Praoving Explicit Statements

Problem-I. Let d, k, q be positive integers and k being odd , find greatest power of 2, in the decomposition of Z%d:kl n4
AMM

Solution: we prove that if , being an even number or d = 1 the answer is d — 1 otherwise the anser is 2(d — 1) .
if ¢ =1itis obvious , if d = 1 the resulting sum is odd , now assume that d > 1 we can write the sum as the
following:

(2%k)7 + (247 k)9 + Zizialk(iq + (24 — )9

For even . take the sum modulo 2¢ | thus we find that 32 1 kni =2 Z,zld:_llk n? (mod 2%) , thus by use of

induction on d we find that X2, % n is congruent to 2¢~2 modulo 241 so $2%% n? = 24-1 (mod 2¢)

and it is the desired result.

For odd , notice that by use of hinomial theorem . {7 + (2%k — )7 = 2%qkn?~! (mod 22¢71) | so
y2lk na = 2dqk Y22 ' na=1 (mod 2241 ) since g — 1 is even by use of the former part we find that

y28 kpa-1 = 2d-2 (;mod 2¢4-1) so 322K n4 = 224-2(mod 224~ ) . and our proaf is complete.
Variant :
Prove that 1™ + 2™ + «--. +(2% — 1) is divisible by 2%. Kvant-M2277

Solution: lets name the sum as , if n is odd , then rewrite A as the form (1" + (2K — 1)™) + (2" +
2F = 2)™) + -+ (21 = )" + (2¥1 + D™) + 2K spit is obvious that A is divisible by 2% .

|f 72 is even , we made an induction on k assume the statement haolds true for k then we must prove it for k + Limplies
that . we know that a® = (21 — @)™ (mod 2¥*1) thus:

1"+ 2"+ L = 1+ 2K — 1)) + (20 + (2K = 2)7) + e+ (201 -
D 4+ 21 + D) + 2k = 21" + 2™ + - +(2F — D) + 25" (mod 2K

By induction hypathesis (17 + 2™ + «--. +(2% — 1)™) is divisible by 2% thus 1* + 2™ + ... . +(2K+1 — 1)"
must being divisible by2%*+1 so our proof is complete .

Problem-2. Prove that 1 + 3% + 55 + -, +(2" — 1)?"~1 = 2" (mod 2"*1) Kvant-M2252
Solution: at first we use two facts:
Fact-l:forodd . k2" = 1 (mod 2"*?)

Fact-2: (k + 2™)K = k(1 + 2™) (mod 2"*?)



The former , could be proven by the identity k2" — 1 = (k — 1)(k + 1)(k? + 1) ....(kzn_1 +1) or by
induction on n . and the later could be proven by use of binomial theorem. lets define S, = 1 + 33 +5° +

e 4@ = 1) then S,y =S, + R, . where R, = (2" + 1)2" 1 4 e (20 — )21
allthe 2™ — 1 terms of R,, . are of the formm = 2™ + k , k < 2™ so one can write that:

m™ =m? . mk =mk = k¥(1 + 2™) (mod 2"*?)
Implies that R, = (1 +2™)(1 + 3% + 55 + . +(2" — 1)2"71) = (1 + 2™)S,, (mod 2"+2)

Thus S, 41 = 2S, (1 + 2"71) (mod 2™*2) ., now we take an induction on 7 by induction hypothesis we must
have S, = 2"*1k + 2™ for some integer k , thus :

Sps1 = (2" 2k + 27)(1 + 2*71) = 27+ (mod 2"*2)

Ensure that , our proof is complete.

5

n—1

Problem-3. Prove that 3.," (—1)" (k’;) is divisible by plPTl . where p is prime and n is an integer , .

GMA-2013

Solution: assume that S, = Zl J (—1)" (knp) , now we first prove preceding lemma:

lemma: forall > p: S, — (?)Sn_l + (Z)Sn_z + -+ (p’il) Sp—p+1=0.

0 pti
p pli

. . p_ .
Zf o (1 — )" since w',i =1,2,..,p — 1 are roots of the polynomial % , then 1 — " are roots of the

Proof: let w be primitive p — th root of unity , we know that Zfz_ol w' = { , thus one can see that S, =

polynomial —T—x)r’ =xP1 — (‘;)x”_z + -+ (p’il) , by setting x =1—-w',i=0,..p—1 and

adding up , for all n > p one can find that:

(p)S 1+()S -2t +( )Snp+1_0
Our proof is complete.

Back to the problem , we prove the statement by use of the induction on n , it is clear that forn = 1,2, ...,p — 1 . the

statement holds . if n > pthenforall 1 <j<p—1,p| (’?) . by induction hypothesis . we now that for all 1 <

n—j—1
[n+p —j ZJ >

j<p-—1. pl p-1 I divides S,,_; . now we know that forall 1 < j <p




n-j

[EJ Thus all the terms of the sum (7)S,—1 — (5)Sp—a + -+ — ( P )Sn—p+1 is divisible by plpTl and then

p—1
that is true for S,,.

Induction and sequences

Problem-I. We know about the sequence {x,, } such that x; = % y g1 = ?i’;z

|s this sequence is eventually
Xn

periodic? Bulgarian TST-2011

Solution: Assume the answer is yes, then there are N, T such that for all i > N we have x; .+ = x; , we can assume

. . 3x -2
that N = 1, indeed since x,, = 3”;1 by Xy 4147 = X401 we deduce that x,, .7 = x,, . lets assume x,, =

+2Xn41

% in its reduced form , then x,, = 224 = SPnt2n |gts f = gcd(3p, + 2q, -39, — 2p,) thend =
An dn+1 3qn—2pn

1,13 . lets define two sequence a,, , b, suchthata; = 2,b; = 3.,and a, 41 = 3a, + 2b,, , b, 41 =
3b,, — 2a,, . since these sequences are periodic modulo 13, easy calculation shows that , these sequences hasn't ever
divisible by I3, thus we can say that p, .1 = 3D, + 2q » @u+1 = 39n — 2P, . NOW one can prove inductively that

P+ g =132 +q2) =-.=13" nowifx,,; = %then x, = 0thus 13|p,, andthen 13|q, .a

contradiction.

Variant:

We know about the sequence {a,, }, such that a, is a positive integer and we have:

anp—1

if a2l
An+1 = 2ay,
1-ay,

ifa, <1
We know that @, # 2. forn = 1,2, ...,2001 and ayqg, = 2. Find the value of a,.
Saint Petersburg

Solution-: let a,, = g,than Api1 = % or ayyq = quqp ,since gcd(p — q ,2q) = 1 or 2 thus in each step
, the sum of nominator and denominator either p + g ,% thus sum of num and den of a; doesn't increased

Sinced,p9, = 2 . so sum of num and den are equal to 3we can assume that sum of num and den of a; is equal to
ap+1.s0ay+1=3.2" soa, =3.2""—1 since for n = 1,2,...,2001, a,, # 2 we may have
k = 2002 and then ay = 3.22002 — 1.

Solution-2: lets define b, = —
1+

— S0 W can rephrase the statement of the problem as :



b= { 2b, it2b,«
T 2b, -1 if2b, > 1

We can preclude the case with b, = 1, which is fixed point of the sequence , so by induction we could find that b,, =

n . on . 22002 2002 1
{2"by}. soifweset 1 4+ ay = k we have b,, = {7},S|HEE{ p } = . we must have —-3= lEZ,so
3.22002 = (31 + 1) thus k = 3.2™ for some positive integer m < 2002 and then b, = {%} = {zngm}

since b,, = %we find that m = 2002, s0 k = 3.22092 and then a, = 3.22002 — 1,

Problem-3. We know about sequences {x,,},{y,} . such that x; = % V1 = % X1l = Xy + X2, Vi1 =

y, + y2 . prove that for alln,m . x,, , y,,, couldn't be equal. Saint Petersburg

First Solution: it is obvious that terms of both sequences are rational numbers assume that x,, = s where

2
gcd(p,q) = 1, whence x, .1 = %it is obvious that gcd(pq + p? , %) = 1 . thus at each step the

denominatar of x,, is being square and analogously the denominator of y,, , thus denominatar of x, in its reduced form
must be power of 10 and denominator of y,, in its reduced farm must be power of 8 , thus they couldn't being equal.

Second Solution: since x; = 0.1,y; = 0.125 we prove inductively that for all n, x,, ends with 1 and y,, ends with

10N x4x2
102N

since 10" x ends with zero and x2 ends with unit, 10V x + x? ends with unit and our hypothesis is proven, thus for all

5, lets assume the statement being true for all k < n thus x,, = NLN .where x ends with 1 s0 x,, ;1 =

N, x,, ends with unit, by the same argument we find that y,, ends with 5, thus they couldn't being equal for all n, m.

Third Solution: since x, = 0.11,x3 = 0.1221,x, = 0.1221 + 0.1221% > 0.13 sox3 < 0.125 =
y, < x4we prove by induction that : x,, 1, < y,, < x,,43 . assume it holds true for all kK < ., then x,, 2 <

V.2 < x,,43° adding the obtained inequality by the original inequality we find that : x,, 13 < ¥, 11 < X, 44 . and our
claim is proved. Now we receive an infinite sequence x5 < y; < x4 < y, < X5 < y3 < --- thus no terms could be
equal at all.

Induction and Polynomials

Problem-1. Polynomials F (x), G (x) has real coefficients and we know that the points
(F(1),6(1),(F(2),6(2)),....,( F(2011),6(2011))

Are vertex of a 201-gon in plane , prove that deg F ordeg G = 2010.



Solution: assume that the center of 201l-gon is located in (0,0). Thus one can say that :

F(k) = Cos(a+ 22:—;) ,G(k) = Sin (0(+ %) () for 1 < k < 2011. Now by induction on , we show that

iffor k = 1,2, ..., nthe (*) relations holds (n < 2011)then at least one of F, G hasn't degree less thann — 1.
Now take n = 2011 and we are done, for n = 1 the statement is true, now assume the statement is true for all

< 2010, let the polynomials F, G satisties (*) fork = 1,2 .....,n + 1 .define F*(x) = F(x + 1) —
F(x),G*(x) =G(x+1)—G(x),nowforall k = 1,2, ..., n we have

% e T . Qk+1)m
F*(k) = 2sin———.sin(a + ——=).

% _ . T QRk+1)m
G*'(k) =2 sin——.cos(a + ———)

We can divide F*, G* by2 sinz()% , thus they satisfies the problem criteria . We know that by induction hypothesis at
least one of deg F* ordeg G*(k) > n — 1since —1 + degF = degF*, — 1+ degG = degG* we
have deg F ordegG = n.

Problem-Z.Prove there exist a quadratic polynomial f(x). such that f(f(x)) has 4 non-positive real roots , and
f(f(...(x) ...)) has 2" real roots. Bulgarian Olympiads

n

Solution: Without less of generality assume that £ (x) has positive leading coefficient, (since change the sign of leading
coefficient doesn't changes locations of roots) it is obvious that f(x) must have two real roots , say x; < x5 | if
x, > 0, then there exist a positive real number s such that £(s) = x; . thus £(f(s)) = f(xz) = 0 and
f(f(x)) find positive real root , a contradiction , thus we may assume that x; < x, < O . since the roots of
f(f(x)) are indeed , roots of the equations: f(x) = x; , f(x) = x, and both of the equations must have 2 real
roots, |ets show the minimal value of the £, by m. So we find that m < x; < x, < 0. And then roots of £(f(x))
lies on the interval (x1, x5) Now we complete our proof by induction .we prove that for all n > 1, the polynomial f;, has
2™ real roots lies on the interval (x1,x,). For n = 2 it is clear , assume 1y, , ..., y,n being roots of f, =
f(f(....(x) ...)) lies on the interval (xq, x;). we find that roots of £, are roots of £(x) = y, where 1 <

n
k < 2™ .since m < xy all the equations of the form £ (x) = y,, has two real roots , lies in the interval (xq, x5) .

whence the polynomial f,,,; . has 2" real toots lies on the interval (x;, x,). We are done.
Problem-3. We know about the polynomial P (x, y) with real coefficients such that , there exist a function £, such that
Plx,y) =flx+y)—flx) - f)

Prove that, f can take polynomial values infinitely many times. Saint-Petersburg Dlympiads



Solution: we define polynomial £, (x) suchthat (x, 1) = fo(x + 1) — fo(x) — fo(1) and fo(1) = F(1) it
is obvious that one can find all the coefficients of f; (x) uniquely implies that f; (x) determines uniquely . now one can
find that fo(x + 1) — fo(x) = f(x + 1) — f(x) thus we can inductively prove that £ (n) = fy(n) for all
positive integers n , thus for all positive integers x, y we have P(x,y) = fo(x +y) — fo(x) — fo(y) and we
are done.

On the degree of Polynomials

Problem-1. Prove that there exist positive real numbers ag , a4, ... ., a,, such that the polynomial +a, x™ +

a,_1x" 1 4 ---. +a, for all choose of sign has n real roots. IMC-2014

Solution: we prove the problem statement , by use of induction on 72 . by induction hypothesis . the polynomial P (x) =
+a,x"" +a,_1x" 1 + . +ayx.where ay # 0. hasn + 1 distinct real roots , thus it hasn't any double
root thus any of its Iocal extreme wasn't its roots . so for all polynomial P(x) . for all ofits n - extremes sq , ..., s,
there are & > 0, such that |[P(s;)| > . so we prove all of the polynomial P(x) = +a,x"*! +a, x" 1 £
. +agx + ¢, hasexactly n + 1 real roots, since P(x) has Iocal extremum s; < --- <'s,, . such that

P(s;), P(s;41) has different signs thus it has roots in any interval of (s; , $;41) adding up (—o0, 57), (s, , +0)
.s0 by induction , our proof is complete.

Variant:

|s there exist a sequence of nonzero real numbers a, , ay, ...., ,,, ... such that for all n the polynomial B, (x) =
a,x™ + a,_1x"" ! + . +a, has n distinct real roots ? Putnam-1990

Solution: besides previous solution , we can construct an infinite sequence @, = (—1)*10™"", thus
(=1)k107%*P(10%%) = T (=1)i*k10-G—0)? = Z;:lik(—l)jlo‘fz >1-23%, 1072 >0

Henceforth, P(1), ..., P(10%™) changes theirs signs , alternatively...

Problem-2. We know about function £ (x) such that for all integer x , we have f(x) € Z. for all prime p there exist a
polynomial @, (x) of degree less than or equal 2013 . with integer coefficients such that f(n) — @, (n) is divisible by

p . prove that there are polynomial g (x) with real coefficients such that for all positive integers we have f(n) =

g(n). Moskow-2013

First Solution: we prove this problem , by induction on degree of polynomial Q, (x) such that for all polynomial
Q,, (x) of degree less than or equal to k , f(x) takes polynomial values in positive integer points. For = 0, Q,, (x)
must be constant and f(n) — Q,(n) = f(n) — c is divisible by p thus for all m,n € N f(m) — f(n) is



divisible by p . so take p large enough . we conceive that £ (x) must be constant integer. Now we prove two follawing
lemma:

Lemma-I: let A (x) be a polynomial of degree | then the polynomial AR = h(x + 1) — h(x) is of degree d — 1.
Proot: the prof is indeed obvious.

Lemma-2: if far all integer , the function Ah(x) takes a polynomial value of degree less than or equal to d — 1, then for
all integer x , we have h(x) = hy (x) for some polynomial h; of degree less than or equal to d.

Proof: we prave this lemma by induction on , for d = 1, we can say that h(x) = h(0) + cx for all integer x . now

assume Ah(x) = ax® + -+ define hy (x) = h(x) — diﬂx(x —1)...(x —d) then

Ahy = Ah(x) — ax(x — 1) ....(x —d + 2)

Thendeg Ah, < d — 1, so by induction hypothesis , hy is equal to polynomial of degree less than or equal to d since
deghy(x) — h(x) < d + 1 ,whence h(x) in integral points take the value of a polynomial of degree less than or
equal to d + 1 , ensure that our proof is complete.

Take back to our problem, since the function Af satisfies the statement of the problem (indeed Af (x) — AQ,, (x) ) is
divisible by p in pasitive integer points . note that deg AQ, (x) < k — 1 . so by induction hypothesis Af (x) take
polynomial values . thus by lemma-2, the polynomial £ (x) takes polynomial value of degree less than or equal one unit
added up to whatever polynomial Af (x) takes its values on integral points.

Second Solution: by use of lagrange interpolation formula ane can find that we can find the polynomial fy (x) . by the
values of f(1), ...., f(2014) with rational coefficients of degree less than or equal to 2013 . now if we take ¢ =
201312, then one can easily find that ¢ £ (x) has integer coefficients , take a prime p > ¢ . then deg cQ, (x) —
cfo(x) < 2013, and has 2014 incongruent roots modulo p , thus polynomial @, (x) — cfo(x) is zero polynomial
modulo all large prime p naote that:

¢ (FG0) = @) + ¢ (@) — o) = c(F ) = folx))

Is divisible by sufficiently large , and thus one can find that for all integer x , we must have: £(x) = f,(x). (fix x and
take p . sufficiently large).

Problem-3. Prove that If a rational function that is not a polynomial assumes rational values at all positive integral points,
then it is the quotient of two relatively prime polynomials with integral coefficients.



P(x)
Q)
of the degrees of P(x), Q(x). For r = O the theorem is obvious. Consider if necessary % instead of R(x) and

Solution: Let the function in question be R (x) = where P (x), Q(x) are relatively prime polynomials, 7 the sum

assume that the degree of P(x) is not less than that of Q (x) and furthermore that a is a paositive integer such that

P(@) o nati i o _P@) _h®, i i
Q(a) # 0 Then @ rational and the rational function — (R(x) Q(a)) is a rational function whose

T QW)

value is rational for integral x, x > a. and the degree of P;(x) = Q(X)ZEZ;(;Q_(;?P(“) is less than that of P(x); thus

the sum of the degrees of P; (x), Q (x) is less than that of P (x) and Q (x). so by induction we are done.

Problem-4. Prove that If a rational function has integral values for infinitely many integral values of the variable, then it is a
polynomial.

Solution: The function f(x) = % is considered , where P (x) and Q (x) are polynomials with integral coefficients.

We can find an integer q such that qf (x) = G(x) + r(x). where G(x) denotes a polynomial with integral
coefficients and () a rational function whose numerator is of lower degree than its denominatar. The value of (x) is
integral for infinitely many integral values of x. Since lim,._,o, 7(x) = 0. from a sufficiently large points we must have
|r(x)] < 1.thusr(x) = 0 and hence is zero for all xfor a rational function . so we are done.

Miscellaneous

Problem-1. Let P(x) = ayzx® + ---.+ay prove that the polynomial is divisible by (x — 1)™ if and only if for all
s=01,..,m—lLwehaea,(n+ 1) +a,_n°+-+a;2°+ay,=0

Solution: let (x) = (x — 1)™Q(x) . where Q(x) = X7" g™ ™ since (x — 1)™ = YT, (TJ”) x™,

then:

P(x) = (XI5 g ™) (27 () x"7) = XI5 @ Do) () "7 The problem

statement reduces to : X7"q; (XLo(—1) (’Jn) n—i—j+1%)=0 . the  term
}';0(—1)1' (7]") (n—i—j+1)%) is equal to m — th , difference of the polynomial x* , which is identically

ZBro.

Proof of Sufficiency: we prove this by induction on , the case m = 1 is clear , assume the statement is true for
m = k and divide P(x) by (x — 1)**1 now we have P(x) = (x — 1)¥*1q(x) + r(x) where degr(x) <
k . by induction hypothesis . we know that P(x) is divisible by (x — 1)* so r(x) = a(x — 1)* the necessity
condition depicts that (x — 1)**1q(x) satisfies the conditions for s = 0,1, ..., k . now we only need to check the

condition for (x) . for s = k, we have r(x) = aZ]’-;O(—l)j C‘) x*=J thus we have :



a((k+1DF —kkk+--)=0
The expression in the bracket is equal to ! . thus @ = 0.
Comment: Instead of 1,2, ..., n + 1we can use the n + 1 consecutive terms of Arithmetic progression.

Problem-2. let P(x)has n-distinct real root larger | and smaller 0,prove that:

[.P"(x) has a root greater than 1 — %

2 Absolute value of difference between maximum and minimum root of P’(x)is greater than /1 — %

Saint Petersburg

Solution-I: without less of generality assume that leading coefficient of the polynomial P (x) is positive . we know that
all the roots of P* (x) lies on the interval (0,1) so . for x > 1 we must have P’ (x) > 0, if we show roots of P(x)
by xo =0 <x; < .<xp_p <x,_q =1.ifall the roots of P'(x) say xp =0 < y; <x; <y, <
< Xy < Ypoq < X,_1 = 1 being less than 1 — % then we must have P’ (1 - %) >0 and x,_, <

1-— % so 1 —% lies between two consecutive roots of the polynomial P(x) so we must have P (1 - %) < Owe

know that P" (x) = P(x). ¥, setx =1 ——|n there . we find that :
g 1Y\ _ _1 n-1_1
P (1 n) =P (1 n) i=0 1—%—xl~
We know that Y7t - —=-n+ P - — wealsoknow that for 0 < i < n — 2
=X i

0<1-=-x<1--

n

Thus Y7ot —1— > —n +rll L =0 since P (1 - —) < 0, we must have P’ (1 - —) < 0, a contradiction.

Solution-2: At first we prove the following interesting lemma:

lemma: et 0 < x, < < <1land A =%3Xen p_ 07x2)eel%ir) oo 4 4 B <
emmd: e X2 SY2 S Xh+1 an Y2Y3Vk (A-y2)...(A=yx) en A+
1.

Proof: for = 1, the statement is obvious . know we prove the truth of the statement for & |, fix all x;, , v, and naotice that
Xr41 € [y 1] .if x441 = 1 we are done, if not, note that the expression A + B is linear respect to x; 1. so
attains its maximum values at the one ends of the interval if x;, . = y}, by induction hypothesis we are done.

Rack to our problem, sincex; = 0 < y; < x; <y, <. < x,_4 < V1 < X,, = 1, and we can say that



P(x) = x(x = x3) .. (x —x,) and P’ (x) = n(x = ¥;) w.. (x — y,,_1) . since the coefficient of x in
P(x)is +x; ... x,, and the coefficient of constant term in P* (x) is +ny; ... y,_; . one can easily find that :

Xy e Xpy_1 =NY1 Vg (F)
Now change P(x) by P(1 — x) one can see that (1 —y) o..(1 = y,_1) = (1 —x3) eee. (1 — x5—1) .
(**)now since for i = 2,...,n—1wehae 1l —x; <1—y,_ythann(l—y,_1)<1lsoy,;=1 —%

which is anather proof for the first part , use the lemma for k = n — 2, then one can find that :

X2-Xn-1 , (1=x2)..(1=xp—1)
y2o¥n—2  (A=y2)e(l=yn-2) —

By use of our (*), (**) we find that ny, v, 1 + n(1 —y1)(A —y,—1) < 1.

2
S0 1—Yn-1)? = (L= y1=Yn-1)* = 201Yn-1+ Q1 —y)A = yp-1)) +1>1—= . and we are
done.

Induction and functional equations

Problem-1. Find all function f: N — N such that
2f(mn) = f(m? +n?) = f2(m) — f2(n) = 2f (m)f (n)
Silk Road Math Competitions

Solution: define = {k| f(kn) = k2f(n)}. A; = {k| f(k) = k?} . from the above inequalities we find that
L.f(@mn) = f(m). f(n)

2.f(m* + m?) = (f(m) + f(n))?

3.f2(m) + f2(n) + 2f(mn) = f(n? + m?)

Now we prove following lemmas:

Lemma-l:if £f(mn) = f(m). f(n) then f(n? + m?) = (f(m) + f(n))>.

Proof: by three inequalities , it is clear.



Now take =n =1, then f(1) =1 . set m =1 in the above lemma we receive f(n?+ 1) = (1 +
f(m))? (4) .setn =1 we find that £(2) = 4 . take m = n in the inequalities 1, 3 we find that : f2(n) >
f(n?). f(n?®) = f2(n) .thus (n?) = f2(n) . we prove following lemma:

lemm-2:if for all . f(kn?) = k?f2(n) = k?f(n?) then . k € A.
Proof: (k) = f(k.1%) = k2f2(1) = k? .and k% f2(n) = f(kn?) > f(kn).f(n)

so f(kn) < k?f(n). on the other hand f(kn) = f(k). f(n) = k?f(n) so f(kn) = k?f(n). whence
k €A

We know £(n?) = f2(n) so 1 € A ., then by lemme-l , for m = n we have f(2n?) =4f(n?) st 2 € A,
conclude that £ (2n) = 4f(n). Now set n = p; ....p, where p; are primes, we know that

f@) = f(p1) ... f(pe)

We prove by induction that (n) > n? . it is clear for n = 1,2 . let n = mk where 1 < m, k < n by induction
hypathesis f(n) = f(m). f(k) = m?k? =n? .if n = 1 (mod 4) there are integers x, y such that n =
x% + y? and x, y < n thus by induction hypothesis :

f) =fG&?+y) =2 (f)+fO))? = (* +yH)? =n?

If n = 3 (mod 4) then n? + 1 = 2p; ...p, where p; = 1 (mod 4) which wasn't necessarily distinct . so
2
there are positive integers x;,y; such that x? + y? = p; < nTH <n? so x;,y; <n , then by induction

hypothesis : f (p;) = f (x? + y7) = (F() + fF())* = (& +y7)?* = pf thus:
f@*+1) 2 f2).fp1) ... f(pr) = 4pf ... p? = (n* + 1)

Since f(n) = \/m —1wehave f(n) >n?+1—1 = n? Weare done.

Now we complete our proof with two different methods:

Method-I: we use induction to prove f(n) = n? assume it holds true for all 1 < i < m ., now one can see that
f2m2+1)=4f(m?*+1) =4(m? +1)? nowsetn = m —1,m = m + 1 in the inequality (2) we
find that

4m?+1)? =fR2mM*+1D)=f((m—-1?+ M+ D) = (Fm+ 1)+ fm—-1)? = (f(m+1) + (m—1)?)?

Thus we can find f(m + 1) < (m + 1)? but we proved (m + 1) > (m + 1)? . so the equality occurred . and
our inductive proof is complete.

Method-2: we continue our proof, by proving thi lemma :



Llemma-3:if a, € A thensois ab, a® + b2.

Proof: since £ (an) = a?f(n), f(bn) = b?f(n) we find that (abn) = a?f(bn) = (ab)?f(n) . we know
that x = an,y = bn satisfies the equality £ (xy) = f(x). f () hence by lemma-| we find that

f((@®+b)n?) = f(x* +y*) = (f(x) + fF(1))? = (a* + b*)*f?(n)
Then our proof is complete.
lemma-4:if k € Aandd|k then € A .

Proof: k2f (n) = f(kn) = f(dn).f (5) = ()2f (dn) therefore d?f (n) > f(dn) = f(d). f(n) =
d?f(n) thus f(dn) = d?f(n) and it means that d € A.

We construct set of primes p; = 2. pi41|(Py ... p;)% + 1 by induction on i and use of lemma- 3 and lemma -4, we
can see that p; € A.

lemma-0:letr = a® + b%2 € A thena,b € A

Proof: since 7 € Ay then f(r) =712 = f(a? + b?) = (f(a) + f(b))? = (a®? + b?)? =12 so the
equality occurred and then £(a) = a2, f(b) = b2.

Llemma-b:if r € Ajandd|rthend € A

2
Proof: write 7 = kd , thend? < f(d) < ;g{; < Z—z = d?so(d) = d? .showsthat d € A4;.

Now since there are infinitely many p; = 1 (mod 4) in the set A , we can find that £ (p;) = p? we know that for
each of which there are integers x;, y; such that x” + y? = p; . take arbitrary positive integer n and consider
gcdifn, ;) . whence there is a certain number dwhich occurred infinitely many times , define the set

B = {i| ged(n, y;) = d}

So y; =dz; and ged (zi,r—l) =1 whence there are i < j € B such that £ =21 (mod 2) set s =
d Z Z]' d

|xl-yj - xjyi| = d|xl~zj - szi| = 0 (mod n) now set = XiX;p + Yy S0pip; = s2 + t2 we know that
pip; € Aand f(pip]-) = (pip;)? sup;p; € Ay sus,t € Ay . we now that n|s whence by lemma-6. n € A;
then f(n) = n?.

Finally Our long-run proof is complete!



Problem-2. Prave that for all positive integers @, b > 1, there are a function f: N — N such that :
f(af(n)) = bn
Brazilian Olympiad

Solution: define two increasing sequence {S,}°_; = N — {a,2a,3qa, ....},{R,}%.; = N —{b, 2b, ...}
in turn , of non multiples a, b . one can easily find that , if for example R, = Ry, then [ = k. we prove that the
following function satisfies the problem conditions:

Ry atn,S, =n
f(n): bSl n=ak,b+k,Rl=k
abf (j) n = abj
Now we prove that the above function is indeed a solution , we divide our proofin 3 cases:

Case-l: a + n. We can write S;, = n. Then £ (af (n)) = f(aRy) = bS; = bn (since {S,, }y—; is an increasing

sequence . thenk = 1)

Case-2:n = ak,b t k. Then f(af (n)) = f(af(ak)) = f(abS)),k = R; now f(abS)) = abf(S)) =
abR,, (S, = S)) thus f(abS;) = abR; = abk = nb

Case-3: -n = abj . then f(af (n)) = f(af(abj)) = f(ab(af(j)) = abf (af () nowif ab } j then by
above cases :f (af (j)) = bj and we are done . if ab|j set j = abi and then i < j now we use induction on j and by
use of induction hypothesis on i we can find

f(af 1) = f(af(abd) = f(ab(af ) = abf(af ()) = ab.bi = bj

Su.if = abj thenf(f(af(n))) =ab.bj =b.n

Problem-3. Find all function : RT —» R, such that £ (x) + f(y) < %f(x +y), ]% + ]% > fix:;})

Japanese Olympiads-2007

Solution: set = y = t . then 4£(¢) < £(2t) and 2@ > %then f(2t) = 4f(t) by induction it could be

find that £(2™¢t) = 22™f£(t) . for all positive integer m. Define g(x) = % we now that for = 2™ ,m € N,



we have g(nt) = ng(t) since g(x) + g(y) = g(x +y) . so inductively , g(nt) < ng(t) . now take
2™ > n , then g(2™t) < g(nt) + g((Zm - n)t) <ng(t)+ 2™ —n)g(t) =2Mg(t) = g2™t)
see the equality occurs , thus we can see that g(2™t) = g(nt) + g((Zm — n)t) thus for all integer n ., we have
g(nt) = ng(t). We knaw that £ (2t) = 4tg(t), f(3t) = 9tg(t) take x = 2t ,y = t in the first inequality
then f(2t) + f(¢t) < @thus 5tg(t) < gtg(t) ,then g(t) < O forall positive t.

Then take 0 < x <y so g(x) = g(x) + g(y —x) = g(¥) so g(x) is a decreasing function . take (1) =
a < 0. then for all positive integer n m we find that g(n) = a.n.ifged(p,q) = 1 .thenq. g (g) =g(p) =
a.psog (s) = %. we also know that for all ¢ > s . we have g(t) < % .if there are t € R — Q such that

g(t) < at, there exist a rational , such that g(t) < r < at, since g is decreasing we have

ar = g(r) > g(at) = ag(t)

Since a isnt positive we must have < g(t) . a contradiction , analogously for the case of existence oft forwhich
g(t) > at.Thus g(t) = at.Forallreal . thus £(t) = at? clearly satisfies the conditions of the problem.

On sum of num and den
Problem-2. Find all function f: Q" — Q7 such that f (xx:) = ];(—fl) (X)) = x3f(§)
Turkish Olympiads

2
Solution: we prove that the only functions satisties the problem conditions are £, (x) = a.% where d, n are

relatively prime positive integers , it is easy to check , function £, (x) satisfies . now we made an induction an
max (n,d) (orn + d respectively) forn = d = 1. wehave (1) = a = £, (1). Now we prove inductively

that for all > 2, we must have f (%) = f, (E) where gcd(n, s) = 1. assume the statement was true for
k =max (n,d) < k.nwifged(n,d) =1,max (n,d) =k weknowthatn # d . sowe have two case

n

_n _n 2
First. If < d , thenged(n,d —n) = 1 snf(g) = f( d-n ) = f(dd—") = a.%. Second. Ifd < n then
1+ £
d 2
(g) =f (%) = fig) = a.%.nuw our proof is complete.
n n3



Problem-3. When we have number x in hand , two operation x — 1Xi ,X > 1x;x ,is permitted , Is it true that each of

the nonzero rational number can be obtained with a finite number of such operations ? Moskow-0Olympiads-2007
. 1+x 1—x 1
Solution: lets £ (x) = — »g(x) = — one can see that f(g(f(x)) = —x,f(g (f (g(f(x))))) =1

s0f (g (F(FG(FIN)) =x (x % -1),f(g (f (9 (f(g(X))))> =x,(x#1)

Now number 2 could be obtain from —2 and vice versa, since f(—2) = % , g G) = 1 we can receive number 1
from 2 . besides , since g(—1) = —2, and —2 can get2 from —1 . since

1)

we can get —1 from —2 . the cycle is complete(ie.2 & 1,-2 - —1 - 2)
262

now by induction on sum of num and den of the positive irreducible fraction % . we construct all positive rational number

then by the equality £ (g (f (x)) = —x we construct all negative ones. For m + n = 2 we are done , assume the
statement holds true forallm + n < k. soif, m > nthen% =1+ ,1 sincen+m—n=m < kwecan

construct # and so furth% (by fl.itm < n thEﬂ% = 14-";_’" sincen —m +m = n < k. We can construct

% and so furth% (by f(g (f (g(f(x)))))) .and we are done.

Induction and Number Theory

Problem-1.Prove that for all positive integer n there exist an integer number such that decimal expansion of its square
starts with n ones and ends with a block of length . with combinations of ones and two s.

Moskow-2014

Solution: we prove this by induction on , such that for all nthere exist an integer m,, whose decimal expansions ends
with units and decimal expansion of m2 ends with a block of length . with combinations of ones and two s.

forn = 1itisclear, assume the statement of the problem holds for n = k, and the desired number was m,, , lets
define p, = my, + a. 10* forsome a € {1,2 ....,9} ends with unit . thus p2 = mZ + 2a.m,. 10% +

a?.102k , the number m7 ends with k ones and twos , the number 2a. my,. 10* ends with k zeros and a2. 102%



ends with 2k zeros , name the k + 1 — th digits of m2 by b and k + 1 — th digits of 2a. m,. 10* is
2a(mod 10)(since m,, ends with unit ) thus k + 1 — th digits of pZ is b + 2a(mod 10) if b odd take a such
that last digits of b + 2a(mod 10) being 1, if b being even , take a such that last digits of b + 2a(mod 10) is
1,0 . thus we can take p, = my4q .

Nowsetc, = 11....1.10* andd,, = ¢,, + 10*" , now:

n

dp—cn _ 10%" 104
Vdy —Jcp = NN > > 1
Thus there exist an integer in the interval (\/c,, ,+/d,,) such that its square starts with n units , show by p,, now

construct the number p,,. 10X + m,, take k large enough (i.e. larger than number of digits of 2p, m,, , m2 . now one

can see that (p,,. 10X + m,)? = p2.10%* + 2p,m,.10% + m2 . now the first n digits of this number
characterize by p2 ( string of units) and the last n digits of that number is characterized by m2 (strings of units and
twaos)

Problem-2. Prove that for all positive integer | there exist, integer k such that S(k) = n, S(k?) = n?,S(k3®) =

n3.

Moskow-Dlympiads-2013.

Solution: we prove more general statement : for any positive integer . there exist a nonnegative integer k consist only of
0,1 and k2 consist only of 0,1,2 in theirs decimal representations such that :

S(k) =n,S(k?) =n? S(k3) =n3.

the statement by induction on n, for n = 1 it is obvious , assume the statement holds true for 7, now we must prove
that there exist an integer m such that S(m) = n + 1,S(m?) = (n + 1)2,S(m3) = (n + 1)3. lets name
the number which satisfies the statement for n by ¢ and assume that ¢ has k digits . now take m = ¢ + 101°%  then
we cans see that S(m) = 1 + S(t) = n + 1 and

S(m?) = S(t* + 2t.101%% + 10%0%) = §(t?) + 25(t) + 1 = (n + 1)?

Since , t2 < 10%% ,2t.101%% < 102%% | numberst?, 2t. 101%%,102%% hasn't any in-common digits which
affects theirs addition. And m? consists only of 0,1,2 . now we can see that

m3 = t3 4+ 3¢%.101%% + 3¢.10%%% 4 103%
By the same argument , one can find that S(m3) = (n + 1)3.

Problem-3. let a, b, c,m,n being positive integers and f(x) = ax? + bx + c. prove that there exist n
consecutive integers ay, @y, ..., a, such that £ (ay), f(ay), ..., f (a,,) has at least m distinct prime factors.



Solution: we make an inductive reasoning on m. for m = 1 the statement of the problem halds, now choose
ai, Ay, ..., &y, suchthat f (ay), f(@3), ..., f (a,,) has at least m distinct prime divisors , now take A =

i) f2(ay). ... f2(ay) and B; = A+ a; . then f(B;) = f(a;). (1 + B. f(a;)) . for some integer B

*

thus the = term is coprime to f(aj) and then has at |east one prime number other than f(aj). So we are done.

Problem-4. et 0(m) = ¥ 41n.0<a<m ™M prove that for every integer ¢t > 1 there exist a positive integer m such

that for all , we have:
m < o(m) <o(o(m)) <-.<a®(m) AMM
Solution: we prove stronger statement here:

For all positive integer , there are a positive integer n, such that for all positive integer m such that gcd (nt ,nﬂ) =
t

1 (this means implicitly that nﬁ us an integer) we have :
t

m < o(m) <o(o(m)) <-.<c®(m)

We prove this by induction on , for ¢ = 1, take n, = 12 . now suppose n, has desired properties , we construct 1, 4
as follows : take prime p not divide n, . choose & > 1 suchthat p* = 1 (mod n?(p — 1)) . itis clear that such
k exists( for example take k = @ (n?(p — 1)) ) . we claim that n, ., = p*~1.n, . has desired property . set an

integer m , such that gcd (nH_l, - ) =1 and let A(m) =m+ o(m) it is obvious that A(m) is
1

N+

_ k_
multiplicative function since v, (m) = k — 1 then A(p*~1) = %| A(m) son?| %| A(m)

Hence o(m) = A(m) —m = —m (mod n?) . sogcd (nt ,Uflm)
t

) = 1 thus by induction hypothesis o(m)
satisfies the condition we have o(m) < a(a(m)) <l < a(t)(a(m)) = ¢ (m) |, at the same time

since gcd (nt ,nﬂ) = 1 we have m < o(m) and we are done.
t

Problem-a. Let p being odd prime and a, ... a2, 4 being distinct numbers in the interval [1, p?] which theirs sum is

divisible byp. prove that there exist positive integers by, ... by, 1 none of which is divisible by p and theirs decimal

representations in base p has only 0. I such that Y. a; b; being divisible by p2912.

Alexander Ivanav, Bulgarian Olympiads
Solution: we prove the statement for all positive integer | instead of 2012 , at first we prove following lemma :

Lemma: if x; , ...., x,,_; be positive integers not divisible by p . then for all 1 < » < p — 1 we can choose some of

them whose sum , leads to residue » madulo p .



Proof: set Sy = 0 and for 0 < k < p — 2 assume we receive the k different residues by numbers , Sy, ..., Sy .
which made by x; , ..., x, . add x;, 1 to them we receive x;, .1 + Sg , ..., X 41 + Sk . none of them has the same
residue modulo p . if thesr residues being permutations of Sy, ....,S) then we must have (k + 1)x4q =
0 (mod p) . which is impossible , so we receive at least new residue modulo p . so inductively we receive all non-zero
residues, our proof is complete.

Rack to our problem . we prove the statement by induction , since sum of a; is divisible by p , the base is true , suppose
there are positive integers by, ... by, _4 none of which is divisible by p and theirs decimal representations in base p has
only 0, I such that ) a;b; = p™A . Without less of generality assume that A is not divisible by p . one can find that
between ay, ... az,_; there are at least p — 1 numbers say ay, ... a,_; . which is not divisible by p . now by the
lemma there are ay,...a, such that a; + -+ a, + A =0 (modp) now set b, = b, + p" for i =
1, ...., k which satisfies the base-p criterion , and blf =b;fori =k+1,..,2n— 1.Then }, a;b; is divisible by
p™*1 this completes our proof.

Problem-B. Prove that 2010 positive integers whose every sum of the integers selected from them is perfect power
greater than unit.

Poolish Olympiads

Solution: We prove inductively that for all there is a set S, with such properties . for arbitrary set T , call a subset X of
T good if sum of elememts of this subset be a power number , for S; = {4}, the statement holds . assume there is a set
Sy, with desired properties , define U; = S; U{b} if some subsets of U; wasn't good , we start to dis-eviling them
we construct the set U; by multiplying elements of U;_; by ¢; . assume that in the set U; there are ¢ good subset which
theirs sum is my, ..., m, power of integers . multiply all the elements by '™ 1-m0) now if sum of one non-good
subset is ¢ in U; . now it is cltlem(muemo ipoy,, . now the set U;.q is defines as

lem(my,..

U1 = {a.c ~me)|a € U;} thus in each step the number of good subsets , increased | after finite steps say

m the set U,, has all subsets good , and then set S, ., = U,,,. So we are done.

Problem-7. Let C being a positive integer and p; being prime number and for all > 1, p,, is the prime divisor of
Pn—1 + C . Which not enlisted in the sequence before , prove that sequence pq, po, ...is bounded. Tuymada-2004

Solution: consider . consecutive composite numbers A =N(C+ 1)!+2,N(C+ 1)!'+3,...,N(C +
1)!'+ C + 1, and take natural number N , sufficiently large such that A > p;, C . we prove by induction that for all
natural number n , we must have p, < A .forn = 1, it holds true , assume the statement true for natural numbers
less than n m but assume contrary that p,, = A . then p,,_; + C = p, = A . since p,_; < A we find that
Pn—1 + C will fall in the above composite sequence , so must be composite whence :

_1+C A+A
PSP <=4

A contradiction , so for all integer 72, we have p,, < A.



Problem-8. Prove that there exist positive integers a; < a; < -++..< aypqq . such that for all 1 < i <j <
2011, suchthat ged(a; , a;) = @ — a; Brazilian Olympiads

Solution: At first we prove that the condition of the problem is equivalent to a —agla; (). if gcd(ai ,aj) =

a; — a; then a; — a;|a; now if ; — a;|a; then @; — a;]a; so a; — a;|gcdidfa;, a;) since gedidfn;, ;) <

a; — a; we are done. Now we construct these numbers inductively , the case n = 2 is ohvious , now assume we

construct x; < x, < +-.. < x;_q such that ged(x; ,xj) = x; — x; now we put k numbers
X <x0 +.X'1 <x0 +.X'2 < < X +xk_1

Where x, will be determined later. since the problem condition is equivalent to (*) we must have x; — x;|xo + x; ,

x;|xo take xo = lem (x4, X, ... .., X, —1) 8nd we prove tha statement for n = k.

Problem-3. let a,m > 2,gcd(a,m) = 1 and ord3, = k . t being an odd number and every prime dividing ¢ .

k_ .
also divides m , but gcd ( t, aTl) = 1, prove that ord3, = kt. Bulgarian TST

Solution: we prove this problem by induction on number of prime factors of , with theirs multiplicity . if ¢ being prime ,
d=

know that mt|a® — 1 thus m|a® — 1 sice k = ord?, then k|s|kt sos = k or kt .ifs = kthen 1 + md =
ak = 1 (mod mt) this implies that t|d . a contradiction. So = kt .

ak—-1

,tlm . set a¥ =1 +md ., thus a** = (1 + md)® =1 (mod mt) thus s = ord%, |kt we

Now assume that ¢ has at |east to prime factor(not necessarily distinct) write t = rt, where r is prime and ¢, > 1

kr _
since 7 is prime by the use of base of the induction we find that ord3,. = kr. at first we prove gcd (to ,amr 1) =

1, then we will use the induction hypothesis . if prime number ry divides ¢, it also divides t so ry|m|mr , now lets

akr—1  ak—1 akCDygk(=24... 41 akT=D4qk=2)4... 41
regard: dy = = . =d

. since a¥ = 1 (mod m) then
mr m r r

Cc
a¥ =1 (modr) thus ¢ is an integer , if 7 # 1 then a* =1 (modry) thus ¢ =1 (modry) so

gcd (to ,

for some integer b ., thus for all j = 0,1, ...,7 — 1 by use of hinomial theorem we can find that a¥ = 1 +

ak

T:lr_l) = 1 and we can use induction hypothesis . if r = 7,y then one can set a* = 1 + br (mod r?)
jbr (mod r?) so
aktD 4 gD 4. y1=r+br(14+2+-+7r—-1D =1+ grz(r —1) (modr?)

akr—1

Thus ¢ = 1 (mod r) and again gcd (to , ) = 1, so our inductive reasoning is complete.

mr



Problem-10. Prove that for all positive integers m, n there exist an integer |, such that 2% — m has at least n distinct
prime divisors. Chinese TST

Solution: we prove the statement by induction on , for n = 1 the statement is clear , assume now that there is an
integer k,, such that A, = 2% —m has at least n distinct prime divisors . WLOG . assume A,, is odd(we can easily

preclude the power of 2 in prime decompositions of m , thus may assume m is odd) , so 2k +e @R —m =4 =

2kn+e@A%) _y

27 —m (mod A4%) . whence —— =1 (mod4,) so there exist a prime p + A,, but divides

kn+9 (A5)_
2 ™ sowe find at least n 4 1 distinct prime divisars.

n

Problem-Il. Let > 3, being prime and for positive integers a4, ay, ..., a,_ . we know that neither a;, , al — 1isnot

divisible by p where k = 1,2,..,p — 2. Prove that there is a positive integer m, such that aya, ...a,, =
2 (mod p).

Bulgarian Olympiads

Solution: we prove inductively . that for any i = 2,3, ..., p — 1 there exist a sequence b; which are the product of
some of ay, ay, ..., a,_, such that for all m # n we have b,, b, (modp) . for i =2, take by =
1,b, = ay. And we are done . assume there are by , ..., b; such that for all m # n we have b,  b,, (mod p)
. consider numbers by a; , ...., b;a; by induction step none of which are congruent modulo p m now if there are an index
[ such that b;a; = b; (mod p) for any j then numbers by a; , ...., b;a; and by, ..., b; are same modulo p
comparing theirs product we have a;* = 1( mod p) . a contradiction. Thus we can adjoin new element to the set of
incongruencies. Then we can say that forall ¢ = 2, ..., p — 1 there are some product of a; s . such that is congruent
to ¢ modulo p.

Strong Induction and Number theory

Problem-1. Prove that for all positive integer | there exist an integer n, such that @ (n) = m!

Solution: we know that 3! = @(18),4! = ¢ (72) . now take an induction , set p,, = 5, n — th prime number we

en—1

know that for k < p,, . k! wasn't divisible by p,,. We know that (p,, — 2)! = @(p{'.p3% ... P 7') . nOW

en—1

Pu! = Pu(@n — V. (0n — 2)! = 0(@2)- (p1" . 05" o 0 ) = (P13 oDy 7 DR, oW for
all p, <m <pppq <2p,.itm =1, p;% . thenas (m — 1)! could be constructed before we can say

that m! =m.(m —1)! , now as 1 + p, = pfl.pgz .....pfﬁ]l . we can construct (1 4+ p,)! by (1 +
e
Dn)-Pn! = pfl.pfz .....pfﬁf(p(pfl.pgz e DIV DE) = go(pl”ﬁl.p;zwz .....p,i"_‘lﬁﬁn‘l.p,zl) by

the same method we can construct all the numbers m, between (p,, , Pn+1) so by induction on prime numbers our proof
is complete.



Problem-2. let a, b, m being positive integers such that gcd(b,m) = 1 prove that the set {a™ + bn|n =

1,2, ..., m?} contains complete residue system modulo m. ZWe.Sun

Solution: we prove the statement of the problem m by induction On m but at first we divide the problem in two cases:

Case-l: gcd(m, ab) = 1, the statement is clear for m = 1, assume m = p;'* ....p,"* where p; < - < p,

are distinct prime numbers , set my = pﬂthus by induction hypathesis there exist a number k < m3 . such that for all
t

integer v, we have a* + bk = r + mqq, for some integer g, since gcd( b(p; — 1) ... (p, — 1),p;) = 1
there exist a nonnegative integer ¢ < p, suchthat gb(p; — 1) ....(p, — 1) = —qy (mod p,) .

Setn =k +myq(p; — 1) ....(p, — 1) and since @ (m)| my(p; — 1) ... (p, — 1) then
a' +bn=a* +b(k +myqp; — 1) ... (0. = 1)) =7+ my(qo + gb(p; — 1) ... (p, — 1)) =7 (mod m)
Now we can see that :
O<k<nsmi+my(p;—1) ...(p, — 1) <md +my(p, — Dm = m3(1 +p,> — p,) < mp,> = m?

Case-Z: gcd(m,a) > 1, set m = uv where u > 1 such that a is divisible by any prime divisors of u and
gcd(v,a) = 1 . set r as arbitrary integer then there exist an integer s € {0,1, ..., u — 1} such that bs =
r (mod w) , we also know that gcd(a* , v) = 1 henceforth gcdifi (a=1)Sbu, v) = 1 whence by previous case
 there are k < v? such that (a*)* + (a™Y)*buk = (a™)°(r — bs) (modv) . nowsetn = uk + s
thenn <uv?+u—1<u(@?+1) <u@?+v?) <u?v? = m? and then:

a***s + buk = r — bs (mod v)

Implies that a™ + bn = r(mod v) . now for any prime pdivides a we know that v, (u) < u since p* = 2% >
u+1soa™+bn = a***s + b(uk +s) = 0 + bs = r (mod u) . and our proof is complete.

Problem-3. Let @™ — 1 being divisible by n , prove thata + 1, a% + 2, ..., a™ + n is distinct modulo . Komal

Solution: we will proceed induction for this , the case n = 1 is obvious lets suppose the statement holds true for all
integers less than n, now assume ord? = k then k|n and thus k < n , thus the statement of the problem is true for
k. hence +1,a% + 2, ....,a* + k are all distinct modulo & . now we prove thatfor 1 < x,y <na* +x #
a’+y . letx=kz+t,y=ku+v where OSt,vSk—l,OSZ,tS%thEn a* = at,a” =

a’ (mod n) now we have two cases:

Case-l:t #v. thena* +x = a* +t % a"+v =a” +y (modk) the central incongruence is derived
from induction hypothesis.



Case-2: = v, then we essentially have z # u , so
a*+x=a'+kz+t=a"+kut+v+k(z-uw=a’+y+k(z—u) £ a” +y (modn)
Our proof is complete.

Problem-4. Prove thet for all positive integer |, there exist an integer k , such that 3%*1 — 2% — k is divisible by n.
Serbia

Solution: define the sequence x, = 2, x,,,; = 3% — 2% we prove the following lemma:
Lemma: for all d the congruence x,, .1 = x,, (mod d) holds for all sufficiently large n.

Proot: we prove this lemma by induction on d . for d = 1 it is obvious , assume that the statement holds for all integers
less than d . since @ (d) < d the statement holds for @ (d) . ensure that x,, .1 = x,, (mod @(d)) for all
sufficiently large ., thus 3¥n+1 = 3%n | 2%n+1 = 2*» (mod d) . so our lemma is proven.

Back to our problem , we set k = x,, ,d = m and we are done,

n, S-Teuhnique

Problem-1. We know about the sequence a,, such that a; = 1,a, = aH + aH S R +aH + 1, prove that
2 3 n

there exist infinitely many n such that a,, = n  (mod 22010) LSA-TST-2010.

Solution: first we prove the following lemma:
lemma: if v, (n) = s then 25~ |a, —a,_; .

Proof: assume ap = O, the statement is obvious for s = 1 .assume that the statement holds true for all integers less
than 7., we will prove the truth of the proposition for 7, assume contrary so 7 is the least integer such that v, (n) =

s.but 2571y a, —a,_, .take b, = a,, — a,_; . then one can find that :
b, = Zi>1,i|n b”T = Di<n Jiln b;

Thus br =3, n n bisoby =bn+ 3, nn b+ X,y by =2bn+ ¥, n ) by
p pp p PP p p p



Sinna% < nandpS7 %thus by induction hypothesis , we must have 2572 |bn so 2571|2bx . now those i < n such
p 14

that i 4 shut i|n are divisible by p* so by induction hypothesis we must have 2571 |b; . then we must have 2571 |b,, .

a contradiction , so Our proof is complete.

let p; , ..., py, be different primes , by Chinese reminder thearem we can find k such that for alll < i < m we have
p? |k + i so by our lemma 257 @y — Gpqioq SO QR = Agqq = 0. = Agam = N(say!) (mod 2571)
take > N + 2571 + 1, Then since the set {k + N, ...., k + N + 25=1 — 1} covers all residues modulo 251,
there exist 7 belongs to the above set, suchthata, =n =N (mod 2°71), n > N.

Problem-2. For all | prove that there exist an integer n with at least m prime factors( no necessarily distinct) t such that
2kn? 4 3kn? being divisible by n3. Where k is a positive integer.

Solution: at first we present the following lemma:

Lemma: let gcd(a, b) = 1 being integers and p be an odd prime such that v, (a + b) = s = 1. then v, (a? +
bP) =s+ 1.
Proof:seta + b = x is divisible by p, now

aP+bP _ (x—b)P+bP
a+b x

= xP7" = bpx?~? + . —(§)bP~2x + pbP~! = pbP~! (mod p?)

aP +bP

Since v, (aP + bP) = v,(a + b) + v, ( —

) we are done.

we prove the statement by induction on m , for m = 0 take n; = 1, assume that for m — 1 there are an integer n;

with at least m — 1 prime factors such that n;3 divides 2kni® 4 3km® oy we divide the problem in two case:

Case-I: there exist a prime p such that p + n; but 2lkni® 4 gkn* being divisible by p, since pIani2 + 3kni’ by

2 2
our lemma p3|2kp2"i + 3P0 oy, take n; 41 = pn; . weare done.
2 2 2 2 2
Case-2: n; and 2%™" + 3%™" has same prime factors . we know that n;3 # 257" + 3K™° gtherwise 2%7" +
2 2 2
3kni® > 3n® > 1.3 thus there exist a prime g such that v,(n?) =a,v, (Zk"i + 3kn ) = p and

B=1+a.taken,y =qn; snq*|gft? =y, (2""1‘+12 + 3k"i+12)



%4
n3

Problem-3. Prove that for all positive integer | there exist an integer n Which has exactly k prime divisors and

being an integer.
Solution: we first prove two important lemma:
Lemma-l: Let a be an integer , two following statements are equivalent:

. vat+tl)=s=1
b. v,(a? +1)=s+1

aP+1

Proof:  if v,(a+1)=s=1 . then ey

=p (modp?) . since v,(a? +1) =v,(a+ 1)+

14
v, (aa_:) we are done , on the other hand , since p|a” + 1, by fermat's little theorem we find that @ + 1 is

divisible by p and by the above proof, we are done.

14
Lemma-2; Let a be a positive integer |, then there exist prime g such that q| 1—: but ¢ + a + 1 except the case

a=2,p=3.

Proof: assume contrary then all of theirs common primes will appear in theirs greatest prime divisors . since

p p
gcd (i—: ,a+ 1) = 1orp . we find that aa—: must be power of p and at the simultaneously with a + 1,
al+1

a+1

since by the previous lemma , we find that if pla + 1, then v, (ilp—i) =1, we find thataj—: = p but

>
a’—a+1>a+1>pexceptthecase a = 2,p = 3. Our proof is complete.

Back to our problem , by lemma-1, we find that , if p|2™ + 1 then p3|2mp2 + 1 . now take ny = p; = 3 since
2°+1=513=27.19 , take p, = 19, n, = p,;p, .we construct n; inductively , assume we construct
Ny = PPz ---Pi by lemma-2 , there are prime p,,q such that pp,q + 2P1P2-Pk-1 + 1 =a + 1 but

Di+1]2P1P2-Pk +1 = aPk + 1 , now set My4q = Pr41MNy - Since n,%|2n12< + 1|2n,%.p,§+1 + 1 and by

2.2 , 2.2 2
lemma-l. pi 41| 2P+t + 1 we find that nipj 1 = njyq|2MkPl+t + 1 =2Mk+1 + 1 50 we are done.



Problem-4. We know about the sequence a,, . that ., ,, dag = k™ where k is a positive integer , prove that terms of

this sequence are all positive integers a,, is an integer.

Polish training camps.

Solution: we prove the statement by induction on . for n = 1 it is obvious , assume it was true for all integers less than n
. write the equality as n. a, + X4, g<n dag = k™ we will prove that n|k™ — ¥, 4<, dag which leads to the
desired conclusion. Assume that v, (n) = r,n = p" x for some integer x which is not divisible by p we prove that

above summation is divisible by p™. thus by use of induction hypothesis we can write:

r—1

K" = Yapmacn dag = k™ =Xy, dag = k¥ — kP = k"X (kP P=Dx — 1) (mod p7)

Now if p|k we are done , otherwise by Fuler's theorem the term in the bracket is divisible by p”. Since the above proof is
indeed for all primes dividing . we are done.

Miscellaneous

Problem-I. For n = 1,2,3 n —type-number include the following numbers:
a. [ero

b. Geometric progression 1,n + 2, (n + 2)?, ...

-¢. Sum of its various numbers.

Prove that every natural number could be represented as the sum of first type , second type and the third type number.
Moskow-2012

Solution: first we prove the following lemma

Lemma: let a; , ay, ..., a,, ... be a non-decreasing sequence of positive integers and define S; = 0,for > 2.5, =
a, + ---.+ay_, . then any positive integers could be written as sum of different terms of the sequence
ay,0ay, ..., Ay, ..itandonlyif: a;, <1+ S,.

Proof: if for some . we have a, > 1 + S, then the number 1 + S), can't be represented by that form. For the
necessity proof, we use induction assume that the statement of the problem , holds true for all the integers in the interval
[1,S,] using only the numbers included in S), . ie. a, ...., aj_; . for the base of induction since @y < 1+ S; =
1. wehaveS, =a; =1.weare done for k = 1,2. Assume we can write 1,2, ..., S, without a; . add a;, to
1,2, ..., S, . we receive 1+ ay, 2 + ay, ..., Sk + ap = Si4q . whence We can construct all of them . since
a, <1+ S,. Byinduction hypothesis we can construct all the numbers in the interval [1, Sy, ;1] . so we are done.



Now we reorder the three type numbers , inclusively as :
1,1,1,3,4,5,9,16,25,27, ...

Soa; = a, = az = 1,we may prove that the inequality a;, < 1 + S, holds for k > 3 . assume that in the first k
terms of the sequence we have (3°,....,3" 1), (4%, ....,4™ 1), (5%, ...,5" D) where [ =k —1—n—-m
so we have

3"-1  4m-1 &

Sk =Y + 354 + 250 _T+ . +—1 > (min (3"4m5)—1)( +- +)

1; (mln( 3n,4m, 51) -1 > (mln( 3m, 4™, 51) l=q, -1

And we are done.

Problem-2. let 0 < x;, < prnve that( -D" < (i - 1) e (xi —1) Tuymada-2000

1Hx g+t x1

First Solution: we prove the following lemmal
Lemma: that if x, y being two positive reals such that +y < 1, then we have:

(-6

*+12 l(xfy)z + 1 which is true by the AM-GM Inequality < (%)2 _

2

Proof: rewrite the inequality in the farm =

now we can prove inductively (on m) that for all N = 2™ real numbers x; , ..., xy such that 0 < x;, < % for

1<k < N we have ( -V < (i - 1) - (xi — 1) . now by back-ward induction we prove
N

X1+x2+ Xy X1

the inequality for all o, assume .we want to prove the inequality forn < N = 2™, numbers x; , ..., x,, 0 < x; <
%, and note that x; + --- + x,, = nd .for some positive real d , since the inequality is true for any N, numbers , take
specific(Particular) N, numbers as : xq , ..., X, Xp41 = =--. = Xy = d , notice that x; + - + xy = nd +
(N —n)d = Nd.

so we write the statement as :



-1V s(xl—1>....(%—1)

X1 +.X'2+”'.+XN 1

Whence the inequality leads to the following statement:

N N _ N N N 1 1 _
Gy~ D =G DY = G-V < (5-1) (5 -1) =
1 1 1
_— - _ N-n
<x1 1) (xn 1) G-
: 1 n — n —_ 1\ 1_ 1 _
So one can find that G- = (x1+x2+~~~.+xn nt < (x1 1) (xn 1).

We are done.

Second Solution: take x; + ---+ x,, = nd as past , assume there are to index , say: xy,x, such that x; <
d,x, > d .now we prove the following lemma:

lemma: letx; < d,x, > d then: (l—l)(i—1)>(l—1)( —)

X1 X2 d xX1+xy—d
Proof: by simplifying bath sides we get (1 — x; — x,)(d — x1)(x, — d) > 0. and our proof is complete.

Now , if we change the set {xq,.....,x,} by {d,x; + x, — d, x3, ..., x,, }. the numbers which isn't equal to d .
decreased by one , we continue these procedure ( which takes finitely ) and final all the numbers are equal to d and thus

their products is greater than (3 - D™

Comment: the following hard inequality , is indeed the particular case of the above inequality:

let ay, a,,, .. as being positive real numbers , prove that:

a1+a2 a2+a3 a3+a4 a4+a5 a5+a1

2 2 2 2 2
<a1+a2+a3 a, +asz+ay az+ay+asay+as+a;
- 3 ' 2 | 3 3
Justtake = a; + a, + az + a, + as  andtake @y, = a g, then 2t hns 5
Ak+11ak42 Ag4+1tag42

hence the problem leads to proving ( - 1) ( S _ 1) > (%)5 . we know ak+:k“ 4 Y23 g

aitay aitas N
then:
S S 28 28 28
( —1)(———-1) 2 —1)2 = —1)2 = —1)?
aptajg+1 Qf4210k+3 aptag41tag42tag43 S—0k+4 S—ap-1

28

S—ai

S—ak

Now we must prove [[?_; (=— — 1) = (%)5, we set x, = < % And xq + -+ + x5 = 2 Implies that:



5
x1+x2+-~-.+x5

( D = < (1) G- D

Variant:

—n 1 1 n
letp = \/xq ... x,,, prove that (1 + xl(x1+1)) (1 + xn(xn+1)) >(1+ p(1+p)) .

Solution: first we prove the following lemma:

Lemma: Let p = ,/xy and x, y being positive real numbers then:

1 2
(1 +x(1+x)) (1 +y(1+y)) ( p(1+p))
. . . 0. . x2+x+y2+y _ j; xz—xy+y2
Solution: the left hand side of the inequality is equal to: 1 + Dty 1+ p + o (e (e OV e must

xz—xy+y2
p?(1+x)(1+y) — (1+p)?

since s = 2p the inequality is proven. Now by induction the statement holds for all powers of 2, now by back-ward

prove ,set x +y =s . we must prove (s2 — 3p?)(p + 1) = (p? + s + 1)p?

induction we prove the inequality for all n ., assume .we want to prove the inequality for n < N = 2™ , numbers
X1, -, X, such that x; ...x, = p™ . since the inequality is true for any N, numbers , take specific(Particular) N
nuMbErs 8s: Xq , .o, X, Xpqq = .= Xy = p . whence x;. ....xy = pV ., thus:

(1 +m) (1 +m)

1 1
= - - N—-n
(1 * xq (g + 1)) (1 * x, (x, + 1)) (1 p(1+ p))
+ ! N
r(1+p)
So our proof is complete.

Problem-3. Let a4, ..., a,, being real numbers , prove that two following statements are equivalent:

a. a;+a =0, foralli # .

b. Ifxq, x5, ...., x,, being non-negative real numbers adding up to one , then :
a1xq + -+ apx, = a;xf + o+ a,x?

Chinese Olympiads
LY > 2 and we are

done. Now assume a is true , we prove that a implies b, by inductionon . if n = 2 . then ayx; + ayx, — a;x¥ — ayxs =

Solution: ifb, beingtrue, setfor 1<i<j<nx;, =x = % and otherwise , x;, = O then,

(ay + az)xyx, > 1.and we are done .assume the statements holds froall 3, .... 7. and let 1, X5, + -+ ., X, .1 being



non-negative real numbers adding up to one . if x,, ;1 = 1 we are done , if x,, .1 < 1.then Y7, 1_? = 1 then

n+1
k> D=1 ai( )? or

Xk
1-xp4q

by induction hypothesis we have Y7,
1-xp41

(1= Xp11) Doy QX = Xhoq a2
We know that

n+1 _ n n
Yot @pxe = (1= Xp41) Xhe1 QX + Xpgq D=t WX + (1 — Xp41) Q1 Xn g +
2 n+1 2 n n n+1 2
Ap41Xn4+1” = Doy ApXp” + X1 D=1 WeXp + Qi1 Xn1 D1 Xk = Dfoq ApXy

Since (ay + Ap41)XkXn+1 = 0 we are done.



