Selected topics in Functional Equations

Additivity and Boundedness

In this lecture we present a method , for solving functional equations
problems . this method is based on use of Cauchy functional equations and
boundedness of the functions. Which leads to solve some Olympiad caliber
problems. First of all we present a theoretical preliminary which forms the
baseline of our arguments.

Lemma: if the function f:R — R.satisfy the equation f(x +y) = f(x)+ f(y)and be
bounded above or below on some interval (a,b) then it has the form cx for some
real number c.

Proof: first we prove if the function be bounded above in the interval (a,b).
It will be bounded on every interval (—e¢,&) where £>0 for this reason we
define the function g(x)=f(x)—f(1)xand clearly g satisfies the Cauchy
equation and for all rational number r, we have g(r) =0. Set x € (—¢¢).then
there exist rational number r such that x+r € (a,b) then we have gx) =gkx) +
gr)=gx+r)=f(x+r)—f()(x+r)which implies that g is bounded . and so f
is bounded on(—¢,¢) (since f is odd) now we can prove that f is continuous on
zero. Let x, be a sequence converges to zero and mn,be sequence of rational
numbers diverges to +esuch that r,x, - Othen |f(r,x,)|is bounded above by some

real number M. and If(xn)|=|f(%.rnxn)|=%|f(rnxn)lsgthus lim, o f(x) = £(0) = 0.

As f be continuous its obvious that is continuous on the whole of real line
(since: limpo f(x+ h) =f(x)+}lirr(1)f(h) = f(x)).and the continuous solution of the

Cauchy equation is of the form f(x) = f(1)x.

Note: if the function f be monotone and additive for all xe(_?l,%) (neN) we

have—%Sf(x)S%. No take n as large as we find that f is continuous at

zero. and do the same as above.

Problem-1: find all function f:R — R which is bounded on (0,1) and satisfy the
equation: Xf) =y f(y) = (o —y®)f(x + ) —xyf(x — y)

Bulgarian Olympiads

Solution: if x>y+%and x,y € (0,n)then x+ye(0,%)by induction we can see

k
that f 1is bounded on (0,%)and if 0<x<y then f 1is bounded on

(—2%,0)repectively. Thus we conclude that f is bounded on finite subset of R.
Now set y = —xrecieving that f(x)—f(—x) = f(2x)and analogously f(—x)—f(x) =



f(=2x). this shows that -f(—2x)=f(2x)=2f(x). inductively we can prove
f(nx) =nf(x)(put x=(n-1)y)and also for all rational number f(r)=rf(1)now by
defining the function g(x) =f(x) —f(1)xwe see that g satisfies the problem
conditions and id bounded. Thus for all real number x we have g(x) < Mfor
some real number M. then take arbitrary number x and set the equation for all
positive integers n.
1 M
glx) = ;g(nx) <7

-1 M
g(x) == g(-nx) <=
Take n as large as possible we find that g is equal to zero.

Comment-1:Lets complete the proof by use of the method we used in proving the
lemma.

Comment-2: one can prove that f is continuous and derivable indeed pick any
nonzero x and take y — 0 then lim,,, f(x +y) = f(x) which prove the continuity
of the function. and lets rewrite the equation as

xf (e =) +y(fGx+y) = ) = x2

Takey — 0 then the limit Hn% exists and then equals to f'(x) then we
y—)

fx+y)=f(x)
y
have: xf(x) = x%f'(x) or Inf(x) =7 thus f(x) = cx.
Problem-2: Find all function f:R - R*U{0} such that:
fe+y)+flx—y)—2f(x) =2y Korean Olympiads

Solution: we can see that the function f(x) = x?satisfies the conditition now
define g(x) = f(x) —x? thus we have :

gx+y)+gx—y)=2g(x)

By setting xx = ythen we have g(2x)+ g(0) = 2g(x)then we can see that

glx+y) +gx—y)=g2x)+g(0)

Which leads to additivity of the function g(x) —g(0).(set x+y=a,x—y =0b)
Now we can use the lemma , since the function g(x) — g(0) = f(x) — f(0) — x? is
bounded in some interval and additive we conclude that g(x)—g(0) = f(x)—
f(0)—x?=cx. Thus f(x)=f(0) +cx + x2

Problem-3: find all function f:R* — Rsuch that f(1) = 2008and for all positive
real number we have |f(x)| < x? + 10042 and for all positive reals x,y we have:



( + +1+1)— ( +1)+ +1
flr+y+- 5 =flx y fo+2)
Korean Olympiads

Solution: first of all we choose our old trick, and create a system

1 1
x+;—my+;—b

After solving the system we receive the second-degree equation ay?—aby+b =
Owhich has solution iff ab = 4. Thus for all real numbers a,b such that ab >4
we have f(a)+ f(b) = f(a+b). Then we must generalize. For this we insert new

variable c, such that for all real numbers a,b the following equations holds

true:

fla+b+c)=f(o)+fla+b)=f(a)+f(b+c)=f(a)+f(b)+f(c)

Which reduces to this inequalities: c(a + b),a(b + c),bc = 4which all sounds true
for sufficiently large enough c. thus f is additive function. Now we need the
lemma of boundedness , for this define the function

gx) = f(x) — f(Dx = f(x) — 2008x

Thus by the problem criteria we find the inequality -(x + 1004)? < g(x) < (x —
1004)%? which prove the boundedness of the function. Thus by use of the lemma
the problem is solved.

Problem-4: find all function f:R — R such that:
fP+y) =20 +2f(xy) + f2(y) Ukrainian TST

Solution: first put (—x,x)to receiving the equation f2(0) = f2(x) + f2(—x) +
2f(—x?). Then put (x +y,—x)receiving that f2(y) = f2(x +y) + 2f(—x? —xy) +
f?(—x)by comparing this with the first equation and the problem statement we
receive the following equation:

f(=x2) = f(xy) + f(—x2 = xy) + 2 f2(0)
Now define the function g(x)::f(x)i—%fQ(O)then receive the following equality:

g(=x?) = g(xy) + g(—=x* — xy)

a

J=(a+b)"

the system has solutions for all a+ b <0 thus for all values of reals for

Indeed

Now set the system xy =a,x?+xy = —bthus x = +,/—(a+ b)and y = +



which a+b <0 we have g(la+b)=g(a)+g). Now if a+b >0 there exist real
number c¢ such thatc+a+b,c+a<0. Then we have:

ge)+gla+b)=gla+b+c)=gb)+glat+c)=gb)+gla)+g(c)

Thus g is additive for all reals a,b. now we need to prove its boundedness

2 _f2 _f2(_
= [FO-f (:) < x)S%fZ(O) thus we have
g(—x?) < f2(0) which implies that g is bounded from above on the left side of

real line , thus we have g(x) = cxthen f(x) = cx + dby checking we find that
there exist four functionsf(x) =0,—-2,x,x — 2.

for this just regard the relation:f(—x?)

Problem-5:About the monotone function f:RTU{0} > R we know: f(0)+ 3f(2) =
3f(1) + f(3)and:

fGa+y) = f) = f) =FfA+xy) = flxy) - f(D)
Find the function. Ukrainian Olympiads

Solution: first we insert new variable then we have the following equalities:

fa+y+)-fO)-fO)-f@D=fx+y+2)-fx+y) - f@D+&+y) - fx) - f0)
=flez+yz+1) = fxz+yz) = f(D) +flxy +1) = flxy) = f(D)
=fA+xy+zx) = flxy +x2) = f(D + fA +yz) - f(yz) — f(1)

The last equality is obtained by switching z,x. then if we setyz=a,zx =
b,xy =c. We have for positive reals a,b,c:

fla+b+1)—fla+b)+f(A+c)—flc)=f(Q+c+b)—f(c+b)+f(1+a)—f(a)

Lets define the function g:R*U {0} > R such thatg(x) =f(x+2)—f(x+1)+ f(1)—
f(2) without less of generality assume f is strictly increasing then by the
monotonicity of f, is greater than f(1)—f(2) . then set a=1,b=u,c=1+v we
have g(u) + g(v) = g(u + v)and by the boundedness of g we have g(x) = cxthen set
if we set a=u,b =c=1and use the equality f(0)+ 3f(2) =3f(1)+ f(3)and the
fact that g(x) =cx. We find that:

fA+u)—f@) =cu+f(1)—f(0)
Set u = xythen by use of problem statement we receive that:
fx+y) = fx) = f(y) = cxy — £(0)

By defining function: h(x) =f(x)—f(0)—§x2 one can see that , h is additive
and bounded from below in any interval (since f(x) = f(0))then f(x)— f(0)—
%xz =axand f(x) = f(0) + ax +§x2.



Problem-6: find all functions f:R — R which is strictly increasing for all
positive real numbers and satisfy the following equation:

fG+y)+fay) =f)+fO)+ flxy+1)
Solution: lets define the function g(x) = f(x) — f(x — 1)then:
gxy) =fx+y)—f) - f()

Thus fix+y+2)=f)+fy+2) + gy +2x) = f(x) + f) + f(2) + g(yz) + g(xy + zx)
now by changing x,z we receive the following equality

gyz) + glxy + zx) = g(yx) + g(zy + zx)

Now set yz =a,zx = b,xy = ¢ where abc = (xyz)?> >0 and

g@) +gb+c)=g()+g(a+b)

Set b =1then g(a+1)—g(a) =g(c+1)—g(c) =k =Cte. Then for all c>b take
a=c—b. Then g(c—b)+g(c+b)=2g(c) take c=b+1 then we have:

g +g9@c—1)=g1) +g2c) —k = 29(c)

Thus g(c—b) + g(c+b) = g(2c) +1 for some real number 1. then the function
g(x) —lis additive on R*and then inR (by the same trick of problem-4) thus
g(x) =ax+ b(since f is strictly increasing on right ray)now f(x+1)—f(x) =
ax+b or f(1+xy)— f(xy) =axy+ bthus we have:

f+y) —f)—f@)=axy+b

Then the function: f(x)—b—%xzis additive and bounded from below.and we are

done.

Comment: for proving the addictiveness of the function g please regard this
insight: for ¢ > bandbc >0 we have g(c+b)+ g(c—b)=2g(c) thus if we take
c+b=y,c—b=x we have for x>0 and bc=y%—x?>0 we have g(x)+g() =
g(x+y). Thus for all x> 0,y? >x? we have g(x)+g(y) =g(x+y)

Problem-7: we know about the function f:R — Rsuch that :

i. For all real number f(x)=0
ii. Va,b,c,d € R. ab+bc+cd =0 we have:
fla=b)+f(c—d)=f(a)+f(d)+ f(b+c) Korean Olympiads



Solution: if we take a=c=0,b =d we receive f(—b) = f(b)and if we take all
variables equal to zero then f(0) =0. Rewrite the problem assumption as
(a+c)(b+d)=ad. Then take a=x,d=y,c=1—x,b =xy —ynow we have :

f+y—x)+f(x-y+D=f)+fO+fA-x—-y+xy)
As the function is even we have the following equation:
fG+y-—x)+fx+y-D=f)+fO+f(x-D-1)
Now set (1+4+x,1+ y)instead of then we receive the equality :
fA=x)+flx+y+D=fx+D+fy+1+f(xy)
And as the function f is even we can see that:
fy=D+flx+y+D=fx+D+fy+1+f(xy)

Thus f(A+x+y)=fx+D+f(y+1)+f(xy)—f(xy —1) now insert new variable z
to find that:

fx+y+z+D)=fx+D+fy+z+D+flxy+xz)—flxy+xz—-1)
=fx+D+f+D+fz+D+f(yz) —fyz—1D+flxy+xz) — f(xy +xz—-1)

Now by switching x,z we have the identity:
fO2) = fz-D+fly+xz) - flxy+xz -1 = flyx) = fx - D + f(zy + 2zx) - f(zy + zx = 1)
Now take xy = a,yz=b,zx = ¢ where abc >0 we have :
fO)—fb-D+flato)—fla+tc-D=f@-fla-D+fb+c)-f(b+c-1)

Define f(x) — f(x —1) = g(x)now we have: gxy)=f(x+y+1)—-f(x+1)—-f(y+1)
take y = —xthen we have g(—x?)=f(1)—f(x+1) — f(—x+ 1) < f(1)(since f is
positive) thus g is bounded above on the interval (—oo,0] and we have:

gb)+gla+c)=g@)+gb+c)=g()+gla+b) abc>0

Now for a > c,ac > Otakeb = a — crecievingg(a —c) + gla+c¢) =2g(a) and for ¢ >a,ac>0
take b =c—areceivingg(c —a) + g(c + a) = 2g(c) assume the first then take ¢ =a—-1 thus
for all a <0 we have g(1) + g(2a — 1) = 2g(a)by taking b =1 in first equation we find
that for all ac >0 g(a+1)— g(a) = constant thus we have g(2a) + k = 2g(a) thus we have
for all a,c<0,a>c gla—c)+gla+c)=gQRa)+k take a—c=x,a+c=ywe have:

g +g) =gx+y)+k
2_.2
For all x,ywhich x>0,y <0,ac = % > 0thus |y| > |xlor -y > xwhich implies that:

gx)+g(y)=glx+y)+k for all x>0,x+y <0 now take x,y <0 then as:
x+y+(—x),x+y+(—y) <0 we have the following equations:



gx+y)+g(=x)=g@)+k, gx+y)+g(-y)=gkx) +k

Thus we have :g(x)+g(—x) =g() + g(—y) =l = constant(*) then for all x,y <0 we
have : glx+y)=gx)+g(y) + k—1 thus the function g(x)+k —1 is bounded from
above in left side of real line an is additive , thus it is of the form cx
(and by the (*)relation it has the same equation for complete real line) thus
we have : f(x+y+1)—f(x+1)—f(y+1) =cxy+d and we find that f(x) = ayx? +
a,x + apthen by checking the even ness of the function we find that a;,ay =0
then f(x) = ayx?.

Second Solution: After this long run solution we present a concise solution
based on a tricky lemma: indeed if we prove the function f satisfies the
following lemma then the final part of solution is too easy.

Lemma: if x2+7y? =22 then f(x)+f(y) = f(2).

x_yz b =x_32’_z ,c=x+§+z,d = ythen ab + bc + cd =%(x2 +y2-22)=0

now by substituting the values of a,b,c,d we have:

Proof: set a =

f@+ () = () + () + £ )

Now define the function g:R* U {0} » R* U{0}such that g(x) = f(v/x) then
gla+b) =g(a) + g(b) then by its boundedness or (for a=>b =0 we have g(a) =
gla—>b)+ g(b) = g(a))we can see that g(x) = cxand etc..

Problem-8: let a>b>c>d > 0and ad = bc find all functionf:R* - R*such that:

fla+d)+fb—c)=fla—d)+ f(b+c) ELMO
Solution: We start to solve the problem by a method of the second solution we
present for the problem-7. Thus set az%,bz%ﬂ,cz?,d:% where

x>y>z>tandz+y>x+t then we have x2+t2=2z2+y? and f(x) +f(t) = f(y) + f(2)
now we define the function g(x) = f(¥/x) and we have for all a,b,c,d > Owhere
a+b=c+d we haveg(a)+ g(b) =g(c) + g(d) it is obvious that g(a+1) —g(a) is
constant and then g(a)+gb)=g(a+b—-1)+g(1) =g(a+b)+k for some constant
k. ensure that the function g(x) —k is additive and bounded from below . thus
the old trick works and f(x) =cx?+d.

Problem-9: find all function f:R* - R*such that for all positive real numbers
X, ¥,z such that x+y>z we have:

fx+y—2)+f(2vVxz) + f(2{/yz) = f(x +y + 2) Mongolian Olympiad



Solution: first define a function g(x) =f(\/§) then we have the following
identity:

9((x+y—2)2) + g(4xz) + g(4yz) = g((x + ¥y + 2)*) (*)

Now set the system (x +y —2z)?) =a,4xz=b,4yz =c then after solving the

w Y =— x = % which holds for all positive

system we find thatz = py

reals a,b,c and we have:
g(@)+gb)+g(c)=g(a+b+c) Vabc>0

Now first of all set x,f,f in the (*) receiving that:
g
22

29(x%) + g(2x*) = g(4x?) (**)

Now set b =c to have: g(a)+2g(b) = g(a + 2b)then set 2a instead of a receiving
that g(2a) + 2g(b) = g(2a + 2b)swich a,bwe have g(2a) + 2g(b) = g(2b) + 2g(a)
implies that g(2a) =2g(a) + C by substituting this at the (**)we have C =0
thus g(a) + g(2b) = g(a + 2b)which us equivalent to g(a)+ g(b) = g(a + b)implies
that g is additive and bounded thus g(x) = ax and the problem solved.

Problem-10: find all injective function f:R —{0} - R— {0} such that:
Ve, y,x+y#0 f(x+y)(f(x)+f(¥)) = f(xy) Brazilian Olympiads

s : . _ 1 9)+g) _ g(x+y)
Solution: define the function g(x) 5 then we have 20090 209)

or more

Put y =1 then we have g(x+1) =cg(x) +1 where ¢ = L

9I+g) _ 99
g’

g(x+y) glxy) *
By setting x:x+ 1,y =1 we have g(x+2)=c?g(x) +c+1 and inductively

glx+n)=c*g(x)+c"1+--+c+1 then gln+1)=2c""1+c" 2+ - +c+1if |c|>1
then g(ntl)

2¢cn—1

1

simply

— 1 thus by the relation 2g(n?) = g(n).g(2n) (x)as we have
1

g(n2)~chz_z,g(n)~26%,g(2n)~262n_2. Which leads to contradiction .
If we have |c|] <1 then g(n)~i by substituting in the (*) we have ﬁzﬁ
then ¢ =%. If we accept this we will have Vn€N:g(n+1) =2nl_2+2nl_2+2nl_3+---+

%+1 = 2 which contradicts the injectivity of f. then we conclude that |c|=1

. if c=-1 we have g(x+2) = g(x) contradiction. Thus c¢=1and we have g(1) =
1,g(x+1) =14+ g(x) thus g(2) =2then set y=2. We receive that:

2+9(%) _ 29(x)
2+4g(x)  g(2x)




Thus g(2x) = 2g(x) then set y = xwe hae:g(x?) = g?(x). now we have a function

satisfy the equations: g(x+ 1) =1+ g(x),g(x?) = g%(x) its obvious that this
1
—

function is identity and then f(x) =

Problem-11: for the function f:R - R we have f(x+y+f(¥))=f(x)+2f(y) prove
thatf(f(x)) = f(x) and f(x +y) = f(x) + f(¥) The College Mathematics Journal

Solution: first note thatf(x) = f(x+ f(x) — f(x)) = f(—f(x)) + 2f(x) thus
f(—f(x))::—f(x)or -f(x)is fixed point of function f. now regard the following
works:

fx+0+£(0) = £(0)) = fx — £(0)) + 2 (0) = f (x + F(—£(0)) + 0+ £(0))
= f (x+ f(=£(0)) +2(0) = f (x + F(0) = (0) + F(~£(0))) + 2 (0)
= f(x + £(0)) + 2f(—£(0)) + 2f(0) = f(x + f(0))

Thus f(x) = f(x + f(0))then f(0) = f(f(0))and if we set x =y =0 we have f(f(0)) =
3f(0)results that f(0)=0.

Now regard that

fle= @) = f(x+ F(=fG0)) = f (x + fG) = FGO + F(=F(0))) = fx + f(0) + 2 (—f(2))

And then f(x+ f(x)) =f(0+x+ f(x)) =0+ 2f(x). thus we have f(x—f(x))=0. Now
consider the relation:

f+n =ffG) +x+y—f(x) =f(y+ f(0) +2f (x = f())

Thus f(x+ () =f(x+y) =f(y+ f(x)) now put y=0and the first statement
proved.

Now set f(2x) = f(0+x+ f(x)) =0+2f(x) then f(2x) = 2f(x).now write:

f@+y)=f@+%+%)=

Then set (th(%))in the original equation we have:

f (x +r@)+r(r (%))) = f(x+27 () = G+ £O)) = fGx +9) = fG) + 27 (2) = fGO) + £ )

And we are done.



Problem-12: for the function f:R - R we have f(x+2f(y)) =f(x)+y+ f(y) prove
that f-is additive. AMM

Solution: at first we calculate the value of f(0) set f(0) =a then if we set
x =y = 0then f(2a) =2a, if we set x =0,y = 2a then f(4a) = 5aand if we set
x =2a,y =0 then f(4a) =3a then a=0. Put x =0then f(2f(y)) =y +f(y) and

then: fRFO)+2f) =) +y+f) =x+y+ )+ fD)
Then set y = —x, then f(2(f(x) + f(—x)) = f(x) + f(—x) fix the value of x then

f(x) + f(—x) = band now f(2b) = bthen 2f(2b) = 2band therefore f(2f(2b)) = f(2b) =
2b + f(2b) thus b =0.implies that fis odd function.

Now define C(x,y)=f(x+y)—f(x)—f(y) thus :
f(2eey)) = c(x,y) + fc(x, 1) = cCe,y) + fF(f(x +y) = f(X) = F)

Now we count f(2c(x,y)) in another way , since f(2c(x,¥)) = f(=2(f(x)+ f(»)) +

2f(x+y))we have f(=2(f()+ () +2fCx+3))=F(=2(f@) +f())) +x+y + f(x +)
the last equality is equal to

-fRFG+2fM)+x+y+fx+y) =—(x+y+f)+fO))+x+y+flx+y) =C(x,y)

Thus f(2C(x,y)) = C(x,y)thus as we proved the only number for which f(2b) =b is
zero , the proof is complete.

Problem-13:find all function f:R — Rsuch that for all nonzero values of X,y
we have: f(x+y)=x%f (%)+y2f(31—/) Mathematics and youth

f2x)+f(2y)

Solution: if we set x =y then f(2x) = 2x2f(§)now we have f(x+y) = >

insert new variable z then we have:

fU+f(4y)+2f(22) _ f4x0)+f(42)+2f(2y)
2 2

fx+y+z)=
We have f(4y) —2f(2y) = f(4x) — 2f(2y) = C = constant then f(2x) =C + f(x). as

x =y = 1we have f(2) =2f(1)thus C = 0anf now f(2x) = 2f(x).now we must find a
function f which satisfy the following conditions:

1
fFa+y) = f@+f0) and fG) =2f (1)

Then note that f( LI ):f(l):f( 1 )+f( 1 )=f(x2+xJ’)+f(3’2+xy) by

x(x+y)  y(x+y) xy x(x+y) yx+y))  x2(x+y)? - y2(x+y)?
N ) 1\ _ YFOA)+f@n)+x2F(D)+f ) flxy)
the additivity of f we have: f(E) = 3 (1) =T,z how we



must have:2xyf(xy) = y2f(x?) + x2f(y?)(*)set y =1 then f(x?) = 2xf(x) —x2f(1)
thus if we substitute this in the (*)we have

2xyf (xy) = 2xy(yf (x) + xf () = 2x*y*f (1)

or f(xy) = yf(x) +xf(y) — xyf(1) set xy = 1then f(1) =L2+xf (3) - F(1) =22 -
f(1). We conclude thatf(x) = f(1)x

Problem-14:find all function f:R - Rwith f(0) = 0and for all nonzero reals
x2+y?\ _ fP0+20)
F(5) =

X,y we have: Ty 2D

Solution: first set x =y = 1then f(1) =1. Now set y =zx to find that

1+2z%\ _ 1+f%(2) _ F2(x)+f%(x2)
f( 2z ) - -

2f(2) 2f(x)f (x2)

Now we have f(xz) —% or f(xz) = f(x)f(z) assume the first condition occur,

switch x,z having ;Exi % now f2(x) = f%(z)and f(xz) =+1, set x =zthen
f(x?) =1and f(-x) _f((xl)) Then we find the following functions:
-1, x<0
0, x=0
RO =f@=1T Y20 ad L@=]0 x=0
' 1, x>0

Now assume the second case then f(xz) = f(x)f(z)and then f(x)f(i) = 1nowf(§) =

fx 224y _ f(x*+y?) . . . .
o) then we havef( Ty ) —f(z)f(x)f(y)then we receive the following equation:

fa?+y?) =220 + £2()
We need to find the value of f(2)now pass the following procedure:

x=2,y=1 then f(5)—&(f 22)+1)

x=3,y=1 then f(lO)—M(f 23)+1) thenf(S)——(f B)+1

x =3,y =4 then f(25) —f( )(f (3) + f2(4)) then f%(5)= f( )(f () +f*(2)

Solving the equation for f(2) we find that: f°(2)—2f*(2)—f(2)+2=0 then
F*@-D(@)-2)=0.

We study every case part by part. If f(2) =2 then

fOx2+y?) =20+ 7)) = f(x*) + fF(¥?)



Now for all positive real x we have f(x) =x and then by the equation f(—x) =
f(=1)f(x) we find that f(—1) = +1(set x=-1)thus we find the functions:

f3(x) = x, fo(x) = |x].

2 2
f(xA)+f?) now

If f(2) =1 we receive the equation f(x?+y?) = %(fz(x) +2() = 5

for all positive reals x,y we have f(x+y) =w. Now insert new variable
z then we find that:
f(x+y+z):f((x+y)+z)=w=%+%+%=%@+¥+¥ (switch!)

Now we have f(x) = f(z)and then f must be constant function.

If f(2) =—-1 then f?(v¥2) =—1. Contradiction.



