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Some generalizations of an inequality from
IMO 2001

Oleg Mushkarov and Nikolai Nikolov

The purpose of this paper is to consider some natural generalizations
of Problem 2 from IMO 2001 which states:

Prove that

a b c

+ + =
\/a2 + 8bc \/b2 + 8ac \/c2 + 8ab

where a, b and c are arbitrary positive numbers.

Many different proofs of this inequality were given during the Olympiad
and it was also shown by the first author that

a b c 3
+ + >
Va2 +Abe Vb2 +Aac  \/ec2 + Aab vV1+ A

for arbitrary a, b, ¢ > 0 and A > 8. It is easy to see that the latter inequality
is not true for 0 < A < 8. Moreover, it can be shown that in this case

a b c

+ + > 1,
\/a,2 + A\bc \/b2 + dac \/02 + Aab

and the lower bound is sharp.

We now prove a general inequality that encompasses all of these results.

Proposition 1. For any positive integers n and m, and any positive numbers
T1, T, ..., Ty With z122 ... 2, = A™ (A > 0), we have the following sharp
inequality:

Z 1+a:1)m min (1’ (1+,\)i> ' 0
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Proof. Set
n
d = min(1,—— | .
( <1+A>m)

Multiplying both sides of (1) by H (14+z;) = and then taking the m'® power
i=1
we see that (1) is equivalent to the inequality

n n n
Z H 1+a:k)—|—T2de(1—|—a:i), )
i=1k=1,k =1
where
m
n n 1 n n
> 11 arent| - 0T aven
i=1 k=1,k#1i i=1k=1,k
Denote by o4, o3, ..., o,, the elementary symmetric functions of the =; and

set o9 = 1. Then it is easy to check that

H(l—}—wz) = Za’, and Z H 1+ze) = i(n—z)a,

i=1 k=1,k#1
Hence, (2) can be rewritten as
n—1
Z(n—i—dm)a,-+T > d™o,
i=0

By the AM-GM inequality we have
a,-z<7.‘)(an)% = (’.’)x\ 0<i<nm, 3)
1 1

and, therefore,

H(1+mt)—2az>2<) X= (14N, @

=0

To estimate the term T we use the following inequality

(iai) > zn:a;"—l—(nm—n) <ﬁai>n for a; >0, 5)
=1 i=1 i=1

which follows easily by induction on m. Setting

n

a; — H (1+:Bk)#

k=1,k#i
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in (5) gives

T > (nm—n)H(l-i-fl?i)nT_ly

=1

and, therefore, (4) implies that
T > (™ —n)(1+A)"". (6)

In view of (3), (6) and the fact that d < 1, to prove (2), it is sufficient to show
that

d™A" — (n™ —n)(14+ A"t — Z(n—z—dm)< ) A< o0, (D)

But the left hand side of (7) is equal to (1 + A)"~'(d™(1 + A) — n™)
(this can be seen, for example, by comparing the coefficients of the powers
of X\ in both expressions) and the inequality (7) follows since

n

ECERPNE

Note that, if A > n™ — 1, thend = n(1 + )\)_# and (1) tells us that

2 (1+m,)m = A+

i=1

with equality if and only if £y = 2 = ..+ = , = X. On the other hand, if
A <n™ —1, thend =1 and (1) takes the form

n

1
— 1.

=1

To see that the latter inequality is sharp, set 1 = 25 = +++ = .1 =
and z,, = t"~ 1A\, where t — 0.

o=

N ow we shall show that the inequality (1) still holds if we replace the
power — L by any real number a € (0,1]. In this case, however, it is not
p0551ble to proceed as in the proof of Proposition 1, since inequality (5) is
not true for any real number m > 1 and any positive integer n (take, for

example, m = 3, n = 2, 2y = 1, » = J%). Instead, we shall use the
powerful Lagrange multiplier criterion.
Proposition 2. For any a € (0, 1] and any positive numbers z;, z2, ..., z,

with 122 ...z, = A™ (A > 0), we have the following sharp inequality:

Z < (1+ m,)a 2 min <1’ ﬁ) : 8)



311

Proof. Denote by d the infimum of the function

¢ 1
f(a:l,asg,...,:cn) = Zia
i—1 (1+ZE,)

on the set
A = {(z1,T2y...y2p) ER" | Z122... 25 = A" &1, T2y... ,Zpn >0 }.

Suppose first that this infimum is not attained at a point of A. Then,

d = lim f(:cgk), ..., (%), where, for example, lim z*) = 0 or +oo.
k— oo n k—oo ™

Then, for example, klim a,-§’“) = +4oo or 0 and, in both cases, we see
—00

that d > 1. Note that if Jim e® = 4oofors=1,2...,n—1and

—o00
lim z(® = 0, then lim [ S z(*)) = 1, which shows thatd = 1.
k— oo k— oo

Now, let d be attained at a point of A. Consider the function
F(x1,Z2,..cyTn, ) = f(x1,T2y..,Tn) + p(T122... Hn — A™) .

Then the Lagrange multiplier criterion says that d is attained at a point
(z1,T2,...,2,) € A such that

OF « T S
ox; (1 + mi)““‘l x;

that is, when

i i 1<i,j < )
= , i, n.
(et — @ta)et’ =77 =

Consider the function

xr
g9(x) = (14 z)ot1’
Then,
1—azx
’ —
g (ZB) - (1+w)a+2 ’
and, therefore, g(x) takes each of its values at most twice. Hence, (9) shows
thate; = =ap, =rvand 41 = - =2, =yforsomel < k < n. If
k=mn,thenzy =22 =--- =z, = A\ and
n
f(iﬂ]_,il?z,...,a:n) = m .
If K < n, then
k n—k 1 1

F(@1, @2y .00 y2n) =

Cra)e T Qe = Groe At
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To prove Proposition 2 it is sufficient to show that

S (10)
1+z)>  (1+4y)=
provided that
x Y
= TH£Y. (11)

A+a)e = Ay

SetB=1/a>1,z=(14+z)*and t = (1 + y)*. Then (10) and (11) can be
written, respectively, as z + ¢ > zt and

B+1 __ 4B8+1
z t
(zt)ﬁ = - -
z—1
Thus, we have to prove that
LB+l _ 4B+1
E+8)° > ———. (12)

Assume that z < t and set u = z/t < 1. Applying Bernoulli’'s inequality
twice, we obtain

1 — uB+1
A+uw)P > 14+pu > i

’

1—u
which is just the inequality (12).

Remark. Using similar arguments to the ones used in the proof of
Proposition 2, one can show that the inequality (8) holds also in the case
a>1landn > a+1. Note thatif a > 1 but n < a+1, then this inequality
is not true in general (take, for example, a =n =2, 2y = 8, 2 = 51—0).
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