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VARIATIONS ON AN INEQUALITY FROM IMO’2001

Oleg Mushkarov, Nikolai Nikolov

Some extensions of an inequality from IMO’2001 are proven by means of the Lagrange
multiplier criterion.

1. Introduction. This paper is a continuation of [1, 2], where some natural
generalizations of Problem 2 from IMO’2001 have been proved. Oir aim here is to consider
some other extensions of the same problem which states:

Prove that
a√

a2 + 8bc
+

b√
b2 + 8ac

+
c√

c2 + 8ab
≥ 1,

where a, b and c are arbitrary positive numbers.
Many different proofs of this inequality were given during the Olympiad and it was

also shown by the first author that the following more general inequality holds:

(1)
a√

a2 + λbc
+

b√
b2 + λac

+
c√

c2 + λab
≥ 3√

1 + λ

for arbitrary a, b, c > 0 and λ ≥ 8. It is easy to see that the latter inequality is not true
for 0 < λ < 8. Moreover, it can be shown that in this case the infimum of the function
in the left-hand side of (1) (when a, b and c run over all positive numbers) is equal to 1.
This fenomenon led us to consider the following general problem:

Find the infimum and the supremum of the function

Fα(x1, x2, . . . , xn) =

n
∑

i=1

1

(1 + xi)α

on the set

Hλ = {(x1, x2, . . . , xn) ∈ R
n|x1x2 . . . xn = λn, x1, x2, . . . , xn > 0},

where λ > 0 and α are given real constants.

2. The infimum of Fα. We shall find the infimum of the function Fα on the set
Hλ by means of the well-known Lagrange multiplier criterion. The next proposition has
been proved in [2], but we include it here to make the paper self-contained.

Proposition 1. For any α ∈ (0, 1] we have

inf
Hλ

Fα = min

(

1,
n

(1 + λ)α

)

.
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Proof. Suppose first that d := inf
Hλ

Fα is not attained at a point of Hλ. Then,

d = Fα = limk→∞ Fα(x
(k)
1 , . . . , x

(k)
n ), where, for example, lim

k→∞

x(k)
n = 0 or +∞. Hence,

for example, lim
k→∞

x
(k)
1 = +∞ or 0 and in both cases we see that d ≥ 1. Note that if

lim
k→∞

x(k)
s = +∞ for s = 1, 2 . . . , n−1 and lim

k→∞

x(k)
n = 0, then lim

k→∞

Fα(x
(k)
1 , . . . , x(k)

n ) = 1.

Now, let d be attained at a point of Hλ. Consider the function

F (x1, x2, . . . , xn) = Fα(x1, x2, . . . , xn) + µ(x1x2 . . . xn − λn).

Then the Lagrange multiplier criterion says that d is attained at a point (x1, x2, . . . , xn) ∈
Hλ such that

∂F

∂xi

= − α

(1 + xi)α+1
+

µx1 . . . xn

xi

= 0,

i.e., when

(2)
xi

(1 + xi)α+1
=

xj

(1 + xj)α+1
, 1 ≤ i, j ≤ n.

Consider the function g(x) =
x

(1 + x)α+1
. Then, g′(x) =

1 − αx

(1 + x)α+2
, and, therefore,

g(x) takes each its value at most twice. Hence (2) shows that x1 = · · · = xk = x and
xk+1 = · · · = xn = y for some 1 ≤ k ≤ n. If k = n, then x1 = x2 = · · · = xn = λ and

Fα(x1, x2, . . . , xn) =
n

(1 + α)λ
. If k < n, then

Fα(x1, x2, . . . , xn) =
k

(1 + x)α
+

n − k

(1 + y)α
≥ 1

(1 + x)α
+

1

(1 + y)α
.

To prove Proposition 1 it is sufficient to show that

(3)
1

(1 + x)α
+

1

(1 + y)α
> 1

provided

(4)
x

(1 + x)α+1
=

y

(1 + y)α+1
, x 6= y.

Set β =
1

α
≥ 1, z = (1+x)α and t = (1+y)α. Then (3) and (4) can be written respectively

as z + t > zt and (zt)β =
zβ+1 − tβ+1

z − t
. So, we have to prove that

(5) (z + t)β ≥ zβ+1 − tβ+1

z − t
.

Assume that z < t and set u =
z

t
< 1. Applying Bernoulli’s inequality twice we obtain

(1 + u)β ≥ 1 + βu >
1 − uβ+1

1 − u
which is just the inequality (5). �

The next example shows that for a given α > 1 a result similar to Proposition 1 could
be expected only for sufficiently large n.

Example 1. Let α = 2 and n = 2. Then the function F2(x1, x2) attains minimum
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on Hλ given by

(6) min
Hλ

F2 =



















2

(1 + λ)2
if λ ≥ 1

2

1 − 2λ2

(1 − λ2)2
if 0 < λ ≤ 1

2 .

Proof. To prove (6) we proceed as in the proof of Proposition 1. First note that if
x1 → 0 or +∞, then x2 → +∞ or 0 and, in both cases, F2(x1, x2) → 1. Consider the
points (x1, x2) ∈ Hλ such that

(7)
x1

(1 + x1)3
=

x2

(1 + x2)3
.

If x1 = x2 = λ, then F2(x1, x2) =
2

(1 + λ)2
. If x1 6= x2, then (7) is equivalent to

x1 + x2 =
1

λ2
− 3. This together with x1x2 = λ2 implies that

1

λ2
− 3 ≥ 2λ, i.e., λ <

1

2

and F2(x1, x2) =
1 − 2λ2

(1 − λ2)2
. Hence (6) follows from the inequalities

1 − 2λ2

(1 − λ2)2
< 1 and

1 − 2λ2

(1 − λ2)2
<

2

(1 + λ)2
for any λ > 0, and

2

(1 + λ)2
< 1 for λ ≥ 1

2 . �

The next proposition gives a partial result in the case α > 1.

Proposition 2. For any α > 1 and any integer n ≥ α + 1 we have

inf
Hλ

Fα = min

(

1,
n

(1 + λ)α

)

.

Proof. Proceeding as in the proof of Proposition 1 it is sufficient to prove that

(1 + (n − 1)u)β >
1 − uβ+1

1 − u

for β =
1

α
< 1 and 0 < u < 1. Since n − 1 ≥ α we have 1 + (n − 1)u ≥ 1 +

n

β
and it is

enough to show that

(8)

(

1 +
u

β

)β

>
1 − uβ+1

1 − u

for β, u ∈ (0, 1). Consider the function

f(x) = (1 − x)

(

1 +
x

β

)β

+ xβ+1 − 1 for x ∈ [0, 1].

Since

f ′(x) =
(1 + β)x

β

(

βxβ−1 −
(

1 +
x

β

)β−1
)

the equation f ′(x) = 0 has a unique real root x0 = (β
1

β−1 − β−1)−1. On the other hand,
since f(0) = f(1) = 0 and β − 1 < 0, it follows that x0 ∈ (0, 1), f ′(x) > 0 for x ∈ (0, x0)
and f ′(x) < 0 for x ∈ (x0, 1). Hence f(x) > 0 for x ∈ (0, 1) and the inequality (8) is
proved. �
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Remark 1. As Example 1 suggests, if α > 1 and n < α + 1, then a result similar to
Proposition 2 is not true. The authors do not know the value of inf

Hλ

Fα for such α and n.

To complete this section it remains to consider the case α < 0.

Proposition 3. For any α < 0 the function Fα(x1, . . . , xn) attains minimum on Hλ

given by

min
Hλ

Fα =
n

(1 + λ)α
.

Proof. We may proceed as in the proof of Proposition 1 but in this case the statement

follows directly from the fact that the function f(x) =
1

(1 + ex)α
is convex for α < 0

since f ′′(x) > 0. �

3. The supremum of Fα. The results obtained in this section are dual analogs of
that in Section 2.

Proposition 4. For any α ≥ 1 we have

sup
Hλ

Fα = max

(

n − 1,
n

(1 + λ)α

)

.

Proof. We proceed as in the proof of Proposition 1. If sup
Hλ

Fα is not attained at a

point of Hλ, then we may assume that xn → +∞ and obviously we have sup
Hλ

Fα ≤ n− 1.

Note also that if x1 → 0, . . . , xn−1 → 0 and xn → +∞, then Fα(x1, . . . , xn) → n − 1.

Next consider the case when sup
Hλ

Fα is attained at a point of Hλ such that x1 = · · · =

xk = x and xk+1 = · · · = xn = y. If x = y, then x1 = · · · = xn = λ and Fα(x1, . . . , xn) =
n

(1 + λ)α
. If x 6= y, then k < n and Fα(x1, . . . , xn) =

k

(1 + x)α
+

n − k

(1 + y)α
. So, it is enough

to prove that if
x

(1 + x)α+1
=

y

(1 + y)α+1
and x < y, then

n − 1

(1 + x)α
+

1

(1 + y)α
< n− 1.

But this follows from the inequality
1

(1 + x)α
+

1

(1 + y)α
< 1, which can be proved by

using Bernoulli’s inequality for β =
1

α
< 1 as in the proof of Proposition 1. �

The next example is dual to Example 1.

Example 2. Let α =
1

2
and n = 2. Then the function F 1

2

(x1, x2) attains maximum

on Hλ given by

(9) max
Hλ

F 1

2

=















λ√
λ2 − 1

if λ > 2

2√
1 + λ

if 0 < λ ≤ 2.

Proof. First note that if x1 → 0 or +∞, then x2 → +∞ or 0, and, in both cases,

F 1

2

(x1, x2) → 1. Now consider the points (x1, x2) ∈ Hλ for which
x1

(1 + x1)
3

2

=
x2

(1 + x2)
3

2

.
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If x1 = x2, then F 1

2

(x1, x2) =
2√

1 + λ
. If x1 6= x2, then x1 + x2 = λ2(λ2 − 3) and

since x1x2 = λ2 we have λ > 2 and F 1

2

(x1, x2) =
λ√

λ2 − 1
. Hence (9) follows from

the inequalities
λ√

λ2 − 1
> 1 and

λ√
λ2 − 1

≥ 2√
1 + λ

for λ > 2, and
2√

1 + λ
> 1 for

λ ≤ 2. �

The dual analog of Proposition 2 is the following

Proposition 5. For any α ∈ (0, 1) and any integer n ≥ 1

α
+ 1 we have

sup
Hλ

Fα = max(n − 1,
n

(1 + λ)α
).

Proof. Proceeding as in the proof of Proposition 2 it is enough to show that
(

1 +
u

β

)β

<
1 − uβ+1

1 − u
for arbitrary u ∈ (0, 1) and β > 1. This can be done in the

same way as the proof of the inequality (8). �

Finally, note that in the case α < 0 the supremum of Fα is equal to +∞ obviously.

Remark 2. As Example 2 suggests, if α ∈ (0, 1) and n <
1

α
+1, then a result similar

to Proposition 5 is not true. The authors do not know the value of sup
Hλ

Fα for such α

and n.
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ВАРИАЦИИ ВЪРХУ ЕДНО НЕРАВЕНСТВО ОТ МОМ’2001

Олег К. Мушкаров, Николай М. Николов

С помощта на метода на множителите на Лагранж са доказани някои обобщения

на едно неравенство от МОМ’2001.
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