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Quadratic Forms, Chebyshev Polynomials,
and Geometric Inequalities

Titu Andreescu and Oleg Mushkarov

Abstract. We discuss a geometric inequality for 2n-gons proved in [Mushkarov, O., Nikolov
N. (2006). Semiregular polygons. Amer. Math. Monthly. 113(4): 339–344] and show how the
algebraic inequality it is based on can be proved by using the standard theory of quadratic
forms. In addition, we prove an “odd” version of the geometric inequality which leads to
some interesting geometric problems for polygons with an odd number of sides.

1. INTRODUCTION. This note is motivated by the following geometric inequality
proved in [2]:

Proposition. Let A1, A2, . . . , A2n (n ≥ 2) be arbitrary points in the plane. Denote by
ak the length of the segment AkAk+1 (1 ≤ k ≤ 2n) and by mk the distance between
the midpoints of the opposite segments AkAk+1 and An+kAn+k+1(1 ≤ k ≤ n), where
subscripts are taken modulo 2n. Then

n∑
k=1

(ak + an+k)
2 ≥ 4 tan2

( π

2n

) n∑
k=1

m2
k. (1)

Using complex numbers one can reduce (1) to the algebraic inequality

cos
(π

n

) n∑
k=1

x2
k ≥

(
n−1∑
k=1

xkxk+1

)
− xnx1, (2)

true for all real numbers x1, x2, . . . , xn. This is proved in [2, Lemma 2.2] by repre-
senting the difference of the expressions on the left- and right-hand sides as a sum of
squares. We encourage the reader to do this for n = 3 and n = 4.

Our main purpose here is to show how the above algebraic inequality can be proved
by using the standard theory of quadratic forms. This leads to finding the largest root
of the equation Tn(x) + 1 = 0, where Tn(x) is the nth Chebyshev polynomial of the
first kind [3]. We also prove an “odd” version of the geometric inequality (1) which
suggests some interesting geometric problems for polygons with an odd number of
sides.

2. QUADRATIC FORMS. In this section, we recall some well-known facts from
the theory of quadratic forms (see, e.g., [1]).

A quadratic form in the variables x1, x2, . . . , xn is a homogeneous polynomial of
second degree

n∑
i,j=1

aijxixj ,
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where A = (aij ) is a symmetric real n × n matrix. Any such matrix has real eigenval-
ues, which means that the characteristic polynomial of A given by

det(A − λI) = 0,

where I is the n × n identity matrix, has n real roots. We next denote by λmax and λmin

the maximal and minimal eigenvalues of A, respectively. Then it is well known [1] that
the following inequalities

λmax

n∑
i=1

x2
i ≥

n∑
i,j=1

aijxixj ≥ λmin

n∑
i=1

x2
i (3)

hold for all real numbers x1, x2, . . . , xn.

We use (3) to prove the inequality (1). To do this, we have to find the maximal
eigenvalue of the symmetric matrix A corresponding to the quadratic form

2x1x2 + 2x2x3 + · · · + 2xn−1xn − 2xnx1.

Note that

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 −1
1 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
−1 0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Hence, we need to find the largest root of the characteristic polynomial of A which we
will do in the next section.

3. CHEBYSHEV POLYNOMIALS. We will show that the characteristic polyno-
mial of the matrix A can be expressed by means of the so-called nth Chebyshev poly-
nomial of the first kind [3]. This will allow us to find all the eigenvalues of An and, in
particular, the maximal and minimal ones.

Recall that the Chebyshev polynomials of the first kind are defined by the recurrence
relation

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x) − Tn−2(x), n = 2, 3, . . . .

Thus

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, . . . .

These polynomials also can be defined as the unique polynomials Tn(x) satisfying the
trigonometric identity

Tn(cos θ) = cos nθ, (4)

which can be easily motivated by the trigonometric addition formula

cos(n + 1)θ + cos(n − 1)θ = 2 cos θ cos nθ.

812 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 125



Using the recursive definition of the Chebyshev polynomials of the first kind, it is
easy to show that they have the following determinant form (see, e.g., [3]):

Tn(x) = det

⎡
⎢⎢⎢⎢⎢⎢⎣

x 1 0 0 · · · 0 0
1 2x 1 0 · · · 0 0
0 1 2x 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2x 1
0 0 0 0 · · · 1 2x

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Denote by An(x) the following n × n determinant:

An(x) = det

⎡
⎢⎢⎢⎢⎢⎢⎣

x 1 0 0 · · · 0 −1
1 x 1 0 · · · 0 0
0 1 x 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · x 1
−1 0 0 0 · · · 1 x

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Lemma 1. For all integers n ≥ 3 the following identity holds

An(2x) = 2Tn(x) + 2(−1)n. (5)

Proof. Let �n(x) be the determinant obtained from An(x) by replacing −1 with 0 in
its first and nth row. Expanding Tn(x) with respect to the entries of the first row, we
obtain

Tn(x) = x �n−1 (2x) − �n−2(2x). (6)

Also, expanding the determinant An(x) by the first row, we get

An(x) = x �n−1 (x) − Bn−1(x) + (−1)nCn−1(x), (7)

where

Bn−1(x) = det

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 · · · 0 0
0 x 1 0 · · · 0 0
0 1 x 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · x 1
−1 0 0 0 · · · 1 x

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Cn−1(x) = det

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x 1 0 · · · 0 0
0 1 x 1 · · · 0 0
0 0 1 x · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 x

−1 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Note that expanding the determinant Bn−1(x) by the first column involves two cofac-
tors for the (1, 1) and (1, n − 1) entries. The first one is clearly �n−2(x). The second
one is equal to 1, since it is the determinant of a lower triangular matrix with 1’s along
the diagonal. Thus,

Bn−1(x) = �n−2(x) − (−1)n. (8)

Similarly, we get

Cn−1(x) = 1 − (−1)n �n−2 (x) (9)

and (7)–(9) imply

An(x) = x �n−1 (x) − 2 �n−2 (x) + 2(−1)n. (10)

Now, using (6) and the last equality, we obtain the desired identity

An(2x) = 2Tn(x) + 2(−1)n.

We are now ready to prove the following lemma.

Lemma 2. The eigenvalues of the symmetric matrix A are

λk = cos

(
(2k − 1)π

n

)
, 1 ≤ k ≤ n.

In particular, the maximal and the minimal eigenvalues of A are

λmax = 2 cos
(π

n

)
,

λmin =
{

−2 cos
(π

n

)
if n is even

−2 if n is odd.

Proof. Note first that Tn(−x) = (−1)nTn(x). (This identity is well known and fol-
lows, for example, from (4)). Then, by Lemma 1, the characteristic polynomial of A is
related to the nth Chebyshev polynomial in the following way:

det(A − λI) = An(−λ) = 2(−1)n

(
Tn

(
λ

2

)
+ 1

)
.

Using the trigonometric property Tn(cos θ) = cos nθ , we see that the eigenvalues of A

are

λk = 2 cos

(
(2k − 1)π

n

)
, 1 ≤ k ≤ n.

Note that if n is even, then the equation Tn(x) = −1 has n/2 double roots. In this case
the maximal and minimal eigenvalues of A are

λmax = 2 cos
(π

n

)
, λmin = 2 cos

(
(n − 1)π

n

)
= −2 cos

(π

n

)
.
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Figure 1. Graphs of the Chebyshev polynomials T4(x) and T5(x).

If n is odd, the equation Tn(x) = −1 has a single root equal to −1 and (n − 1)/2
double roots (see Figure 1). In this case,

λmax = 2 cos
(π

n

)
, λmin = −2

and the lemma is proved.

Hence, inequality (2) follows from inequality (3) and Lemma 2.

Remark. For n even, (3) and Lemma 2 imply the inequality

cos
(π

n

) n∑
k=1

x2
k ≥

∣∣∣∣∣
(

n−1∑
k=1

xkxk+1

)
− xnx1

∣∣∣∣∣ ,
which is stronger than inequality (2). For n odd, (3) and Lemma 2 imply the inequality(

2n∑
k=1

xkxk+1

)
− x2n+1x1 ≥ −

2n+1∑
k=1

x2
k ,

which is obvious since it can be written in the form

(x1 + x2)
2 + (x2 + x3)

2 + · · · + (x2n + x2n+1)
2 + (x2n+1 − x1)

2 ≥ 0.

4. A GEOMETRIC INEQUALITY. In this section, we obtain an “odd” version of
the inequality (1) and we discuss the notion of a semi-regular polygon for polygons
with an odd number of sides.

Theorem 1. Let A1, A2, . . . , A2n+1 (n ≥ 1) be arbitrary points in the plane, ak be the
length of the segment AkAk+1 (1 ≤ k ≤ 2n + 1), and mk be the distance between the
midpoint of AkAk+1 and the point Ak+n+1, where subscripts are taken modulo 2n + 1.
Then the following inequality holds:

2n+1∑
k=1

a2
k ≥ 4 tan2

(
π

4n + 2

) 2n+1∑
k=1

m2
k. (11)
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Proof. The desired inequality follows immediately from inequality (1) applied to 4n +
2 points B1, B2, . . . , B4n+2 such that B2k = B2k+1 = Ak+1, 1 ≤ k ≤ 2n + 1.

We now discuss occurrence of equality in (11). Note first that for n = 1, (11) is an
equality which follows by the median formula in a triangle. For n ≥ 2, by the results
in [2] (see identity (2.6)), we know that for a 2n-gon A1A2 . . . A2n equality in (1) is
attained if and only if its opposite sides are parallel and

−−−−→
AkAn+k = sin(kπ/n)

sin(π/n)

−−−−→
A1An+1 + sin((k − 1)π/n)

sin(π/n)

−−−→
AnA2n , 1 ≤ k ≤ n,

where
−→
AB denotes the vector from A to B.

If n ≥ 2, consider 4n + 2 points B1, B2, . . . , B4n+2 such that B2k = B2k+1 =
Ak+1, 1 ≤ k ≤ 2n + 1. In this case, the above conditions reduce to the following
equalities:

−−−−−−−→
Ak+1Ak+n+1 =

sin
2kπ

2n + 1

sin
π

2n + 1

−−−−→
A1An+2 +

sin
(2k − 1)π

2n + 1

sin
π

2n + 1

−−−−→
An+1A1 , 1 ≤ k ≤ n;

−−−−−−−→
Ak+1Ak+n+2 =

sin
(2k + 1)π

2n + 1

sin
π

2n + 1

−−−−→
A1An+2 +

sin
2kπ

2n + 1

sin
π

2n + 1

−−−−→
An+1A1 , 1 ≤ k ≤ n − 1.

In particular, we obtain the following result.

Corollary. Any convex pentagon A1A2A3A4A5 for which equality holds in (11) is
obtained from a parallelogram A2A3A4B by taking the vertices A1 and A5 on the rays−−→
A4B and

−−→
A2B, respectively, so that

A1A4

A2A3
= A2A5

A3A4
= 2 cos

π

5
.

Proof. Note first that sin 2π

5 = 2 sin π

5 cos π

5 . Hence the identities above imply that for
a convex pentagon A1A2A3A4A5 equality is attained in (11) if and only if

−−−→
A2A4 = 2 cos

π

5
−−−→
A1A4 + −−−→

A3A1;
−−−→
A2A5 = 2 cos

π

5
−−−→
A1A4 + 2 cos

π

5
−−−→
A3A1;

−−−→
A3A5 = −−−→

A1A4 + 2 cos
π

5
−−−→
A3A1.

Now, it is easy to see that these identities are equivalent to

−−−→
A1A4 = 2 cos

π

5
−−−→
A2A3 ,

−−−→
A2A5 = 2 cos

π

5
−−−→
A3A4.
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1

2 3

5

4

Figure 2. A pentagon satisfying equality in (11).

Hence, A1A4 ‖ A2A3 and A2A5 ‖ A3A4. Let B be the intersection point of the lines
A1A4 and A2A5 (see Figure 2). Consider the parallelogram A2A3A4B. Since

A1A4

BA4
= A1A4

A2A3
= 2 cos

π

5
> 1,

the point B lies on the segment A1A4. Similarly, B lies on the segment A2A5 and the
corollary is proved.

Recall that a convex 2n-gon is called semi-regular [2] if the distance between the
midpoints of any two of its opposite sides is equal to cot(π/2n)/2 times the sum of
their lengths. These polygons have been completely characterized in [2, Theorem 3.1].

Analogously, we call a convex (2n + 1)-gon A1A2 . . . A2n+1 semi-regular if the dis-
tance between the midpoint of every side AkAk+1 and its opposite vertex Ak+n+1 is
equal to cot(π/4n + 2)/2 times the length of AkAk+1. So, it is natural to look for an
“odd” analog of [2, Theorem 3.1]. However, as we will see, the “odd” case is very
rigid because of the following theorem.

Theorem 2. Every semi-regular polygon with an odd number of sides is a regular
polygon.

Proof. Our proof is similar to that of Theorem 3.1 in [2]. We will use the following
inequality for a triangle.

Lemma 3. Let ABC be a triangle with ∠C ≥ π/n, and let M be the midpoint of AB.
Then

AB ≥ 2 tan
( π

2n

)
CM,

with equality if and only if ∠C = π/n and CA = CB in case n ≥ 3.

Proof of Lemma 3. The law of cosines together with the AM-GM inequality gives

AB2 = CA2 + CB2 − 2CA · CB · cos∠C ≥ (CA2 + CB2)
(

1 − cos
(π

n

))
.
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Hence,

4CM2 = 2(CA2 + CB2) − AB2 ≤ 2AB2

1 − cos(π

n
)

= cot2
( π

2n

)
,

and Lemma 3 is proved.

Now consider a semi-regular (2n + 1)-gon A1A2 . . . A2n+1. It is easy to see that

2n+1∑
k=1

∠AkAk+n+1Ak+1 = π. (12)

Indeed,

∠AkAk+n+1Ak+1 = π − ∠Ak+n+1AkAk+1 − ∠Ak+n+1Ak+1Ak, 1 ≤ k ≤ n.

Note also that

∠Ak+n+1Ak+1Ak + ∠Ak+n+2Ak+1Ak+2

= ∠AkAk+1Ak+2 + ∠Ak+n+2Ak+1Ak+n+1, 1 ≤ k ≤ n.

Hence,

2n+1∑
k=1

∠AkAk+n+1Ak+1

= (2n + 1)π −
2n+1∑
k=1

∠AkAk+1Ak+2 −
2n+1∑
k=1

∠Ak+n+2Ak+1Ak+n+1.

But

2n+1∑
k=1

∠AkAk+1Ak+2 = (2n − 1)π

and the identity (12) is proved.
Now it follows from (12) that there is an index l such that

∠AlAl+n+1Al+1 ≥ π

2n + 1
.

Hence, Lemma 3 implies AlAl+n+1 = Al+1Al+n+1 and ∠AlAl+n+1Al+1 ≥ π

2n + 1
.

Then,

2n+1∑
k=1,k �=l

∠AkAk+n+1Ak+1 = 2n

2n + 1
π

and proceeding in the same way we conclude that ∠AkAk+n+1Ak+1 = π

2n+1 and
AkAk+n+1 = Ak+1Ak+n+1, 1 ≤ k ≤ 2n + 1. Now, it follows easily that all diago-
nals AkAk+n+1 are equal, so the triangles AkAk+1Ak+n+1 are all congruent. Hence,
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all sides and all angles of A1A2 . . . A2n+1 are equal and, therefore, we have a regular
(2n + 1)-gon.
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