
                    Selected topics in Functional Equations 

One Variable Functional Equations 

 

In this part we introduce some applied methods for tackling non-elementary 

problems in functional equations. Indeed the reader can receive the 

explanation power after reviewing this lecture and his ability to solve 

similar problem is the best explanandum for it. 

 

Problem-1: Find all surjective functions f, from   to   such that: 

                             ( ) (   ( ( )))     ( ( )) 

                                                   Brazilian Math Olympiads 

Solution: first we guess the identity function satisfy the problem 

statement then we try to establish our hypothesis by this method, 

assume there exist positive number a such that  ( )     for some 

nonzero real number d. indeed if the existence of a be refuted we are 

done. Then we use the surjectivity criteria to receive that , there 

must exist positive real number    such that  (  )     now we rewrite 

the problem statement as: 
 

 
 

 

 ( ( ))
 

 

 ( )
 and set      to receive that:  

    
 (   )

 
 

By the assumption the quantities      are positive thus we must have     

and the without less of generality we can assume that there exist positive 

real number a, and positive real number for it likewise d such that: 

 ( )      then the value of   changed to be    
 (   )

 
  .now by setting 

the value of x to be a we see that:  (   )  
 (   )

   
 and inductively 

 (
 (   )

  (   ) 
)  

 (   )

    
 for all positive integers n. but by the Archimedean 

laws of real numbers there exist positive integer n such that:      

in this sense the value of  (
 (   )

  (   ) 
) must be negative. Which is absurd 

thus it cant happen only if d=0. And we are done. 

 



 

Problem-2:find all increasing function f from  to   such that:  

                           ( ( ))      ( ) 

Solution: by the method applied in the previous problem assume there 

exist number a, such that:  ( )      for some nonzero real d and lets 

assume d be positive( the other case is same as this one) thus 

inductively we set that:  (    )    (   )  now by the injectivity 

of f we receive that  (  )         iff      (   ) . Now set the 

real number    in the interval (     )and set  (  )        for some 

real number   . inductively we can see that:  (      )     (   )   

and we can prove that: for all n,               (   ) . Then 

rewrite the latter inequality as:  
      

 
      

    

 
 as n tend to 

infinity sides of inequality vanishes an it set that      thus for 

all numbers in the interval (     )we have(  )       as we can cover 

the real numbers with the union of this intervals we can see that 

 ( )      for all real number x. 

 

At the border of Completion Axiom 

The reader need to know about elementary set theory and the 

definition of Supremum and infimum of the set indeed by the 

definition of the supremum and infimum one can find that if for a 

set S, we know    ( )   , then for any    there exist an element 

of S, likewise   such that:      . And if we know    ( )  . then 

for any    there exist an element of S, likewise   such that: 

     . We need this two notion to use as a useful judgment. For 

finding the function. But for use of this tool we need to define 

a set which has Supremum and infimum for this reason we 

instantiate the Axiom named as “Completeness” it stated that: 

If a non-empty set of real numbers to be bounded above , it has 

Supremum. And if to be bounded below, it necessarily has infimum.   

Problem-3: find all functions      { }     { }and we know      we 

have   ( )    , and  (  ( )    )    .               Turkish TST 



Solution: first we can find that  ( )   , indeed    (  ( ))    ( ). 

Now define the set   {
 ( )

 
|     } by the problem assumption we see 

that A has to be bounded from below, and we can observe that: 

      (  ( )    )  
 

 
(  ( )    )which is reduced to  ( )  

  

  
 . thus the 

set A has Supremum and infimum name S,I. thus there exist points like 

      such that 
 (  )

  
      

 (  )

  
     for any positive real  . Thus we 

can establish the inequality:    (  ( )    )   (  ( )    )or 
 ( )

 
 

    

  
 ( ) for any positive real  , we have:     

    

  
 indeed put      in 

(*)and by the same argument we can set that for any positive real  , we 

have:
    

  
    . As   tends to zero we receive this system of 

inequalities:  

                              
    

  
       

    

  
 

As I,S are positive we receive that    ,or equivalently the set A 

must be an one element set conclude that 
 ( )

 
   for all positive 

reals, by use of the equation of the function we see that: c=1. 

Note: we can establish the system of inequality without the notion of   

indeed by the definition of Supremum and infimum I must be greater 

than 
    

  
 if not the maximality of I was refuted. 

Problem-4: find all surjective and strictly increasing function f from 

 to   such that:  ( ( ))   ( )                       Vietnam-Olympiad 

Solution: at first we see that f(0)=0. And that for all x>0 we have 

 ( )    and otherwise  ( )   . Indeed  ( )and x has same sign. This 

lead to the following inequalities. First  ( ( ))   ( ) for all 

positive reals and by the surjectivity of f we receive that:  ( )   , 

thus we have:  ( ( ))     ( )lead to  ( )     which help us to see that 

the set   {
 ( )

 
|     }is bounded an then has supremum and infimum 

namely S,I. Then we know there exist points like       such that 
 (  )

  
      

 (  )

  
     for any positive real  . Thus we can establish 

the inequality, by the surjectivity of f, we know there exist positive 

real number    such that  (  )    and exist positive real number    such 

that  (  )    and then we receive that:  



    
 ( (  ))

 (  )
     

  
 (  )

   
  

 
 

                         
 ( (  ))

 (  )
     

  

 (  )
   

  

 
 

Then by the same argument as the preceding problem we can see that: 

    
  

 
 and     

  

 
 Which lead to I=S. And we receive  ( )     by the 

same argument for negative reals we are done. 

 

Problem-5:find all  monotone functions      and we have  

 ( )     ( ( )) 

Solution: here we start another way of tackling this type of problems 

based on recursive sequences. We divide the problem in two case but 

before it we can see that  ( )   . Now we introduce two cases, first 

the function be decreasing and the second the function be increasing, 

by the first case we have  ( )   for all     thus for all negative x, 

f(x) must be positive and then  ( ( ))   . Then  ( )    thus we can 

set that: | ( )|  | |and by the same argument | ( )( )|  | |. we also can 

prove inductively  ( )( )           ( ). fix the value of x and tend n 

to infinity we can see that: 
 ( )

 
 

    

  
 

 

  
 
 ( )( )

 
 and we receive that:   

 ( )

 
        

    

  
 

  √ 

 
. In the second case we have f(x) and x both drom 

the same sign implies that | |  | ( )|. then if we use the inverse 

function g of f we see that: | ( )|  | |and  ( ( ))   ( )   also by 

induction we ensure that: (  )    ( )( )     ( )       continuing this 

works lead us to the function: ( )  
  √ 

 
 . 

Comment: try to solve this by the method of solving problem-4. 

Problem-6:find all pairs of positive reals a,b such that there exist a 

function        . Such that.  ( ( ))    ( )       Kazakhstan Olympiad 

Solution: first assume such function exists. once again we will use 

the notion of Infimum. Consider the set   {
 ( )

 
|     } by the problem 

assumption we see that A has to be bounded from below(since 
 ( )

 
  ) 

define its infimum value as I. and then see that:  ( ( ))    ( )     and 



for any      there exist   such that  (  )  (   )  . Thus we receive 

the following inequality: 

                            (       )  

Or           this occurred only if       . Then the equation   

       has two positive solutions. Name one of them as  (   ). Then 

the function  ( )   (   )x satisfy the problem condition.  

Problem-7: Let for any positive reals       we define the set  (     ) 

as set of functions        such that  ( )   ( (  ))   (  )     prove 

that  (     )is non-empty set iff         (   ) .          Crux 

Solution : if         (   )  the equation     (   )      has 

positive solution  (     ). And the function  ( )   (     )x satisfy the 

problem statement. Now assume such function exist and define the set 

set   {
 ( )

 
|     } by the problem assumption we see that A has to be 

bounded from below(since 
 ( )

 
  ) define its infimum value as I. and 

then see that:  ( (  ))        (  )      thus by the method solving 

previous problem we see that:            and by previous problem we 

are done. 

 

Problem-8. Let function f defined by the equation  (  )     ( )   if we know 

there exist a real number   such that  (    )   . Find all possible value of 

 (  ).                                             Singapore Selection Test 

Solution: we know that the functions f and –f satisfy the problem statement 

thus without less of generality we assume  (  )    .and define the set 

  { (    )|       } this set is bounded above then have supremum say S. 

thus we can find that    . Then for elements of A, we have the inequality 

        Or 
  

 
    . Thus for all elements of A, like t  we have  ( )  

  

 
. 

This leads to the inequality    (      )    
  

 
or  (      )    

 

 
 
 

 
 . Which 

leads to the argument that A has one element which is 
 

 
 . 

 

 

 



Problem-9:Find all function         which is strictly increasing for 

   .and satisfy in the following conditions: 

 

 ( )   (
 

 
)

 (  )    ( )   

 (  )    ( )    ( )

                 

                                       Adapted After Polish training Camp 

Solution: if we set   { ( )|    
} we can set I ,as its infimum.  Which both 

inequalities       and       Satisfied. Which leads to    . Meant that 

for all positive reals x we must have  ( )   . Then there exist positive 

function g, forwhich  ( )   ( )  
 

 ( )
 which leads to  ( )  

 ( ) √ ( )   

 
or 

 ( )  
 ( ) √ ( )   

 
 which the first will be strictly increasing in    and the 

later will be strictly decreasing in    (since the product of them is 

constant). If we regard the second equation by g, we receive that 

 (  )    ( )  
 (  )   ( )

 (  )  ( )
 

If  (  )  ( )   for some x>1.we receive that one of the quantities 

 ( )or  (  )must be greater than unit. But as g(1)=1(Since f(1)=2) 

being greater then unit of once implies the other. Thus we must have 

 (  )    ( ). by use of the third we receive that:  (  )    ( ). thus 

for any rational number of the form        where m,n be integers. we 

have  (  )    ( ). 

 

Problem-10: Find all function         which is strictly increasing for 

   .and satisfy in the following condition: 

                          ( ) ( )   (  )   (
 

 
)          

                                     Adapted after Petersburg Olympiad 

Solution: one can see that the function f satisfies the first and the 

second conditions of the problem-9. Thus we can define such function g 

and assume it will be  strictly increasing. Thus we receive that 

 (  )    ( ). now we inductively will prove that:  (  )    ( ). indeed 

set      to receive that  ( ) (  )   (    )   (    ) and by induction 

hypothesis we have:  (  )    ( )  
 

  ( )
.for all    . Then we receive 



that:  (    )      ( ). now see that   ( 
 

 )   (  )    ( ). thus for 

any rational number r, we have  (  )    ( ). then fix     and set 

 ( )     for some real s.(indeed we set        ( )) we now g(t)>1. Then 

we obtain s>0. We can see that for all rational number r, we have 

 (  )     . Then set two sequence of rationales.       such that 

        for some real number y. then by the ascending behavior of g. 

we have  (   )   (  )   (   )or       (  )      if we set the limit point 

of both sequence to be y. then  (  )      now for arbitrary x, set 

        we see that  ( )    for all x>1. And now  ( )        Then by 

the equation  ( )   (
 

 
)we can find the equation of f. for all the positive 

real line. 

Comment: by the approach of this problem you can solve this problem which 

proposed for the IMO-2003. 

Find all function         which is strictly increasing for    .and 

satisfy in the following condition: 

                      (   )   ( )   ( )   ( )   (√  ) (√  ) (√  ) 

Problem-11: find all strictly increasing functions         such that for 

all positive reals we have:  

                    (  ( )    ( ))      ( ) ( ) 

Solution: lets define  ( )   ( )   and  ( )   ( )   and we find that h 

is strictly increasing and  ( )    is so. Then we can find the 

following relations. By adding   ( )    ( ) to the both side. We receive 

that  (  ( )    ( ))   ( ) ( )and the expression   ( )    ( ) is equal to 
 ( ) ( )  ( ) ( )

 
 then we find that (

 ( ) ( )  ( ) ( )

 
)   ( ) ( ) and by the same 

argument  (
 ( ) ( )  ( ) ( )

 
)   ( ) ( ). If we set    we receive the 

equations:  (
  ( )   ( )

 
)    ( )  (

 ( )    ( )

 
)    ( )now define the function 

 ( )  
  ( )   ( )

 
. Then we find that  ( ( ))    ( )  ( ( ))    ( ) then set 

   ( )obtain that (
 ( ) ( ( ))  ( ) ( ( ))

 
)   (

 ( )  ( )  ( )  ( )

 
)   ( )  ( )  

  ( ). implies that for any positive integer n we have : 

 (
  ( )    ( )

 
)    ( )  (

 ( )    ( )

 
)    ( ) 



Now we extend this for rational number by induction on 
 

 
. If    . We 

have: 

               

 (
 

   
 ( )   

   
 ( )

 
)   

   
 ( )  (

 ( )
   
   

   
 ( )

 
)   

   
 ( ) 

Thus  ( (
   

 
))   

   

 ( )  ( (
   

 
))   

   

 ( ). then set y=  (
   

 
). And 

recive that ( (
 

 
))   

 

 ( )  ( (
 

 
))   

 

 ( ). then r be a positive 

rational number such that    we have  ( ( )) 

 

Problem-12:we know about the function       such that :| (   )  

 ( )   ( )|   prove there exist function       such that | ( )   ( )|  

  and g is additive.                                   Turkish TST 

Solution: first we can see that | (      )    (    )|   and we see that: 

|
 (      )

     
 (    )

  |  
 

    and by adding this summations we obtain that: 

∑ ( 
   

 (      )

     
 (    )

  )        
 (      )

    . Now by the comparison test of 

convergence we know that ∑ |
 (      )

     
 (    )

  | 
   converges. Then wee need 

some lemma. 

Lemma-1: a sequence   Converges iff it was Cauchy(i.e. for any     

there is N,such that for any       we have |     |   .)  

Proof. If a sequence converges there exist N such that for all     we 

have |    |  
 

 
. Thus |     |  |    |  |    |   for all m>n. for the 

other side first fix n and see that the sequence must be bounded . 

then we can find that unique numbers  ̅  such that     ̅   for large n 

and     ̅   for infinitely many n. and by the same definition        

for large n and       for infinitely many n. for justifying this we 

can find some number    such that       (since the sequence is 

bounded) if we define       {         } then       then the 

sequence {  }is bounded and we can see that the sequence   is non 

increasing then we find that{  } converges, set           ̅.if     We 



have     ̅    for large k.and since       for all    . Then the 

quantity  ̅satisfies our claim. And if the inequality     ̅    not 

holds for infinitely many n then for all large n we have     ̅   . 

However this leads to     ̅    which is false. The uniqueness proof is 

trivial. Then by our claim we have |    ̅|   for some n>N and |    |  

  for some m>N. then | ̅   |  |    ̅|  |     |  |    |    . Imply that 

 ̅     .thus for large n we have            then    converges. 

Lemma-2: if ∑|  | converges then ∑   so, 

Proof: by the lemma-1 we have ∑ |  |
 
   , then by triangle inequality we 

have: |∑   
 
 |  ∑ |  |

 
    this leads to convergence of ∑  . 

By lemma1,2. We find that       
 (      )

     exists and define it as  (  ). 

It is clear that g must be additive. 

 

Problem-13: find all function         satisfying this equations: 

             
 (   )   ( )   

 (
 

 ( )
)  

 

 

               Tuymada Olympiads 

Solutions: First of all we will prove that  ((   ))  (   )for sake of 

this reason by use of the first equation we find that if    then 

 ( )   assume there exist number    in the interval(   ) such 

that  (  )    by the surjectivity of f, we can find y such that 

 ( )   (  )    then  (   )   (  )implies that     .then we can see 

that if    then  ( )   and if    then  ( )    .and we can easily 

prove that  ( )   . Now consider the interval  such that  ( )   , if we 

define     {   |       }and 
 

 
 {

 

 
|    }. By use of first and 

second conditions we find that  (   )     and  (
 

 
)  

 

 
. We can easily 

check then the intervals (      and       )satisfied in the condition 

of interval I. lets define a continued fraction of an irrational 

number x. which is of the form    
 

   
 

   
 
  

where      are positive 

integers and   is an integer , this representation is unique , and by 

use of this we can see that  (   
 

   
 

   
 
 

)     
 

   
 

   
 
 

 Indeed as we 



depict the interval I, as (0,1) or (n,n+1)and continuing this work k-

steps to receiving k-th convergent of the continued fraction of x 

(       )we receive a new interval    such that (  )    and we can 

obviously find that     and then  ( )    as k be large enough we find 

that  ( )   . if x be a rational number this fractions stops at k 

steps for some k. let    be an open interval which exclude x, and   be 

closed interval include x, we find that  (  )    ,  (  )    and  (   

  )       . We know that       { }and we are done. 

 


