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1 Introduction

The goal of this article is to provide a geometric approach for studying polynomial equations of the form ax™ —bz™ = ¢,
where c is a real number and m,n are positive integers. Usually such equations are tackled using the polar representa-
tion of complex numbers, but this is not always optimal and fairly often leads to incomplete arguments. We propose
here a more geometric approach, which still uses in some sense the polar representation, but stays closer to the realm

of synthetic geometry.

2 Preliminaries

Let 21, 22 be two complex numbers and denote by 6 the argument of z; — 25 (see figure 1).

&3
ta

8 = Arg(z — 2)

Figure 1

Then Im (z1) = Im (22) if and only if z; — 25 is a real number, or equivalently 6 is an integral multiple of 7. Yet
another equivalent formulation is that the vector representing z; — 29 is horizontal, i.e. parallel to the xz-axis. This is
clearly depicted in figure 2.
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Figure 2

Consider now a relation of the form A — B = C, where A, B, C are complex numbers, C being real. The geometric
interpretation of this relation is as follows: A is a point on the circle centered at the origin and having radius |A|, B
is a point on the circle centered at the origin and having radius |B|, and the segment connecting A and B is parallel
to the z-axis and has length |C|. This very simple observation has a certain number of nontrivial consequences, as the
next section will show.

3 Applications

We will illustrate now the previous theoretical observations with a certain number of problems from Mathematical
Olympiads.

Problem 1. Prove that if the equation z"t! — 2» — 1 = 0 has a root lying on the unit circle centered at the origin,
then n + 2 is a multiple of 6.

Solution. Let z be a solution of the equation with |z| = 1 and let # be the argument of z. Let A be the point
represented by 2”1 so that A lies on the unit circle (centered at the origin) and has argument (n + 1)6. Similarly, let
B be the point represented by z". It also lies on the unit circle and has argument nf. Since z"*! — 2" = 1, our previous
discussion shows (see figure 3) that AB =1 and ZAOB = 6. Thus the triangle OAB is equilateral and § = +£Z. Since

3
z"h — 2" is a real number, we also have sin((n+1) Z)— sin(nf) = 0. Considering the various possibilities for n
modulo 6, we can easily find that n = 4 (mod 6).

Here is a slightly different argument. Rewrite the equation as z"(z — 1) = 1. Since |z| = 1, we deduce that
|z—1] = 1. Thus z lies at the intersection of the unit circle centered at the origin and the circle of radius 1 centered at
1. There are two such points, corresponding to the solutions of the equation 22 —z+1 = 0, i.e. z = eT'5 (algebraically,
we have 1 = [z — 1| =2 — (¢ + 2) and z = 1/z). In particular z — 1 = 22 and the equation becomes z"*2 = 1. Since
2% = —1 and 2"*2 = 1, one immediately deduces that 6 | n + 2.

Remark. Conversely, if n + 2 is a multiple of 6, then the polynomial X™*+! — X™ — 1 is divisible by X2 — X + 1
and so the equation 2"t — z® — 1 = 0 has a solution on the unit circle.
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Problem 2. Find all positive integers n for which the polynomial v/3X™** — X™ — 1 has a root on the unit circle.
Solution. Let z be a root on the unit circle and let 6 be its argument. Let A, B be the points representing v/32"*1,
2", respectively. Then A lies on the circle centered at the origin, of radius v/3 (see figure 4) and B lies on the unit
circle centered at the origin. Since v/3z"T! — 2 = 1, we deduce from figure 4 that AB =1, ZAOB = 6. Hence, by
the Law of cosines in triangle OAB
OA® +OB® - AB*> /3

20A.0B 27

ie. § = &£¢. Combined with the fact that V32" — 2™ is a real number, this easily yields n = 10 (mod 12).
Conversely, if this is the case, then the polynomial v/3X"+! — X™ — 1 is divisible by X? — v/3X + 1; since any root z
of the latter satisfies V32 — 1 = 22 and 2"t2 = 1, hence z"(\/gz —-1) = 2"*t2 = 1. Thus the solutions of the problem
are those positive integers n = 10 (mod 12).

Here is an alternative way of arguing: rewrite the equation 2™(v/3z — 1) = 1, showing that [v/3z — 1| = 1. Com-
bined with |z| = 1 this yields z + zZ = /3, or equivalently 22 — V32 +1 = 0. Thus the original equation becomes
2"*+2 = 1. Now the solutions of the equation z2—v/3z+1 = 0 are e*'% , and they satisfy 2”12 = 1 if and only if 12 | n42.

cos =
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Figure 4

Problem 3. (Mathematical Reflections U296) Let a,b be nonzero real numbers. Prove that any non-real root
2z of the polynomial X"+ + aX + nb satisfies |z| > "*/|b].

Solution. Let |z| = r, Arg(z) = 6, then z"*! is a point with the argument of (n+ 1)8 on the circle with the radi r™+!
(i. e., point A in the figure 5) and |a| z is a point with the argument of 6 on the circle with the radi |a| r (i. e., point B in
the figure 5). Since z"*! +az = —nb, we find that AB = nb. Since 2"+ 4 az is real number, we can easily find that AB
should be parallel to the z— axis. Thus, in figure 5, we find that ZAOB = —nf, /BAO = (n+1)6,ZABO =7 —6.

Now, by the law of sine in the triangle AOB, we can find that

|sind | [sin(n+1)0 |  [sinnf |
oA OB - AB

Therefore,
sind  sin(n+1)0  sinnf

)

rrtl ar nb
which yields (taking into account the hypothesis that z is not real, thus sin 6 # 0)

ne1 Sinnd

b =
" " sinf

To conclude, it suffices to prove that |sinnf| < n|sin @, which follows by a simple induction on n, using that
|sin(n + 1)0] = |sinnb - cos§ 4 cosnf - sinf| < |sinnf| + | sind)|.
We find it instructive to give an alternative argument for the crucial equality

ni1 Sinnd

nb=r ,

sinf
based on the polar representation. Namely, write z = re??, then
Pt (AN L ret® 4 onh =0

is equivalent to
" sin(n +1)0 +arsinf =0 and " cos(n + 1)0 + ar cos 6 + nb = 0.

It follows that
arsinfcosf = —r" Tt cos@sin(n + 1)00(r" cos(n + 1)6 + nb),
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arsinfcosf = —sin O(r" ! cos(n 4 1)0 + nb).

Which yields that
nbsin@ = " (cos fsin(n + 1)0 — sin § cos(n + 1)) = " sinnd,

as desired.

Finally, let us present a purely algebraic and fairly simple proof. Using that a,b are real numbers, we obtain
z"tl + az 4+ nb = 0. Eliminating a yields

Z2(2" T 4 nb) = 2(2" T + nb),

which can be equivalently written as
|22(z" — 2") = nb(z — ).

Since z is not real, this is furthermore equivalent to
nb=|z2(z" 1+ 2" 22 4 4 22 2,

Using the triangular inequality immediately yields n|b| < n|z|"*!, as desired.

+ 11 (med 2TT)

e

Figure 5

Problem 4. Let a,b be nonzero real numbers such that b > a. Prove that the polynomial bX"™ — aX™ 4 a — b has
exactly ged(m,n) roots lying on the unit circle.

Solution. Let d = ged(m,n). Rewriting the polynomial as b(X™ — 1) — a(X™ — 1) makes it clear that all dth roots
of unity (i.e. solutions of the equation 2% = 1) are roots of the polynomial lying on the unit circle. Thus it remains to
prove that if z is a root of the polynomial lying on the unit circle, then 2% = 1. But bz is a point on the circle centered
at the origin, of radius |b| and az™ is a point on the circle centered at the origin, of radius |a|. Since bz"™ —az™ = b—a,
the length of the segment between these points is |b—a| = b—a, which easily yields mArg (z) = nArg(z) =0 (mod 2m).
Therefore d - Arg (z) = 0 (mod 27) and so 2? = 1, as desired.

Here is an alternative, more algebraic proof of the fact that 2¢ = 1 whenever z is a root on the unit circle of the
polynomial. Write the equation as b(z™ — 1) = a(z™ — 1). This shows that it suffices to prove that z™ = 1 (as then
the equation forces 2" = 1 and so z? = 1). If this is not the case, taking the complex conjugate of the equation and
using that z = 1/z yields b(1 — 2™)/z" = a(1l — 2™)/2z™, which combined with the equation gives z™ = 2™, but then
(z™—=1)(b—a) =0 and z™ = 1, a contradiction.
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