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In this article we provide a useful strategy for tackling some rather difficult number theory
problems concerning polynomials with specific number theoretic conditions. We use the mean
value theorem, Taylor’s formula and some basic properties of limits.

1 Main theorems
The key results used in the sequel are:

Theorem 1.1. (Cauchy’s mean value theorem) Let f, g : [a, b] → R be continuous functions
which are differentiable on (a, b), with f(a) 6= f(b) and such that f ′ does not vanish on (a, b).
Then

g(b)− g(a)
f(b)− f(a) = g′(c)

f ′(c)
for some c ∈ (a, b).

Theorem 1.2. (Taylor’s formula) If f : [a, b]→ R is at least of class C2 on (a, b), then for any
x, y ∈ (a, b) we can find c between x and y such that

f(x) = f(y) + (x− y)f ′(y) + (x− y)2

2 f ′′(c).

2 Introductory problems
Problem 1 Two real quadratic polynomials f, g have the property that g(x) is an integer
whenever f(x) is an integer (for some real number x). Prove that there are integers m, n such
that g(x) = mf(x) + n for all x.

Bulgarian Olympiad 1996

Solution Replacing f (resp. g) by −f (resp. −g) we may assume that the leading coefficients
of f, g are positive, so that f, g are increasing on (M,∞) for some M > 0. For any integer
n > f(M) we can find xn > M such that f(xn) = n, and the corresponding sequence (xn) is
increasing. Moreover, by assumption g(xn) = gn are integers. Clearly limn→∞ xn = ∞. By
Cauchy’s mean value theorem

g(xn+1)− g(xn)
f(xn+1)− f(xn) = g

′(cn)
f ′(cn) , i.e. g(xn+1)− g(xn) = g

′(cn)
f ′(cn)

for some cn ∈ (xn, xn+1). Note that limn→∞ cn =∞ and since f, g have the same degree we have
limn→∞

g
′ (cn)

f ′ (cn) = b
a , where a, b are the leading coefficients of f, g. It follows that limn→∞ gn+1 −

gn = b
a and since the gn’s are integers we must have gn+1 − gn = b

a for all n large enough. But
then

g(xn+1)− g(xn) = b

a
(f(xn+1)− f(xn))

for n large enough and so the polynomial g − b
af takes the same value at xn and xn+1 for n

large enough. This polynomial must be constant and the result follows (note that b
a is indeed

an integer, by the above discussion). Note that we did not use the fact that f, g are quadratic
polynomials, the only hypothesis needed in the proof was that deg(f) = deg(g).
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3 Main Results
Problem 3 Find all polynomials P with real coefficients for which there is a ∈ (1,∞) such that
for any integer x there is an integer z with aP (x) = P (z).

Saint Petersburg 2016

Solution Clearly the zero polynomial is the only constant solution of the problem, so assume
that P is a solution with P nonconstant. Dividing P by its leading coefficient, we may assume
that P is monic, say of degree d. By assumption there is a sequence of integers zn such that
aP (n) = P (zn) for all n ≥ 1. Let A = d

√
a and write P (X) = Xd + bXd−1 + Q(X) with

deg(Q) ≤ d− 2. Clearly |zn| → ∞ as n→∞. Passing to the limit in the equality

a
P (n)
nd

= P (zn)
zd

n

(
zn

n

)d

,

we deduce that |zn|/n→ A as n→∞, in particular xn := zn
An is bounded.

Next, the equality AdP (n) = P (zn) can be rewritten

An(xd
n − 1) + b(xd−1

n −A) = AdQ(n)−Q(zn)
(An)d−1

and the right-hand side converges to 0 since deg(Q) < d− 1 and since xn is bounded. It follows
that

lim
n→∞

An(xd
n − 1) + b(xd−1

n −A) = 0. (1),

in particular xd
n − 1 = O(1/n).

Suppose first that d is odd, then xn tends to 1 and relation (1) implies that An(xn − 1)
converges to B := −b(1 − A)/d, thus zn − An converges to B. Since zn is an integer, we have
zn = An + B for n large enough (note that zn+1 − zn converges to A, thus it equals A for n
large enough). Thus AdP (n) = P (An + B) for n large enough and AdP (X) = P (AX + B). We
finish then this case using the useful

Lemma 3.1. Let A, B be real numbers, with A 6= ±1. The only polynomials P of degree d such
that

AdP (X) = P (AX + B)

are the polynomials P (X) = c(X − x0)d with c ∈ R∗, where x0 = B
1−A .

Proof. Letting Q(X) = P (X + x0) we obtain

Q(AX) = P (AX + x0) = P (A(X + x0) + B) = AdP (X + x0) = AdQ(X).

Writing Q(X) = c0 + c1X + ... + cdXd we deduce that ci(Ai −Ad) = 0, so that ci = 0 for i < d
and the result follows.

We conclude that if d is odd, any solution is of the form c(X − x0)d, and these are indeed
solutions.

Suppose now that d is even. We can no longer deduce that xn tends to 1 and the analysis
becomes more delicate. Write d = 2k. Since |xd

n − 1| ≥ |x2
n − 1| and xd

n − 1 = O(1/n), we have
x2

n − 1 = O(1/n). But then An(xd
n − 1)−Ank(x2

n − 1) and b(xd−1
n − xn) converge to 0, so that

relation (1) yields limn→∞Ank(x2
n − 1) + b(xn − A) = 0. We conclude that An(x2

n − 1) + b
k xn

converges. Recalling that xn = zn
An and setting

vn = zn + b

2k
,

it follows easily that limn→∞
v2

n
An − An = bA

k converges. In particular |vn|
An → 1 and then

limn→∞(|vn| −An) = bA
2k .
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Choose in 6= jn ∈ {n, n + 1, n + 2} such that zin and zjn have the same sign (this is clearly
possible for each n). Then |vin |−|vjn | = ±(zin−zjn) is an integer. However |vin |−Ain−|vjn |+Ajn

tends to 0. Since jn − in takes infinitely many times the same value, which is a number in
{−2,−1, 1, 2}, we deduce that 2A is an integer.

Finally, choose an increasing sequence kn and a number ε ∈ {−1, 1} such that εzkn > 0 for
all n large enough. Then εvkn = |vkn | for large enough and εzkn − Akn converges to b(A−ε)

2k .
Since 2A is an integer, this forces

εzkn −Akn = C := b(A− ε)
2k

for n large enough. But then
AdP (kn) = P (εAkn + εC)

and finally (εA)dP (X) = P (εAX + εC). Applying the previous lemma, we deduce again that
P (X) = c(X − x0)d for some c, x0, and these are indeed solutions.

Problem 4 Find all monic polynomials with integer coefficients f such that f(Z) is closed
under multiplication.

Iranian TST 2007

Solution We may assume that f has positive leading coefficient. Looking for non-constant
solutions and replacing f with f(X + a) for a suitable integer a, we may assume that f(1) > 1.
By assumption there is a sequence zn of integers such that P (1)P (n) = P (zn), and the solution
of the previous problem shows that P (X) = (X − x0)d for some x0, which must be an integer
for P to have integer coefficients.

We are ready to deal with the most challenging problems of the article, which has remained
unsolved for many years.

Problem 5 Find all monic polynomials P with integer coefficients such that for any positive
integer m there is a positive integer n such that P (m)P (m + 1) = P (n).

Gabriel Dospinescu

Solution We will assume that P is non-constant (clearly the constant polynomial 1 is a
solution of the problem) and let d = deg(P ) > 0. Choose M such that P is increasing on
(M,∞) and for each n > M choose a positive integer xn such that

P (n)P (n + 1) = P (xn).

For n large enough xn > M and xn+1 > xn, and clearly limn→∞ xn =∞. We will now split the
proof in a series of steps.

Lemma 3.2. We have limn→∞
xn
n2 = 1.

Proof. It suffices to let n→∞ in the relation

P (n)P (n + 1)
n2d

= P (xn)
xd

n

·
(

xn

n2

)d

.

and observe that P (xn)
xd

n
converges to 1, and so does the left-hand side.

Lemma 3.3. We have limn→∞
xn+1−xn

n = 2.

Proof. We start by observing that

P (xn+1)− P (xn) = P (n + 1)(P (n + 2)− P (n)).
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By the mean value theorem

P (xn+1)− P (xn) = (xn+1 − xn)P ′(yn)

for some yn between xn and xn+1. Note that thanks to the previous lemma limn→∞
P ′(yn)
n2d−2 = d.

Moreover
lim

n→∞
P (n + 1)(P (n + 2)− P (n))

n2d−1 = lim
n→∞

P (n + 2)− P (n)
nd−1 = 2d.

The result follows by letting n→∞ in the relation

P (n + 1)(P (n + 2)− P (n))
n2d−1 = P (xn+1)− P (xn)

n2d−1 = xn+1 − xn

n
· P ′(yn)

n2d−2

and by using the previous discussion.

The crucial step and the most beautiful result of this article is the following:

Lemma 3.4. For all large enough n we have

xn+1 − 2xn + xn−1 = 2.

Proof. Taylor’s formula yields the existence of cn ∈ (xn, xn+1) and dn ∈ (xn−1, xn) such that

P (xn+1) = P (xn) + (xn+1 − xn)P ′(xn) + (xn+1 − xn)2

2 P
′′(cn)

and
P (xn−1) = P (xn) + (xn−1 − xn)P ′(xn) + (xn−1 − xn)2

2 P
′′(dn).

Consider the polynomial

Q(X) = P (X)P (X + 1) = X2d + ...

and observe that

P (xn+1) + P (xn−1)− 2P (xn) = Q(n + 1)− 2Q(n) + Q(n− 1).

The mean value theorem applied twice shows that

Q(n + 1)− 2Q(n) + Q(n− 1) = Q′′(rn)

for some rn ∈ (n− 1, n + 1), so that

lim
n→∞

Q(n + 1)− 2Q(n) + Q(n− 1)
n2d−2 = lim

n→∞
Q′′(rn)
n2d−2 = 2d(2d− 1).

Combining the previous relations yields

lim
n→∞

(xn+1 − 2xn + xn−1)P
′(xn)

n2d−2 + (xn+1 − xn)2P
′′(cn)

2n2d−2 + (xn−1 − xn)2P
′′(dn)

2n2d−2 = 2d(2d− 1).

Using the previous lemma we obtain

lim
n→∞

(xn+1 − xn)2P
′′(cn)

2n2d−2 = lim
n→∞

(xn−1 − xn)2P
′′(dn)

2n2d−2 = 2d(d− 1),

and since limn→∞
P
′ (xn)

n2d−2 = d, we obtain

d · lim
n→∞

(xn+1 − 2xn + xn−1) + 4d(d− 1) = 2d(2d− 1),

yielding limn→∞(xn+1 − 2xn + xn−1) = 2. The result follows, since xn+1 − 2xn + xn−1 are
integers.
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Considering yn = xn − xn−1, we have yn+1 − yn = 2 for n large enough by the previous
lemma, so that yn = 2n + c for n large enough and some integer c, and then xn = n2 + an + b
for some integers a, b and all large enough n.
Remark 3.5. More generally, for each map g : Z≥n0 → R set ∆g(n) = g(n + 1) − g(n). If k
is a positive integer and if ∆kg = 0, then g(n) = P (n) for n ≥ n0, where P is a polynomial
of degree at most k − 1. Indeed, by Lagrange’s interpolation formula we can find a polynomial
P of degree at most k − 1 such that g(n) = P (n) for n = n0, n0 + 1, . . . , n0 + k − 1. Setting
Q(n) = P (n)− g(n) for n ≥ n0, we have ∆kQ = 0 for all n ≥ n0. Thus it suffices to prove that
if Q satisfies ∆kQ = 0 and Q(n0) = ... = Q(n0 + k − 1) = 0, then Q(n) = 0 for all n ≥ n0. This
follows immediately by induction on k.

Summarizing the previous work, we have two integers a, b such that

P (X)P (X + 1) = P (X2 + aX + b).

One easily checks that for any positive integer k the polynomial Rk(X) = (X2 + (a− 1)X + b)k

satisfies
Rk(X)Rk(X + 1) = Rk(X2 + aX + b).

Suppose first that P has even degree, say 2d, and write P = Rd + Q for some polynomial Q
of degree smaller than 2d. Since Rd(X)Rd(X + 1) = Rd(X2 + aX + b), we deduce that

Rd(X)Q(X + 1) + Q(X)P (X + 1) = Q(X2 + aX + b).

Writing Q = akXk + ... with ak 6= 0, we see that X2d+k has coefficient 2ak in the left-hand
side and coefficient 0 in the right-hand side, which has degree 2 deg(Q) = 2k < 2d + k. Thus
necessarily Q = 0 and P = Rd. By the previous step

P (X)2 = (X2 + (a− 1)X + b)d.

Since d is odd, this forces X2 + (a− 1)X + b being a square of a polynomial, thus we must have
(a− 1)2 = 4b and then P (X) = (X + k)d for some integer k.

So we have found all such polynomials.
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