
Olympiads in Informatics, 2011, Vol. 5, 82–91 82
© 2011 Vilnius University

Reconstruction of Trees Using Metric Properties ∗

Krassimir MANEV1, Nikolai NIKOLOV2, Minko MARKOV1

1Department of Mathematics and Informatics, Sofia University
J. Bourchier blvd. 5, 1164 Sofia, Bulgaria

2Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
G. Bontchev str. 8, 1113 Sofia, Bulgaria

e-mail: manev@fmi.uni-sofia.bg, nik@math.bas.bg, minkom@fmi.uni-sofia.bg

Abstract. To reconstruct a graph from some of its elements or characteristics is a hard problem.
Reconstructions require very good mathematical background and programming skills. That is why
some not so difficult graph reconstruction problems may be appropriate for competitions in pro-
gramming both for university and school students. In this paper two such problems are considered –
reconstruction of a tree from the distances between its outer vertices and from the distances between
all its vertices. It is proved that any tree can be reconstructed in either case. The corresponding al-
gorithms are presented and their time complexities are estimated.

Key words: graphs, trees, shortest paths, reconstruction of tree.

1. Introduction

In the preface of a book dedicated to the 60th anniversary of Tutte the great Paul Erdös
writes: “There are three diseases in graph theorists. The first is four-color-disease, the
second is reconstruction-disease, and the third – Hamiltonian-disease.” Regarding recon-
struction Paul Erdös without any doubt had in mind a hypothesis conjectured by Kelly
(1942) and recited by Ulam (1960). The hypothesis became popular as the graph re-
construction conjecture from the paper of Harary (1964), where it was reformulated in
a weaker form: every graph G = (V, E), V = {v1, v2, . . . , vn}, n � 3, can be re-
constructed from the set of its vertex-deleted subgraphs {G1, G2, . . . , Gn}, where Gi is
obtained from G by deleting vi and its incident edges.

That conjecture is still neither proved nor disproved for arbitrary graphs and is con-
sidered one of the hardest graph problems. An easier problem of graph reconstruction, to
reconstruct a graph from the set of subgraphs, each one obtained by a single edge removal
from the original graph, was formulated and solved in Harary and Palmer (1966).

Graph reconstruction problems can be formulated in different ways and using differ-
ent elements or characteristics of the graph. These problems are usually not trivial and
good mathematical and algorithmic background is necessary for solving them. It is pos-
sible, however, to formulate reconstruction problems for restricted classes of graphs that
are not too hard and thus to propose interesting tasks for competitions in programming.

*This work was partly supported by Scientific Research Fund of Sofia University through Contract
242/2010.

Reconstruction of Trees Using Metric Properties 83

In this paper we consider two problems of reconstruction of trees from given metric
characteristics, viz. the distances between some pairs of vertices. We prove such recon-
structions are possible and the reasoning is not very involved. That is why we included
these problems in two programming contests, one for university students and one for high
school students, and they were successfully solved by some students.

In Section 2 we give some basic definitions and prove some properties that are used
further on. In Section 3 we formulate the first problem and propose an algorithm that
solves it. In Section 4 we formulate the second problem and present a version of the
algorithm from Section 3 that solves it. In Section 5 we estimate the time complexity of
both algorithms. We outline and discuss an important subproblem that can arise in that
estimation. Section 6 contains some conclusions and ideas for future research.

2. Basic Notions and Properties

Some necessary notions are defined below. The other definitions we use can be found in
each textbook on graph algorithms. We consider finite undirected graphs without loops or
multiple edges. The graph G with vertex set V and edge set E is denoted by G = (V, E).
By V (G) we denote the vertex set of G in case that vertex set is not specified. Without
loss of generality we assume V = {1, 2, . . . , n}. For each edge e with endpoints, say,
u and v we denote e by either (u, v) or (v, u). For any vertex v, the number of edges
incident with v is denoted by deg(v) and called the degree of v. To each edge (u, v), a
positive real number c(u, v) is assigned called the length of (u, v). If the edge lengths are
not specified explicitly each one of them is assumed to be 1 and such graphs are called
non-weighted.

The alternating sequence π = v0, e0, v1, e1, . . . , vk−1,ek−1, vk of distinct vertices and
edges where vi ∈ V for i = 0, 1, . . . , k and ei = (vi, vi+1) ∈ E for i = 0, 1, . . . , k − 1,
is called a path between v0 and vk. The length of π is equal to

∑k−1
i=0 c(ei) and is denoted

by c(π). Every v ∈ V is a trivial path between v and v of length 0. The edge names are
omitted when we describe a path. The path π0 = v0, v1, . . . , vk is called a shortest path
between v0 and vk if c(π0) � c(π) for each other path π from v0 to vk. A graph G is
connected if there is a path between every two of its vertices.

The distance between u and v is the length of any shortest path between them and
is denoted by d(u, v). We emphasize that the function d(u, v) defined in any connected
graph has the three properties of any other function in mathematics called distance:

1. d(u, v) � 0∀u, v ∈ V , and d(u, v) = 0 iff u = v;
2. d(u, v) = d(v, u)∀u, v ∈ V ;
3. d(u, v) + d(v, w) � d(u, w)∀u, v, w ∈ V (triangle inequality).

Therefore, when solving distance problems on graphs it is helpful to use analogies
with the more familiar Euclidean space. Of course, these analogies have to be used care-
fully. For example, in Euclidean space the triangle inequality will turn to equality iff the
point v lies on the linear segment between u and w, while in the metric space of the graph
the triangle inequality will turn to equality iff vertex v lies on any shortest path between
u and w.

84 K. Manev et al.

The commonplace definition of a tree is a connected graph with no cycles, and of a
rooted tree, a tree in which one vertex is chosen to be the root and the leaves are defined
via the maximum length paths having the root as one endpoint. We find the following
inductive definition of rooted tree more useful:

(i) The graph T = ({r}, ∅) is a rooted tree, r is both the root and the sole leaf of T .
(ii) Let T = (V, E) be a tree with root r and leaves L = {v1, v2, . . . , vk }, let u ∈ V ,

and w �∈ V . Then T ′ = (V ∪ {w}, E ∪ {(u, w)}) is also a rooted tree. Its root is
r and its leaves are (L − {u}) ∪ {w}.

Obviously, every rooted tree is a tree and every tree can be turned into a rooted one.
Many properties are valid both for trees and rooted trees. For example, for each (rooted)
tree T = (V, E) the equality |V | = |E| + 1 holds, there is a unique path between each
two vertices u and v of a (rooted) tree, etc.

Suppose T is a non rooted tree. For every u ∈ V (T), the subtrees of T induced by
u are the connected components obtained after the deletion of u and its incident edges.
The vertices of degree one are the outer vertices and the other vertices are the inner
vertices. A tree with one vertex only is called trivial. If all inner vertices have degree
� 3, T is called homeomorphically irreducible, shortly irreducible. We find the following
equivalent (except for the trivial tree) inductive definition of irreducible trees useful:

(i) T = ({u, v}, {(u, v)}) is an irreducible tree with outer vertices u and v.
(ii) Let T = (V, E) be an irreducible tree, |V | � 2, and the outer vertices be W =

{v1, v2, . . . , vt}. Let w ∈ W , and let x1, . . . , xk for some k � 2 be vertices not in
V . Then T ′ = (V ∪ {x1, . . . , xk }, E∪ {(w, x1), . . . , (w, xk)}) is also an irreducible
tree. Its outer vertices are (W − {w}) ∪ {x1, . . . , xk }.

3. Reconstruction of a Tree from the Distances Between Its Outer Vertices

Consider the following reconstruction problem.

Problem 1. Let T = (V, E) be non-weighted tree with outer vertices L = {1, 2, . . . , k}.
Let the function d′: L × L → N be the restriction of the distance function d: V × V → N

of T on L × L, i.e., d′(i, j) = d(i, j), 1 � i � k, 1 � j � k. Given L and d′, reconstruct
T . In the discussions below we will use only d(i, j), having in mind that d(i, j) = d(i, j)‘
when i and j are outer vertices. Otherwise d(i, j) is calculated by our algorithm.

The main question regarding every graph reconstruction is, is it possible to reconstruct
the graph from the given elements or characteristics. That is why we proceed immediately
with the following theorem.

Theorem 1. Each non-weighted tree T = (V, E) is uniquely determined by the distances
between all couples of its outer vertices.

Lemma 1. Let T = (V, E) be non-weighted tree and u, v, and w be any three pairwise
distinct vertices from V . Let p, q1, and q2 be the (unique) paths between u and v, between

Reconstruction of Trees Using Metric Properties 85

u and w, and between v and w, respectively. Let q′ be the maximum common subpath
of q1 and q2 that has w as one endpoint. Let x be the other endpoint of q′, if c(q′) � 1,
or x = w, else. Call x, the connecting point of w and p. Then x is uniquely defined by
d(u, v), d(u, w), and d(v, w).

Proof of Lemma 1. It is obvious that x is a vertex in p, therefore:

d(u, x) + d(x, v) = d(u, v).

Furthermore,

d(u, x) + d(x, w) = d(u, w), and

d(v, x) + d(x, w) = d(v, w).

The system of these three equations in three unknowns has a unique solution:

d(u, x) = (d(u, v) + d(u, w) − d(v, w))/2,

d(v, x) = d(x, v) = (d(u, v) + d(v, w) − d(u, w))/2,

d(w, x) = d(x, w) = (d(u, w) + d(v, w) − d(u, v))/2.

Because of the triangle inequalities for u, v and w, these three values are always nonneg-
ative integers. So, x is a uniquely defined vertex in T . See Fig. 1 for illustration.

Proof of the Theorem. Let L be the set of the outer vertices of T . Choose arbitrarily two
distinct u, v ∈ L. Let d = d(u, v) and p be the path between u and v(see Fig. 1). Call
p, the backbone of T . Since we know the number d − 1 of the inner vertices of p it is
trivial to reconstruct p. As suggested by Lemma 1, for each outer vertex w �∈ {u, v} we
compute x, the connecting point of w and p, and the distance d(w, x). Let T0, . . . , Td be
the rooted subtrees of T relative to the backbone (see Fig 1). Let Li = L ∩ V (Ti), for 0
� i � d. Each nontrivial Ti can be reconstructed using Li as follows. Choose an arbitrary
w ∈ Li. Let x be the root of Ti. Apply the procedure described so far for the subtree Ti

with Li ∪ {x} as set of its outer vertices and w and x as the endpoints of its backbone.
Note that x must be treated as an outer vertex although deg(x) in Ti can be � 1, the

Fig. 1. Reconstruction by outer vertices. x is the connecting point of w and p.

86 K. Manev et al.

reason being that we know (by Lemma 1) and need the distances between x and the other
vertices from Li.

Proceed recursively within the rooted subtrees of Ti relative to its backbone in order
to reconstruct Ti. Applying the same procedure to each nontrivial subtree relative to the
backbone of T , we reconstruct the whole tree T .

Suppose that the distances between outer vertices of T are kept in the two dimensional
matrix D, D[i][j] = d′(i, j) and vert and dist are defined as int. The calculation of
Lemma 1 is performed by the function

vert find(vert u, vert v, vert x, dist ∗ d),

which returns a not used vertex w, such that the vertex x is the connection point of w and
the path from u to v. Further, find stores in d the distance between x and w. If there is no
such w (i.e., the subtree rooted in x is trivial) the function return 0.

The proof of Theorem 1 allows us to verify the following algorithm which by a set L

of outer vertices of a tree T, | L| = K, and the distances between each couple of vertices
of L, reconstructs T (as a list of edges):

Algorithm 1

vert new; dist D[MAXK][MAXK];
int used[MAXK];

reconstruct(vert from, vert to, dist d) {
vert w,old; dist di;
used[to]=1; old=from;
if(w=find(from,to,from,&di))
reconstruct(from,w,di);

for(int i=1;i<=d-1;i++){
output(old, new);
if(w=find(from,to,new,&di);
reconstruct(new,w,di);

old=new++;
}
output(old,to);
if(w=find(from,to,to,&di);
reconstruct(to,w,di);

}
int main() {
input(K,D[][]);
used[1]=1;new=K+1;
reconstruct(1,2,D[1][2]);

}

Reconstruction of Trees Using Metric Properties 87

Note that if the tree is weighted the reconstruction by the distances between outer
vertices is impossible in general. Indeed, if x is a vertex of degree 2 and y and z are its
neighbors there are infinitely many possibilities for d(x, y) and d(x, z) such that d(x, y)+
d(x, z) = d(y, z). However, a small modification of Algorithm 1 solves the problem for
irreducible weighed trees. In this case every vertex of the backbone is a root of some
nontrivial tree relative to that backbone. We can identify the inner vertices, call them
x1, x2, . . . , xq , of the backbone using Lemma 1. To reconstruct the backbone it suffices
to sort the distances d(u, x1), d(u, x2), . . . , d(u, xq), where u is one of the endpoints of
the backbone. So we proved the following theorem.

Theorem 2. Suppose T is a weighted tree. T can be reconstructed from the distances
between its outer vertices iff T is irreducible.

4. Reconstruction of a Tree from the Distances Between All Vertices

Problem 2. Let T = (V, E) be weighted tree and d: V × V → N is the distance function
of T , i.e., d(vi, vj) is the weighted distance between vi and vj , 1 � vi � n, 1 � vj � n.
Given V and d, reconstruct T .

If all edges have the same weight C then the problem is trivial: the smallest N − 1 of
the distances will be equal to C and they will identify the edges uniquely. So we consider
trees with arbitrary lengths of the edges and we prove the following theorem.

Theorem 3. Each weighted tree T = (V, E) can be reconstructed from the distances
between all its vertices.

Proof. Proceeding as in Theorem 1 we choose arbitrarily two distinct vertices u and v

and call the path p between them the backbone. Any vertex x belongs to p iff d(u, x) +
d(x, v) = d(u, v). Let the inner vertices in p be x1, x2, . . . , xq . As mentioned above,
p can easily be reconstructed by sorting the distances d(u, x1), d(u, x2), . . . , d(u, xq).
Using Lemma 1, for each vertex w not in p we can compute the corresponding connecting
point xi by searching for the value (d(u, v) + d(u, w) − d(v, w))/2 in the sorted list of
distances.

Consider, as in Theorem 1, a non trivial subtree Ti relative to the backbone, Ti being
rooted at xi. Let w be any other vertex in Ti. Let the path between xi and w be the
backbone of Ti. Reconstruct that backbone as above and proceed recursively with the
rooted subtrees of Ti relative to its backbone. Thus we reconstruct Ti. Applying that
procedure to each non trivial subtree Tj we reconstruct the whole tree T .

Some elementary modifications of Algorithm 1 are necessary in order to obtain Al-
gorithm 2 that solves Problem 2. First, dist could be defined now as double. The
function int build_path(vert u, vert v, int **p int) reconstructs
the path p from u to v by all vertices x such that d(u, x) + d(x, v) = d(u, v), sorted

88 K. Manev et al.

by d(u, x) and mark all these vertices as used. The function int find(vert x) returns an
unused vertex w such that its connecting point to previously found path p is x or 0 if no
such w exists.

Algorithm 2

dist D[MAXN][MAXN]; int used[MAXN]

reconstruct(vert from, vert to) {
vertex w, path[MAXN]; dist di; int psize;
psize=build_path(from, to, path);
for(int i=0;i<psize;i++) {
output(path[i], path[i+1]);
if(w=find(path[i])) reconstruct(path[i],w);

}
if(w=find(to)) reconstruct(to,w);

}
int main() {
input(N,D[][]); reconstruct(1,2);

}

5. Time Complexity of the Algorithms

Let us first estimate the time complexity of Algorithm 2. Because the size of the input
is at worst Θ(n2) where n = |V | we estimate that complexity as a function, say t2(m),
of m = n (n − 1)/2. The reading of the input data necessitates Θ(m) steps. The algo-
rithm breaks the vertex set of the tree into subsets, each one of which induces a path,
those paths being pairwise edge-disjoint (but not necessarily vertex-disjoint), and each
recursive call works on one of those paths. The number r of those paths cannot be greater
than the number n − 1 of edges so r is O(n). Let the paths have n1, n2, . . . , nr vertices
respectively. Then n1 + n2 + . . . + nr < n + r < 2n because each path but the first one
contains exactly one vertex that we have already considered.

During the ith recursive call we need O(n) steps to find the ni vertices that belong
to the corresponding path, O(ni lg ni) steps to sort them and to reconstruct the path and
O(n) steps to choose one vertex from each of the subtrees rooted at a vertex from that
path. So all recursive calls need 2r.O(n) + ΣiO(ni lg ni). But n1 + n2 + . . . + nr < 2n,
therefore ΣiO(ni lg ni) = O(n lg n). So the complexity of Algorithm 2 is linear:

t2(m) = O(m) + 2r.O(n) + ΣiO(ni lg ni)

= O(m) + O(n).O(n) + O(n lg n) = O(m).

The estimation of the time complexity of Algorithm 1 presents us with the following
challenge. Assume the output is T represented by, say, adjacency lists. Then the number

Reconstruction of Trees Using Metric Properties 89

of steps performed by Algorithm 1 is at least as big as the number of the inner vertices.
That number can vary dramatically for different trees with the same number of outer
vertices. As one extreme example let T be a path. The input in this case is a single
number n − 1: the length of the path. If we make the standard simplifying assumption
that any integer necessitates only a constant amount of space to be represented and can
be operated upon in constant time, it will turn out that the worst case time complexity is
infinite since n can be arbitrarily large, therefore there is no a priori upper bound on the
number of vertices of T . Even if we take into consideration the length of n and express
the time complexity of Algorithm 1 as a function of that length, in the worst case the time
complexity will be exponential for obvious reasons.

However, if instead of T we output its equivalent irreducible tree (defined below)
it turns out the time complexity is linear in the length of the input, under the standard
assumption that integers require constant space and can be operated upon in constant
time. Notice that the problem with the traditional representation is the possibility of long
paths in the tree of vertices of degree two. It is because of such paths that the inner vertices
can be exponentially more than the outer ones. If there are no vertices of degree two then
the number of inner vertices cannot even exceed the number of outer ones, as shown by
the following:

Lemma 2. Let T be an irreducible tree, nout be the number of its outer vertices, and
nin, the number of its inner vertices. Then nin � nout − 2.

Proof. By induction on the number of steps that the inductive definition has been carried
out. The basis is a single edge: obviously, 0 � 2 − 2. Assume the claim holds for some
irreducible tree. Consider any irreducible tree obtained from it by adding k new outer
vertices to some outer vertex w where k � 2. Since w is not an outer vertex any more,
the number of outer vertices goes up by k − 1 � 1, and the number of inner vertices goes
up by one. The inequality is preserved.

The equivalent irreducible tree of any nontrivial, non-weighted tree T is the weighted
irreducible tree T ′ that is obtained from T after substituting every maximal path p =
u, x1, x2, . . . , xq−1,v, such that x1, x2, . . . , xq−1 are vertices of degree two by the single
edge e = (u, v) with weight c(e) in T ′ equal to length of p in T , i.e., q. Clearly, the
degree two vertices disappear so T ′ is indeed irreducible. Notice that the other vertices
are not affected by this operation and it is in that sense that T ′ is equivalent to T . It is
trivial to restore T from T ′.

We estimate the time complexity of Algorithm 1 as a function, call it t1(m), of
m = nout(nout − 1)/2. Let nin is the number of inner vertices of degree at least 3
and n = nin + nout. From Lemma 2, nin = O(nout) and so n = O(nout) too. The
reading of input data will need O(n2

out) steps and printing of the output in irreducible
form – O(n) = O(nout) steps. Let us denote again with t the number of paths with-
out common edges passed to the recursive calls and with n1, n2, . . . , nt – the number of
inner vertices of these paths, respectively. As it was mentioned above t is O(nout) and

90 K. Manev et al.

n1 +n2 + · · · +nt < nin + t = O(nout), because each path use at most one inner vertex
of degree at least 3, used by some other path also.

Now the estimation of t1 is almost the same as of t2. During ith recursive call of
Algorithm 1 we first find for each not used outer vertex w the vertex x from the back-
bone where the subtree of w is rooted – O(nout) steps – and identify in such way ni

inner vertices. For reconstruction of the backbone in irreducible form it will be enough
to sort the found inner vertices – O(ni lg ni) steps. So all recursive calls will need
t.O(nout) + ΣiO(ni lg ni) = O(n2

out) + O(nin lg nin) = O(n2
out) + O(nout lg nout)

and the complexity of Algorithm 1 is t1(m) = O(n2
out) + O(nout) + O(n2

out) +
O(nout lg nout) = O(n2

out) = O(m).
We suppose that it is not a problem for the reader to make the necessary changes in

Algorithm 1 and to obtain a new one with linear time complexity.

6. Comments and Conclusions

The first problem was proposed to the South-East European Regional Round of ACM
ICPC in October 2010 (ACM ICPC, 2010 → Problems → Problem G) where 52 teams of
university students from 7 countries took part, among them 33 teams from traditionally
very strong Ukraine, Romania and Bulgaria. Only 11 teams succeeded in solving the
problem (one problem was not solved at all and one was solved by 5 teams). This gave
us some reason to classify the Problem 1 as harder than average.

The second problem, which we consider easier, was proposed to the traditional Bul-
garian Autumn Tournament in Informatics for school students (INFOS, 2010). The prob-
lem was included in the problem set for the second age group (till 16 years) with 53
participants, including students from Croatia, Greece, FYR of Macedonia, Serbia and
Romania. We supposed that it would be the hardest problem in the set. Unexpectedly 43
students submitted solutions for this problem (more than for any of the other two prob-
lems), 15 of the solutions got at least 70% of the grading marks and 10 solutions got
100%.

In our opinion the second version was more attractive for the contestants than the first
because of the existence in the first problem of the mentioned above dependence of the
time complexity from a hidden (searched) parameter of the graph. Each such parameter
could involve additional difficulties. It seems that some efforts have to be spent during
the training of contestants in order to be able to manage tasks with hidden parameters
like graph reconstruction problems. Anyway, graph reconstruction problems seem to be
a good way to enlarge the scope of the tasks given at programming contests.

With respect to the reconstruction of trees by some metric properties, it will be in-
teresting to try to reconstruct the tree from the distances between all vertices or between
the outer vertices when it is not given which distance is between which two vertices. For
solutions of the discussed two problems this knowledge is crucial.

Reconstruction of Trees Using Metric Properties 91

References

ACM ICPC (2010). ACM ICPC South-East European Regional Contest. http://acm.ro.
Harary, F. (1964). On the reconstruction of a graph from a collection of subgraphs. In: Fiedler, M. (Ed), Proc. of

the Symposium Theory of Graphs and its Applications, Czechoslovak Academy of Sciences, Prague, 47–52.
Harari, F., Palme, E.M. (1966). The reconstruction of a tree from its maximal proper subtrees, Can. J. Math.,

18, 803–810.
Kelly, P.J. (1942). On Isometric Transformations, Doctoral Thesis, University of Wisconsin.
INFOS (2010), Autumn Tournament in Informatics “John Atanasov”. http://math.bas.bg/infos/.
Ulam, S.M. (1960). A Collection of Mathematical Problems, Wiley (Interscience), New York.

K. Manev is an associated professor of discrete mathematics and al-
gorithms in Sofia University, Bulgaria, PhD in computer science. He
was a member of Bulgarian National Committee for Olympiads in In-
formatics since 1982 and president of NC from 1998 to 2002. He was
member of the organizing team of IOI’1989, IOI’1990, vice president
of IOI’2009 and leader of Bulgarian team for IOI in 1989, 1998, 1999,

2000 and 2005. From 2000 to 2003 he was elected member of IC of IOI, since 2005 to
2010 represented in IC the host country of IOI’2009, and during IOI’2010 was elected as
a member of IC of IOI again for the period 2010–2013.

N. Nikolov is an associated professor (2002) in section ”Complex Anal-
ysis”, Institute of Mathematic and Informatics, Bulgarian Academy
of Sciences; Dr.Sc. (2010), Ph.D. (2000). His main scientific interests
are in analysis of functions of several complex variables. Leader from
2009 and deputy leader (2004–2008) of the Bulgarian team for the In-
ternational Mathematical Olympiad as well as leader (2004–2008) and

deputy leader (1999–2003) of the team for the Balkan Mathematical Olympiad.

M. Markov is a lecturer and lab instructor of discrete mathematics and
algorithms at the Faculty of Mathematics and Informatics, Sofia Uni-
versity, Bulgaria. He is a PhD in computer science from the Institute of
Mathematics and Informatics at the Bulgarian Academy of Sciences.

