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1 Introduction

The goal of this article is to provide a geometric approach for studying polynomial equations of the form axm−bxn = c,
where c is a real number and m,n are positive integers. Usually such equations are tackled using the polar representa-
tion of complex numbers, but this is not always optimal and fairly often leads to incomplete arguments. We propose
here a more geometric approach, which still uses in some sense the polar representation, but stays closer to the realm
of synthetic geometry.

2 Preliminaries

Let z1, z2 be two complex numbers and denote by θ the argument of z1 − z2 (see figure 1).

Figure 1

Then Im (z1) = Im (z2) if and only if z1 − z2 is a real number, or equivalently θ is an integral multiple of π. Yet
another equivalent formulation is that the vector representing z1 − z2 is horizontal, i.e. parallel to the x-axis. This is
clearly depicted in figure 2.
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Figure 2

Consider now a relation of the form A−B = C, where A,B,C are complex numbers, C being real. The geometric
interpretation of this relation is as follows: A is a point on the circle centered at the origin and having radius |A|, B
is a point on the circle centered at the origin and having radius |B|, and the segment connecting A and B is parallel
to the x-axis and has length |C|. This very simple observation has a certain number of nontrivial consequences, as the
next section will show.

3 Applications

We will illustrate now the previous theoretical observations with a certain number of problems from Mathematical
Olympiads.

Problem 1. Prove that if the equation zn+1 − zn − 1 = 0 has a root lying on the unit circle centered at the origin,
then n+ 2 is a multiple of 6.

Solution. Let z be a solution of the equation with |z| = 1 and let θ be the argument of z. Let A be the point
represented by zn+1, so that A lies on the unit circle (centered at the origin) and has argument (n+ 1)θ. Similarly, let
B be the point represented by zn. It also lies on the unit circle and has argument nθ. Since zn+1−zn = 1, our previous
discussion shows (see figure 3) that AB = 1 and ∠AOB = θ. Thus the triangle OAB is equilateral and θ = ±π3 . Since
zn+1 − zn is a real number, we also have sin((n+ 1) π3 )− sin(nπ3 ) = 0. Considering the various possibilities for n
modulo 6, we can easily find that n ≡ 4 (mod 6) .

Here is a slightly different argument. Rewrite the equation as zn(z − 1) = 1. Since |z| = 1, we deduce that
|z− 1| = 1. Thus z lies at the intersection of the unit circle centered at the origin and the circle of radius 1 centered at
1. There are two such points, corresponding to the solutions of the equation z2−z+1 = 0, i.e. z = e±i

π
3 (algebraically,

we have 1 = |z − 1|2 = 2− (z + z̄) and z̄ = 1/z). In particular z − 1 = z2 and the equation becomes zn+2 = 1. Since
z3 = −1 and zn+2 = 1, one immediately deduces that 6 | n+ 2.

Remark. Conversely, if n + 2 is a multiple of 6, then the polynomial Xn+1 −Xn − 1 is divisible by X2 −X + 1
and so the equation zn+1 − zn − 1 = 0 has a solution on the unit circle.
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Figure 3

Problem 2. Find all positive integers n for which the polynomial
√

3Xn+1 −Xn − 1 has a root on the unit circle.

Solution. Let z be a root on the unit circle and let θ be its argument. Let A, B be the points representing
√

3zn+1,
zn, respectively. Then A lies on the circle centered at the origin, of radius

√
3 (see figure 4) and B lies on the unit

circle centered at the origin. Since
√

3zn+1 − zn = 1, we deduce from figure 4 that AB = 1, ∠AOB = θ. Hence, by
the Law of cosines in triangle OAB

cosθ =
OA2 +OB2 −AB2

2OA.OB
=

√
3

2
,

i.e. θ = ±π6 . Combined with the fact that
√

3zn+1 − zn is a real number, this easily yields n ≡ 10 (mod 12).

Conversely, if this is the case, then the polynomial
√

3Xn+1 −Xn − 1 is divisible by X2 −
√

3X + 1; since any root z
of the latter satisfies

√
3z − 1 = z2 and zn+2 = 1, hence zn(

√
3z − 1) = zn+2 = 1. Thus the solutions of the problem

are those positive integers n ≡ 10 (mod 12).
Here is an alternative way of arguing: rewrite the equation zn(

√
3z − 1) = 1, showing that |

√
3z − 1| = 1. Com-

bined with |z| = 1 this yields z + z̄ =
√

3, or equivalently z2 −
√

3z + 1 = 0. Thus the original equation becomes
zn+2 = 1. Now the solutions of the equation z2−

√
3z+1 = 0 are e±i

π
6 , and they satisfy zn+2 = 1 if and only if 12 | n+2.
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Figure 4

Problem 3. (Mathematical Reflections U296) Let a, b be nonzero real numbers. Prove that any non-real root
z of the polynomial Xn+1 + aX + nb satisfies |z| ≥ n+1

√
|b|.

Solution. Let |z| = r, Arg (z) = θ, then zn+1 is a point with the argument of (n+ 1)θ on the circle with the radi rn+1

(i. e., point A in the figure 5) and |a| z is a point with the argument of θ on the circle with the radi |a| r (i. e., point B in
the figure 5). Since zn+1 +az = −nb, we find that AB = nb. Since zn+1 +az is real number, we can easily find that AB
should be parallel to the x− axis. Thus, in figure 5, we find that ∠AOB = −nθ, ∠BAO = (n+ 1) θ,∠ABO = π− θ.
Now, by the law of sine in the triangle AOB, we can find that

|sinθ |
OA

=
|sin(n+ 1)θ |

OB
=
|sinnθ |
AB

.

Therefore,
sinθ

rn+1
=

sin(n+ 1)θ

ar
=

sinnθ

nb
,

which yields (taking into account the hypothesis that z is not real, thus sin θ 6= 0)

nb = rn+1 · sinnθ

sinθ
.

To conclude, it suffices to prove that | sinnθ| ≤ n| sin θ, which follows by a simple induction on n, using that

| sin(n+ 1)θ| = | sinnθ · cos θ + cosnθ · sin θ| ≤ | sinnθ|+ | sin θ|.

We find it instructive to give an alternative argument for the crucial equality

nb = rn+1 · sinnθ

sinθ
,

based on the polar representation. Namely, write z = reiθ, then

rn+1ei(n+1)θ + areiθ + nb = 0

is equivalent to
rn+1 sin(n+ 1)θ + ar sin θ = 0 and rn+1 cos(n+ 1)θ + ar cos θ + nb = 0.

It follows that
ar sin θ cos θ = −rn+1 cos θ sin(n+ 1)θθ(rn+1 cos(n+ 1)θ + nb),
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ar sin θ cos θ = − sin θ(rn+1 cos(n+ 1)θ + nb).

Which yields that
nb sin θ = rn+1(cos θ sin(n+ 1)θ − sin θ cos(n+ 1)θ) = rn+1 sinnθ,

as desired.

Finally, let us present a purely algebraic and fairly simple proof. Using that a, b are real numbers, we obtain
z̄n+1 + az̄ + nb = 0. Eliminating a yields

z̄(zn+1 + nb) = z(z̄n+1 + nb),

which can be equivalently written as
|z|2(zn − z̄n) = nb(z − z̄).

Since z is not real, this is furthermore equivalent to

nb = |z|2(zn−1 + zn−2z̄ + ...+ z̄n−2z + z̄n−1).

Using the triangular inequality immediately yields n|b| ≤ n|z|n+1, as desired.

Figure 5

Problem 4. Let a, b be nonzero real numbers such that b > a. Prove that the polynomial bXn − aXm + a − b has
exactly gcd(m,n) roots lying on the unit circle.

Solution. Let d = gcd(m,n). Rewriting the polynomial as b(Xn − 1) − a(Xm − 1) makes it clear that all dth roots
of unity (i.e. solutions of the equation zd = 1) are roots of the polynomial lying on the unit circle. Thus it remains to
prove that if z is a root of the polynomial lying on the unit circle, then zd = 1. But bzn is a point on the circle centered
at the origin, of radius |b| and azm is a point on the circle centered at the origin, of radius |a|. Since bzn−azm = b−a,
the length of the segment between these points is |b−a| = b−a, which easily yields mArg (z) ≡ nArg (z) ≡ 0 (mod 2π).
Therefore d ·Arg (z) ≡ 0 (mod 2π) and so zd = 1, as desired.
Here is an alternative, more algebraic proof of the fact that zd = 1 whenever z is a root on the unit circle of the
polynomial. Write the equation as b(zn − 1) = a(zm − 1). This shows that it suffices to prove that zm = 1 (as then
the equation forces zn = 1 and so zd = 1). If this is not the case, taking the complex conjugate of the equation and
using that z̄ = 1/z yields b(1 − zn)/zn = a(1 − zm)/zm, which combined with the equation gives zn = zm, but then
(zm − 1)(b− a) = 0 and zm = 1, a contradiction.
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