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(x\, x2, x3, t) 
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(x, t) i-> =(x 

? 
vt,t 

? v - 
x/c ), 

y/\ 
- 

V2/C2 

where v is a vector in R3 with length ca/s and direction B!B, leads to an alternative 

proof of the theorem. 
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Semiregular Polygons 

Oleg Mushkarov and Nikolai Nikolov 

1. INTRODUCTION. This note is motivated by Problem 3 from IMO'2003, which 

states: 

Each pair of opposite sides of a convex hexagon has the following property: the distance 

between their midpoints is equal to V3/2 times the sum of their lengths. Prove that all the 

angles of the hexagon are equal. 

In fact, one can completely characterize the hexagons having the given property. Each 

is obtained from an equilateral triangle by cutting its corners at the same height. 
It is tempting to conjecture that one can describe in a similar way the convex 2n 

gons (n > 4) whose pairs of opposite sides have the property that the distances be 

tween their midpoints are equal to cot(Tr/2n)/2 times the sum of their lengths. We call 

these 2n-gons semiregular. As we shall see, the semiregular 2n-gons still have equal 

angles, but when n > 5 not all of them are obtained by cutting the corners from regular 
n-gons. This is a consequence of our main result, Theorem 3.1, which gives a com 

plete characterization of the semiregular 2/?-gons for n = 2, 3,_The key point in 

its proof is a geometric inequality for arbitrary 2n-gons, which in the case n ? 3 gives 
another generalization of the Olympiad problem. 

2. AN INEQUALITY FOR 2w-GONS. Let Ax, A2, ..., A2n (n > 2) be arbitrary 

points in the plane. Denote by ak the length of the segment AkAk+\ (1 < k < 2n) 
and by mk the distance between the midpoints of the opposite segments AkAk+\ and 

An+kAn+k+\ (1 < k < n), where subscripts are taken modulo 2n. 
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Proposition 2.1. Ifn > 2, then the following inequality holds: 

n n 

J2(ak+an+k)2 
> 4tan2 

(^) ]Tm2. (2.1) 
*=i 

k2r/ 
*=i 

Proof We assume that the points A\, A2, ..., A2n are situated in the complex plane 
and denote by zk the complex number representing Ak. Set wk 

? 
zn+k 

? 
zk. Then the 

triangle inequality gives 

n n 

?2,{ak 
+ an+k)2 

= 
?2(\Zk 

- 
Zk+\ I + \Zn+k 

- 
Zn?k+\ I)2 

k=\ 

n 

? 
?_^ \Zk 

~~ 
Zk+l 

~ 
Zn+k ~^~ Zn+k+\ 

k=\ 

On the other hand, 

E^ = E 
k=\ 

i i2 
Zk -r Zk+\ Zn+k 

? 
Zn+k+i 

1 (n~X \ 1 = 
4 ? ]^|u;* 

+ 
m;*+1|2J 

+ -\wn ~w{\2. 

Hence it is enough to prove the inequality 

l^l^+i 
- 

wk\2\ + \wn + wx\2 > 
tan2(?j 

I 
i^l^+i +^|2) 

+ \wn -w{\ 

(2.2) 

Note that (2.2) becomes an identity for n = 2, so we assume that n > 3. Write 

wk = xk + iyk. A simple calculation shows that (2.2) can be rewritten as 

n /??1 \ 

cos 
(-J Y^(xl + yl) > I ?^ (****+1 + y^+i) 

] 
- ***i - ynyu 

which is a consequence of the following lemma: 

Lemma 2.2. For any integer n > 3 and any real numbers X\,x2, ..., xn the following 

inequality holds: 

(77-1 

I 
k=\ 

n I n -1 \ 

cos 
(_) YlXk - 

[Yl 
XkXk+\ 

) 
~ x?x\ (2-3) 

Equality obtains if and only if 

un(kn/n) sin((fc 
- 

\)n/n) 
Xk = / / n *i +- / / x-** (2 < fc < w - 1). (2.4) 

sin (777 72 ) Sin(7T/tt) 
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Proof of Lemma 2.2. Inequality (2.3) follows from the identity 

n /n-\ \ 

C0S(_) 5Z** 
~ 

\^2Xkxk+\ 
I +XnXi U k=\ \k=\ J 

Y^ (xk sin((/c + X)tt/n) 
? 

xk+\ sin(/c7T?n) + xn ?n(rr/n))2 ~ 

f^ 2 sin(ikjr/n) sin((it + l)n/n) 

To prove it, we just compare the coefficients of x\ and xkxk+\ on both sides of (2.5). 
For example, the coefficients of x2 on the two sides of (2.5) coincide because 

^ sin2(7r/ft) ^ tin(TT/n) ( _ (kn\ _ /^(k + 1)tt 
/ / i cot ? 

i cot i 
*?? 2sm(kTT/n) sin((fe + X)n/ri) ~f 2 \ \n J \ n -E 

sin(7r/w) / /7T\ ( (n 
? 

X)tt 1 
cot ( 

? 
) 
? cot 

' 

2 

= C0S 
(D 

Identity (2.5) shows that equality is attained in (2.3) if and only if 

sin((fc + \)TT/n) ?n(rr/n) 
*k+\ 

= 
-r-z??-xk + ?-??xn (1 

< *: < n 
- 

2). 
sm(kTT/n) sm(k7t/n) 

It then follows easily by induction on k that xk is given by (2.4). 

Concerning equality in (2.1), it follows from the proof of Proposition 2.1 that for 

n = 2 it is attained only for parallelograms. If n > 3, then equality holds in (2.1) if 

and only if the opposite sides of the respective 2n-gon A\A2... A2n are parallel and 

its main diagonals obey the following relations: 

??_> sin(far/w) > sin((fc- \)ix/n)?-?> 
A?A?+? 

= . AiA?+1 +-. -A?A2?. (2.6) 
sin(7T/n) sin(7T/?) 

In particular, we obtain the following generalization of Problem 3 from IMO'2003: 

Corollary 2.3. Any convex hexagon for which equality holds in (2.1) is obtained from 
a triangle by cutting congruent triangles from its corners by means of lines parallel to 

their opposite sides. 

Proof. For a convex hexagon AiA2A3A4A5A6 equality is attained in (2.1) if and only 
if its opposite sides are parallel and 

A2A5 = A{A4 + A3A6 

(see (2.6)). Writing the last identity as Ax A2 + A3A4 + A5A6 = 0 shows that 

A3A6||A1A2||A4A5, A1A4||A2A3||A5A6, A2A5||A3A4||A1A6. 

Denote by A, B, and C the intersection points of the lines containing the sides A\A2 
and A5A6, AXA2 and A3A4, and A3A4 and A5A6, respectively. Then it is easy to see 

that the triangles A{AA6, BA2A3, and A4A5C are congruent. Conversely, it is not 

difficult to show that the construction described always produces a hexagon for which 

equality holds in (2.1). 
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3. SEMIREGULAR 2w-GONS. Recall that a convex 2^-gon is semiregular if the 
distance between the midpoints of any two of its opposite sides is equal to cot(7i/2n)/2 
times the sum of their lengths. The following theorem gives a complete characteriza 
tion of all semiregular 2/7-gons: 

Theorem 3.1. A convex 2n-gon M2n with side-lengths a\, a2, ..., a2n is semiregular if 
and only if 

(i) n ? 2 and M4 is a rhombus; 

(ii) n > 3, all the angles of M2n are equal, and 

Y^ sm(kn/n) 
an 

= 
an-\ 

? 
y (flfc+i 

? 
ak)?r???-, 

f^ sm(7T/n) 

^ cos((2k + \)n/2n) 
an+\ 

? 
an-\ + y (ak+\ 

? 
ak)-???-, 

f^ cos(n/2n) 

an+k = tfi + an+x 
- 

ak (2 < k < n). 

Before proceeding to the proof of Theorem 3.1 we record a useful lemma. 

Lemma 3.2. Eet ABC be a triangle with AC > ix/n, and let M be the midpoint of 
AB. Then 

AB > 2tm(?) CM, 
\2n/ 

with equality if and only if ZC = 
ix?n and C A = C B in case n > 3. 

Proof. The law of cosines together with the AM-GM inequality gives 

AB2 = CA2 + CB2 - 2CA CB. cos(ZC) > (CA2 + CB2) (\ - cos 
(-)) 

. 

Hence 

4CM2 = 
2(CA2 + CB2) 

- AB2 <-AB2 = cot2 (?) AB2, 
1 ? 

cos(n/n) \2n' 

and Lemma 3.2 is proved. 

Proof of Theorem 3.1. Given a semiregular 2/i-gon M2n = A\A2... A2n denote by Bk 
the intersection point of the segments AkAn+k and Ak+\ An+k+l (1 < k < n). Then it is 

easy to see that 

J2ZAkBkAk+l 
=n. 

k=\ 

Hence there is an index / such that ZA/J5/A/+i > n/n. Now applying Lemma 3.2 to 
the triangles A/B?A/+1 and An+iB?An+i+\ shows that ZA?B?A?+\ 

? 
?An+?BiAn+i+x 

= 

ir?n and A?AnM 
= 

A/+1An+/+1 if n > 3. If n = 2, then M4 is a parallelogram with 

perpendicular diagonals (i.e., M4 is a rhombus). We assume henceforth that n > 3. 
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Then 

v^ (n- 1)tt 
} ZAkBkAk+l =-, 

k=\,k?l 

and proceeding in the same way as earlier we can conclude that Z_AkBkAk+\ 
= 

n/n 
(1 < k < n) and that all the main diagonals AkAn+k(\ < k < n) have the same length. 
In particular, all the angles of M2n are equal. It follows that when n > 3 M2n is a 

semiregular 2n-gon if and only if it has the following three properties: 

all the angles of M2n are equal; 
all the main diagonals of M2n have the same length; 
the angle between any two consecutive main diagonals of M2n is n/n. 

Denote by zk the complex number representing the vertex Ak, and set rk = 
ak/a{. 

The three properties just listed are equivalent to the following relations: 

i(k~\)Tt 

zk+\ 
- 

zk = (z2 -Z\)rke 
? 

(1 < *; < 2n), (3.1) 
i{k-\)n 

Zn+k 
- 

zk = 
(Zn+\ 

- 
z\)e 

? 
(1 < k < n). (3.2) 

Writing (3.1) as 

k 

Zk+\ =z\ + (z2 
- 

z\) ?^rJe 
n 

; = i 

and using (3.2) leads to 

Y.ir^-r^ 
=0. (3.3) 

Now subtracting the first identity in (3.3) (k = 1) from the k?i one and then using the 

(/c 
? 

l)th identity we get 

rn+k 
= 

r\ +rn+\ 
- 

rk. (3.4) 

On the other hand, taking into account the fact that the rk are real numbers, we see that 

identity (3.3) for k = 1 is equivalent to the following: 

i^ /Jk7T\ 
rn+\ ~rn = 

y (rk+x 
- 

rk) cos 
? 

, 

t? \n ' 

i^ sm(k7z/n) 
rn 

- 
rn~\ 

= - 
2^(^+1 

- 
rk) 

. 

f^ sm(TT/n) 

These relations in tandem with (3.4) establish Theorem 3.1(ii). 

To illustrate Theorem 3.1, we consider the cases n = 3 and n ? 4. 

Example 1. Given a semiregular hexagon AXA2A3A4A5A6, we consider its envelop 

ing triangles B\B2B3 and CjC2C3 determined by the lines containing the sides AiA2, 
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A3A4, A5A6, and A2A3, A4A5, A6A{, respectively (see Figure 1). Theorem 3.1 im 

plies that BXB2B3 and CXC2C3 are equilateral triangles with a common center and that 

their corresponding sides form angles of 60?. Conversely, one can easily show that the 

intersection of any two such triangles is a semiregular hexagon. 

B3 C3 

Figure 1. Figure 2. 

Example 2. Given a semiregular octagon AxA^^A^AsA^AqA^, we consider its en 

veloping quadrilaterals BXB2B3B4 and CXC2C3C4 determined by the lines containing 
the sides AXA2, A3A4, A5A6, A7AS, and A2A3, A4A5, A6A7, A8Aj, respectively (see 

Figure 2). Here Theorem 3.1 confirms that BXB2B3B4 and CXC2C3C4 are congruent 

squares whose corresponding sides meet at 45?. Conversely, the intersection of any 
two such squares is a semiregular octagon. 

These two examples suggest the following question: Are the two enveloping rc-gons 
of a semiregular 2n-gon regular rc-gons? We leave as an exercise to the reader to show 

that in general this is true only when n = 3 or n = 4. 

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 8, 

1113 Sofia, Bulgaria 

muskarov@math.bas.bg 

nik@math.bas.bg 

Fubinito (Immediately) Implies FTA 

R. B. Burckel 

The goal is to show (rigorously, but by elementary means) that any zero-free com 

plex polynomial P must be constant (i.e., to establish the "Fundamental Theorem of 

Algebra" (FTA)). Set / 
= 

\/P. Continuity at 0 entails that 

lim f(rew) 
= 

/(0) ^ 0 (uniformly in 0 on the real line R). (1) 
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