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1 Introduction
The following result is a standard application of the residue theorem and can be found in
essentially every book on Complex Analysis:

Theorem 1.1. If P (X) = anX
n + an−1X

n−1 + · · · + a0 is a polynomial with complex
coefficients, then

1
2π

∫ 2π

0
|P (eiθ)|2dθ = |a0|2 + |a1|2 + · · ·+ |an|2.

The usual proof of this result goes as follows:

1
2π

∫ 2π

0
|P (eiθ)|2dθ = 1

2iπ

∮
|z|=1
|P (z)|2dz

z
=

1
2πi

∮
|z|=1

P (z)P (z−1)dz
z

= |a0|2 + . . . .+ |an|2,

where P̄ (X) = anX
n + · · · + a0 (note that P (z) = P (z) for all z ∈ C, and z = z−1

when |z| = 1). The last equality in the above chain (the only non tautological one) is a
consequence of the residue theorem.

Even though this proof is straightforward (with the right tools in our hands!), the
use of rather serious theorems of Complex Analysis makes it hard to digest for a high-
school student. The purpose of this article is to present a discrete version of the previous
argument, which gives a completely elementary proof of the result, and to discuss a
few applications of the theorem to some fairly challenging problems from mathematical
competitions.

2 Preliminaries
The goal of this small paragraph is to recall and prove the following very useful:

Proposition 2.1. Let z1, z2, . . . , zn be the roots of the polynomial Xn − 1, i.e. the nth
roots of unity. If k is an integer, then zk1 + zk2 + · · · + zkn is equal to 0 when n does not
divide k, and equal to n otherwise.

Proof. By permuting z1, z2, . . . , zn, we may assume that z1 = e
2iπ
n and zk = zk1 for 1 ≤

k ≤ n. Then for all integers k we have

zk1 + zk2 + · · ·+ zkn = zk1 + z2k
1 + · · ·+ znk1 = zk1 + (zk1 )2 + · · ·+ (zk1 )n.
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We recognize a geometric progression. If n divides k, then zk1 = 1 and the sum is obviously
equal to n. If not, then zk1 6= 1 and the formula for the sum of a geometric progression
yields

zk1 + (zk1 )2 + · · ·+ (zk1 )n = zk1
1− znk1
1− zk1

= 0,

since znk1 = (zn1 )k = 1. An alternative argument goes as follows: letting S = zk1 + zk2 +
· · ·+ zkn, we have

Szk1 =
n∑
i=1

(z1zi)k =
n∑
i=1

zki = S,

the second equality being a consequence of the fact that the z1zi’s are simply a permutation
of the zi’s (since they are clearly n pairwise different roots of the polynomial Xn − 1).
Thus S(zk1 − 1) = 0 and S = 0 when n does not divide k (as then zk1 6= 1). The result
follows.

3 The main result
In this paragraph we prove the two key technical results, proposition 3.1 and corollary
3.1 below.

Proposition 3.1. Let P (X) = anX
n + · · · + a1X + a0 be a polynomial with complex

coefficients. Let N > n be an integer and let z1, . . . , zN be the roots of the polynomial
XN − 1. Then

1
N

N∑
i=1
|P (zi)|2 = |a0|2 + |a1|2 + · · ·+ |an|2.

Proof. For all z ∈ C with |z| = 1 we have (using that z = z−1)

|P (z)|2 = P (z)P (z) = |a0|2 + |a1|2 + · · ·+ |an|2 +
n∑
k=1

Akz
−k +

n∑
k=1

Bkz
k

for some numbers A1, . . . , An, B1, . . . , Bn ∈ C depending on the coefficients a0, . . . , an but
not on z. Plugging in z = z1, . . . , zN and adding the resulting relations yields

N∑
i=1
|P (zi)|2 = N(|a0|2 + · · ·+ |an|2) +

N∑
i=1

n∑
k=1

Akz
−k
i +

N∑
i=1

n∑
k=1

Bkz
k
i .

On the other hand, we have
N∑
i=1

n∑
k=1

Akz
−k
i =

n∑
k=1

Ak(
N∑
i=1

z−ki ) = 0,

the last equality being a consequence of the more precise ∑N
i=1 z

−k
i = 0 for 1 ≤ k ≤ n, itself

a consequence of proposition 2.1. A similar argument shows that ∑N
i=1

∑n
k=1 Bkz

k
i = 0,

which combined with the previous discussion yields the desired result.

Note that theorem 1.1 follows immediately from the previous proposition, by taking
N → ∞, since with the (somewhat abusive, since zi depend on N) notations of the
proposition

lim
N→∞

1
N

N∑
i=1
|P (zi)|2 = 1

2π

∫ 2π

0
|P (eiθ)|2dθ.

We end this section with a second key result, which is somewhat exotic but very
useful, as we will see in the next section. It is a simple consequence of proposition 3.1.
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If P is a polynomial with complex coefficients, we denote as in the introduction P̄ the
polynomial whose coefficients are the complex conjugates of the coefficients of P . In other
words, if P (X) = anX

n + · · ·+ a0, then P (X) = anX
n + · · ·+ a0. Also, for a polynomial

P (X) = anX
n + · · ·+ a0 we write

S(P (X)) = |an|2 + · · ·+ |a1|2 + |a0|2.

We can then rewrite the proposition as the identity

S(P (X)) = 1
N

N∑
i=1
|P (zi)|2

where zi are the roots of the polynomial XN − 1, where N > n is any integer. We are
now ready to state:

Corollary 3.1. Let P,Q be polynomials with complex coefficients and let m ≥ deg(Q).
Then

S(P (X) ·Q(X)) = S(XmQ(1/X) · P (X)).

Proof. The hypothesis m ≥ degQ ensures that R(X) = XmQ(1/X) is a polynomial with
complex coefficients. Note that |R(z)| = |Q(z)| for all z such that |z| = 1. In particular

N∑
i=1
|R(zi)P (zi)|2 =

N∑
i=1
|P (zi)Q(zi)|2

when z1, . . . , zN are the roots of XN − 1. The discussion preceding the corollary immedi-
ately yields S(P (X) ·R(X)) = S(P (X) ·Q(X)) (by taking N large enough).

4 Applications
The goal of this paragraph is to explain how the two previous theoretical results yield
unified and rather simple solutions to some fairly difficult problems about complex poly-
nomials. Recall that

S(P (X)) = |a0|2 + · · ·+ |an|2Ê if P (X) = anX
n + · · ·+ a0 ∈ C[X].

Problem 1 (Russian Olympiad 1995) Let P,Q be two monic polynomials with com-
plex coefficients. Prove that

S(P (X) ·Q(X)) ≥ |P (0)|2 + |Q(0)|2.

Solution Write P (X) = anX
n + · · · + a0 and Q(X) = bmX

m + · · · + b0, with an =
bm = 1. Then, since P,Q are monic

P (X)XmQ(1/X) = (anXn + · · ·+ a0)(b0X
m + · · ·+ bm) = b0X

n+m + · · ·+ a0.

Using corollary 3.1, we deduce that

S(P (X)Q(X)) = S(P (X)XmQ(1/X)) ≥ |a0|2 + |b0|2 = |P (0)|2 + |Q(0)|2,

as desired.
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Problem 2 (Taiwanese Olympiad) Let P (X) = anX
n+ · · ·+a0 be a polynomial with

complex coefficients and roots z1, z2, . . . , zn. Let j ∈ {1, ..., n} be such that |z1|, . . . , |zj| >
1 and |zj+1|, ..., |zn| < 1. Prove that:

|z1z2 . . . zj| ≤
√
|a0|2 + |a1|2 + · · ·+ |an|2.

Solution This is a special case of the previous problem. Indeed, define

Q(X) = (X − z1) . . . (X − zj), R(X) = (X − zj+1) . . . (X − zn),

so that P (X) = Q(X)R(X) and Q,R are monic. Problem 1 yields

|a0|2 + · · ·+ |an|2 = S(P (X)) = S(Q(X)R(X))

≥ |Q(0)|2 + |R(0)|2 ≥ |Q(0)|2 = |z1 . . . zj|2.
We conclude that

|z1 . . . zj|2 ≤ |an|2 + · · ·+ |a0|2,
finishing the proof.

Problem 3 (Chinese TST) Let z1, . . . , zn be the roots of a polynomial P (X) = Xn +
a1X

n−1 + · · ·+ an with complex coefficients. If ∑n
i=1 |ai|2 ≤ 1, prove that ∑n

i=1 |zi|2 ≤ n.
Solution As we will see, this is a subtle variation and improvement of problem 2.

Enumerate the roots of P such that |z1|, . . . , |zk| ≤ 1 and |zk+1|, . . . , |zn| ≥ 1. The
solution of problem 2 shows that

1 + |a1|2 + · · ·+ |an|2 ≥ |zk+1 . . . zn|2 + |z1 . . . zk|2.

To conclude, we use the following:

Lemma 4.1. If x1, . . . , xm are real numbers, either all in [0, 1] or all in [1,∞), then

x1 + · · ·+ xm ≤ m− 1 + x1 . . . xm.

Proof. The result follows immediately from the identity

m− 1 + x1 . . . xm − (x1 + · · ·+ xm) = (1− x1)(1− x2) + (1− x1x2)(1− x3)+

(1− x1x2x3)(1− x4) + · · ·+ (1− x1 . . . xm−1)(1− xm).
Of course, a more direct proof by induction on m is also possible.

The previous lemma yields

|zk+1 . . . zn|2 + |z1 . . . zk|2 ≥ |z1|2 + · · ·+ |zn|2 + 2− n.

Using also the hypothesis, we finally obtain

2 ≥ 1 +
n∑
i=1
|ai|2 ≥ |z1|2 + · · ·+ |zn|2 + 2− n

hence |z1|2 + · · ·+ |zn|2 ≤ n.

Note that the previous solution shows that for any complex monic polynomial P (X) =
Xn + a1X

n−1 + · · ·+ an with roots z1, . . . , zn we have
n∑
i=1
|zi|2 ≤ n− 1 +

n∑
i=1
|ai|2.
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This will be useful in the next:

Problem 4 (American Mathematical Monthly) Let P (X) = ∑n
k=0 akX

k be a monic
polynomial with complex coefficients and roots z1, . . . , zn. Prove that

1
n

n∑
k=1
|zk|2 < 1 + max

1≤k≤n
|an−k|2 .

Solution We have already remarked that

|z1|2 + · · ·+ |zn|2 ≤ n− 1 +
n−1∑
i=0
|ai|2 ≤ n− 1 + nmax

1≤k≤n
|an−k|2

It follows that

1
n

n∑
k=1
|zk|2 ≤ 1− 1

n
+ max

1≤k≤n
|an−k|2 < 1 + max

1≤k≤n
|an−k|2

and this finishes the proof.

We end this article with a rather challenging problem.

Problem 5 (American Mathematical Monthly) Let P (X) = anX
n+an−1X

n−1 + · · ·+
a0 be a polynomial with complex coefficients. Prove that

max
|z|=1
|P (z)| ≥

√√√√2|a0an|+
n∑
i=0
|ai|2.

Solution If a0 = 0, the result follows directly from proposition 3.1, since with the
notations of that proposition we clearly have

1
N

N∑
i=1
|P (zi)|2 ≤ max

|z|=1
|P (z)|2

and the left-hand side is precisely ∑n
i=0 |ai|2.

Suppose that a0 6= 0 from now on. Write an
a0

= reiθ with r > 0 and θ ∈ R and set
z0 = e−iθ/n, so that anzn0

a0
= r > 0 and |z0| = 1. Defining

Q(X) := P (Xz0) =
n∑
k=0

bkX
k,

we observe that |bk| = |akzk0 | = |ak| for all k. Moreover, we have bn = anz
n
0 = ra0 = rb0.

It suffices therefore to prove that

max
|z|=1
|Q(z)| ≥

√√√√2r|b0|2 +
n∑
i=0
|bi|2.

Let z1, . . . , zn be the roots of the polynomial Xn − 1. Then clearly

nmax
|z|=1

Ê|Q(z)|2 ≥
n∑
i=1
|Q(zi)|2 =

n∑
i=1

(
n∑
k=0

bkz
k
i )(

n∑
l=0

blz
−l
i )

=
n∑
i=1

n∑
k,l=0

bkblz
k−l
i =

n∑
k,l=0

bkbl
n∑
i=1

zk−li .
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Note that for 0 ≤ k, l ≤ n the number k − l is a multiple of n precisely when k = l or
(k, l) ∈ {(n, 0), (0, n)}. Therefore proposition 2.1 shows that

n∑
k,l=0

bkbl
n∑
i=1

zk−li = n(
n∑
k=0
|bk|2 + bnb0 + b0bn) = n(

n∑
k=0
|bk|2 + 2r|b0|2).

The result follows.
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