n £+ 1).

It remains to note that 1/2(v/2n + 1) < ¥/9n for every n > 160 and that
for n < 160 the existence of p and g can be checked directly.

11.1. a) Using the recurrence relation we easily get

ak = ap_1+4(k—1)+3=ar_o+4(k—2)+4(k—-1)+23="---
= a +4(1+2+---+k—-1)+(k—-1)3=2k(k—1)+3(k—1)
= (2k+3)(k—1).

b) We have lim ~ 27— lim \/(2k+ 3)(Ic— %) = V2k. Therefore the

n—oco N n~—+00 n
required limit is equal to

1+4 44244419 qll—1  oll 4

= = = 683.
14+24+224..-4210 3(211 —1) 3 683

11.2. The inequality is defined for 2 — 2 — 2 > 0 and 3 + 22 — 22 > 0,
whence x € (2,3). Since x = a + 1 is a solution, we have a € (1,2). Then the
inequality is equivalent to 22 —2—2>34+ 22 —2? < (z+1)(22—5) >0

and therefore z € (g, 3).
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11.3. a) We have ¥QCA = XQMA =
XCNA and ¥PCN = ¥PMN = XNAC.
Hence

XQCP = XQCA+ XACN + NCP
= CNA+ XACN + XNAC
= 180°,

i.e. the points P, C and Q are colinear.

b) Set XACM = ¢, XNCM = 1) and denote by R; and Rj the radii of the
circumcircles of AAMC and AM NC, respectively. Then by the Sine theorem
we have

QC = 2R sinx@QMC =2R;sinvy,
cP 2Rasin X PMC = 2Rasin ¢,
AM = 2R;sing,
BM = 2R2 sin ¢

I

Therefore PC.CQ = 4R Rysinpsny = AM.BM.

As in a) we see that the points L, C' and K are colinear. Analogously we
have CK.CL = AN.BN. Since the circumcircle of AM NC passes through K,
C and P, the lines PQ and KL do not coincide. Therefore the points P, @,
K and L are cyclic if and only if

CPCQ=CLCK < AM.BM = AN.BN <= AM = BN.

11.4. Let M be an arbitrary positive integer. We shall prove that there
exists a term of the sequence {an}32 |, whose decimal representation is obtained
from that of M by adding several digits from the right, i.e. the number M is
a “beginning” of that member.

Let k be an index such that ap < M.10} < apyy < ag + ¢, where [ is a
positive integer which is greater than the number of the digits of ¢. Then

M0 < apyy < M10H 4 ¢

and obviously ag, satisfies the above requirement.
Let m = 2%55t, where (¢, 10) = 1. It is enough to prove the assertion of the

problem for m = 107¢, where v = max{«, 3}.
Let us consider the number

M=100...0100...01...100...0100...0.
N N ! N N et
p p p q

Here p = kp(t), where ¢(t) is the Euler function, k is a positive integer such
that p > =, the number q is greater than ~, and the number of 1's is ¢ + 1.
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Then M is a "beginning” of some ai. Hence the sequence of the digits
(formed by the terms of the sequence written one after another) looks like this:

fifa... £,100...0100...01...100...0100...0...,
S N — e
p P p q9

where fi, fo,. .., fr are the digits before aj. It is clear now that, depending on
the remainder of fi fo... f,1 modulo ¢, we can add suitable digits from M to
fifa... fr1 in such a way that the resulting number is divisible by 10%¢.

12.1. a) It follows from the Pythagorean theorem that the altitude of
AABC through C is equal to v1 — z2. Then

S  zv1— x? 1—zx
rPr=— = ———2 .
D 1+x 1+x

b) We have to find the maximum of the function

2
z4(1 —x)
f@)==77
1—x— 2
in the interval (0, 1). Since f'(x) = 2x((m +m1)2x ) the function f(x) increas-
—1 5—1
es in the interval (0, \/52 ] and decreases in the interval [\/—2 ,1) )
. . . . V5 —1 .
Therefore the maximum of f(z) in (0, 1) is attained for xz = 5 and is
equal to f ( \/52_ 1) = 5\/52— 11. Hence the maximum possible value of 7 is
5v/5 — 11
5 :
12.2. Let M be the midpoint of BC, let I be C
the center of the excircle of AABC tangent to A
AB and let T be its tangent point to the line BC.
In the standard notation for AABC we have
a
IM:g-i—rc,IT:rcandMsz—Esince B
BT = p—a. It follows from the right AMIT
that
a 2, a2
(5+7) =ri+(p-3) T
I
Then ar. = p(p—a). Since r. = m— we obtain by using Heron’s formula
that
S?
S = — — = R
aS =p(p—a)(p— ¢ —"
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le.
(1) a{p—b) = S.

Since a, b and ¢ form (in this order) an arithmetic progression, we have g =
b—zx, ¢c=b+ x and
3b b b b

:-——, — = e , —b:—, —_ = e— — .
P 5 p—a 2+xp 5 p—c¢ 5 x

Now by (1) and the Heron formula we obtain the equation

@—xfzs(ﬁ—xﬁ
3b

b
which has a unique solution z = 1 Therefore a = R c = %—- and then
a? + b =¢c? ie. 3 ACB =90°.

12.3. Subtracting the equalities a, + apy1 = 2ap420,43 + 1 and apqq +
On+2 = 20n430n44+ 1, we get any2 —apn = 2ap4+3(an+a — any2)- Then it follows
by induction on k that

k
On42 — Opn = 2"Ap43 ... an+2k+1(an+2k+2 - an+2k)~

Hence 2% divides Ont+2—ay, for every k, i.e. apy 2 = a,. Therefore ag,—1 = a4
and ag, = a3 for every n. Now it follows from the condition of the problem that
(2a; — 1)(2a9 — 1) = —4009. Since 4009 = 19.211 and 19 and 211 are primes,
we get 2a; — 1 = £1,£19, £211, £4009. Therefore there are 8 sequences with
the required property.

12.4. We first show that the assertion follows from the following lemma.

LEMMA. The polynomial P(z) = 2 a2zl L a2 2 4 ...t az+ 1 has
at least 2n — 2 complex zeros lying on the unit circle and different from +1.

Since the coefficients of P(z) are real numbers, its non-real zeros are com-
plex conjugate. It follows from the lemma that there are at least n— 1 pairs of
such zeros and we denote them by ay,a7q,. .., 0pn_1, @n_1.

We may assume that

x2+b1m+c1 = (z—o)(z—oq)
22+ by 1z tepy = (x— ap_1)(x—0n_1).
Since |a1]? = -+ = |an_1|* = L we get ¢; = --- = ¢,_1 = 1 and therefore

e, = 1.

Proof of the Lemma. Since the non-real zeros of P(z) are complex conjugate
it is enough to prove that this polynomial has at least n — 1 zeros on the upper
unit semicircle.
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To do this set z = 2. Then

22" 41 _(@Z*+1)(2—1)
2n—1 ..., 2(22"—1—1)
(ei2n9 + e—i?nﬂ)(eiﬂ _ e—iﬂ)
(ei@n—1)8 — ¢=i(2n—1)8)
cos2nfsin@  sin(2n + 1)0

= inlen - 16 sin(2n — 1)§ .

Therefore we have to prove that the equation

f(6) =sin(2n+ 1)d + (a — 1)sin(2n - 1)§ =0

has at least n—1 roots in the interval (0, g). This is obvious for a = 1 because
k
f(6x) = 0, where 6, = 2nj— T 1<k<n.

Observe now that (k — 1)m < (2n — 1)6r < km and this implies that
(—1)*1sin(2n — 1)é, > 0. Hence f(6r)f(6ry1) < O for a # 1 and the In-
termediate value theorem implies that the equation f(6) = 0 has at least one
root in each of the intervals (6,62),...,(6n—1,60,). This completes the proof
of the lemma.

Remark. If follows from the above that the polynomial P(z) has at most
two real zeros x; and xp (possibly x; = x2) and z122 = 1. It can be proved
that:

1) if a > 2, then ; < —1 and 23 € (—1,0);

2) if a =2, then xy = 29 = —1;
3)ifa< — 2 , then 21 > 1 and z € (0, 1);
27?,2— 1
4) ifa = —

) ifa 2n — 1
2 1,2), then the polynomial P(z) has no real zeros. In

9) if ——
)1(16(2

, then £y = 29 = 1;

this case it has a zero z = €*??, where ¢ € (0,6;) for a € (— 2n2— 1,1) and

9 (9n, g) for a € (1,2).
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54. Bulgarian Mathematical Olympiad
Regional Round

9.1. It follows from the condition that there is a polynomial ¢(x) of degree
2 such that

' —3ax® 4+ ax + b= g(z) (2% — 1) + (a® + 1)z + 3b?

for every x. Setting x = 1 and x = —1 we obtain the system
a?+302+2a—b =0
a?—3b?+2a+b+2 =0
1++v1
and it is easy to see that a = —1, b = 3. A direct verification shows

that these values of a and b are solutions indeed.

9.2. Denote the circles by ki(Oy,r),

k2(O2, R) and k(O, z), where r < = < R. Let q
A, B and C be the feet of the perpendiculars k,
from O;, O and Os, respectively, to the arm
p of the given angle Opq. Let | be the line 0. NZ—
through O; parallel to p and let [ meet OB and J NY [N /1
0O,C at points M and N, respectively. Then A B Cc P
ADNO1OM ~ AO{O9N and therefore

00, OM
0103  O3N’
We have OM = OB—-— BM = 0B—-0A=z2—17r, 0103 = r+ R and
OoN =0yC—CN =0;C—-0OA=R—r.
If k passes through Oy, then OO; = x and we get the equation

X r—r

R+r R-—7

R
whence x = % If k passes through Og, then OOy = R+ r — x and

R+r—=2x r—r

R+r R—7r
: r+ R
whence we have again x = .

In both cases O is the midpoint of Q109 and k passes through O; and Oa,.

9.3. Assume that the pair (z,z + 1) is a solution of the equation. Then we
have

a—b = dfz—btaz+1) e
bk = (a— b)[ar:(a"_l +akF 2% 4. pabk 24 bk_l) — 1] .
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Suppose that the numbers a—b and ac(a"_1 +aF 24 abk24 bk*l)— 1
have a common prime divisor p. Then p divides b*, i.e. p divides b. But p
divides also a— b and therefore it divides a as well. Now the fact that p divides
z(a* 14+ aF-2b+. .. +abF~24+bF~1)—1 implies that p divides 1, a contradiction.

Therefore the numbers a — b and z(a* ! + a*~2b 4 - - + ab* =2 + b*~1) — 1
are co-prime, which implies that each of them is a k-th power (up to a sign).
In particular, |a — b| is a k-th power.

The case of a solution (x + 1, z) is considered analogously.

9.4. Answer: p = 2. The condition p > 1 is necessary (but not sufficient!)
for existence of four roots. We consider two cases:

Case . f z2 —px—2p+1=p—1 < 22 —pz — 3p + 2 = 0 then by the
Vieta theorem we obtain z? 4 23 = p? — 2(2 — 3p) = p* + 6p — 4.

Case 2. If 22 —px — 2p+ 1= 1—p <= z%—pr—p= 0 then by the Vieta
theorem we obtain x3 + x3 = p* + 2p.

Now the condition implies

TP+ T+ s+ 2e =20 <= 2p°+8p—4=20 < p*+4p—12=0,

whence p = 2 or p = —6. The second value does not satisfy p > 1. For p =2
we do have four real roots (direct check!).

9.5. It fo/Llows from the condition that T lies
on the arc BC. Let M = NT N DP be the mid-
point of NT. Then we have

MB.MD = MT? = MN?.

Thus MB: MN = MN : M D and it follows
that ANMB ~ ADMN . Hence

SMNB =<4MDN = xNCA,

i.e. NT|JAC. Thus

NT 2NM 2MD

AP AP PD >

9.6. The number of all pairs of players is = 300 and after each game

10 of them become impossible. Therefore at most 300 : 10 = 30 games are

possible.

We shall prove that 30 games are possible. We denote the pairs of players
by (m,n), where 1 < m,n < 5 are integers (in other words, we put them in a
table 5 x 5).

In the game i, 1 < ¢ < 5, we put the five pairs with m = ¢ (i.e. those from
the i-th row of the table). In the game 6 + 5k +4, 0 <1 <4,0< k <4, we set
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the pair (m,n) such that mk + n is congruent to ¢ modulo 5. It is clear that
for any fixed values of k,7,m there exists a unique n such that mk + n = ;
(mod 5). Thus we have one pair in each row, i.e. the pairs are five and they
have not played in the first 5 games.

For every two pairs (m,n) and (m’,n’), m’ # m, the numbers k(m — m/),
k=0,1,2,3,4, give different remainders modulo 5. Hence there exists a unique
k such that k(m —m') = n—n' (mod 5). Equivalently, km — n and km/ — n’
have the same remainder ¢ modulo 5 and the numbers k and i determine the
unique game in which the pairs (m,n) and (m/,n’) participate.

10.1. Set u = 2% > 0 and v = 3¥ > 0. Then the system becomes

u? + 2w — ¥ = 0
2ut — Swv 4+ v? = -8
The first equation can be written as (u + v)(3u — v) = 0, whence u = —v

or 3u = v. The first case is not possible since u and v are positive. Plugging
v = 3u in the second equation gives u? = 2, whence u = v/2 and v = 3/2.

1 1
Thus = 3 and y = 1+§log32.

10.2. a) Denote the midpoints of AC and
BD by M and N, respectively. Using the median

p _c P HC
formula for ABM D we have v
_ 2MB? 4. 2MD? — 2 p
) b

M 2
N 4
We also have
2 2 _ 2 2 2 _ 2
M32:2a +2b C,MD2:2C +2d e A
4 4 a
and plugging these expressions in the equality B

for MN? gives
0<4AMN?=a? + 0%+ 2 +d? - e — f2.

b) The Ptolemy’s theorem states that ac + bd = ef. Using this we write
the identity from a) as

(a—c)* +(b—d)? = (e— f)? + 4AMN?.

In order to prove the required inequality it is enough to show that the inequality
(b—d)? < 4M N? holds. But it follows from the triangle inequality for AM NP,
where P is the midpoint of CD.

10.3. The left hand side of the given equation is a multiple of m, n and
m—n. Therefore m = 2%, n = 2% and m—n = 2¢ for some nonnegative integers
a, b and ¢, where a > b. It is obvious that 26(2¢~% — 1) = 2¢, whence a— b = 1.
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Plugging b = a — 1 in the given equation we obtain

[22a 4+ 22a—1, 22a—1 . 22a—2] + [2a _ 2a—1, 22a—1] _ 22a—1 +3- 22a—1
22a+1 — 22005.

Hence a = 1002, m = 21992 and n = 21001
10.4. The first equation is quadratic with discriminant D = (9a% — 1)2.

1 :
Therefore it has two different solutions for a # :i:§ and exactly one solution

for a = :i:l.

Since the function
223 + 6 + (3a — 1)212°

1
is strictly increasing, the second equation has at most one solution. For a = 3
: : : 1. . :
it has solution z = 0, while for a = —= it is not defined. Finally, the only value
. G 1
of a which satisfies the condition, is a = 3

10.5. Denote by D and E the feet of the
altitudes of AABC from the vertices A and B,
respectively. The quadrilateral HDCE is in-
scribed in the circle with diameter CH. The
points Hy and Hg are the midpoints of the two

arcs DFE since CH; and CHjy are the internal
and external bisectors of X ACB, respectively.
Hence the line HyHs is the perpendicular bi-

sector of the segment DE. A M B
On the other hand, the quadrilateral ABDFE is also inscribed, this time in

the circle with diameter AB. Therefore the perpendicular bisector of the chord
DE passes through the center M of the circumcircle of ABDE.

10.6. Let xy, 29, ..., %1000 be an arbitrary rearrangement of the numbers
1,2,...,1000. Set

S1=x1+2x2+ -+ 250,...,52 = Tgs1 + Tg52 + -+ * + £1000-
500500

50 = 25025 for at least one

Since S1 + -+ 4+ S99 = 500500, we have S; >
index 1.

On the other hand, if a number B has the required property then we have
B < 25025. To see this consider the rearrangement

1000, 1,999, 2, .. ., 501, 500

and take arbitrarily fifty consecutive numbers in it. If the first number is greater
than 500, then the sum of these fifty numbers is 25025, otherwise it is 25000.

Hence A = 25025.
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11.1. We write the given equation as
(1) 2ay* — V2(a —3)y + 1 =0,
where
y = —é——%(sinx + cosz) = sin(x + 45°) € [—1, 1}.
It has a solution if and only if (1) has a solution in the interval [—1, 1].

2
For a = 0 the equation (1) is linear and its root y = r belongs to the

interval [—1, 1].
Let a # 0 and set f(y) = 2ay® — v/2(a — 3)y + 1. We have f(1) = 0 and

f(=1)=0fora= —7\/§+ 8 and a = 7\/52_ 8, respectively. The quadratic
polynomial f(y) has exactly one root in (—1,1) if and only if f(—1)f(1) < 0.
This implies that a € —7\/§2+ 8, 0Ojulo0, 7\/52_ 8
Further, f(y) has two roots in (—1, 1) if and only if
2—38
a € (—o0,0)U (7\/— ,oo)
2
af(— ) S5 s
a’f( ) _ _ + U 0
D:a—20a+18>0¢=> @€ T g (0, 00)
_1<\/§( —3)<1 a€ (—o0,1]UJ9,00)
4a 3+6v2 6v2—3
ac | —o0,— U , OO
7 7
Hence a € (—oo, —7\/§2+ 8) U (7\/52_ 8, 1] U9, 0).

Taking into account the above cases we get a € (—o0, 1] U [9, 00).

Second Solution. The discriminant of f(y) is non-negative if and only if
a € (—oo,1JU ]9, 00).

Fora < 1wehavef(0)=1>Ozmdf(—\/§

1
that the equation f(y) = 0 has a root in the interval (_E’ O) c(—1,1).

i) = 2a—2 < 0, which implies

1 2
Fora > 9 we have f(0) =1 > 0 and —— | = =(9—a) < 0, which shows
> 9 we have /(0) 1(555) - 30-a) < 0w

1
that the equation f(y) = 0 has a root in the interval (0, 3—\/_—2-) c(—-1,1).

Hence the given equation has a solution if and only if a € (—o0, 1] U[9, o0).

11.2. Set AA\N BB =M, BBiNnCC; =N and CCiNAA, = P. Using
the standard notation for the angles of AABC, we have

XPMN =9 —4BBC=p—(p—7)=1.
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Analogously, we get MNP = «a and
XNPM =3, ie. ANPM ~ AABC.

Let H be the orthocenter of AABC. The
equalities YHCC; = XHBB, = ¥xHAA, =
90° — ¢ imply that each of the quadrilater-
als ABMH, BCNH and ACHP is cyclic.
Therefore XHMA = XHBA = 90° — o and
XHPM = 180°— xAPH = YACH = 90° —q, »
which implies that H is the circumcenter of , C, B
AMNP.

b) We have proved that the points A, B, M and H are cyclic. Then the

Sine theorem gives
MH c

sin(90° — )  sin(180° — )’
i.e. MH = 2R cos¢. Since M H is the circumradius of AMN P, we conclude
that

Sunp MH?
2—V3= =

v3 SaBc R?
Noting that 0 < 2¢ < 180° we get 2¢ = 150°, i.e. ¢ = 75°.

11.3. a) A direct check shows that the condition is satisfied when a+b+c¢ =
d. Let us assume that a + b+ ¢ > d. Then it is easy to see that

ab+ cd > (d — a)(d— b).

=4cos?p <= 2cos2p = —V3.

We have analogously be+ad > (d—b)(d—c) and ac+bd > (d—a)(d—c). Now

the multiplication of these three inequalities gives a contradiction. Analogous

arguments lead to a contradiction when a+b+c¢ < d and therefore d = a+b+c.
b) For a fixed d, 3 < d < n, the equation d = a + b + ¢ has

(d; 1) _ (d—1)2(d—2)

solutions. (This can be proved as follows. Write consecutively d 1’s. Then the
number of the solutions is equal to the number of the ways one can put two
separating lines in that sequence; for example 111|11...11|1 corresponds to
a=3,b=d—4, ¢c= 1) This formula is true also for d = 1 and d = 2 since
the equation has no solutions in these cases.

It remains to calculate

(d—1)d—2) Igsp 3¢

d=1
_ 1Ian+1)2n+1) 3n(n+1)
= 3 6 3T tn
_ n(n—1)(n-2)
= 5 .
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11.4. Since ax > 0 and 4% — 3% > 0 it follows that a > 0 and =z > 0.
Fora >0, x > 0 and ax # 1 the equation is equivalent to

4 2z T
3% 4+ 42 =721/ — 3¢ — 45 (—‘;) — 57 (g) —4=0.

4 X
Setting y = (5) > 0 we obtain the equation 45y%—57y—4 = 0 with solutions

y1 = — and yg = T Hence x = 1. The condition ax # 1 now implies that

a#1
The required values of a are a € (0,400) \ {1}.
11.5. a) If RT is the altitude of ACRQ,

then RT = CRsinvy. Using the Sine theorem

for AB1RC we get

BiCsing  2Rsin g sin §

CR =
cos % cos %

where R is the circumradius of AABC. Hence

RT = 4Rsingsin gsin% =7,

where r is the inradius of AABC.
b) As in a) we see that the altitude of ABNP through N is equal to r,

which means that the lines NR and BC are parallel and the distance between
them is r. Therefore I € NR, where I is incenter of AABC.
The same argument shows that € M@ and I € SR.

11.6. We first prove the following lemma.

LEMMA. For any five vertices of a regular 13-gon there exists an isosceles
triangle with vertices amongst these points.

Proof of the lemma. Let the five points form a convex pentagon ABCDE.
We first consider the case when there exist two pairs of parallel lines determined
by some vertices of ABCDE. We have the following possibilities:

1) There are two pairs of parallel sides of ABCDE - for example AE||CD
and BC||DE. Then we have YAED = ¥BCD or YAED = 180° — ¥xBCD,
i.e. sinXAED = sinxBCD. Hence AD = 2Rsin YAED = 2Rsin xBCD
= BD and therefore the triangle AABD is isosceles.

2) There are two diagonals that are parallel respectively to two sides of
ABCDE. Without loos of generality we may assume that AB||CE. If AC||DE
we conclude as in 1) that BC = CD. If AD||BC, then EB = BD. The cases
BE||CD and BD||AE are similar.

3) There is a diagonal of ABCDE that is parallel to its side and a pair
of parallel sides of ABCDE. Without loos of generality we may assume that
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AB||CE. Since AFE is not parallel to BC (otherwise ABCE is a rectangle
with vertices amongst the vertices of a regular 13-gon) we may assume that
DE||BC. Then DC = CA.

Let us now assume that there exists at most one pair of parallel lines deter-
mined by some vertices of ABCDE. Since the vertices of ABCDE determine
10 lines, at least 9 of them are not parallel to each other. Consider the 9 pairs
of vertices determining such lines. Every such pair is a base of an isosceles
triangle whose third vertex is a vertex of the 13-gon. Note that all such third
vertices are different because no two of the bases are parallel. Hence at least
one of these 9 vertices is a vertex of ABCDFE and this proves the existence of
the desired isosceles triangle. This completes the proof of the lemma.

The regular 26-gon is formed by two disjoint regular 13-gons. If we choose 9
of its vertices then at least 5 of them are vertices of one of these 13-gons. Then
it follows from the lemma that there exists an isosceles triangle with vertices
amongst the vertices of this 13-gon.

Finally, note that there exist 8 vertices such that no three of them form an
isosceles triangle. For example, if the vertices are labelled from 1 to 26, then
we choose the vertices 1, 2, 4, 5, 10, 11, 13 and 14.

12.1. Set

ala—b)+bb—c)+clc—a)
5 -
where d is an integer, x =a —b, y = b — c and z = ¢ — a. Then we have

d2

x+y+z=0, 22 + %+ 2% = 4d2 (1)

Since any square is congruent to 0 or 1 modulo 4, it follows from (1) that

the integers x, y and z are even. Set z; = g, Y = 5 and z; = % Then (1)
gives

2 4+y+21=0, 22 4yt + 2t =d?

and we conclude as above that z;, y1, 21 and d are even integers. Repeating
the same argument we see that 2" divides x, y and z for every positive integer
n. Therefore r =y=2=0,ie.a=b=c

12.2. The first condition of the problem is equivalent to the assertion that
the equation 3 + ax + b = 0 has a double real root z; # 0 and a simple real
root x9 # 0, where xg # x;. Therefore

2 +ax+b=(x—2)%(z — ).

We also have 4 ACB = 90°, where A = (z;,0), B = (22,0), C = (0,b)
and zyz9 < 0. Hence AO.BO = CO?, i.e. —x;xz9 = b?. Since b = —x%mg and

x1,22 # 0, we get ac"fmg = —1. On the other hand, we have 2y + 29 = 0

1 1
and therefore 22, = —x3 = ot Hence 21 = +—= and x3 = F+/8. Then
1

V2
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3
a=2x%+ 2129 = 5 and b = —x%x9 = £¥/2. The above arguments imply
as well that these two values of b are solutions indeed.

12.3. Let ABCD be a cyclic quadrilateral. Then the Simson theorem for
AABC gives DBy LAC. Hence 4 B1C1D =4 BiAD =4 CBD, 4 B, DC, =
J B1AC) =<4 CDB and therefore AB1C1D ~ ACBD.

Analogously AB1 A1 D ~ AABD, whence

DA:DB:DC= . .1 D A
P EY = Da; DB DC; 4
This together with the Ptolemy’s theorem for B
ABCD gives :
(1 BC N BA  AC
) DA,  DC, DBy

Conversely, suppose that the identity (1) is
true. Set z = DB, and DB, . Squaring (1) CvB
rae. = Da, YT Py vmanng
and applying the Cosine theorem for AABC, we

see that the ratio —— is a root of the equation

BC
(2) (y2 — 1)t + 2(zy + cos & ABCYt +z? —1=0.

Since the point B; lies on the segment A;C), the inequality DB, > DA,
implies that DB; < DC;. Hence x > 1 and 0 < y < 1, which shows that (2)
has at most one positive root.

On the other hand, it is easy to see that C; and A; lie on the open rays BA™
and BC™, and the line through B; perpendicular to DB, intersects these two
rays. Denote these intersection points by A’ and C’. Then the converse Simson

theorem implies that the convex quadrilateral A’BC’'D is cyclic. Hence the
/

identity (1) for A’BC’'D is satisfied, i.e. -lB;—g,
BA’

BA — 7al Yal
Therefore BC — BO i.e. AC||A'C’. But the lines AC and A'C’ have a

common point B; and this shows that A = A’ and C = C".

Remark. We have used the condition DB; > DA; only in the proof that
the condition (1) is sufficient.

is a root of the equation (2).

through B is equal to h = BM sin60° = 2—(3—\_—/4_—6—1—5 Since Bi1K = CK =
VzZ +1 and B,C = /2, we have SpKC = 2xT+1 Therefore

V= h~SB1KC oz 6(2x2 -+ 1)
3 12(x+1)
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12.4. We may assume that the edges of the
cube have length 1. Denote M = A1B N KB,
and set KB = z. Since AKBM ~ ANA{M B, it

follows that

1
1
. : : . ,
A . Now using the identity A, : B,
1
1

mM+MB=¢ngwMB:if

by V the volume of the tetrahedron K BCB;. |

Then M -7
1/:%BBL5Kmy:%. W | . N\

On the other hand, the altitude of KBCB; A K B

. Denote

This and (1) imply that

r  x1/6(2x% +1)

6  12(x+1)

and we obtain easily that x = l
Denote by L the foot of the perpendicular from B to KC. Then KC 1 BL
and KC 1 BB; which shows that KCLB,L. Hence « =< B;LB. We get

from AKBC that BL = —\71-_5 and therefore tan o = /5.

12.5. Suppose that it is not possible to cut a triangle T of area /3 from
the band. Then it is clear that the lengths of its altitudes are greater than v/3.
Hence the lengths of its sides are less than 2.

Let a be the smallest angle of T. Then o < 60° and we get

V3= bcs;na < 2.2si2n 60° _ \/5,

a contradiction.

12.6. a) Let n € A and O, = {n, f(n),—n, f(—n)}. Since f(f(n)) = —n
and f(f(—n)) = n, it follows easily that if k& € A then either O, = O, or
O, N Oy = ¢. Moreover, we obtain f(n) # f(—n) for n # 0.

Further, if f(£n) = £n, then Fn = f(f(xn)) = f(£n) = £n, i.e. n = 0.
Also, f(£n) = Fn gives Fn = f(f(£n) = f(Fn) and then n = 0. Therefore
|On| = 4 for n # 0 which means that A\ {0} splits into disjoint quadruples.
In particular, the number m is even.

b) Let m = 2k and f : A — A be a function with the desired property.
Set Ay = {1,2,...,m}. We note that f(—n) = f(f(f(n)) = —f(n) and, in
particular, f(0) = 0. Hence for n # 0 either f(n) > 0 or f(—n) < 0. This
means that the quadruple O, is uniquely determined by a pair (n’, f(n')) of
distinct numbers from A, - (n, f(n)) or (f(—n),n). Therefore f induces a
pairing of A, into ordered pairs.
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Conversely, any pairing of A into ordered pairs (n, k) defines a function
with the required properties by setting

f(O)ZO, f(n) =k, f(k)=—n, f(—n)=—k, f(=k) =n.

It remains to count the number of the pairings of A, into ordered pairs.
Ordering all pairs of a given pairing one after another (this can be done in k!
ways) we obtain a permutation of the numbers 1,2,..., m. This gives classes

of “equivalent” permutations of k! elements. Therefore the required number is
]

Lt m!
equal to R
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54. Bulgarian Mathematical Olympiad
National Round

1. We first prove the following lemma.

LEMMA. If p, q, r and /P + /g + /T are rational numbers then /P, \/q
and /T are also rational numbers.

Proof of the lemma. Let /P + /g + /7 = s, where pgr # 0 and s is a
rational number. Then /p + /g = s — /7 and we get by squaring that

D+q+2p =s24r—257 <= 2\/p =sg+r—p—q—2s\/7.

Squarmg the last identity gives dpg = M? + 4s*r — 4Ms\/T, where M =
s2 +r —p—q > 0. Therefore /T is rational and we see in the same way that

/P and /g are rational. This completes the proof of the lemma.
Let the positive integers x, y and z have the required property. Then the

005 2005
lemma. implies that \/ 2005 \/ 2 are rational numbers. Set
21z y+z

2005 = a—, where a and b are coprime positive integers. Then 2005b% =

z+y b
(x + y)a? and it follows that a? divides 2005. Hence a = 1 and therefore

z+y = 2005b%. In the same way we obtain z + z = 2005¢® and y+ z = 2005d2,
where ¢ and d are positive integers. Then

2005 2005 \/2005 1+l+l
Vm-{—y x4z Tz b ¢ ' d

is a positive integer. Since b, ¢ and d are positive integers, we have

1 1 1
< —_—
1 7t 3 +d_3
1 1 1
Ifg+—+—:3,thenb:c:d=1andthesystemx+y=x+z:

c
y + 2z = 2005 has no solutions in positive integers.

If ! + E + c—]{l = 2, then one of the numbers b, ¢ and d is equal to 1 and the

c
other two are equal to 2. Again, the system for z, ¥y and z has no solutions in
positive integers.

1
[t remains to consider the case %—1— % + i 1. Suppose that b > c > d > 1.

3
Thengz1andtherefored=2ord=3.Ifd:3wegetb=c=3,andif

1
d = 2 we have 1 + o= % This equation has two solutions: b = 3, ¢ = 6 and

b=c=4. o

The inspection shows that the system for z, y and 2 has a solution in
positive integers only when d = 2, b = ¢ = 4 and in this case x = 14.2005,
y = z = 2.2005. Therefore the solutions of the problem are all triples (z,y, 2)
in which two numbers are equal to 2.2005 and the third one is equal to 14.2005.
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2. a) Since the circles k; and ky are tangent at the point T, we have

~~ ~~

XBXT = %—7: = %‘5 = JTAS.

Then it follows easily that S is the midpoint of the arc AAB, 1e. SA = SB.
Hence XTCI = <TAS (the quadrilateral ATCS is cyclic), ¥TAS = XBXT

and ¥BXT = XTY X. Therefore XTCI = XTYI, which shows that the
quadrilateral CTIY is cyclic.

b) Since XAXS = XTAS it follows easily that AAXS ~ ATAS, whence
SA? = ST.SX. We have from a) that XCIT = ¥CYT = XTXY and therefore
ASXIT ~ ASIT, whence SI? = ST.SX. Hence SA = SI. On the other hand,
it follows from

XBCI = 180° — ¥BCS = 180° — ("y + i‘;—ﬁ) = 90° — %

that CI is the external bisector of XACB.

In the isosceles ABST we have xBSI = ¥BSC = o and we find xBIS =
90° — <. Now from ABCI we have XCBI =90° — g, which means that BJ
is the external bisector of XABC. Therefore I is the center of the excircle of
AABC tangent to the side BC.

.3. Assume, for a contradiction, that there exists such a set.

We first prove that if a € A, then AN (g, a) = ¢. To do this suppose the

: : a a
contrary. i.e. there exists a’ € A and @ > @’ > =. Then the number a —a’ < =

can be represented as a sum of one or finitely many different numbers from A.
. . a ' '

Since each of these numbers is less than X the number a = a’ +a —a’ has two

different representations of the required type (as a and as a’ plus the numbers

of the representation of a — a’), a contradiction.

1
In particular, it follows from the above that in every interval 5 52—_—1—),

1 = 1,2,..., there is at most one element of A. Since the set A is infinite
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(otherwise we can obtain only a finite number of sums of different numbers
from A) it easily follows that the numbers of A can be ordered in an infinite
sequence aj, ag, ..., which satisfies a; > 2a;41 for every 7. If this inequality is
strict for some %, then

(e e} o0
ai
s=2 ai<) =
=2 =2

This shows that the numbers from the interval (s,a;) can not be represented
as a sum of one or finitely many different numbers from A.
a : )
Therefore a;; = —zl for every ¢. Now it is easy to see that only the numbers

of the form alﬂn can be represented as a sum of one or a finite number of
different numbers from A. Thus any rational number with an odd denominator
which is coprime with the denominator of a; can not be represented as required.
This is a contradiction which completes the proof.

4. Set BC = B'C = a, AC = A'C = b, C F
AB = A'B' = cand XC = ~. Since the triangles B
AA'C and BB'C are similar we have E
AA" BB A’
22 2 k. A
AC BC M
Therefore AA' = kb and BB’ = ka. B

Using the median formula several times we get
AEM? = k%% + & + 6* + a® — A'B? — b?,
AFM? = k% + 2+ b* +a* — A'B* - o

Hence the condition EM = FM is equivalent to (k% — 1)(a® — b%) = 0,
whence k = 1 (since a # b). This is true exactly when AAA'C is equilateral,
i.e. for +60° rotation. We consider here only the case of a positively oriented
AABC and rotation through 60°; the remaining cases are analogous. We have
from ACBA’ that |

A'B? = a? + b% — 2abcos(60° — ),
and we obtain from AAB'C that
AEF? = B'A? = a® + 6% — 2abcos(60° + 7).

We shall prove that EF = EM. It follows from the above expressions for
EF and EM that this is equivalent to the identity

¢? + 2abcos(60° — ) = a® + b* — 2abcos(60° + 7).
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Since a? + b2 — c? = 2abcosy we rewrite the above identity as
2ab cos(60° — 7v) + 2ab cos(60° + ) = 2ab cos .

This is equivalent to 2 cos 60° cosy = cos v, which is true. Therefore EF = EM
and XEMF = 60°.

5. We first prove the following lemma.

LEMMA. If in the (t;a,b)-game some of the two players has a winning
strategy, then in the (t4+a-+b, a, b)-game the same player has a winning strategy.

Proof of the lemma. Denote the players by A and B and let B have a
winning strategy for the (¢;a,b)-game. In the (t + a + b; a, b)-game after the
first move of A we obtain either the (¢ + a;a, b)-game or the (¢ + b; a, b)-game
with B to go first. In both cases B can get the (¢;a,b)-game with A as first
player in which case B has a winning strategy.

Let us now assume that A has a winning strategy for the (t;a,b)-game.
Then after the first move of A we obtain either the (¢ — a;a, b)-game or the
(t — b;a,b)-game with B to go first. Therefore the second player has a winning
strategy for some of these games.

We consider (without loss of generality) the case of the (¢t — a; a,b)-game.
It follows from the above that the second player has a winning strategy for the
(t—a+a+b=1t+b;a,b)-game. Since A can obtain the (¢ + b; a, b)-game with
B to go first from the (t + a + b; a, b)-game, it follows that A has a winning
strategy for the (¢ + a + b; a,b)-game. This completes the proof of the lemma.

We now prove that for £ = 2004 and a + b = 2005 the first player A has a
winning strategy. We may assume that a < b. Since a > 0, we have b < 2004.
Then A subtracts b from ¢t = 2004. The resulting number 2004 — b is less than a
since a+ b = 2005. This means that any move of B leads to a negative number.
Now the lemma implies that A has a winning strategy for the (¢, a, b)-game for
every t = 2004 (mod 2005) and a + b = 2005.

6. We shall use the following lemma.

Ty
Tty

>n. Then

LEMMA. Let z, y and n be positive integers such that

Yy
>n+ —s——
4y +n?+2n+2

with equality if and only if {x,y} = {n+ 1,72 + n +1}.

Proof of the lemma. Since xy > n(x +y), we have zy = n(x+y) + r, where
7 is a positive integer. Then (x — n)(y —n) = n? + r, which implies that x > n
and y > n. Set x = n+d; and y = n+ dy. Then didy = n? +r. Now using the

r 1
i iti > < 2
inequalities 172 AT and d; + dy < 1+ n® + r (the latter follows from
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di + dy <1+ dydy), we get

xy n? + dydy + n(d; + d) . r
r+y 2n +dy + da B on +d; +do
1
> n .

>n+ ———
+2n+n?+1+7"_ n +2n+ 2

Note that the equality is attained if and only if {x,y} = {n+1,n% + n+ 1},
This completes the proof of the lemma.

The condition of the problem implies that c(c* —c+1) = pab and a + b =
q(c® 4+ 1), where p and ¢ are positive integers. Therefore

c(c2—c+1)  pgab  xy
2+1  a+b z+y’

where x = pga and y = pgb. Then

dd =c— 2 =c—1+ !
z+y = c2+1 2+ 1

whence > c¢— 1. Now the lemma gives
rT+y
Y 1 1
>c—1 =c— 1+ .
m-{—y_c +(c—1)2+2(c—1)+2 cT it aya

Hence we have the case of equality and therefore
{z,y} = {c,® —c+1}.

Since the numbers ¢ and ¢ — ¢+ 1 are coprime and z = pga, y = pgb, it follows
that p = ¢ = 1. Hence {a,b} = {c,c? —c+ 1}.
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Team selection test for 22. BMO

1. Using twice the inequalities x — 1 < [z] < x we obtain
abn—a—1<n—1<abn.

This implies n(ab—1) < a and n(1 —ab) < 1. If ab # 1, then eitherab—1 > 0
or 1 —ab > 0, which shows that one of the inequalities n(ab — 1) < a and
n(1 — ab) <1 is not satisfied for n large enough.

Therefore ab = 1 and the given inequality is equivalent to

bn —b < [bn] < bn.

It follows from [bn] < bn than bn is not integral for any n which is possible
only when the number b is irrational. For b > 1 the inequality bn — b < [bn] is

obvious. If 0 < b < 1, we take n = [ } and obtain the inequalities

b—1

n—2<b n
n—1 Sho1

[b]

Hence [bn] < n — 2 and therefore —b—} < n—1, a contradiction.

Thus the solutions of the problem are the irrational numbers a and b such
that ab=1and b > 1.

2. We have 4 BCQ =4 ACP =4 EDP.
Since PD 1 BC, it follows that ED1.CQ. Anal-
ogously we have AQLFEF. Since 4 DEF = 90°,
we conclude that 4 AQC = 90° as well. Then
AQCD ~ AACP, because 4 QCD =<4 ACP
and we get

DC _ PCcos § PCD _ PC
QC  ACcos 3 ACQ AC

Therefore ¢ DQC =4 PAC =<4 PFE. Since
CQ||EF (LED), it follows that DQ||PF, i.e.
DQLAB.

Using the same arguments we prove that FQLBC and hence @ is the
orthocenter of ABDF'.

Remark. The converse assertion is also true: if @ is the orthocenter of
ABDF, then 4 DEF = 90°.

3. Answer: there is such a sequence. We shall define the required sequence
inductively. We set a; = 1, ag = 2 and assume that a1, aq, ..., ag, are already
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determined. Denote by m the smallest positive integer which can not be rep-
resented as a; —a;, 1 < ¢ < 7 < 2k. Since the number of such differences is
d=k(2k — 1), we have m < d + 1.

Set aggro = agry1 + m, where aggy; is such that

Gok+1 # O, G2+l T M F ay,
Gok+1 — Gl # Gf — Gf, G2k+1 +M —a; ¥ a5 — Gy,

for 1 <1 <2k, 1 <1< 7 <2k This implies that ay,ag,...,ao,so are all
distinct and every integer between 1 and m can be written in a unique way
as a; —a;, 1 <1 < j < 2k + 2. Since there are exactly 6k + 4kd “forbidden”
values for agr,1 we can choose agr+1 with the above properties and such that
aoky1 < 6k + 4kd + 1. Then

2k+1 <a2k+2=a2k+1+m£6k+4kd+1+d+1<(2k+1)3

and it remains to put the numbers ay, ag, . .., ageyo in increasing order (check
that the inequality a, < n3 is still valid).

4. Let O be an arbitrary point in the plane and let A} 1 A21...Ap1 be an
n-gon similar to P and containing O. Consider the n-gons

0A1,1A1,2 s Al,n—l, OA2,1A2,2 s A2,n—1, SR OAn,lAn,2 < An,n—l,

that are similar to Ay 1Ag;...Ap; and have the same orientation. Using a
rotation and a homothety with center O we see that the n-gon Ay ;A2 ... Anj,
J=2,...,n—1, is similar to A; 142 ... An,1 and has the same orientation.

Denote by o and a;; the numbers assigned to the points O and A, ;, re-
spectively. Summing up the equalities

and using that
Zam‘ =0, 1= 1,...,n— 1,
i=1

we get no = 0, which implies the assertion.

5. We shall prove by induction on n that a, = n — ta(n), where t3(n) is
the number of 1’s in the binary representation of n. For n = 0 we have ag =0
and the assertion is true. Let us assume that it is true for every n < k — 1.
If k = 2kg, then ty(ko) = ta(k) (the binary representations of kg and k = 2k
have the same number of 1’s) and we obtain

ar = A, + ko = ko — talko) + ko = k — ta(ko) =k — ta(k).
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If k = 2ko + 1, then ¢3(2ko + 1) = t2(2ko) + 1 (the binary representation of
2ko + 1 has one more 1 than this of 2kg) and we get

ar = Gk, + ko = ko— ta(ko) + ko = 2kg — t2(2ko)
= 2ko+1—1t2(2ko + 1) =k — to(k).

Since n > 2t — 1 for ta(n) = t, we have

to (TL) lim t

0< lim < — =0.
n—+00 n t—+oo 2t
. to(n
Hence lim A-) = 0 and therefore
n—-+oo n
, a . n—to(n . ta(n
lim — = lim ——2(——2=1— lim 2()=1.
n—+oo N n—-+4+o0o n n—+oo N

6. We shall prove the assertion by inductionon N = ay +ag+-- -+ ay,. For
N =1wehavem =1,a; = 1 and by = 1 is the required number. Let us assume
that the assertion is true for every collection with sum less than N and let

ai,a2,...,0y, besuch that a; +ay+---+am,m = N. If all numbers aq, aq, . . ., ap,

ar a a N : :
are even then the numbers —, =2, ..., —® have sum — and by the induction

hypothesis there exists a collection by, bg, . .., b, which satisfies the condition.
Then the required numbers for ay, a9, ...,an are 2by,2bs, ..., 2by,.

Suppose now that at least one of the numbers ay, ag, . .., am isodd. Without
loss of generality we can assume that a,, is the smallest odd number in the
collection. Let us consider the numbers aj,as,...,a;,_; defined by

a; . :
— , if a; is even
r_
a; = a; — G,

, if a; is odd
2

The sum of the new numbers a} is less than N and the induction hypothesis
implies the existence of numbers b1, b5, . .., b}, which satisfy the conditions. We
shall prove that the numbers 2b7, 2b5, . . ., 2b},, am, are the required numbers for
the collection ay,aq,. .., Qm-

If two nonintersecting subsets of {2b],2b),...,2b,,an} have equal sums
then a,; (as the only odd number) does not belong to these sets. Dividing
by 2 we obtain two nonintersecting subsets of {b1,b5, ..., b, } with equal sums
which is a contradiction. Also, it is easy to see that every a;, 1 = 1,2,...,m
can be represented as a sum of some of the numbers 2b1, 2bj, . . ., 2b},, ar which
completes the induction step.
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7. The Sine theorem for the triangles ODQ
and AOQ gives

Q
sing _ QD
sin@ OD
D
and
sin(p+ 4 AOD)  AQ c

sin 3 - 0A’

whence 0
sin(p+ ¢ AOD)  AQ OD
sin ¢ - OA' QD A B p

We obtain in the same way that

sin(p+ ¢ AOB) AP OB
sin ¢ ~ OA BP’

Therefore
sin(p+ 4 AOD) AQ OD BP

sin(p+ 4 AOB) AP OB QD'
We get in the same way that

sin(¢ DOC—¢) QC OB PD

sin(4 BOC —¢) PC OD QB

Using the Menelaus theorem for AADC and the line QP and for AABC
and the line QP we obtain

AQ.DP AL an QC.BP CL
DQ.CP CL QB.AP AL

Setting p + 4 AOD =2z, +4 AOB =y, 4 DOC—p =z and 4 BOC—¢p =
" t, we have

sinz.sinz  AQ.DP.QC.BP AL CL _
siny.sint DQ.CPQB.AP CL AL
l.e. sinx.sin z = siny.sint. [t follows easily from here that

1,

cos(x — z) — cos(x + z) = cos(y — t) — cos(y + t).
Since x + y + z + t = 360°, we have cos(x + 2) = cos(y + t) and therefore
cos(x — z) = cos(y—t). Since £ —2+y—t < 360° and the equality x—2z = t—y
implies that O lies on PQ (prove this!) we obtain x — 2z = y — ¢, whence
r+t=2+y=180°

8. If for every s = 1,2, ..., B any s boys know together at least s girls then
the Hall (marriages’) theorem implies that every boy can dance with a known
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girl and the condition is satisfied. Let us assume now the converse and choose
the largest s < B, such that there are s boys who know together at most s — 1
girls.

Denote the set of these s boys by S and let L be the set of girls known to
the boys from S. If some ¢ of the boys outside S know together at most ¢ of the
girls outside L we have a contradiction with the choice of s. Therefore every ¢
boys outside S know together at least ¢+ 1 of the girls outside L. Now the Hall
theorem implies that every boy outside S can dance with a known girl outside
L. Hence still non-dancing girls outside L are at least

G-(B—s)—(s—1)=G+1-B>B

(the girls which dance with boys outside S are B — s and the girls which are
known to the boys from S are at most s — 1). If the boys from S dance with
some s of these remaining non-dancing girls outside L then the condition is
satisfied.
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Team selection test for 46. IMO

1.Let AP 1 FG and BQ 1L FG, P,Q € FG.

Then C
AB > PQ = PG+ GF + FQ.

Since the quadrilateral CFMG is cyclic we ob- P G 0 Q
tain S CMF =4 CGF =4 AGP. This implies M F
that AAPG ~ ACFM and therefore A D B

f_G_ _ MF PG — MF.AG

A~ oM T YT Tom

MG.BF
In the same way we have QF = e Then
AB—_FG > PC + FQ = MF.AGCLMG'BF~

[t is clear that equality is attained iff AB||F'G. The last means that 4 BAC =
4 FGC =4 AGP, whence 4 MCB = 90°—~ 4 BAC =<4 OCB, where O is
the circumcenter of AABC. Therefore the required locus is the segment CD,
where D is the intersection point of the line OC and the side AB.

2. Let us consider the set {1, 2, 22 ..., 210}. Since every number from 0 to
2047 can be represented in a unique way as a sum of powers of 2 (elements of
our set), we conclude that for every ¢, 0 < i < 2047, there is a unique subset of
{1,2,22,...,219} such that the sum of its elements is equal to (0 corresponds
to the empty set).

We now consider a set A with the following property: for every ¢ the number
of the subsets of A such that the sums of their elements are congruent to ¢
modulo 2048 does not depend on i. [t is easy to see that for every a the set
AU {a} has the same property. Since {1,2,22,...,21°} c {1,2,3,...,2005},

we conclude that the number of the subsets B of {1,2,3,...,2005} such that
2005

2048

the sums of their elements are congruent to ¢ modulo 2048 is equal to

22005
oI = 21994 and this is the required number.
3. Set @« = f(1). Then settingy =1and x =1 in
f(zy)
1) f(z? +y) = f2x) +
( (a2 +v) = 1) + S0
gives
(2) f@*+1) = (=) +1



and

(3) flu+1)=a®+ Lg"—)

respectively. Using (3), we consecutively get

3, 2
f2) =t 41, f(3) = TEEEL
at+ad+a?+1 P +at+ad+a?+1

On the other hand, setting x = 2 in (2) gives f(5) = a*+2a2+2. Therefore

o +at+ad+attl

3 :a4+2a2+2¢:>a7+a5—a4+a3—a2—1=0,

whence
(a—1) [e*(@® +a+ 1) + (e +1)%(a? —a+1) +2a%] = 0.

Since the expression in the square brackets is positive, we have a = 1. Now (3)
implies that

(4) fly+1)=fy)+1

and therefore f(n) = n for every positive integer n.
.- . a " .
Now take an arbitrary positive rational number 3 (a,b are positive inte-

gers). Since (4) gives f(y) =y <= f(y+m)=y+m, m is a positive integer,
a

the equality f (%) =3 is equivalent to
2,3\ _ 42 4
f(B+5) =ty

Since the last equality follows from (1) for x = b and y = % we conclude that

(3) =%

Setting y = z2 in (4), we obtain f(x? + 1) = f(2?) + 1. Hence using (2)
we conclude that f(z%) = f%(z) > 0. Thus f(x) > 0 for every = > 0. Now (1),
the inequality f(z) > 0 for z > 0 and the identity f(x?) = f?(x) imply that
f(x) > f(y) for x >y > 0. Since f(z) = x for every rational number z > 0, it
easily follows that f(x) = z for every real number x > 0.

Finally, given an 2 < 0 we choose y < 0 such that 2 +y > 0. Then zy > 0
and (1) gives

2ty = f’(m2+y):f2(m)+1}éy))
_ 2y, Y _ o, FY
= @ =T
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ie. f(x) = . Therefore f(x) = x for every € R*. It is clear that this function
satisfies (1).

4. We first prove that at least one of the numbers ay,as,...,agps is not
positive. To do this we assume the contrary and choose ¢ such that

ﬁ=M: max (-b—j)

a; 1<5<2005 \ a;

Then we can find € > 0 such that
2005

(az—b)* < > (az—by)

J=Lj7#i

for every x € (M, M + €), a contradiction.

On the other hand, it is easy to see that if ay 2= ag = -+ = 904 =
1001

—a9g00s = 1 and by = by = - -+ = bogog = bogos > the given inequality is
satisfied. Therefore the answer is 4009.
5. Denote by k(O, R) the circumcircle of AABC and by Q the orthogonal
projection of H on CL. Let us further denote
K=HQNLO, S=knLO, P=CLnN DS,

M =ABNLO, N=ABNCD.

Note that N and M are the midpoints of HD and K L, respectively. Indeed,
we have AH = AD (S AHD =4 ABC =4 ADH) and analogously BH =
BD. Hence AB is the perpendicular bisector of the segment HD.

On the other hand, DLSC is an isosceles C S
trapezoid and HK||CS. Therefore DLK H is al-
so an isosceles trapezoid and AB is the perpen-
dicular bisector of the segment K L. Then
LQ LK LM . P9
LC LS R’ Q\

A B
whence w y
LQ = LC.LM . f \

R D L

2
We also have LP = LO.LS = 2R since ALOP ~ ALCS and LB? =

LC
LS. LM =2R.LM since ALBS ~ ALM B. Therefore

LP.LQ = LB
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On the other hand, using 4 LBI = iI-B_;_w— =< LIB we obtain LB =

LI. Then LP.LQ = LI? and, in particular, Q=] <« P=1].

[t remains to note that ¢ C/H = 90° <= Q =1 (since 4 CQH = 90°)
and S IDL = 90° <= P =1 (since ¢ PDL = 90°). This completes the
proof.

Remark. It can be proved that ¢ CIH = 90° iff cos ¢ A+ cos 4 B = 1.

6. We have to prove that if the edges of a complete graph with 9 vertices
are colored in blue and red in such a way that there is no blue quadrilateral
then its vertices can be partitioned into 4 groups without any blue edges inside
any group.

LEMMA 1. The edges of a complete graph with 6 vertices are colored in blue
and red in such a way that there is no blue quadrilateral and its vertices can
not be partitioned into 3 groups without blue edges inside any group. Then the
graph does not contain a red triangle.

Proof. Tt is well known that the complete graph with 6 vertices and edges
colored in two colors (red and blue) has an one-colored triangle. Denote the
vertices of the graph by vy, v, ..., vg and assume the existence of a red triangle
vvous. If some edge vy, 1,7 € {4,5,6}, is red, then {vy,v,v3}, {v;,v;} and
{ue}, k# 1,2,3,4, 7, is a partition which is supposed not to exist.

Therefore v4vsvg is a blue triangle. Now the condition implies that for every
i = 1,2,3 at least one of the edges v;v;, j = 4,5,6, is red. If the edges v1v4
and vevy are red then vivguy is a red triangle and, as above, vsusvg is a blue
triangle. Now, if the edge vsv, is blue, then vsvsvsvg is a blue quadrilateral
and, if the edge v3v, is red, then we have the partition {vi,vq,vs,v4}, {vs}
and {vs}, a contradiction, which completes the proof of the lemma.

LEMMA 2. Under the conditions of Lemma 1 all red edges of G form a cycle
of length 5.

Proof. We know from Lemma 1 that G does not contain a red triangle.

Without loss of generality we can assume that the edges vjvp and wvsvg
are red. If all edges v;v; for ¢ = 1,2, j = 3,4 are red, then the partition
{vi,v,v3,v4}, {vs} and {ve} ensures a contradiction. So, let vavy be blue.
Since the quadrilateral vousvsvg can not be blue, we may assume without loss
of generality that the edge v4ug is red. Now v3vg is blue (otherwise vsvsvg is a
red triangle) and v3vs is blue (otherwise we have the partition {v{, va}, {v3,vs}
and {v4, v} for a contradiction).

If the edge vyvs is red then using the conditions of the problem we see that
the edge vous is blue, the edge voug is red and the edges vyvg, v1vs, v4vs and
v1v4 are blue. We finally conclude that the red edges in G are v vq, voug, Vgvs,
vqv3 and v3v; and they form a cycle of length 5 as desired.

If the edge vivs is blue, then similar arguments lead to a contradiction.
This completes the proof of the lemma.
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Let us now consider a graph with 9 vertices vy, vg,...,vq, satisfying the
given conditions. It is known that such a graph contains a red triangle or a
blue quadrilateral. Since the latter is impossible we have a red triangle v7vgvg,
say. If the induced graph v;...vg can be divided into three groups without
blue edges inside any group then we obtain the required division of G.

Otherwise Lemma 2 implies that we may assume without loss of generality
that the edges vivy, vous, v3vy, v4vs and vsv; are red.

If the edges v;u6, © = 7,8, 9, are red then {vs, vz, vs,v9}, {vi,v3}, {ve,vs}
and {vs} is the desired division. If the edge v7vg is blue while the edges vsvg
and vgug are red then at least three of the edges vyv;, 2 = 1,2,...,5, are red
and we easily have the desired division (otherwise we get a red quadrilateral).

Similar arguments solve the two remaining cases: when two of the edges
vgU7, vgUg and vgug are blue and one is red, and when all of them are blue.
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Bulgarian Mathematical Competitions 2006

Winter Mathematical Competition

9.1. If ¢ is a common root of the equations, then
zo(a® — %) = a® — b2,

a? + ab + b2
a+b
the first equation that 3 4 a?xo + b* > 0, a contradiction.

Case 2. If a = b, then the equations coincide. They have a real root when
D = a* — 4a® = a3(a —4) > 0. Since a > 0, we conclude that the solutions of

the problem are the pairs (a,a), where a € {0} U [4, +00).

Case 1. For a # b we have zg = . Since xg > 0, it follows by

9.2. It follows from the condition z; = m% + 29 and Vieta’'s formulas that

x1 + (b — 1).’[;2 = —C
x1+x9g = —b .
T1xy = ¢

Hence ¢® + 4(1 —b)c+ 6% — 62 =0, b # 2.

a) Since ¢ = 4 — b, we obtain b3 4+ 452 — 28b + 32 = 0 which is equivalent to
(b—2)(b+8) = 0. Therefore b = —8 and (b, ¢) = (=8, 12).

b) Consider ¢ + 4(1 — b)c + b3 — 4% = 0 as a quadratic equation of c.
It follows that D = 16(1 — b)% — 4(b% — b%) = 4(1 — b)(b — 2)? is a perfect
square. Thus b = 2 or 1 — b = k?, where k is an integer. Then (b,¢) = (2,2)
or (b,¢) = (1 — k2, k(k — 1)?). Obviously the first pair is not a solution of the
problem. The integers in the second pair are coprime when &k —1 = £1, that
is, k=2o0r k=0. So (b,c) = (—3,2) or (b,¢) = (1,0). In both cases the roots
of the given equation are real and distinct.

9.3. (=) Let SAHL = <ALB = o C
Denote by I the incenter of AABH. Then
XAHI = —;«):AHB = 45° and XAIL =
180° — ¥AIB = 45°. Hence <LAI + xLHI =
(180°— S ALI— < AIL)+(xAHL+ <AHI) =
(180° — ¢ — 45°) + (¢ + 45°) = 180°.

[t follows that the quadrilateral ATHL is
cyclic. Then p = 45° and

XBAC =90° + XBAI = 90° + %(90°— J ABC).
Since XxABC = 180° — ¥BAC — XACB, we conclude that

XBAC = XACB + 90°.
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(<) Let XBAC = 90° + XACB. Then AL is the external bisector of
XBAH. Hence L is the center of the excircle of AABH tangent to the side

AH and xAHL = %{CHA = 45°,
On the other hand,

ABC
YALB = 180° — yBAL— XABL = 180° — XBAC — % .
° — YBAC — ¥AC
_ 1800 yBAC_ 130 {Bé XACB
_ 900_<IBAC;<)£AC’B: 150

It follows that Y AHL =< ALB.

9.4. On the figure below it is shown how 37 tokens can be placed in a way

to satisfy (1) and (2). Now we shall prove that 37 is the desired number.
Consider the columns of the table of

size 6 X 6 obtained by cutting outmost rows * * il s
and columns of the given table. It follows | ® . ¢ | '
from (1) that there are at least 3 tokens in . | .
every such column. If there are 3 tokensin | ® o |0 . .
a column 6 x 1 with no neighbors we have a LA . ofo
contradiction to (2). Therefore in a column | e | e . K
with 3 tokens they are placed either in the | o ) oo .
second, third and fifth cell or in the second, . o | e °

forth and fifth cell. ,
Denote by k the number of columns with 3 tokens each. There are at least

4 tokens in each of the remaining 6 — k columns of a table 6 X 6 and the two
outmost columns of the initial table. Note that by (1) there are 5 tokens in
each column of the initial table with 3 tokens in the table 6 x 6.

Suppose that there are two neighboring columns having 3 tokens each.
Then there exists a rectangle 2 x 1 without a token, a contradiction. Therefore
there are at most 3 columns having 3 tokens each, i.e. k£ < 3.

Consider the two rectangles 6 x 1 above and under the table 6 x 6. There

are two cases:
Case 1. There are at most 3 tokens in one of these rectangles. Now, there
are at least 5 tokens in the outmost columns of the initial table and therefore

there are at least
5k+2-5+4(6—-k)+2(3—k)=40—k > 37

tokens on the table.
Case 2. There are at least 4 tokens in both rectangles. Then the total

number of tokens is at least

5k +4(8 — k) +2(4 — k) =40 — k > 37.
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Hence the desired number is 37.

10.1. a) Fora = 3 and z € [0, 2] the inequality is equivalent to 24/x(2 — z) >
1,i.e. 4% — 82 + 1 < 0. Hence its solutions are

xe[z—ﬁ 213

.

2 2

b) For a > 0 and z € [0,2] the inequality is equivalent to 21/x(2 — z) >
a—2. Ifa < 2, then any x € [0, 2] is a solution and the condition of the problem
does not hold.

Let a > 2. Then 4z(2 — z) > (a — 2)? (in particular, z € [0,2]), i.e.
422 —8z+a?—4a+4 < 0. It follows that D = 16a(4—a) > 0 and hence a € (2, 4].
In this case the solutions of the inequality are x € [z1, x2|, where z; < x5 are
the roots of the respective quadratic equation. The given condition becomes

D
z9 — 21 < V3. Since g — 21 = -\—/4—_ = v/a(4 — a), we obtain a? —4a +3>0.
Taking into account that a € (2, 4] we conclude that a € (3,4].

10.2. a) Let M = DENCL and K = c
DF NCL. Then DM is an altitude and a bi- ,
F

sector in ALKD, hence DL = DK. Since D a
ALKD ~ ACKF, it follows that KF = CF \/
and AE = DF—CF = DF—KF = DK = DL. O

b) Since AANE ~ ACND, AHNC ~ LAC \
and ALHD ~ ACHB, we get E B

AE AN LH DL
CD NC HC BC’
Then the equality AE = DL implies that BC = CD.
c) It follows by b) that ABCD is a thombus. Then DB1 AC and hence
H is the orthocenter of ADNC. So HN 1L DC, which implies ADLDC'. Thus,
ABCD is a square.

10.3. It follows that 2! = 1 (mod 3) and therefore ¢ is even. Also 2° = 2°
(mod 5), i.e. 287 = 1 (mod 5) (obviously ¢ > z). Then 4 divides t — 2 and
hence 2 divides z.

Further, it is clear that ¢ > 6 > 2 and therefore 0 = 3%(—3)¥ + (—1)*
(mod 8) or, equivalently, 3**¥ = (—1)¥+! (mod 8).Ify is even, then 3*+¥ = —1
(mod 8), a contradiction. Hence y is odd and 3*t¥ =1 (mod 8).

It follows that x+y is even and hence z is odd. Set t = 2m (m > 3), z = 2n
(n > 1) and write the equation in the form

(2™ — Tm)(2™ + ") = 3%V,

Since (2™ — 7",2™ + T") = 1, the following three cases are possible:
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Case 1. 2™ — 7" = 3%,2™ 4+ 7" = 5Y;

Case 2. 2™ — 7" = 5Y 2™ 4 7" = 3%,

Case 3. 2™ — 7" =1,2™M 4 7" = 3%5Y.

In the first two cases we have 2™ F7™ = 3*. Having in mind that m > 3 and
x is odd, we get F(—1)" = 3 (mod 8), i.e. 3 = £1 (mod 8), a contradiction.

In the third case the equality 2™ — 7" = 1 implies that 2™ =1 (mod 7).
Hence 3 divides m. Set m = 3k. It follows that (2% — 1)(22F +- 2% 4+ 1) = 7,
It is easy to see that (2F — 1,22 1 2% 4+ 1) equals 1 or 3. Hence 28 — 1 = 1,
2% y ok 4 1 =7 Thenk=1n=1m=3,¢t=26, z=2 and we get
r=y=1.

In conclusion, the only solution of the problem ist =6, x = 1, y = 1,
z=2.

10.4. a) There are 40.39 = 20.39 pairs of knights. Since there are 20 pairs

every morning we need at least 39 days. For 39 days the arrangement of the
fights can be done in the following way: place 39 of the knights A1, Ao, ..., Asg
at the vertices of a regular 39-gon and place the last knight B at its center.

Let B fight A; on the day ¢ and the remaining fights be A;_; against A;4;
(the chord A;_;A;y; is perpendicular to BA;, where the indices are taken
modulo 39. Since 39 is an odd number every chord is perpendicular to one
radius and therefore every pair fights in a certain day.

40.39.2 _ 40.39. Since there are 40 pairs we

6) The neighboring pairs are

need at least 39 evenings. Using a) the needed arrangement for 39 days can
be done in the following way: connect all segments corresponding to the fights
on days ¢ and ¢ + 1 (the days are numbered modulo 39). We obtain the closed

broken line
BA;A; 0A; 0A;1 4 A 4. Aiy3gAi_33

(note that A;_3s = A;41), which includes 40 points without repetition (no two
indices differ by 39 because of parity arguments and since the largest difference
equals 38 — (—38) < 2.39).

Therefore this broken line contains all 40 points and we take this distribu-
tion of the knights around the table at evening i. According to a) every two
knights are neighbors on the day before their fight and on the day of the fight.

11.1. It is clear that a > 0, a # 1. We have
ax2+x(a2 4+ 1) — a?(x2+x) 4+ a2.
Setting u = a® +e gives the equation
u?—(a®+ u+a?=0

with roots 1 na?. Then 22+ =0and 22+ —2=0, respectively. Thus, for
any a > 0, a # 1, the equation has four roots x = —2,—1,0, 1.
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11.2. We obviously have CA; = %C’Ao,

CAy = %C’AO and so on. Therefore C Agyog =
1 1

WCAO = WO’A and analogously
1

CBQOOﬁ = WCB
Then it follows that Aggog B2oos || AB

and AggogBagog = 22T6AB Since the line

Aa2006 Baoos is tangent to the incircle of AABC
if and only if the quadrilateral AB BagpgA2006
is cyclic, we have

AB + Azo06 Baoos = AA2006 + BB2oos
AB (22906 _ 1)(AC + BC)

@ AB + 53506 = 22006
AC + BC 2206 41
AB 2%06 1’

11.3. Using the formula cos 2o = 2cos? a — 1, the equation becomes

2

a(cos® x + cos? y + cos? z) 4+ (1 — a)(cosx + cosy + cos z) + 3 — 6a = 0.

Consider the function f(t) = at® + (1 —a)t + 1 — 2a, t € [—1,1]. The roots of
the equation f(t) = 0 are t; = —1 and t9 = 2¢=L qa = 0. The following three

a

cases are possible:

Case 1. a < 0. Since 22=L > 1, it follows that f(¢) > 0 for any ¢ € [—1, 1]
and f(t) = 0 if and only if ¢t = —1.

Case 2. a = 0. Then f(t) =¢t+12>0for any t € [—1,1] and f(t) = 0 if
and only if £ = —1.

Case 3. a > 0. Then a > 1 and hence 2—“;—1 > 1 with equality fora = 1. It
follows that f(t) > 0 for any ¢ € [—1, 1]. Moreover, if a > 1 then f(t) = 0 for
t=—1,and if a =1, then f(t) =0 for t = £1.

Since the given equation has the form f(cosz) + f(cosy) + f(cosz) = 0,
we conclude that:

—ifa # 1, then cosx = cosy = cosz = —1. Hence the solutions of the
problem are x = (2k + )m, y = (2l + )7, z = (2m + )7, where k,[,m € Z.

— if a = 1, then in addition to the above solutions we also have cosx =
cosy = cosz = 1, that is, x = 2rm, y = 2s7, z = 2tw, where r, s,t € Z.

11.4. a) Let n > 1 and a = @ja3 ... a, be a bad integer with digits 1, 2 and
3. Since 3 divides exactly one of the integers an_10nl, an_10,2 and a,_1a,3,
then exactly two of them are bad. It follows that adding 1, 2 or 3 to a one
obtains exactly two bad integers with n + 1 digits. Since the number of the
two-digit integers whose decimal representations contain only the digits 1, 2 or
3 equals 9, the answer of a) is 9 - 22004,
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b) The integers 122122...12212 and 233233...23323 are bad and their
sum 355355 . .. 35535 is also a bad integer. Thus 0 is one of the possible values
of k.

Let now a = G1a5...a, and b = b1by ... b, be different bad integers and
suppose that their sum is also a bad integer. Then 3 does not divide a;+a;y 1+
a2, b; + bi+1 -+ bi+2 and a; + a;+1 + a2 + b; + bi+1 + bi+2. This means that
a; + Gip1 + ajp9 = by + by + ;40 = 1,2 (mod 3). Assume that two of the
digits a;,a;41, a;49 coincide with the respective digits b;, b;y 1, b;1o. It follows
from above that the third digits also coincide. Continuing in the same way, we
conclude that a = b, a contradiction.

So, among any three consecutive digits of a, at most one coincides with
the respective digit of b. On the other hand, if a; = b;, then a;; 3 = b;y3
(and analogously a;_3 = b;_3). Indeed a; + a;41 + az49 = b; + b1 + biyo
(mod 3) implies that a; 1 + azy2 = b1 + bipo (mod 3). If a;43 # b;y3, then
a; + Qi1 + G40 = b; + biy1 + b2 (mod 3) which is impossible.

Thus, if & > 0, then among any three consecutive digits of a exactly one
coincides with the respective digit of b. It follows that k = 669 or k = 668.

12.1. a) We have

, (22 — 2006)(x? + 1) — 2x(x? — 2006z + 1)  2006(z% — 1)
fiz) = ( =

z? + 1)2 o (x2+1)2

Hence f'(z) > 0 if and only if z € (—o0, —1] U1, +0).

b) It follows from a) that f(x) increases for z € (—o0, —1) U (1, +o0) and
decreases for x € (—1,1). Hence its maximum equals f(—1) = 1004 and its
minimum equals f(1) = —1002. Then |f(z) — f(y)| < |1004 —(—1002)| = 2006
for any x and y.

12.2. Let M and N lie on the diameter PQ A
(M € PO,N € QO) of k. Set x = MO = NO,
0 < z < V5. Then

MAMB=MPMQ= (V5—z)(V5+z) =5-z2. P Q

Analogously NA.NC = 5 — z2. It follows that B
1 1 MA*4 NA? C

MB2 T NCE T T(5_z2)

Using the median formula we get

5= A0 = Z[2(MA® + NA%) — 27],

i.e. MA? + NA? = 2(5 + z?). Therefore
1 1 2(5+2%) 3

MB: TNz T (5—22)2  4x?’
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Hence z* + 1422 —15=0, i.e. 2 = 1.

12.3. Let C be a set of phone numbers satisfying the given three conditions.
Assume that C has maximal cardinality. Denote by A the set of phone numbers
in C which have four or five equal digits, and by B the set of phone numbers in
C which have exactly three equal digits. Obviously, C = AU B. Also |A]| < 10,
since any digit can appear four or five times in at most one number in C.

Denote by B;;, 0 <14,57 <9, 1 # j, the set of phone numbers containing
three digits ¢ and two digits j. We shall prove that the maximal cardinality
of B;; U B;; is 4. It is enough to consider the case 1 = 0, 5 = 1. Let a; be
the number of phone numbers in By = Bp,; U B; o with ¢ blocks (a sequence
ag,...,a; is called a block if ag_y # ar =+ = a5 # aj+1.)

Assume that |Bj| = 5. Then

ag+as+ag+as = I,
2a9 + 3a3 +4a4 + 505 < 14

since any two phone numbers have no common subsequence of length four.
Moreover, it is easy to see that a9 < 2 u ag < 2. Hence ag = a3 = 2, a4 = 1.
Then 01110,10001 € B; and it follows that B; does not contain a phone
number with two blocks.

On the other hand, it is possible to find four phone numbers in By which
satisfy c). Take, for example, B; = {10001, 01010, 11100, 00111}.

The set C can be written as

C=AUB =AU (Up<icj<oBi; U B;j;).

It is clear that for (3, j) # (k,!) the choices of phone numbers in B; ; U B;;
and By ; U By, are independent. Moreover, we may choose ten phone numbers
in A which are not in conflict with any choice of the other numbers in C. Take,
for example, A = {00000, 11111, ..., 99999}.

Thus the maximal cardinality of C equals

10
cl = [Al+ ) IBi,jUBj,i|=10+(2)'4=10+45~4=190.
0<i<y<9

12.4.Set AO=R, BD =b, CD = cand OD = d. Since CO is the bisector

of 4 ACD, then ‘
d c

R b +c
Let the line AO meet the circumcircle of AABC at E. Then AD.DO =
BD.CD, ie.

(R+d)(R —d) = be.
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, b )2
Since d = ch , it follows that R? = Li_c_)__c Set k = (b,¢, R), m =
A b+ c ; b+ 2¢
c R c
(E’E) . Rl = E’ bl = E’)’?}, and ¢ = E’)’?}, Then

o mi(by + 1)
Rl =
b1 + 2¢y

Since (m, R;y) = 1 and (by + 2¢1,b1 + ¢1) = (b1 + 2¢1,¢1) = (by,¢1) = 1,
we get Rf = (b + ¢1)%c; and m? = by + 2¢;. Hence ¢, is a perfect square,

say ¢; = n® Now ¢ = kme; = kmn?, b = kmb; = km(m? - 2n2) and
R =kR; = kn(m? — n?).
. . : b+c m
The inequality 1 > sin 4 BAC = SR = 5 shows that v2n < m < 2n.

7
(Conversely, this condition implies that such a AABC exists, it is acute and

the line AO meets the side BC'.) In particular, n > 2.
Since R — ¢ = kn(m? — n? — mn) is a prime number, it follows that n is a

prime number, k =1 and m?2 —n?2 ~mn =1, ie. (m—1)(m+1) = n(m+n).
Hence n divides either m — 1 or m + L.

1) Let m—1=In. Then!l(ln+2)=In+1+n, ie.
1-21
2—1-1

n =

Sincen < 0 for [ > 2 weget [ =1 and n =1, a contradiction.
2) Let m+1=In Thenl(ln—2)=In—1+n, ie.
20— 1
2—1-1

n =

Sincen<lforl>3andn=—1forl=1wegetl=2 Thenn=R—c¢=
3, m=25, b=235and ¢ =45.
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Spring Mathematical Competition
8.1. Let ac — 3bd = 5 and ad + bc = 6 for some integers a,b, ¢, d. Then
(a® + 36%)(c* + 3d?) = (ac — 3bd)? + 3(ad + bc)? = 52 + 3.62 = 133 = 7.19.

Because of the symmetry between the pairs (a,b) and (¢, d) we consider only
the cases when a®+3b% = 1 and ¢?+3d? = 133 or a®+3b% = 7 and ¢2+3d2 = 19.

If a® + 362 = 1, then a2 = 1, b = 0 and using ac = 5, ad = 6 we get ¢ = 5,
d=6fora=1landc¢=—-5,d=—6fora=—1.

If a2 + 3b% = 7, then a? = 4 and 6% = 1. It follows by ¢? + 3d? = 19 that
¢ = 16 and d* = 1. Then |ac| = 8 and the equality ac — 3bd = 5 gives ac = 8.
Therefore a = 2, ¢ =4 or a = —2, ¢ = —4 and we get respectively b =d =1
and b =d = —1.

Finally, all solutions are: (a,b,¢,d) = (*1,0, £5,£6), (5, £6, £1, £0),
(£2,+1, £4,£1) and (4, £1, £2,+1).

8.2. Let C'D be the diameter of k such
that CD 1 AB and let L €¢ ACB. Then
XALB = 2a is constant and we have
XAMB = o« since AMLB is isosceles.
Therefore M belongs to an arc of the circle
ki, from which the segment AB is seen by
the angle a.

Analogously, for L e ADB we have XALB = 180° — 2o, xAMB = 90° — «
and we conclude that M belongs to an arc of the circle kg, from which the
segment AB is seen by the angle 90° — a. Let ¢ be the tangent line to k at
the point A and t N k; = {A P}, tNky = {A Q}. Let A be the half-plane
with respect to ¢, containing k. Since L is between A and M we have M € A.
Therefore the required locus consists of the arcs of k; and kg belonging to A.

8.3. Assume the contrary. Then there exists a positive integer multiple of
um such that the sum of its digits is less than m and let ¢ be the smallest
number with this property. Since ¢ > 10™, the number ¢ can be written as
t =10ma + b, where 0 < b < 10™.

We have t = 10™a + b = (10™ — 1)a + a + b. Since u,, divides both ¢ and
10™ — 1 = Yu,y,, we conclude that u,, divides a + b. But the sum of the digits of
a + b does not exceed the sum of the digits of ¢t and a + b < ¢, a contradiction.

8.4. Denote by Ay, Ag, ..., As and By, Bs, ..., Bs the countries on the re-
spective sides of the sheet of paper. Let S;; be the area of the part of A; which
belongs to the country B; on the other side of the sheet. (If A; and B; do not
have a common area, then S;; = 0.) Then, setting the area of the sheet to be
1, we have

S = (Sll+512+Sl3+514+515)+(521+522+523+524+525)+...
+ (851 + Ss2 + Ss3 + S5 + Ss5) = 1,
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since Sy + Sio + Si3 + Sia + Sis equals the area of A;.
The sum S can be written also as follows:

S = (511 + So2 + S33+ Sya + Ss5) + (Si12 + S23 + S34 + S45 + Ss1) + - -
+ (815 + So; + S39 + Sa3 + Ss4)-

Hence at least one of the summands is greater than or equal to 0,2 and let
us assume that S35+ Sos4 + S35 + S41 + Ss2 > 0, 2. We now color the countries
By, By, ..., By as follows: Bs by the color of Ay, By by the color of A, Bs by
the color of As, B; by the color of A4 and Bj by the color of As. Then every
two countries are colored in different colors and at least 20% of the sheet is
colored in the same color on both sides.

9.1. Using Vieta's formulas we get

1 N 1 ry4re—4 a+4
£ —2  x2—2 (x1—-2)(z2—2)  3a®—5a—15

Therefore 3a% — 5a — 15 # 0 and

a—+4 _2_(_1_
302 — 50— 15 13~

Hence 6a® — 10a? —43a —52 =0 <= (a—4)(6a®+ 14a+13) =0, i.e. a = 4.
In this case ;9 = —2 % V15.

9.2. a) Since ¥CBjA; = <XCIA; and
the quadrilateral ABA;B; is cyclic, we have
XCIA; = ¥CB;A; = XABC. This shows that C
the quadrilateral LBA;I is cyclic. Then

YLAB = XLIB= XICB+ XIBC 4
= %({ACB + ¥ABC) B
1
1
= S¥BAB:.

Hence AL is the bisector of B A; B, which completes the proof.

b) If J is the midpoint of CI, then we have CJ = JI = IL. But IL = I A,
from a) and we conclude that JL A, is a right triangle. Then A;J is the bisector
of ¥XB1A1C and therefore J is the incenter of AA;B;C. On the other hand,

we have AA;| BiC ~ AABC, whence A0 _¢J = -1— and XACB = 60°.
Remark. One can prove that in case b) AABC is equilateral.

AC CI 2
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k(k + 3)
2
kind (with two different summands, two equal summands or one summand,

k(k +3) > 27, whence k > 6.

[f & = 6 every element of M has a unique representation. This consecutively
impliesl € A,2¢ A, 3€A, 4¢ A 5€ Aandnow 6 =3+3 =1+ 5 has two
representations, a contradiction. Therefore k > 7.

Assume that A = {a;,a2,...,a7} has the required property and a; < ag <
.-+ < a7. Since 1 and 27 have unique representations, we have a; = 1, ag = 13
and a7 = 14. Also, it is easy to see that ag € {2,3} and a3z < 5. The only two
possible representations of 25 are 25 = 13+ 12 = 14+ 11 and therefore a5 = 12
oras = 11.

Case 1. a5 = 12. It follows from 23 = 14 +9 = 13+ 10 = 12 + 11 that
aq € {9,10, 11}. Then checking all possibilities for 21 we see that a3 > 7, which
contradicts to the above restriction ag < 5.

Case 2. a5 = 11. As in case 1 we conclude that a4 € {9, 10}. On the other
hand by 21 =14+ 7= 13+ 8 = 11 + 10 we have a4 € {7,8, 10} and therefore
a4 = 10. Now using a3 < 5 we see that the only possibility for 19 is 19 = 1445.
This implies that ag = 5 and ag = 3, i.e. A = {1,3,5,10,11, 13, 14}. But this
set does not have the required property.

The set A = {1,3,5,7,9,11,13,14} has cardinality 8 and possesses the
required property. Therefore the minimum value of & is 8.

Remark. The consideration of the case k = 6 is not obligatory, it only gives
an argument which leads to the solution.

k
9.3. The elements of A give (2) +k+k= sums of the required

respectively). Therefore

—1
9.4. 1f f(n) = n—1, then n divides the sum 142+ -+ (n—1) = {*—1) ' n
which implies that n is odd.

The numbers n = p®, where p > 2 is a prime number and s > 1, are
p p

1
solutions. Indeed, if k € Nand k < p°—1, then thesum 1+4+24---4+k = M-Z

is not divisible by p® because k and k + 1 are coprime and less than p°.

We shall prove that these are the only solutions. Let n be an odd positive
integer which is not a power of a prime number. Then n = ab, where a > 1,
b > 1 and (a,b) = 1. By the Chinese Remainder Theorem we conclude that

there exists an integer k € [0, ab— 1] such that a|k and b|k + 1. It is clear that

k(k+1)

k#0, k+# ab—1 and ab] k 5 Therefore n = ab is not a solution.

x
10.1. a) The equation (1) can be written as 9 = 2% i.e. (g) = 1 and

x=0.

b) We plug the only solution z = 0 of (1) in (2) and obtain |a — 1| =
l1—a <= a < 1 In this case 0 is a solution of (2) and we have to decide
when (2) has no other solution(s).
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Set 5 = t,t > 0. Then we have to find all a < 1 such that the equation
2y (1l—a)t—1=0 (1)

has not positive roots different from 1. For a = 0 the only root of (3) ist=1

1
and the condition is satisfied. For a # 0 the roots of (3) are 1 and — o Therefore

the condition is satisfied if and only if —% =1or ! < 0. Hence a = —1 or
a > 0 and we conclude that a € [0, 1] U {—1}.
b Al AC b+c
10.2. a) We have CA’' = b(:— and T -Ca " :C. By the Menelaus
theorem for A AIC and the line B’ A’ we have
cD 1A AB | = CD _ a+b+c a a+b+tc
DI A'A BC DI a ¢ ¢

b) By the Menelaus theorem for AAIC and
the line KC' we get

AM JIC' CK _ 1
MI C'C KA
whence CK = atb+te . Analogousl CL
“KaT T ¢ gy TB T
a+b+c
. )
Let h be the homothety with center C and ratio w. Then h(A) =
a+b+ 2

K, h(B) = L, h(C) = C and it follows from a) that h(I) = D. Therefore D is
the incenter of AKLC.

10.3. If 39 thieves take 101 euro each and the last one takes 61 euro, then
the only poor groups are those having as a member the last thieve. So this

' 9
distribution of the money gives (34) poor groups. We shall prove that this is

the required minimum.
Let r» be the number of all possible divisions of the thieves in 8 groups of five
thieves each. Any such division has at least one poor group. The total number

0
of the groups in all divisions is 8r. Each group takes part in 8r/ (45 ) divisions.

40
Therefore each poor group is counted exactly 8r/ ( 5 ) times and this gives at

39

4 ) poor groups.

40
least r. Therefore we have at least r . /8r =

10.4. See Problem 9.4.
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n

11.1. Since S, = a; - T the sequence {5,}2°, converges if and only

3—-2
2a < 1, whence a € (1, g) \{g} In this case

if |g| < 1. Therefore —1 < p—

o . 1 3-2a  (3—2a)a—2)
S_nh—vngosn_al.l—q_l_f}—?a_ 3a—5
a—2

} the inequality

o w

and we have to prove that for every a € (1, g) \{

(3—2a)(a — 2)
3a—5
202 — 4a + 1
holds. This inequality is equivalent to Z 3 a5+ > 0 and since 3a — 5 < 0,
o —
we have to prove that f(a) = 2a® — 4a + 1 < 0. This follows from f(1) = —1

and f (g) = —é.

11.2. The system is defined for € (—o0,—1] U [0, +00) and every y. We
consider three cases.
Case 1. Let sin(my) > 0. The first equation gives

4\/:1:2+:1: + 7.2\/:r§+:r —1= 7

<1

and setting ¢t = 2VZ>+% 5 0 we obtain the equation t? + 7t — 8 = 0 with
roots t; = 1 and tg = —8. Since t > 0, it follows that 2V*"+®* = 1, whence
224+ 2=0,ie.2=0and z = —1. For x = 0 we get y = 0 and for x = —1
we have y = £1/3. Since sin0 = 0, sin(\/§7r) < 0 and sin(—\/§7r) > 0, the only
solution of the system in this case is z = —1, y = —V/3.

Case 2. Let sin(my) = 0, i.e. y is an integer. From the second equation
we obtain 4 — y? > 0, whence y = 0, =1, 2. For y =0 we get x = 0, —4;
for y = +1 we find £ = —2 + v/3 and for y = +2 we have z = —2. Since
—1 < —2 4+ V3 < 0, the solutions of the system in this case are x = y = 0,
r=—-4,y=0r=-2—V3 y=xlandz=—2,y = +2.

Case 3. Let sin(my) < 0. Then the first equation gives

gvVaTtz g oVaite _ 1 _ o

and setting t = 2VZ2+2 > () we obtain the equation t2 + 7t + 6 = 0 with roots
t; = —1 and t9 = —6. Since t > 0, the system has no solutions in this case.

11.3. We shall use the standard notations. We first prove that Y X L BC.

In ABQR we have xBRY = 90° — g and since XM NB = g it follows that

NX L RY. Analogously RX L NY. This means that X is the orthocenter of
ANRY and YX L RN. Hence YX L BC.
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Now we shall prove that X lies on the altitude of AABC through A. Denote
by X' its intersection point with M N. Since BM = BN and CP = CN =p,
we have BM = BN = p—a. Then AM =c— (p—a) = p— b and by the Sine
theorem for AAM X' we get

AX' AM AX' p—2b Ié]
= — — = = AX' =(p—b)tg—.
sing sin XAX'M sing sin(90° + g) =9 2

On the other hand, if T is the tangent point of the incircle with the side BC,
then B =p—bandr = (p—b)tg 'g Therefore AX' = r. Analogously, if X"
is the intersection point of RS and the altitude of AABC through A, then
AX" = r. Therefore X' = X" = X.

Since YX L BC and AX 1 BC, we conclude that the points X, A and Y
are colinear.

11.4. Let m and n be positive integers and n = mq + r, 0 <r < m. Then

— — -1
[H_m_l_] :q+1+[’" 1] and ™ = g+ . Hence [Zi”l_J .l
m m m m m

m
with equality if and only if m divides n.
Applying the above inequality we obtain

k k
a; + a; 1—1 K
23" =[] | —— [[— = —23"
l: ai— :I z:lazl

i=1

Therefore a;_; divides a; for 1 = 1,2,...,k. We have to find the number of
the sequences 1 = ap < a; < --- < ar = 2.3" such that a;_; divides a; for
t = 1,2,..., k. Starting by an arbitrary sequence we construct a sequence of

k symbols x, n digits 3 and one digit 2 in the following way: if Jil _ 2P39
a/'

t=1,2,...,k— 1 then we put p digits 2 and ¢ digits 3 between * number

and * number ¢ 4 1. Since a; < a;4; there are no two consecutive symbols *.
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It is clear that any sequence of k symbols *, n digits 3 and one digit 2 with
no two consecutive symbols « corresponds to a sequence 1l =ap < a1 < --- <
ar = 2.3™.

To count the number of the sequences of x, 3 and 2 consider the sequence
* 3 3 3... 3 3%, where the number 3 is written n times. For a fixed £, 0 < £ <
n — 1, we put £ stars between the 3’s. This gives the distribution of the 3’s in
the sequence. The number 2 can be put on some % or between some consecutive
stars — this give 2¢ + 3 possibilities. Therefore the required number is equal to

§(23+3)(n21) - 2"“£<n;1)+32:§g(”21)

£=0 =0
2 p—2 -1
— 2(n—1)2§( . )+3Z( . )
= 2n—1)2""24 3.2 = (n42)2" L,

12.1. a) It follows by the recurrence relation that x; = 2, zg = 1 + 2a and
3 = 1 +a+ 202 Then z; + 23 = 229 <> 3 +a+ 2a° = 2(1 4 2a) with

solutions a = 1 and a = 5 For a = 1 we get x,41 = 2, + 1, i.e. the sequence

is an arithmetic progression. For a = — we see by induction on n that z, = 2

for every n. Therefore a = 1 is the only solution.

b) We prove by induction on n that xp+1 =1+a+--- +a™ 1 4+2a" n>1.
For a = 1 we have z, = n + 1, i.e. the sequence is not convergent. Let a # 1.
Then

1—an 1 1
_ n R ) _
Tatl = 207+ 5 _“(2 1 a)+1—a’

1 1

If 2 — 7 =0, ie a= 5 we get xpy1 = 2 for every n and the sequence is
—a

convergent.

Since {a™}9%, converges if and only if [a| < 1 or a = 1, we conclude that

the given sequence is convergent for a € (—1,1) and its limit is equal to

l1—a
. . n_ B
(since nlgrgoa =0 for a € (—1,1)).
C

12.2. a) Set XBAC = « and XACD = z.
We have AC = ABcosa, BC = ABsina and E F
it follows by the Sine theorem for AADC and
ABDC that o

A D B
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AC? N BC? AC N BC
AD+CD BD+CD AD+CD BD+CD
AC  AC BC BC
AB cos o ABsina
- sinx sin CosST 4 COS (x
sin(a + z)  sin(a+z) sin(a+z)  sin(a+z)
_ 4B cosasin(a +x) sinasin(a+ z)
B sina + sinx COsS(x + cOS
a4+ . . a+zx
COS & COS sin e sin
- A7 cos T2 ’ cos T2 — A8
2 2

The above identity can be proved by using the Stewart theorem as well.
b) We have

AE AD
CE_¢CD

AC.CD

_AE+CE _AD+CD
- AD+CD

CE CD

BC.CD
BD + CD’

CF  CE
CA CB

= CFE =

and similarly CF = Then

BC.CD _ __ACCD
CA(BD + CD) ' CB(AD + CD)
cD CA? BC?
CACB\AD+CcD " BD+CD
CF  CE _ CD.AB

CATCB™ CA.CB’

Therefore the required minimum is equal to 1 and it is attained when CD
is the altitude of AABC.

12.3. Let 2z, 1 < k < 4, be the roots of the given equation. Using the
Vieta’s formulas we obtain

and using a) we see that

21+ 2+ 23+2z4=a and 22+ 22 + 22 + 22 = a?.

2
Set uy, = k_xk+zyk,1<k<4 where z, yr € R. Thenuk—xk yk-l—

2023 Y and we get

(1)
(2)

)+ 29+ 23+ 24 = 2,
xf—i—m%-{—mg—{—mﬁ:4+y12+y§+y§+y324.

On the other hand,

la— 2| > |2]| <= 2—un] > |uk] &= C—zp)?+yi > 2i+y} = . <1
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Now (1) implies z > —1, i.e. x,% < 1, which together with (2) gives z) = =+1,

yr = 0.
Hence (1) shows that three of the numbers xj are equal to 1 and the fourth
one is —1. We can assume that z; = 29 = 23 = —2z4. Then 2y292324 = —1

implies 2; = %1, +%, which gives

(a,0) = (2,-2), (=2,2), (2,2%), (—2,—2).

12.4. See Problem 11.4.
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55. Bulgarian Mathematical Olympiad
Regional round

9.1. It follows from Vieta’s formulae that
—6 =11 +2x2 = 21 +.’IE?—8$1.

Therefore x:f' — 7x; +6 =0 and ;1 = —3,1 or 2. Plugging these values of x;
in the initial equation gives a = 3 for x = —3.a = —1 and 7 for x = 1 and
a = —2 and 8 for x = 2.

9.2. a) The quadrilateral XCY A is cyclic since

IXCY = 180°— 3CXY— 4 CYX = 180°— J XAB— J BAY
= 180°— J X AY.

Therefore ¢ XAC =4 XY C =4 BAY.
b) It follows from a) that AXAC ~ ABAY.

Therefore % = % and since X B = BY we have
XC A .
XB - AV Moreover 4 CXY =<4 CAY, imply-

ing AXCB ~ AACY . Thus, 4 XBC =4 AYC =
J XBA.

9.3. Setting p = m —n and ¢ = m + n gives

mn = %(q2 —pg) and m?+n?= %(q

Hence the given conditions can be written as

2

+ pg).

812 — 2¢% + 2p® = ¢* + p* + 5¢l,

o o2 = (3g 4 8)(g—1).

Since p is a prime number and 3¢ + 8/ > ¢ — | we obtain p? = 3¢ + 8/ and
1 =¢—1[. Hence 11 + 3 = p°.

2
9.4.Setu=2x— e Then the equation becomes

(1) w4+ 2u+a—a—5=0.

Since the equation 2% — ux — 2 = 0 has real solutions for any real v, it suffices
to find the integer values of a for which the equation (1) has a real root. The
last holds when D = —a?+a+6> 0, i.e. (a—3)(a+2) <0 giving a € [-2,3].
Therefore a = —2,—1,0,1,2, 3.
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9.5. It follows from AQ L HP that C
JQAB =4 PHC. On the other hand
J ABC =4 ACH and therefore AABQ ~ L o)

AHCP. Thus AB HC

R 'B—Q— = ﬁ USlIlg the stan-

dard notation for the elements of a triangle we

obtain the following equalities: 4 H B
¢ _ h - ¢ _ 25/c o - _ 2p
p—b r p—b S/p p—b ¢
2¢ :a+b+c e 22 =(a+c)?—b?
at+c—b c

& t=a’+2c—-b o b =ac

since ¢* = a? + b%. Hence
b =a(a®+b%) = b —a?—a'=0.

AH  b/c b 0 1+
Setk_ﬁ—a—?—/—c_;f.Thenk—Ic—l—Oandwegetk_ 5

15

9.6. Consider a graph G whose vertices are the airports in the country. Two
vertices form an edge if there is an airline between the corresponding airports.
Suppose that a round trip satisfying the conditions of the problem does not

exist, i.e. there is no a cycle of length 4 in G.

If z is a vertex of G denote by d(x) the number of neighbors of . Then

d
the number of pairs both elements of which are neighbors of x equals ( (; ) )

Note that every pair is counted from at most one vertex z, since otherwise

there is a cycle of length 4.

Using the identity >~ d(x) = 72 and the Root mean square — Arithmetic

mean inequality we have

(5)=m = £(V)-252-2%

zeGG zeG zeG
2

1 d(x)
> — N
> (zw) -4

zcG zeG

722
= — —36=126

32 3 '

a contradiction.
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10.1 _._l;)et the tangent line to k at D meet
the ray OB at point S. Then the lines SD, BP
and OA are parallel and therefore AOBM ~

AOSD and ADPM ~ ADAO. It follows that
BM QE MP DP

_S_B — 0S and OA = DA, 1.e. BM =
OBSD . yp_ CADP o A
os - T DA
BS DP

Since OA = OB and 05 = DA (we use the equality SD = SB), we
obtain BM = M P, implying that the desired ratio equals 1 : 2.

10.2. The domain of f(x) is x > 0. Setting y = lgx gives

2v% + 3y + 3
F(y) = :
) Y2+ 2y + 2

Since the denominator is positive the function F(y) is defined for all real y.
Let M be the desired value of f(x) (if it exists). Then for any real y we

have )
2y“ + 3y +3 <M

yr4+2y+2 —
2% + 3y + 3 < My? + 2My + 2M,
(2— M)y? + (3—2M)y + (3—2M) < 0.

Therefore 2—M < Oand D = (3—2M)(3—2M—8+4M) = (3—2M)(2M —5) <
0. Hence M > 2.5.

Note that for M = 2.5 the above inequality becomes —0, 5y% — 2y — 2 < 0,
e y?+4y+4= (y + 2)2 > 0 and the equality is attained only if y = —2, i.e.
for x = 0,01.

Therefore the maximum of the function equals 2,5 and it is attained for
-z = 0,01 only.

10.3. Let ¢ = B, where p and g are coprime positive integers. We shall

prove by induction on n = p 4+ ¢ > 2 that f(x) is uniquely determined. This
is true for n = 2 (since f(1) = 1). Suppose that it is true for all integers less

than a given n > 3 and consider = E’ where p + g = n. [t follows from the
first condition that we may assume that p > q.

Now the second condition shows that f (g) is uniquely determined by
f (E;q-) and since p — ¢ + ¢ < n it is uniquely determined by the induction

q
hypothesis.
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Note that the function f (g) = %‘l for p and ¢ relatively prime fulfills
the conditions of the problem.

10.4. It follows from the condition of the problem that

100~z 100+y 100-y+=z
100 100 100

Hence (100 — x)(100 + y) = 100(100 — y + x) which can be written as (200 —
£)(200 + y) = 2002. Further, 100 < 200 — = < 200, i. e. 200 — z equals 125 or
160.

Therefore the solutions are x; = 75, y; = 120 and z = 40, y2 = 30, both
of which fuifill the condition.

10.5.Set ¥BAD =a, AB=CD =a, AD = D
BC = b and BD = d. We have DE = bsina,
AF = bcosa, DF = asina and CF = acosa.
Therefore ADEF ~ AADB and thus EF =
dsin c.

Plugging the above expressions in the given
inequality we see that it is equivalent to

A E B

dsina + 4 — 4sin®a < 5,
i.e. (2sina—1)2 > 0, which is true for any value of a. The equality holds when
o = 30°.
10.6. See problem 9.6.

b
11.1.Set AB=¢, BC=a, AC=b,p= 9—+—2-1L—c and let O, P and Q be

the midpoints of AB, AM and BN, respectively.

Since OO, L AC and O, P 1L AM, we have AO,OP ~ AABC, implying
00, OP

that == Further, it follows from AM = p — ¢ that
1 1 1 a+b+c
OP—OA+§AM— §c+ §(p—c) =—T
b
_____c(a ulh c)' Analogously OO; = _______c(a ot c)'

and therefore O0O; = .
Since XACB = 90° we have that £x0O,009 = 90°.
Finally, using that Sp,0,c = |[S00,0, — So0:¢c — So0,c| we compute

00,.00; 001.b  00z.a

4b

S500,0, — Soo,¢c — Soo.,c = 5 1 1
_ Aa+b+e)? clat+b+c) é_l_g
- 32ab 16 a b
Alat+b+e)® latb+e) o
32ab 16ab 16’
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since ¢® = a® + b2. This implies that So,co, does not depend on the choice of
the point C.

1
11.2. For t = 0 the inequality is true. When ¢ # 0 we set u = n and we

have to prove that

flw)=3u?+2u(z+y+2)+2y +yz+ 22 >0

for |ul > 1.
The latter inequality follows from the fact that the abscissa _IAytz of

the vertex of the the parabola w = f(u) lies in the interval [~1, 1] and that
f(E) =)y D)+ yx)(zx)+(zx1)(xx1)>0

for z,y, z € [~1, 1]. The equality occurs only if f(+1) = 0,i.e. whenu =t = £1
and two of the numbers z, y and 2z are equal to F1, and the third one is
arbitrary.

11.3. Consider a graph with vertices the given points. Two points form an
edge if the corresponding pair of points is "isolated”. We first prove that the
graph is connected. To do this suppose that it has more than one connected
component and chose points A and B from different components such that the
distance AB is the least possible. Then the disk with diameter AB does not
contain other vertices and therefore A and B are connected by an edge. This
contradicts the choice of A and B.

Since a connected graph with 2006 vertexes has at least 2005 edges (if the
graph is a tree) we conclude that there are at least 2005 "isolated” pairs.

If we take 2006 points on a semicircle such that the distances between
consecutive points are equal then "isolated” are only the pairs of neighboring
points. Therefore there are 2005 "isolated” pairs.

11.4. When o = 1,2,3 the system has solutions (1,0,0), (1,1,0) and
(1,1, 1), respectively. We shall prove that when a = 4 the system has no integer
solution.

Suppose the contrary. Then we have

(1) 4-2=2+1" =@+ -2y +1°) = (41— 2)(@® 2y +9?),
2

giving (since z = 4 does not lead to an integral solution) that is an

: . 4—22  —12416— 22

integer. Since = =4+2z+
4 —2 4— 2z z—4

is a divisor of 12. Hence 2z — 4 = =£1, +£2, £3, +4, 6, £12 and therefore

z=-8,-2,0,1,2,3,5,6,7,8,10 or 16. Using (1) we have

-z

, we conclude that z —4

4 — 22 9 4 — 22
s & 3xy—(4—z)—4_z

(z+y)? —3zy =
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and we obtain the following system for x and y:

r+y=4—=z2
(4—-2)3+22~4
Yy =
3(4 - z)

It is easy to check that all the values of z listed above do not lead to an integral
solution for z and y.

11.5. If ¥xBAY = « and XABY = p
then ¥BY X = (8 + a. Furthermore XACB =
XAY B = 180° — o — 3, implying <BAC =

[+« B+«

XABC = 5 Thus YAYC = 5
XYCX = XY AC = F+a - = ﬁ;a' The

Sine theorem for ABY X and ACY X gives

and

. B—a«
XY  sina Xy Sm—g
XB sin(a+p) XC . f+o
sin
2
. PB-a
sin o sy
and since XB = XC we have — = . Hence
sin(le+p) . B+a
sin
2
sina = 2cosﬁ;asinﬁ;a =sinf —sin«
AY  sing
d therefore — = =2
and therefore o7 = ——
11.6. a) It follows from a, < 1 and a,4 = - ::_2 < 1 that a, < —2.
n
Thus, ant1 < —2, and therefore a, + 2 = 3 > —E, ie. ap, > —Z.
an+1 2 2
6) First solution. Set b, = a, + 3. Then bpy = b3bn T It follows from a)
Y —

3 3
that —5 < bp —1 <0, ie |bp— 1| < 3 and therefore [bpy1| > 2|by|. Hence
1 > [bat1]| > 27%|by| for all n. Letting n — oo gives by = 0. Then b, = 0, i.e.
a, = —3 for all n.

Second solution. Let ¢; = 1 and ¢y = 3cx + (—1)* for £ > 1. One can
prove by induction on & that

(*) _ Cok+1 a Cog
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Cok Cok+1

for all n and k. Indeed, similar to a) it follows from a,, < ~= that — A <
2%—1 2k
c
an, which in turn implies that a, < — 2et2
Czkk+1 -
3 —1)F . ¢
Further, induction on k gives ¢, = + 1 ) . Therefore khm —'::—ﬂ =3
300 k
and using (x) we conclude that a, = —3 for all n.

12.1. The common points of the graphs of the line and the parabola are
A(1,2) and B(4,5). The equations of the tangents to the graph of the parabola
at A and B are y = —2x + 11 and y = 4z — 11, respectively. The intersecting

5}
point of the two tangents is the point C (5, —1). The area of AABC then

equals T
12.2. See Problem 11.5.
12.3. First Solution. Write the equation in the form

23 (x + a)? > 42 - 3. (1)

Then for x = 1 we get (a+ 1)2 > 1,ie.a>0o0ra < —2. If a < =2, then
T = —a gives a contradiction 0 > —4a — 3. Thus, a > 0.

Conversely, if a > 0, then (1) is satisfied for all z. Indeed, when = < 0 this
is obvious and when x > 0 we have 2%(x + a)? > x > 42 + 3, since the later
inequality is equivalent to (z — 1)%((x + 1) +2) > 0.

Second Solution. It follows from (1) that we have to find all a, for which

G ———— —z= f(z)
for all x > % or
Vidx —3
a>———— 1= g(x)
x
for all x > 3
The first case is impossible since liI_'I{l f(x) = —o0. The maximum of the
T 100

function g equals 0 (and it is attained for x = 1). Therefore the answer is
a > 0.

12.4. The equality is equivalent to

(1) sin{n — 1)a = (n=1)sin 2a.

When n > 4 setting o = % gives

T n—1
<)

sin ((n —1)=) = 5

9

>3
-2

.
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a contradiction.
When n = 1 and n = 3 the equality (1) is an identity and when n = 2 we

sin(2a T
have sina = (2 ) , which is not true for a = Yk Therefore the answer is

n=1and n=3.

12.5. Let the plane meet the edges DA, DB
and DC at points P, Q and R, respectively. Set

DP DQ d DR
DA~ " DB Y ¥ bc™”
Let M be the midpoint of AB and L =

DM n PQ. It follows from the condition of the

i = 3 Therefore

SpLp DP.DL =z SprLq DLDQ y

Spay DADM 3 Spup DM.DB 3

problem that

1
Since Spaym = SpmB = §SDAB we conclude that

DP.DQ  Sppqg _ SpprL N Sprq 4y

2ry = 2 = = — :
y DA.DB ’%SDAB Spam SpMmB 3
o1 1 1 1 1 1 . .
ie. — + — = 6. Analogously — + — = 8 and — + — = 10. Solving this system
T . . Yy oz z T
we obtain z = T Y= 3 and z = 5 Thus
Vorqr _ DP.DQ.DR _ 1

Voase _ DADB.DC “V*T @
and therefore the desired ratio equals 1 : 47.

12.6. See Problem 11.6.

189



55. Bulgarian Mathematical Olympiad

National round

1. Let B be a subset of A having the given property. Since 1 + 3 = 22, we
have that exactly one of the numbers 1 or 3 belongs to B.

If 1 € B then 3 ¢ B. We prove by induction that for any integer ¢, 0 <
t < 2”2, the integers of the form 4t + 1 belong to B and the integers of the
form 4t + 3 do not belong to B. The statement is true for ¢ = 0 and suppose
it is true for ¢ < s. Since 4(s + 1) + 1 is an odd number there exists [ such
that 28 < 4(s + 1) + 1 < 24!, Therefore 2(4s + 5) > 2.2' = 2"*! giving
0 <2l — (45 +5) <45+ 5. Set £ = 45+ 5 and y = 2'*! — (45 + 5). Then
z +y = 211 and since y is of the form 4m + 3 we conclude that y ¢ B and
therefore 4(s + 1) + 1 € B. Analogously 4(s+ 1) + 3 ¢ B.

If 1 ¢ B then 3 € B and we prove as above that the integers of the form
4t + 1 belong to B and the integers of the form 4t + 3 do not.

Therefore the odd numbers in B are either all integers of the form 4¢ + 1
or all integers of the form 4t + 3.

Let x = 2Pxy and y = 29yp, where x¢ and ygp are odd and p and ¢ are positive
integers. If 2Pz + 29yy = 2% and p # ¢, say p < g, then zg + 29 Pyy = 2+~ P,
which is impossible. Therefore p = ¢ and it follows that the sum of the elements
from distinct sets A; = {2%a : a is an odd integer}, i =1,2,...7n is not a power
of 2. For any A;, after dividing by 2¢ and applying the above arguments, we
obtain that either all integers of the form 2¢(4¢ + 1) are in B or all integers of
the form 2¢(4¢ + 3) are in B.

Therefore there exist 27! sets B with the given property.

2. a) It follows from f(x+y)— f(x—y) > 0 that f is an increasing function.
Therefore the function f(x) has a limit [ > 0 when z — 0, £ > 0 (prove!).
Thus letting x,y — 0, >y >0, we get | — [ = 4\/25, i.e. | = 0. Fixing =
and letting y — 0, y > 0 we conclude that f(x + y) — f(x — y) — 0. Since the
function f is increasing we conclude that it is continuous at x. Finally, letting
y—x,y <z, we get f(2x) = 4f(z).

b) Setting x = ny > 0, where n > 2 is an integer, we obtain from the given

identity that
f((n+1)y) = f((n—1)y) +4v/ f(ny) f
),

Using f(2y) = 4f(y), it follows by induction that f(ny) = n?f( ). Set f(1) =
¢ > 0. Then f(n) = n2c. Now, for any positive integers p and ¢ we have
ep® = flgp/q) = ¢*f(p/q), ie. f(p/q) = c(p/q)?. Since f is a continuous
function, we conclude that f(z) = cx? for any x > 0. Conversely, any function
of the form f(x) = cx? satisfies the condition.

Remark. It is possible to show that any function satisfying the condition is
differentiable. Thus, letting y — 0, y > 0, in the identity

fle+y)=flz—y) _Vf(y)
5 =2 " Vv f(2)
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we get f'(z) = 2¢+/f(z). Therefore (\/f(z)) = ¢, i.e. f(x) = c?x?

3. Denote by M, the set of all d1g1ts of the numbers 1,2,...,n. First we
find the least positive integer n = @yday- .. a; such that every two nonzero digits
appear different number of times in M,. By adding zeros on the left we may
assume that all numbers 1,2,...,n — 1 are t-digit numbers.

It is clear that every nonzero digit appears the same number of times. Let
Bz?, 1 <i<t 1 <37 <9 be the number of appearances of the digit j in
position ¢ among the numbers 1,2,...,n. Note that for all ¢ and 7 < 8, if a
number A has 7 + 1 in position ¢, then replacing this digit by j we obtain a
number which is less than A. Therefore B! > BI*!,

Furthermore for a fixed i the inequality B! > Bf +1 is fulfilled for at most
two pairs of digits 7 and j + 1, namely a;—; and a;; a; and a;4+,. Moreover, if
i = t, it is fulfilled only for a; and a;y;. Since there are 8 pairs of the form
(j,7 + 1) we have t > 5. If n = 13578 then B} > B?, B2 > B3; B} > Bj;
Bj > BE; BS > BS; B§ > BY; B] > BS; BS > B2, i.e. n = 13578 satisfies the
condition of the problem.

If m < 13578 also satisfies the condition then the first digit of m is 1 and
the second digit is 0,1,2 or 3. Since B} > B{H is true only for j = 1 if
the second digit is 0,1 or 2 then at least two consecutive digits appear equal
number of times. Therefore the second digit of m is 3. It follows by similar
arguments that the third, fourth and the fifth digits of m are respectively 5,
7 and 8. Therefore n = 13578 is the least positive integer such that every two
nonzero digits appear different number of times in M,.

Since the number of digits of all numbers 1,2,3,...,13578 equals

9.1+ 90.2 4+ 900.3 + 9000.4 + 3579.5 = 56784

we conclude that 56784 has the desired property.

Suppose that there exists k < 56784 which has the desired property. Then
the digits in the sequence are those in M, for some s < 13578 and some digits
of s + 1. According to the previous observations there exist two consecutive
digits that are not digits of s (eventually excluding the last one) appearing
equal number of times in M. If the last digit of s is not 9, then the same digits
appear equal number of times in the sequence since the digits of s and s + 1
are the same (except the last one). If the last digit of s is 9 then the last digit
of s + 1 is 0 and therefore s + 1 < 13578. Hence we conclude as above that
there exist two consecutive digits not among the digits of s + 1 which appear
equal number of times.

4. Since p — 1 is a divisor of p! the greatest common divisor of p — 1 and
p! + 2™ is a power of two. We shall show that both numbers p — 1 and p! 4 2"
have at least one odd divisor.

Suppose that p— 1 = 2%, ie. p= 2%+ 1. If s > 3 is an odd divisor of k then
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p=2%+1= (2° 4+ 1)A, i.e. p is not a prime number. Therefore k = 2° giving

2k—1

ol 1 = 22 1= 1)@
_ (221‘. . 1)(221‘. + 1)(22t+1

+1):...
+ 1. (2% 1.

It is clear that p® does not divide the above product since (22t +1, 92' | )=1
when [ > ¢, and 22 — 1 < p= 22" + 1. Therefore p— 1 is not a power of 2.

Suppose that p! + 2" = 2%, giving k > n and p! = 27(2¥" —1). Then p is
a divisor of 2™ — 1, where m = k — n. Let ¢ be the least positive integer such
that p divides 28 — 1. Then ¢ is a divisor of m and t is a divisor of p — 1. If
p— 1 =1t then

2p—l —1= (2t _ 1)(2t(l—l) 4+ 2t(l—2) 4ot 2t 4+ 1)

Since 2t = 1 (mod p) we have 2(¢—1) 4 2801=2) 4 ... L 2t 4 1 =20 (mod p).
Therefore p? is a divisor of 28 — 1 which implies that p? is a divisor of 2™ — 1,
i.e. p? is a divisor of p!, a contradiction.

Thus, both p—1 and p! 42" have at least one odd divisor and these divisors
are distinct. Therefore the product (p — 1)(p! + 2") has at least three distinct
prime divisors.

5. We shall prove that the perpendicular bi-
sector of XY passes through the point C’ which Y y
is symmetric to the point C with respect of AB.
Denote by R the circumradius of AABC. The
Sine theorem for AABC gives AC = Rv/2 and
BC = R. Suppose that C lies between A and
X. Then OX = BY, C'A=CA, C'B = CB,
XC'BY = 90° and the Cosine theorem for
AC'AX gives
C'X? = C'A*+ AX? - C'AAX = AC* + AX? - AC.AX
— AC? + XA.XC =2R*+ (OX*—- R* = R*+ BY*
= C'B*4 BY?*=C'Y~

Therefore C’ is a point on the perpendicular bisector of XY'. In the case when
X lies between A and C the proof is similar.

6. We first prove the following

LEMMA. If A € S, then the open disc k(O, OA) is contained in S.

Proof of the Lemma. Note that if A € S and B is a point on the circle of
diameter OA then B € S (since B belongs to the circle with diameter OX,
where OB L BX and X is a point on the circle with diameter OA). Let
B € k(O,0A) and ¢ =4 AOB. For any positive integer n set Ag = A and

define Ay, k= 1,...,n, such that 3 Ax_;OA; = £ and 0A, = OA_, cos L.
n n
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Since 4 OARAk—1 = 90°, it follows by induction on k that A, € S, k =
1,...,n; in particular A, € k(O,0OA). Since B € OA™ and OB < OA, the
statement of the Lemma would follow if lim OA, = OA. But the latter is

n—oo

AL 2 .
true because OA, = OA (cos E) and 1 > (cos £) "= (1—sm2 %)n >

2\
(1-%) -1
It follows from the Lemma that if the set S is unbounded then S = R?. If S

is bounded then setting r = sup OA we get k(O,r) C S C k(O,r). Therefore
A€S

the desired sets are S = R? and S = kU, where k is an open disc with center
O, and < is an arbitrary set on its circumference.
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Team selection tests for 23. BMO

1. We shall prove that if the angles of two triangles form an arithmetic
progression with difference d, then d = 0.
Let a be the least of all six angles and let the progression be o, a+d, ..., a+

5d. Thus,
3o+ (k1 + ko)d = 3o + (kg + ks + ks)d,

where {ky, ko, ks, kq,ks} = {1,2,3,4,5}. Therefore if d # 0, then
ki + k2 = ks + kq + ks,

which is impossible since k; + ko + k3 + k4 + ks = 15.

T é Thus, A;B,||AB and XA, B;C = <)[BAC

We have XAPM = XA, PC = f—;-g = XA B|C = XBAC. Therefore

APAM ~ AACM and analogously APBM ~ ABCM. It follows from above

that AP AM BM  BP which lies that AP AC AL .
AC ~CM ~ °M _ Bc Whenmeli ,541{& {341(3] %,; BL’

PL is the inner bisector of XAPB. Moreover, B = BC = Bp’ ie. PK is

the outer bisector of {APB. Therefore <LPB = 90° implying that P lies on

the circle with diameter K L. Note that the point C lies on the same circle,

which completes the proof.

3. It suffices to prove the inequality for » € QN (0, 1) and then to let r — a.
Setr=£,u= Yz and v = Y.
q
We have to prove that

ud — o7 - uP — P
1—(w)? = 1 — (uv)P

for v < u and p < ¢q. To do this we shall show that

yPtl _ yptl uP — P
1 — (wo)Ptl = 1 — (wv)P

which implies by induction the above inequality. It is easy to check that the

latter inequality can be written as
1 — 2P+l 1 241

uP(1 —u) < vP(1 —v)’

i.e.
P

Z(uf+u zp:vj-l—v 7,

j=1
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1 1
which follows by the inequality ¢ + n <z+ > where 0 < 2 <t < 1.

4. We shall solve the problem for A = {1,2,...,t}. Let Fop = F\ = 1,
Fpp1 = Fp + Fp_y for n > 1 be the Fibonacci sequence. We shall prove by
induction that if Fj,_; <t < F,, n > 2, then the desired sum equals n.

1. Since for t = 2 and t = 3 Peter needs 2 or 3 leva, respectively, the
assertion is true for n = 2 and n = 3.

2. Suppose that it is true for n = k.

3. Choose t € (F}, Fry1] and let Peter ask a question set having s elements.
If s € (Fi—1, Fi] and the answer is “yes” then Peter gives Ivan 2 leva and by
the induction hypothesis he needs additional k leva, i.e. in total k + 2 leva.

Ifs< Fp_y,thent—s> F,+1—F._; = Fj,_o+1. If Peter receives answer
"yes” then he pays 2 leva and he needs additional k — 1 leva, i.e. in total k + 1
leva. It remains to notice that if Peter asks a question set with F}_; elements
and the answer is "yes” then he needs 2+ k— 1 = k + 1 leva and for answer
"no” he needs 1 + k— 1 = k leva.

Since Fjg = 89 and Fj; > 89, the desired number equals 11.

5. Let a + b = ¢. Thus,
(c—a)l+c—a<a—a® <> 3ca®— (82 +2)a+® +c<0.
If ¢> 0 then

0<D=3c*+2)%—12¢(c® +¢) = 4 — 3¢

4
Hence ¢ < {/; with equality when a is the double root of the corresponding

4
quadratic equation. Therefore the maximum possible value of a+b equals (/;

6. Suppose that the pair (m, n) satisfies the condition and let (x,y) be the
corresponding integer solution.

It follows by Fermat’s little theorem that a!® = a (mod 13), a®® = a
(mod 13), ¢ = a (mod 13) and therefore

0 = (e—m)B—(z—P—-(@w-n¥=z-m—z+y—y+n

= n—m (mod 13).

The same reasoning shows that n —m is congruent to 0 modulo 2, 3, 5 and
7. Then 2.3.5.7.13 = 2730 divides n — m. Since |n — m| < 2005 it follows that
n = m. On the other hand, if » = m then x = y = m is a solution of the given
equation, i.e. the desired number equals 2006.

7. a) Let Ay = AAo N BC and let the tangent line to k at A2 meet AB
and AC at points X and Y, respectively. Since A2A,; is a diameter, we have
XY || BC,ie. AAXY ~ AABC.
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Since k is an excircle of AAXY, it follows from above that BAs = p— ¢
and CAy = p— b (we use the standard notation for AABC) and therefore
BA4 P~ c
A/ T p-b
Ceva’s theorem imply that the lines AAs, BBy and CCy are concurrent.

b) Denote by Z the intersection point of the tangent line to k at A3 and BC.
We have <A A3A4 = 90° and ZA3 = ZA;. It follows easily that ZA4 = ZA,

and therefore

The corresponding equalities for the other two vertices and

CZ:CA1+A1Z=p—C+ LA = BA4s+7ZA4 = BZ.

Hence the desired ratio equals 1: 1.

8. We first show that there exist teams A, B and C, such that A wins
over B, B wins over C' and C' wins over A. Suppose the contrary and take the
shortest cycle of m > 4 teams A, B,C),...,C¢ (i.e. t > 2), such that A wins
over C1, Ci wins over Oy, ..., C; wins over B and B wins over A. Consider the
game between Cy and A. If Cy is the winner then we have the desired triple
and if A is the winner then we have a shorter cycle.

Now we shall use induction on k. The case k = 3 was considered above.
Suppose that the teams Ay, Ag, ..., A satisfy the condition of the problem for
3 < k < n. There are two cases to be considered.

Case 1. There exists a team U & {41, Ag, ..., Ag}, for which there are two
teams A; and Aj; such that A; wins over U and U wins over A;. Without loss of
generality assume that A; wins over U. Let A, be the team of the least index
that loses from U. Then the following k& + 1 teams

Ay, A U Ag, L Ay

have the desired property.

Case 2. For any two teams A; and A; and any team U either A; loses from
U or A; and A; both win over U.

Partition all teams apart from A, Ag,..., A; in two sets S and T, such
that all teams from S win over Ay, Ag,..., Ak, and all teams from T lose from
Ay, Ag, ..., Ag. It is clear that SNT = ¢ and non of S and T is the empty set.

Let U € S and V € T be such that V' wins over U (such a pair exists due
to the condition of the problem). Now the following k + 1 teams

U, Ar,..., Apy,V

have the desired property.
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Team selection test for 47. IMO

1. We shall prove that one can obtain the opposite table by rearranging the
rows and columns of the initial table. Denote the columns from left to right
and the rows from up to down by 1,2, ...,n. Denote by a;; the number written
in ¢-th row and j-th column.

Exchanging rows and columns one obtains: a;; = 1, ajp = —1, ags = 1,
aos = —1 (when ag; = —1 the assertion follows by induction using 2 x 2 and
(n—1) x (n —2) tables), ass = 1, ag4 = —1 (if ag; = —1, the assertion follows
by induction using 3 x 3 and (n — 3) x (n — 3) tables) and so on.

It remains to prove the assertion for the table

1 1-1]0 0 |...{ 0 0
1 y-1)10¢}{...10 0
0 0 1 {-1¢(...]80 0
(4)
A N I R I I T |
-1 10 0 o |...| O 1

Proceeding in the same way one obtains from the initial table the following
one

1J1JToJoJ]...]oJo
ol-1]J1fJo]...]o]oO
ocJol-1]1]...]o]oO

(B)
1tJoJoJo[...]0of]-

Now applying the same moves for obtaining the table B from the table A but
in reverse order one obtains the opposite of the initial table.

2. First solution. It suffices to consider the case when P and @ (£ 0) are
relatively prime polynomials and the leading coefficient of @) equals 1. We have

(1) z(z +2)(P(2)Q(z + 1) — Q(z)P(z + 1)) = Qz)Q(z + 1)

for infinitely many z, i.e. for every x. Thus the polynomials Q(z) and Q(x +1)
divide z(z + 2)Q(z + 1) and z(x + 2)Q(x) respectively.

Therefore S(z)Q(z) = z(x+2)Q(z+1) and T(X)Q(z +1) = z(x+2)Q(x),
where S and T are quadratic polynomials with leading coefficients 1. Hence,
S(x)T(x) = x*(x + 2)%. There are three cases to be considered.

Case 1. S(z) = T(z) = z(z + 2). Then Q(z + 1) = Q(z), i.e. Q = 1 and
the condition of the problem shows that this is impossible.
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Case 2. S(z) = x% and T(z) = (z + 2)%. Then 2Q(x) = (z + 2)Q(z + 1).
Therefore Q(1) = 0 and it follows by induction that @Q(n) = 0 for all n € N.
Hence Q = 0, a contradiction.

Case 3. S(m) = (£ +2)? and T(z) = z2. Then (z+2)Q(x) = 2Q(x +1) and
therefore x divides @Q(z) and = + 2 divides Q(x + 1), i.e.  + 1 divides Q(z).
It follows that Q(x) = z(z + 1)Q1(x), where Q; has leading coefficient 1 and
Qi(z + 1) = Q(z). We conclude that @,(z) = 1 and Q(z) = z(xz + 1). Now

plugging Q(z) in (1) gives

(2) (z +2)P(z) —zP(z+1) =z +1.
Setting x = 0 and x = —1 we obtain P(0) = % and P(—1) = —%. Therefore
P(x) = —1-+ac +xz(x +1)Pi(x), where P; is a polynomial. Now (2) implies that

Py (z + 1) = P(x) and therefore P, is a constant.
We conclude that if the polynomials P and @ are relatively prime and

ap = 1, then Q(z) = z(x + 1) and P(x) = —1- +x + cx(x + 1).
Therefore the answer is

Q(x) = z(x + 1)R(z) and P(x) = (% +x+cx(x + 1)) R(z),

where R is an arbitrary nonzero polynomial and ¢ is a constant.

Second solution. The given identity can be written as

%_%<%+ﬁ)=%_%<xiﬁxi2)'

Hence it follows by induction that

P(z) 1 l_f_ 1 _Plz+n) 1/ 1 L 1
Qz) 2\zr z+1) Qx+n) 2\z+n z+n+1)’
PE) 101 1
Q(x) 2\z z+1
c is a constant. Now it is easy to conclude that Q(z) = z(x + 1)R(z) and
P(x) = ( +x + cx(x + 1)) R(z).

Remark. One can prove in a similar manner the following assertion:

Let P and @ be polynomials with real coefficients such that
P(z) Plz+1) 1
Q(z) Q(z+1) z(z+a)

Fixing x and letting n — oo we see that = ¢, where

for infinitely many x € R, where a is a real number.

198



Then a € Z and a # 0. Moreover let n € N,

1 x z(x + 1) z(x+1)...(x+n—2)
S Al T s T S (n— DN !

and Tp(z) =2(x+1)...(x +n—1). If a =n then
Q(z) = Tu(z)R(x) u P(z) = (Sp(z) + cTn(zx))R(z),

where R is an arbitrary nonzero polynomial and ¢ is a constant. The case
a = —n is treated in the same way after substitutions P;(z) = —P(1 — z) and
Qi(z) = —Q(1 — ).

3. The angle equality implies that M and N are isogonal conjugate points
in AABC. Therefore ¢ BCM =<4 ACN. Denote by small letters the affixes
of the corresponding points in the complex plane. We have that

b—a n—a
arg = arg
m—a c—a
and
|(m —a)(n —a)(b—c)| = k.
Thus,

(b—a)(c—a) AB.BCCA

(m—a)(n—a) B k
Analogously (¢—b)(a—b) = K (m—b)(n—>b) and (a—c)(b—c) = K(m—c)(n—c).
After substraction we obtain

(b—c)(K(m+n)—(K—1)(b+c¢)—2a)=0.

=: K.

Hence
(K —1)(b+c) +2a
m+n=
K
— 2
and analogously m+n = (K 1)(;: a) + b. Therefore K = 3 and o : .

a+b+ec

3
Remark 1. Actually the numbers m and n are the roots of the derivative of

the polynomial (2 — a)(2 — b)(2 — ¢).
Remark 2. Direct verification shows that the following identity holds true
(m—a)(n—a) B (m—b)(n —b) N (m—c)(n—c)
b—a)c—a)  (c-Ba-b)  (@-ob-o _
It follows by the triangle inequality that if M and N are points in the plane
of AABC, then

, which completes the proof.

L.

AMAN  BM.BN  CMCN .
AB.AC ' BCBA | CACB ~ -

The equality occurs if and only if the points M and N are isogonal conjugate.
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4, Let P=CIsnNnk and Q = ClgN k. First
we prove that the circumcircle k1 of AI4IpC is
tangent to k if and only if 141||PQ.

Let T be the point on the tangent line to k at
C, for which ¢ ACT =4 ABC. If k and k; are
tangent then CT' is their common tangent line
and therefore

JCQP =4 TCP =4TCIs =< Clgly,

i.e. I4IB||PQ. Conversely, if I41g||PQ, then S TCI4 =4 TCP =4 CQP
=4 Clpgl,, implying that the line CT is tangent to k.

AD AC+CD
t remai PQ = B '
It remains to prove that I41g||PQ BD BC+CD

Since PI4, = PA= PD and QIgp = @B = QD, we have

CI AP
I4Ig|PQ < C—I;‘ - 50
AC +CD—-AD
2 cos $ACD 2R4pc sin JACD
= = 2
BC+CD-BD oR . < BCD
J BCD “ftABCSII =5
2 cos 5

AC +CD— AD  sin 4 ACD
BC+CD_BD _snq BCD
AC+CD—AD  AD AC+CD AD
BC+CD—BD BD =~ BC+CD BD

—=

—=

5. We shall prove the following generalization of the given inequality: if
z,y>1anda,b,¢ >0 then

ab L be L ca <a+b+c
za+yb+2 zxb+yc+2a xe+ya+2 " x4+y+2

The given inequality is obtained for z = 6 and y = §

(1)

According to the Cauchy-Schwarz inequality we have that

(z+y+2)? (-1 +@y—1)+2+2)°
ab = ab
xa + yb + 2¢ (x—Da+(y—b+(a+c)+(b+¢)
< apfr=tiy-t 4 4
a b at+c b+e
4ab 4ab

— — 1 — .
(= o+ (y 1)a+a+c+b+c
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Summing up this inequality and the other two similar inequalities we obtain

(m+y+2)2< ab N be N ca )
za+yb+2¢c xb+yc+2a xc+ya+2b
(x—D(a+b+c)+y—1)(a+b+c)+4(a+b+¢)

= (z+y+2)(a+b+ec),

which proves (1).
Second solution. The inequality is equivalent to

0 < 30[(a®—b*)? + (b2 — )2 + (2 — a?)?
+11[ab(b — ¢)? + be(c — a)? + cala — b)?]
+73[ab(c — a)? + be(a — b)? + ca(b— c)?).

6. Consider the set A’ = AU {0} instead of A. Let B = {ay,ag,...,a;} be
a nonempty subset of A’. Set

i+ B = {i+a; (mod p), i+ ag(mod p),..., i+ ar (mod p)}.

Note that the sums of the elements of the sets 1+ B, i =0,1,...,p—1, are all
distinct. Indeed, if for some s and ¢ the sums are equal then

k k
Z(s +a;) = Z(t + a;) (mod p)
i=1 i=1

k k

= ks+Za,~ = kt-f—Za,- (mod p)
i=1 i=1

<> ks =kt (mod p)

which is equivalent to s = ¢.

Therefore the set of the subsets of A’ (without the empty set and A’)
2P — 2

partitions into groups and every group contains p sets. Moreover the

sums of the elements of the subsets in every group run over all residues modulo

.
Therefore the number of the subsets having sums divisible by p, equals
9P — 2

4 4

D
subsets B of A (including the empty set and excluding A) equals

p(p—1)
2

4

. Since 0 is included in half of them it follows that the number of the
2P — 9
2p

4

Replacing the empty set by A (having sum , which is divisible by

o1 —1
p), we conclude that the answer is .



7. Since 4 PBM =4 MED =4 BAP we
have PB2 = PM.PA. Analogously QC? =
QN.QA. Since BC = 2PQ and P lies between
B and @, there exists a point L on PQ such
that PB = PL and QC = QL. Thus, PL? =
PM.PA, i.e. M lies on the circle k' through A,

tangent to BC at L. Analogously N € k' and A\\_/D
therefore k' = k. Finally, we obtain that

BL? BD.BA BA?
CI?  CECA CAY

ie. 3 BAL =4 CAL.

holds for finitely

8. a) Suppose that the inequality {anan—1...a12} > -
n+1

many values of n. Hence there exists s such that for any n > s we have

. Since {anGn_1...a12} is not a rational number (in

{anan_y ... a1z} <
An+1

particular does not equal 0) we obtain that {anan_;...a12} < , le.
Un+1

an+1{Gnan_1 ...a12} < 1. Using that an4; is an integer we have
{ant1anan_1 ...a12} = {ant1{anan-1...012}} = any1{anan_1... a1z}
For any t > s we obtain
1> {ata¢—1...a505-1...012} = atas—1...0s{as—1...a12},

a contradiction, since lim; o0 ata;—1...as = 00, but 0 < {as_1...a1x} < L.
1
b) It is clear that if a; = 1 for some ¢ > 1 then {a;_1a;—2...a12} > — =1
a.

1
is not true. Suppose that there exists ¢ such that a; = 2 for ¢ > ¢. Then

1 , 21
{2Py} > 5 for y = asas_1...a1x and every p. Since y < 1 and Zg =1

we conclude that for every k the inequality ¢ < y < ¢4y holds true, where
1 1 1 1 .
Cl = 5 + 57 4o+ o Therefore ‘Zky € 2kck, ‘2'°c;c + 5 ) a contradiction to
1
{Qky} > 5

We shall prove that if {a,}52, is a sequence for which a; > 1 for all 7 > 1
and the inequality a; > 2 holds true for infinitely many values of 7, then there

. Set

exist infinitely many « € (0, 1) such that z, >
An+1

b by b3

= +
a1 apa a1020a3

o
O
o



where by < a;—land 1 < b; < a;— 1 for 7 > 1 and infinitely many of the
latter inequalities are strict. Then
b b b
xT el _1. + 2 + 3 + PP
ai ajaz a10a2a3
ag—1 a—1 az3—1
1 L& L 93

ay a1a?2 10203

1 1 1 1

= l-—+—= —--=1

ai ax a1 a2 aa2

The numbers of this type are infinitely many and we have as above that

b b
n+l+ n+2 +.ee <1,

an41 On4+10n42

Therefore

) b b 1
.= n+-1 n n+2 NN n+1 > ]
On+1 On+10n42 On41 On+1

Remark 1. One can prove that there exist infinitely many irrational numbers
that fulfil the condition of b).

Remark 2. One can prove that if {a,}52; is a sequence of positive integers
greater than 1, then every x € [0,1) can be written in a unique way in the

O
b
form x = Z —————, where b; are integers such that 0 < b; < a; — 1 and

aiag...a;
i—1 142 i

infinitely many of the right inequalities are strict.

9. Consider the following three element sets

N, — {pSp4~~~pn—1’p2p3~~pn—1’p2p3---pn*1pn}’
b1 D1 D1

N, — {p1p4~~pn—1,p1p3~'pn—1’p1p3---pn—1pn},
D2 D2 D2

N,_, — {p2p3~~pn—2,p1p2‘--pn—2’p1p2~--pn—2pn}.
Pn—1 Pn—1 Pn—1

It is easy to check that the union of these sets satisfies the condition of the
problem and has 3n — 3 elements.

Suppose that there exists a set having 3n — 2 elements that satisfies the
condition of the problem. It is clear that every prime number appears in de-
nominator at most 3 times.

Let My C M be the largest possible set of prime numbers which appear
exactly three times in denominator and no two prime numbers from M; appear
in one and the same denominator. Then the following inequality holds true

3|M, |+ 2(n— |My]) > 3n—2,
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Le. [My|>n—2.
Case 1. Let |[Mi| = n. Then N is a union of sets of the type N; =

a b—1 ¢
{—z ! —2} and it follows that p; does not appear in at most one of the

no%ina%’?ors Z;Zf the remaining fractions. In every /V; there are at least two frac-
tions whose nominators do not contain one p;; otherwise there are two equal
fractions. Therefore 2n < n, a contradiction.

Case 2. Let |My| = n — 1. There are two cases:

b —i o
a) The set N is a union of n — 1 sets of the form N; :{_a_,, z, _c_z}’
Tpi Pi P
r s

where x = 1 or x = p, and N, = {—,—} If a denominator of a fraction
Pn Pn

not in N, is divisible by p, then we have as above that 2(n — 1) +1 < n, i.e.
n < 1, a contradiction. Otherwise the denominators of at most three fraction
are divisible by p,. Therefore 2(n — 1) +1 <n—1+ 3 implying n < 3. It is
easy to be seen that n = 3 gives no solution.
t
b) Consider the set N, ={—} Then observations analogous to those in

Dn

a) imply 2(n — 1) <n—1+5, i.e. n < 6. For every n = 3,4,5,6 it is easy to
find an example of sets with 3n — 2 elements.

Case 3. Let |M;| = n — 2. To find a better N one should have n — 2 sets
obtained by the primes from M; and two sets with two elements each obtained
from p,_1 and p,. As above we obtain 2(n—2) +2 < (n—2) + 3 + 3, implying
n < 6. Hence in this case we do not find a better N.

When n = 3,4, 5,6 the answer is 3n — 2, and for n > 7 the answer is 3n—3.

10. We rewrite the recurrence relation as

n+2)a,_ 1 n+3)a n+3)a2 — 4
(2 +2)an-s B o (3l
4000041 Anlny10n42 40p 410042 an—1

for n > 3. Setting n = 2 in the initial relation we obtain 4(a; + 4) = 5a143,
implying that a, |16 and 5|a; + 4. Therefore a; = 16 and a3 =1 ora; = 1 and
ag = 2.

Case 1. Let a; = 16 and ag = 1. Then 5a5 = 6a§ — 4, azag = 18 and
Tar = 202 — 1 for n = 3, 4 and 5, respectively. Since ag = £2 (mod 5) and ag
as a divisor of 18 we conclude that as = 3 or ag = 18. The direct check of both
values shows no solutions in this case.

Case 2. Let a; = 1 and a9 = 2. Thenn:3andn:4give5a5+2:3a§
and azag = 18, respectively. Again ag = £2 (mod 5) and we see that ag = 3
and ag = 6 or ag = 18 and ag = 1. In the second case we obtain a5 = 194

R - . 9a2 — 4
which gives a contradiction with 8ag = :
as
In the first case a5 = 5 and hence the only possible values are a; = i for
1=1,2,...,6. Now easy induction shows that a, = n for all n.



11. Denote by D(a,b) the set of the divisors of a, which are greater than
or equal to b. Thus, |D(a,b)| = d(a, b). Every integer k, 1 < k < 4, belongs to
at most one of the sets

(1) D@Bn+1,1), D(3n 4+ 2,2),..., D(4n,n).

Every integer k, 1 < k <mn, 3n+1 < k <4n belongs to exactly one of the sets
(1). The integers k, 2n + 1 < k < 3n do not appear in the sets (1).
Letn+1<k<2n,ie.k=n+11:=1,...,n If k belongs to one of the
sets (1), then
3n+1<2(n+i) <4n

or
3n+1<3(n+1i) <4n.

We conclude that ¢ = ?—1—;_—1 ,...,mori=1... ’[;J The number of the

4

integers from the interval [n + 1,2n] that belong to exactly one of the sets (1)

equals l-g] +[gJ Thus

4

ID(3n +1,1)| + |DBn +2.2)| + - - + |D(dn, n)| = 2n +[§-] +[%J .

and therefore n = 708.

12. It is easy to observe that there are at most two acute angles in every
convex m-gon. Moreover, if there are two acute angles then they are located

at one and the same side.
Fix ! =0,1,...,n—1 and let A and B be two vertices of M such that there

are [ vertices on the arc AB. Consider the following expression

[ n n—I[—1 n—[(—1
(m—?) N <m—2) B ( m—2 ) — 1)< m—3 )
We count in it all m-gons having two acute angles to the side AB and all
m-gons having one acute angle to the right of AB.
It is easy to see that summationon [ =0,1,...,n— 1 and then multiplica-
tion by 2n + 1 counts every m-gon exactly ones.



k
k+1
Now using the identity Z (i) = ( ; __: 1) we obtain

| )~ (i) -0 (5 )
= 2 (nl) (") S ale) 9% ()

s=0

R e ) 2

0 s=0
+1 _ n B o n+1 _ n
—92 m—2o) ™ 2) m—1 m—2
_ mn-—2n-—1 n
N m—1 m—2)

(2n+1)(mn—2n—1)< n )

Therefore the answer is
m—1 m— 2



Classification of the problems

Key. The problems are distributed in four general fields — Algebra and
Analysis, Geometry, Number Theory and Combinatorics. The notation consists
of three positions: the competition (C), the grade (g), the number (n) of the
problem, followed in brackets by the pages where the problem and it solution
appear in the book. Here

Ce{W,SR,NTBMO, TIMO}, where
W stands for Winter Mathematical Competition,

S stands for Spring Mathematical Competition,

R stands for Regional Round of the Bulgarian Mathematical Olympiad,

N stands for National Round of the Bulgarian Mathematical Olympiad,
TBMO stands for Team Selection Test for the Balkan Mathematical Olym-
piad,

TIMQO stands for Team Selection Test for the International Mathematical
Olympiad;

g € {8,9,10,11, 12, A}, where
the number stands for the grade and A means that the problem is the same
for all participants;

ne{l,2...,12}
is the number of the problem in the corresponding competition.

Some problems can be classified in more fields.

For example, W — 10 — 3(15, 96) is Problem 3 for grade 10 at the Winter
Mathematical Competition, it appears on page 15 and its solution starts on
page 96.



Algebra and Analysis

2003
W —9—2(1,48), W — 10 — 1(1,49), W — 11— 1(2,51), W — 12 — 1(2, 53),
S—9—1(3,57), S — 10— 1(3,58), S — 11 — 1(4, 60), S — 12 — 1(4, 63),
S —12—3(5,64), R— A—3(6,65), R— A— 5(6,66), N — A — 6(8,71),
TBMO — A —2(8,72), TBMO — A— 3(8,72), TBMO — A — 4(8,73),
TIMO — A —2(9,75)

2004
W —9—1(10,79), W — 10 — 1(10, 80), W — 11— 1(10, 81), W — 12— 1(11, 82),
S—9—1(12,86), S— 10— 1(12,87), S — 11 — 1(13,89), § — 12 — 1(13,90),
R—9—1(14,93), R —9— 3(14,93), R — 9—6(14,95), R — 10 — 1(14, 95),
R—10—4(15,97), R— 11 —1(15,98), R— 12—2(16,101), R— 12 —6(16, 103),
TBMO — A—2(18,108), TBMO — A — 5(18,109), TIMO — A — 1(19, 116),
TIMO — A— 9(19,116), TIMO — A — 10(19,117), TIMO — A — 11(20,117)

2005
W—9—1(21, 119), W—10—1(21, 120), W —11—1(22, 122), W —11—2(22, 122),
W —12—1(23, 124), W — 12— 3(23, 125), S — 8 — 1(24, 129), S — 9— 1(24, 130),
S—10—1(25,133), S— 10 —2(25, 133), S— 11— 1(25, 134), S — 11—2(25, 134),
S—12—3(26,137), S — 12— 4(26, 137), R—9— 1(27,139), R — 9— 4(27, 140),
R—10—1(27, 141), R—10—4(28, 142), R—11—1(28, 143), R— 11—4(29, 145),
R— 12 —2(29,146), N — A — 1(31,150), N — A — 3(31, 151),

TBMO — A —1(32,155), TBMO — A — 3(32,155), TBMO — A — 5(32, 156),
L{MO — A—3(33,160), TIMO — A— 4(33,162)

2006
W —9—1(34, 165), W—9—2(34, 165), W —10— 1(34, 167), W—11—1(35, 168),
W —11—3(35, 169), W — 12—1(35, 170), S—9— 1(37, 174), S — 10— 1(38, 175),
S—11—1(38,177), S—11—2(38, 177), S— 12— 1(39, 179), S— 12— 3(39, 180),
R—9—1(40, 182), R —9—4(40, 182), R — 10— 2(40, 184), R— 10— 3(41, 184),
R-10—4(41,185), R—11—2(41, 186), R—11—4(41, 186), R— 11—6(42, 187),
R— 12 —3(42,188), R — 12 — 4(42, 188), N — A — 2(43, 190),

TBMO — A —1(44,194), TBMO — A — 3(44,194), TBMO — A — 5(44, 195),
TIMO — A — 2(45,197), TIMO — A — 5(45,200), TIMO — A — 8(46, 202),
TIMO — A — 10(46, 204)



Geometry

2003
W —9—1(1,48), W — 10 — 2(1,50), W — 11— 2(2,52), W — 12 — 2(2, 54),
S —8—2(3,56), S —9—2(3,57), S— 10— 2(4,59), S — 11—9(4 61),
S$—12—2(5,63), R— A— 1(6,65), R— A — 4(6,66), N — A — 2(7, 68),
TBMO — A—1(8,72), TIMO — A — 5(9,77)

2004
W —9—2(10,79), W — 10— 2(10, 80), W — 11— 2(10,81), W — 12 —2(11,83),
S—8—1(12,85), S — 9 —2(12,87), S — 10— 2(12,88), S — 11 — 2(13,89),

S —12 —2(13,91), R— 9 —2(14,93), R — 10— 2(14,95), R — 10 — 5(15, 98),
R—11—-2(15,99), R—11—4(15,100), R—12—3(16,101), R— 12— 4(16, 102),
N — A—1(17,104), TBMO — A — 4(18,108), TBMO — A — 6(18, 110),
TIMO — A—3(19,113), TIMO — A — 5(19,114), TIMO — A —7(19, 115)

2005
W—9—2(21, 119), W—10—2(21, 120), W —11—3(22, 122), W — 2 2(23, 124),
S—8—2(24,129), S—9—2(24, 131), S — 10— 3(25, 133), S — 11 — 3(26, 135),
S—12—1(26,136), S — 12— 2(26,136), R —9—2(27, 139), R— 9 5(27, 140),
R—10—2(27, 141), R—10—5(28, 142), R— 11—2(28, 143), R— 11—5(29, 145),
R—12—3(29, 147), R—12—4(30,148), N — A—2(31,151), N— A—4(31, 152),
TBMO — A — 2(32,155), TBMO — A — 7(32, 158), TIMO — A — 1(33, 160),
TIMO — A —5(33,162)

2006
W —9-3(34,165), W—10—2(34, 167), W—11—2(35, 169), W —12—2(36, 170),
S—8—2(37,173), S—9—2(37,174), S — 10— 2(38, 176), S — 11 —3(38, 177),
S—12—2(39,179), R—9— 2(40,182), R — 9— 5(40, 183), R — 10 — 1(40, 184),
R—10—5(41,185), R—11—1(41,185), R—11—5(42, 187), R— 12— 1(42, 188),
R— 12— 5(42,189), N — A —5(43,192), N — A — 6(43, 192),

TBMO — A — 2(44,194), TBMO — A — 7(44,195), TIMO — A — 3(45, 199),
TIMO — A — 4(55,200), TIMO — A — 7(45, 202)



Number Theory

2003
W —9—3(1,49), S — 8 —3(3,56), R— A— 6(6,67), N — A — 3(7, 69),
N — A—5(7,70), TIMO — A — 6(9, 78)

2004
W —10—3(10,81), W — 11— 3(11,82), W — 12— 3(11, 84), § — 9 — 3(12,87),
R—9—4(14,94), R— 10— 4(15,96), R— 11 — 5(16, 100), R — 12 — 1(17, 101),
N — A—2(17,105), N — A — 5(17,106), TBMO — A — 8(18, 111),
TIMO — A —2(19, 113)

2005
W —9—3(21,119), W —10—3(22, 121), W — 12— 4(23,128), S — 8—3(24, 130),
S—9—4(25,132), S— 10— 4(25,134), S — 11— 4(26, 135), R — 9 — 3(27, 139),
R—10—3(27, 141), R— 11—3(29, 144), R—12—1(29, 146), N — A—6(31, 153)

2006
W — 10 — 3(34, 167), W — 12 — 4(36, 171), S — 8 — 1(37, 173),
S —8—3(37,173), S — 9 —4(37,175), R — 9 — 3(40, 182), N — A — 4(43,191).
TBMO — A— 6(44,195), TIMO — A — 6(45,201), TIMO — A — 11(46,204)



Combinatorics

2003
W — 10— 3(1,51), W — 11— 3(2,53), W — 12— 3(2,54), S — 8 — 1(3, 56),
S —9—3(3,57), S— 10— 3(4,59), S — 11 —3(4,62), R— A — 2(6,65),
N— A—1(7,68), N— A—4(7,70), TIMO — A — 1(9,75),
TIMO — A—3(9,76), TIMO — A — 4(9, 76)

2004
W —9—3(10,79), S — 8 —2(12,85), S — 8 — 3(12,86), § — 11 — 3(13, 90),
R—9—5(14,94), R— 10— 6(15,98), R — 11 — 3(15,99),
R— 11 — 6(16, 100),
R—12—5(16,102), N — A — 3(17,105), N — A — 4(17, 105),
TBMO — A —1(18,108), TBMO — A — 3(18,108), TBMO — A— 7(18,110),
TIMO — A—4(19,114), TIMO — A — 6(19,115), TIMO — A — 8(19, 116),
TIMO — A — 12(20, 118)

2005
W —9—4(21,120), W —10—4(22, 121), W — 11—4(22, 123), S —8—4(24, 130),
S—9—3(24,131), R —9—6(27,140), R — 10— 6(28, 142), R — 11 — 6(29, 145),
R— 12— 5(30, 148), R — 12 — 6(30, 148), N — A — 5(31, 153),

TBMO — A —4(32,156), TBMO — A — 6(32,157), TBMO — A — 8(32, 158),
TIMO — A—2(33,160), TIMO — A — 6(33, 163)

2006
W —9—4(34.166), W—10—4(35, 168), W—11—4(35, 169), W —12—3(38, 171),
S—8—4(37,173), S—9—3(37,175), S — 10— 3(38,176), S — 11 —4(39, 178)
R—9—6(40,183), R—11—3(41, 186), N — A—1(43,190), N — A—3(43, 191),
TBMO — A— 4(44,195), TBMO — A — 8(44,196), TIMO — A — 1(45,197),
TIMO — A— 9(46,203), TIMO — A — 12(46,205)

9



List of some standard notations

N — the set of all natural numbers, i.e. N={1,2,3,4,...}
Z - the set of all integer numbers,ie. Z ={...,—4,-3,-2,-1,0,1,2,3,4,...}
Q - the set of all rational numbers, i.e. Q = {§|p, q €Z}

R — the set of all real numbers

C - the set of all complex numbers, i.e. C = {a + bia,b € R,3% = —1}
Sxyz — the area of triangle XY Z

p — semi perimeter of given triangle

[z] — the integer part of z, i.e. the largest integer that does not exceed z
{z} — the fractional part of z, i.e. {z} =z — 2]

(a,b) — the greatest common divisor of integers a and b

[a, b] — the least common multiple of integers a and b

212




§B GIL

This book contains problems from all selection
tests for BMO and IMO. Most of the problems
are regarded as difficult IMO type problems.

The book is intended for undergratuates, high
school students and teachers who are interested
in olympiad mathematics.

9i7897391417860

www._gil.ro

|.S.B.N. 973-9417-86-0


https://www.researchgate.net/publication/275887485

