
Programming Algol 68Made Easy
Sian Leith

Ph�nix Engineering

TEX is a trademark of the Amerian Mathematial Soiety.Copyright Sian Leith, 1995, 1997, 2000.This doument is subjet to the provisions of the GNU General Publi Liene verstion 2, or at youroption, any later version.
Publishing history� First edition published by Oxford & Cambridge Compilers Ltd in 1995.� Seond (revised) edition published by Oxford & Cambridge Compilers Ltd in 1997.� Third edition published by Phoenix Engineering in 2000.

Prepared in Sotland.

RiAad van Wijngaarden
Athair na h-Algol 68

iv

Contents
Prefae xi1 Introdution 11.1 What you will need . 11.2 Terminology . 21.3 Values and modes . 21.4 Integers . 21.5 Identity delarations . 31.6 Charaters . 51.7 Real numbers . 51.8 Program struture . 61.9 Comments . 71.10 External values . 91.11 Summary . 92 Formul� 112.1 Monadi operators . 112.2 Dyadi operators . 122.3 Multipliation . 132.4 Division . 142.5 Exponentiation . 152.6 Mixed arithmeti . 152.7 Order of elaboration . 152.8 Changing the mode . 162.9 Misellaneous operators . 162.10 Operators using CHAR . 162.11 print revisited . 172.12 Summary . 173 Repetition 193.1 Multiples . 193.1.1 Row-displays . 203.1.2 Dimensions . 203.1.3 Subsripts and bounds . 213.2 Sliing . 223.3 Trimming . 233.4 Printing multiples . 243.5 Operators with multiples . 253.6 Ranges . 263.7 Program repetition . 263.8 Nested loops . 283.9 Program struture . 283.10 The FORALL loop . 293.11 Summary . 29v

vi CONTENTS4 Choie 314.1 Boolean values . 314.2 Boolean operators . 314.3 Relational operators . 324.4 Compound Boolean formul� . 334.5 Conditional lauses . 344.5.1 Pseudo-operators . 364.6 Multiple hoie . 374.7 Summary . 405 Names 415.1 Assignment . 425.1.1 Copying values . 435.1.2 Assigning operators . 435.2 Assignments in formul� . 455.3 Multiple names . 455.4 Assigning to multiple names . 465.4.1 Individual assignment . 465.4.2 Colletive assignment . 475.5 Flexible names . 495.6 The mode STRING . 505.7 Referene modes in transput . 515.8 Dynami names . 525.9 Loops revisited . 535.10 Abbreviated delarations . 535.11 Summary . 546 Routines 576.1 Routines . 576.1.1 Routine modes . 586.1.2 Multiples as parameters . 596.1.3 Names as parameters . 596.1.4 The mode VOID . 596.1.5 Routines yielding names . 606.1.6 Parameterless routines . 606.2 Operators . 616.2.1 Identi�ation of operators . 626.2.2 Operator usage . 636.2.3 Dyadi operators . 646.2.4 Operator symbols . 666.3 Proedures . 666.3.1 Parameterless proedures . 676.3.2 Proedures with parameters . 696.3.3 Proedures as parameters . 716.3.4 Reursion . 716.3.5 Standard proedures . 726.3.6 Other features of proedures . 736.4 Summary . 747 Strutures 757.1 Struture denotations . 757.2 Field seletion . 767.3 Mode delarations . 787.4 Complex numbers . 807.5 Multiples in strutures . 827.6 Rows of strutures . 847.7 Transput of strutures . 847.8 Summary . 85

CONTENTS vii8 Unions 878.1 United mode delarations . 878.2 United modes in proedures . 898.3 Conformity lauses . 908.4 Summary . 919 Transput 939.1 Books, hannels and �les . 939.2 Reading books . 939.3 Writing to books . 959.4 String terminators . 979.5 Events . 979.5.1 Logial �le end . 979.5.2 Physial �le end . 989.5.3 Value error . 999.5.4 Char error . 999.6 The ommand line . 1009.7 Environment strings . 1019.8 Writing reports . 1029.9 Binary books . 1039.10 Internal books . 1059.11 Other transput proedures . 1059.12 Summary . 10510 Units 10710.1 Phrases . 10710.2 Contexts . 10810.3 Coerions . 10910.3.1 Deproeduring . 10910.3.2 Dereferening . 11010.3.3 Weakly-dereferening . 11110.3.4 Uniting . 11110.3.5 Widening . 11110.3.6 Rowing . 11110.3.7 Voiding . 11210.3.8 Legal oerions . 11310.4 Enlosed lauses . 11310.5 Primaries . 11410.6 Seondaries . 11510.7 Tertiaries . 11710.8 Quaternaries . 11710.9 Balaning . 11910.10 Well-formed modes . 12010.11 Flexible names . 12210.12 Orthogonality . 12210.13 Summary . 12311 Advaned onstruts 12511.1 Bits, bytes and words . 12511.1.1 Radix arithmeti . 12511.2 The mode BITS . 12711.3 Overlapping slies . 13011.4 Completers . 13111.5 Referenes to names . 13311.6 Identity relations . 13411.7 The value NIL . 13511.8 Queues . 13711.9 The proedure add fan . 14011.10 More queue proedures . 14111.11 Trees . 143

viii CONTENTS11.12 Parallel programming . 14511.13 Summary . 14612 Program development 14712.1 Writing programs . 14712.1.1 Top-down analysis . 14812.1.2 Program layout . 14812.1.3 Delarations . 14912.1.4 Proedures . 14912.1.5 Monetary values . 14912.1.6 Optimisation . 15112.1.7 Testing and debugging . 15112.1.8 Compilation errors . 15212.1.9 Arithmeti overow . 15312.1.10 Doumentation . 15312.2 Non-anonial input . 15412.3 A simple utility . 15512.3.1 The soure ode . 15512.3.2 Routines . 15612.3.3 Dry-running example . 15712.3.4 ALIEN proedures . 15712.4 Summary . 15913 Standard Prelude 16113.1 Standard modes . 16113.2 Environment enquiries . 16213.2.1 Arithmeti enquiries . 16313.2.2 Charater set enquiries . 16513.3 Standard operators . 16513.3.1 Method of desription . 16613.3.2 Standard priorities . 16613.3.3 Operators with row operands . 16613.3.4 Operators with BOOL operands . 16713.3.5 Operators with INT operands . 16713.3.6 Operators with REAL operands . 16813.3.7 Operators with COMPL operands . 17013.3.8 Operators with mixed operands . 17113.3.9 Operators with BITS operands . 17113.3.10 Operators with CHAR operands . 17213.3.11 Operators with STRING operands . 17213.3.12 Assigning operators . 17313.3.13 Other operators . 17413.4 Standard proedures . 17513.4.1 Mathematial proedures . 17513.4.2 Other proedures . 17613.5 Ctrans extensions . 17613.5.1 Modes peuliar to Ctrans . 17613.5.2 Ctrans onstruts . 17713.5.3 Operators . 17813.6 Control routines . 17913.6.1 Floating-point unit ontrol . 17913.6.2 Terminating a proess . 18013.6.3 Garbage-olletor ontrol . 18113.7 Transput . 18213.7.1 Transput modes . 18213.7.2 Standard hannels . 18213.7.3 Standard �les . 18713.7.4 Opening �les . 18713.7.5 Closing �les . 18713.7.6 Transput routines . 187

CONTENTS ix13.7.7 Interrogating �les . 19013.7.8 File properties . 19113.7.9 Event routines . 19113.7.10 Conversion routines . 19213.7.11 Layout routines . 19313.8 Summary . 193A Answers 195A.1 Chapter 1 . 195A.2 Chapter 2 . 197A.3 Chapter 3 . 198A.4 Chapter 4 . 201A.5 Chapter 5 . 203A.6 Chapter 6 . 208A.7 Chapter 7 . 212A.8 Chapter 8 . 213A.9 Chapter 9 . 215A.10 Chapter 10 . 230A.11 Chapter 11 . 232Bibliography 239

x CONTENTS

Prefae
It is a fallay to say that progress onsists of replaing the workable by the new. The brik was invented bythe Babylonians and has been used virtually unhanged for 2500 years. Even now, despite the advent ofurtain-walling, the brik is still the primary building material. Likewise, the long-predited revolution inomputer programming to be produed by the introdution of fourth- and �fth-generation languages hasnot ome to pass, almost ertainly beause their purported advantages are outweighed by their manifestdisadvantages. Third-generation languages are still used for the bulk of the world's programming. Algol 68has been used as a paradigm of third-generation languages for 32 years.Eah omputer programming language has a primary purpose: C was developed as a suitable tool inwhih to write the Unix operating system, Pasal was designed spei�ally to teah omputer program-ming to university students and Fortran was designed to help engineers perform alulations. Where aprogramming language is used for its design purpose, it performs that purpose admirably. Fortran, whenit �rst appeared, was a massive improvement over assembler languages whih had been used hitherto.Likewise, C, when restrited to its original purpose, is an admirable tool, but it is a menae in the handsof a novie. However, novies do not write operating systems.Aording to the \Revised Report on the Algorithmi Language Algol 68" (see the Bibliography),Algol 68 was \designed to ommuniate algorithms, to exeute them eÆiently on a variety of di�erentomputers, and to aid in teahing them to students". Although this book has not been geared to anyspei� university syllabus, the logial development of the exposition should permit its use in suh anenvironment. However, sine no programming expertise is assumed, the book is also suitable for home-study.It is time to take a fresh approah to the teahing of omputer programming. This book breaksnew ground in that diretion. The onept of a variable (a term borrowed from mathematis, applied toanalogue omputers and then, inappropriately, to digital omputers) has been replaed by the priniple ofvalue integrity: in Algol 68, every value is a onstant. All the usual paraphernalia of pointers, statementsand expressions is dispensed with. Instead, a whole new sublanguage is provided for understanding thenature of programming.This book overs the language as implemented by the Ctrans ompiler. Sine the last edition, a newhapter on the Standard Prelude has been added, thereby bringing together all the referenes to thatPrelude in the rest of the book. This edition is an interim edition desribing the QAD transput providedwith the Ctrans pakage. When the van Vliet transput model has been implemented for the Ctransompiler, a new version of the book will be published.It has been a onsious aim of the author to redue the amount of desription to a minimum. It isadvisable, therefore, that the text be read slowly, re-reading a point if it is not lear. This is partiularlytrue for hapter 5 where the onept of the name has been introdued rather arefully. The exerisesare intended to be worked. Answers to all the exerises have been given exept for those whih areself-marking.A program written for use with the book an be found in the same diretory as this book.I should like to thank Wilhelm Kloke for bringing the Ctrans ompiler to my attention and John KHarris, James Jones and Greg Nunan for their ative help in the preparation of the QAD transput.In 33 years of programming, I have had many teahers and mentors, and I have no doubt that I havebene�ted from what they have told me, although now it is diÆult to pinpoint preisely whih part ofmy understanding is due to whih individual. Any errors in the book are my own. If any reader shouldfeel that the book ould be improved, I should be grateful if she would ommuniate her suggestions tothe publisher, so that in the event of another edition, I an inorporate those I feel are appropriate (sheinludes he). Sian LeithInbhir NisL�unasdal BP21500xi

xii CONTENTS

Chapter 1
Introdution
Algol 68 is a high-level, general-purpose programming language ideally suited to modern operating sys-tems. This book will teah you Algol 68 plus the neessary development skills to enable you to writesubstantial programs whih an be exeuted from the ommand line.In priniple, you an solve any omputable problem with Algol 68. You an write programs whihperform word proessing, perform ompliated alulations with matries, design graphs or bridges,proess pitures, predit the weather, and so on. Or you an write simple programs whih ount thenumber of words in a �le or list a �le with line numbers.Algol 68 is a powerful language. There are many onstruts whih enable you to manipulate ompli-ated data strutures with ease, and yet it is all easy to understand beause one of the guiding priniplesof Algol 68 was that it was designed to be orthogonal. This means that the language is based on a fewindependent ideas whih are developed and applied with generality. The language was designed in suha way that it is impossible to write ambiguous programs. The design is also diÆult to desribe until ithas been fully desribed, whih means that some onepts have to be introdued in a super�ial manner,but later reading will deepen your understanding.You need to have a thorough grasp of the basi ideas if you are going to write powerful programs inAlgol 68: these ideas unfold in the �rst �ve hapters. The hapters should be read in order, but hapter 5is a watershed|it forms the basis of muh of the omputer programming performed in the world today.Its ideas should be mastered before ontinuing.Chapter 10 draws together all the various referenes to grammatial points and lari�es the limitationsof the language|you will need to know these if you want to squeeze the last oune of power out of thelanguage. Chapters 11 and 12 deal with advaned topis whih should not be touhed until you havemastered preeding material. Chapter 13 desribes the standard prelude whih, besides providing meansof determining the harateristis of an Algol 68 implementation, also provides the transput failitieswhose power are harateristi of Algol 68.In this hapter, some aspets of Algol 68 grammar are desribed. Don't worry if they seem onfusing;all will beome lear later in the book. It also overs denotations and the identity delaration, the latterhaving ruial importane in the language.
1.1 What you will needThe language desribed in this book is that made available by the Ctrans Algol 68 ompiler developedby the Defene Researh Ageny (see setion 1.9 for more information about what a ompiler does). Itimplements almost all of the language known as Algol 68, and extends that language in minor respets.To run the programs desribed in this book you will need a miroomputer with a Linux system. Thesoure pakage will oupy � 12Mb on the hard disk while the binary pakage will also need � 9Mb ofspae on the hard disk. The soure pakage may be deleted one the binary pakage has been installed.The book expets you to be familiar with the usual ommands for manipulating �les. You will needto know how to use an editor for plain text �les (not a word proessor). No programming expertise isassumed.Muh program development work on Linux takes plae at the ommand line beause a graphial userinterfae is usually too umbersome to ope with the myriad ommands issued by the programmer. Seethe doumentation in /usr/info/mm.info.gz and the man page for a68to for details of how to use theCtrans program development system. 1

2 CONTENTS1.2 TerminologyIn desribing Algol 68, it is neessary to use a number of tehnial terms whih have a speialist meaning.However, the number of terms used has been redued to a minimum. Whenever a term is introdued itwill be written in bold. Parts of programs are printed as though they had been produed by a typewriterlike this:BEGINSome of the terminology may seem pedanti. Desribing the parts of an Algol 68 program an, andshould be, preise. The power of Algol 68 derives as muh from the preision as from the generality ofits ideas.
1.3 Values and modesTwo of the guiding priniples of Algol 68 are the onepts of value and mode. Typially, an Algol 68program manipulates values to produe new values, and, in the proess, does useful work (suh as word-proessing). Values are suh entities as numbers and letters, but you will see in later hapters that valuesan be very ompliated and, indeed, an be things that you would not normally think of as a value.A value is haraterised by its mode. Every value has only one mode, and annot hange its mode.Therefore, if you have a mode hange you must have a new value as well (but see hapter 8). A modede�nes a set of values. The number of values in the set depends on the mode and there an be from noneto potentially in�nity. For example, the whole number represented by the digits 37 has mode INT. Thesymbol INT is alled a mode indiant. You will be meeting many more mode indiants in the ourse ofthis book and they are all written in apital letters and sometimes with digits. The strit de�nition of amode indiant is that it onsists of a series of one or more haraters whih starts with a apital letter,and is ontinued by apital letters or digits. No intervening spaes are allowed. There is no limit to thelength of a mode indiant although in pratie it is rare to �nd mode indiants longer than 16 haraters.Here are some more mode indiants whih you will meet in this and later hapters:BOOL CHAR COMPL FILE HMEANSetion 7.3 explains how you an de�ne your own mode indiants. Although you an use any sequeneof valid haraters, meaningful mode indiants an help you to understand your programs.
Exerises1.1 Is there anything wrong with the following mode indiants?(a) RealNumber(b) 2NDINT() COMPL(d) UPPER CASE(e) ONE.TWO1.2 What is the de�nition of a mode indiant?
1.4 IntegersAlthough, stritly speaking, there is no largest positive integer, the largest positive integer whih anbe manipulated by the Ctrans Algol 68 ompiler is 2 147 483 647, and the largest negative integer is�2 147 483 647 (the �rst is 231 � 1 and the seond is �231 + 1). The representation of a value in anAlgol 68 program is alled a denotation beause it denotes the value. It is important to realise that thedenotation of a value is not the same as the value itself. To be preise, we say that the denotation of avalue represents an instane of that value. For example, three separate instanes of the value denoted bythe digits 31 our in this paragraph. All the instanes denote the same value.If you want to write the denotation of an integer in an Algol 68 program, you must use any of thedigits 0 to 9. No signs are allowed. This means that you annot write denotations for negative integers

1.5. IDENTITY DECLARATIONS 3in Algol 68 (but this is not a problem as you will see). Although you annot use ommas or deimalpoints, spaes an be inserted anywhere. Here are some examples of denotations of integers separated byommas (the ommas are not part of the denotations):0 , 3 , 03 , 3000000 , 2 147 483 647Note that 3 and 03 denote the same value beause the leading zero is not signi�ant. However, the zerosin the three million are signi�ant. The mode of eah of the �ve denotations is INT. The following areinorret denotations:3,451 -2 1e6The �rst ontains a omma, the seond is a formula, and the third ontains the letter e. You will see lateron that the third expression denotes a number, but by de�nition this denotation does not have modeINT.
Exerises1.3 Write a denotation for thirty-three.1.4 What is wrong with the following integer denotations?(a) 1,234,567(b) 5.() -4
1.5 Identity delarationsSuppose you want to use the integer whose denotation is48930767in various parts of your program. If you had to write out the denotation eah time you wanted to use it,you would �nd that� you would almost ertainly make mistakes in opying the value, and� the meaning of the integer would not be at all learIt is imperative, partiularly with large programs, to make the meaning of the program as lear as possible.Algol 68 provides a speial onstrut whih enables you to delare a synonym for a value (in this ase,an integer denotation). It is done by means of the onstrut known as an identity delaration whihis used widely in the language. Here is an identity delaration for the integer mentioned at the start ofthis paragraph:INT speial integer = 48930767Now, whenever you want to use the integer, you writespeial integerin your program.An identity delaration onsists of four parts:<mode indiant> <identifier> = <value>You have already met the <mode indiant>. An identi�er is a sequene of one or more haraterswhih starts with a lower-ase letter and ontinues with lower-ase letters or digits or undersores. It anbe broken-up by spaes, newlines or tab haraters. Here are some examples of valid identi�ers (they areseparated by ommas to show you where they end, but the ommas are not part of the identi�ers):i, algol, rate 2 pay, eigen_value_3The following are wrong:

4 CONTENTS2pairs esape.veloity XConfigureEventThe �rst starts with a digit, the seond ontains a harater whih is neither a letter nor a digit nor anundersore, and the third ontains apital letters.An identi�er looks like a name, in the ordinary sense of that word, but we do not use the term \name"in this sense beause it has a speial meaning in Algol 68 whih will be explained in Chapter 5. Theidenti�er an abut the mode indiant as inINTa = 4but this is unusual. For larity in your programs, ensure that a mode indiant followed by an identi�eris separated from the latter by a spae.The third part is the equals symbol =. The fourth part (the right-hand side of the equals symbol)requires a value. You will see later that the value an be any piee of program whih yields a value of themode spei�ed by the mode indiant. So far, we have only met integers, and we an only denote positiveintegers.There are two ways of delaring identi�ers for two integers:INT i = 2 ; INT j=3The semiolon ; is alled the go-on symbol beause it means \throw away the value yielded by theprevious phrase, and go on to the next phrase". If this statement seems a little odd, just bear with itand all will beome lear later. We an abbreviate the delarations as follows:INT i=2, j = 3The omma separates the two delarations, but does not mean that the i is delared �rst, followed by thej. On the ontrary, it is up to the ompiler to determine whih delaration is elaborated �rst. They ouldeven be done in parallel on a parallel proessing omputer. This is known as ollateral elaboration, asopposed to sequential elaboration determined by the go-on symbol (the semiolon). We shall be meetingollateral elaboration again in later hapters. Elaboration means, roughly, exeution or \working-out".The ompilation system translates your Algol 68 program into mahine ode. When the mahine ode isobeyed by the omputer, your program is elaborated. The sequene of elaboration is determined by theompiler as well as by the struture of your program. Note that spaes are allowed almost everywhere inan Algol 68 program.Some values are prede�ned in what is alled the standard prelude. You will be learning more aboutit in sueeding hapters. One integer whih is prede�ned in Algol 68 has the identi�er max int. Canyou guess its value?
Exerises1.5 What is wrong with the following identi�ers?(a) INT(b) int() thirty-four(d) AreaOfSquare1.6 What is wrong with the following identity delarations?(a) INT thirty four > 33(b) INT big int = 3 000 000 0001.7 Write an identity delaration for the largest integer whih the Algol 68 ompiler an handle. Usethe identi�ermax int.

1.6. CHARACTERS 51.6 CharatersAll the symbols you an see on a omputer, and some you annot see, are known as haraters. Thealphabet onsists of the haraters A to Z and a to z. The digits omprise the haraters 0 to 9. Everyomputer reognises a partiular set of haraters. The harater set reognised by the Ctrans ompilerare the ASCII haraters (ASCII stands for Amerian Standard Code for Information Interhange). Themode of a harater is CHAR (read \ar" beause it is short for harater). A harater is denoted byplaing it between quote haraters. Thus the denotation of the lower-ase a is "a". Here are someharater denotations:"a" "A" "3" ";" "\" "'" """" " "Note that quote haraters are doubled in their denotations. The third denotation is "3". This value hasmode CHAR. The denotation 3 has mode INT: the two values are quite distint, and one is not a synonymfor the other. The last denotation is that of the spae harater.Here are some identity delarations for values of mode CHAR:CHAR a = "A", zed = "z"; CHAR tilde = "~"Note that the two sets of identity delarations are separated by a semiolon, but the delaration fortilde is not followed by a semiolon. This is beause the semiolon ; is not a terminator; it is an ation.Identity delarations do not yield any value. An identity delaration is a phrase. Phrases are eitheridentity delarations or units. When a phrase is elaborated, if it is a unit, it will yield a value. That is,after elaboration, a value will be available for further use if required. Again, this may not make muhsense now, but it will beome learer as you learn the language.Here is a piee of program with identity delarations for an INT and a CHAR:1INT ninety nine=99 , CHAR x = "X"The ompiler reognises 512 distint values of mode CHAR, but most of them an only our in deno-tations. The spae is delared as blank in the standard prelude.
Exerises1.8 Write the denotations for the full-stop, the omma and the digit 8 (not the integer 8).1.9 Write a suitable identity delaration for the question mark.
1.7 Real numbersNumbers whih ontain frational parts, suh as 3:5 or0:0005623956, or numbers expressed in sienti� notation, suh as 1:95 � 1034 are values of mode REAL.Reals are denoted by digits and one at least of the deimal point (whih is denoted by a full stop), or theletter e. The e means �10some power. Just as with integers, there are no denotations for negative reals.When the exponent is preeded by a minus sign, this does not mean that the number is negative, butthat the deimal point should be shifted leftwards. For example, in the following REAL denotations, thethird denotation has the same value as the fourth (again, the denotations are separated by ommas, butthe ommas are not part of the denotations):4.5, .9, 0.000 000 003 4, 3.4e-9, 1e6Although the seond denotation is valid, it is advisable in suh a ase to preede the deimal point with azero: 0.9. This is better beause a deimal point not preeded by an integer an be easily missed. Hereare some identity delarations for values of mode REAL:REAL e = 2.718 281 828,eletron harge = 1.602 10 e-19,monthly salary = 2574.431The Ctrans ompiler insists on a semiolon between identity delarations for di�erent modes. In the abovease, you would have to write INT ninety nine=99 ; CHAR x = "X"

6 CONTENTSThe largest REAL whih the ompiler an handle is delared in the standard prelude as max real. Itsvalue is 1:79769313486231571e308 :The value of � is delared in the standard prelude with the identi�er pi and a value ofREAL pi = 3.141592653589793238462643It was mentioned above that in an identity delaration, any piee of program yielding a value of therequired mode an be used as the value. Here, for example, is an identity delaration where the valuehas mode INT:REAL a = 3However, the mode required is REAL. In ertain irumstanes, a value of one mode an be oered into avalue of another mode. These irumstanes are known as ontexts. There are �ve ontexts de�ned inthe language. Eah ontext will be mentioned as it ours. The right-hand side of an identity delarationhas a strong ontext. In a strong ontext, a value and its mode an be hanged aording to six rules,known as oerions, de�ned in the language. Again, eah oerion will be explained as it ours. Theoerion whih replaes a value of mode INT with a value of mode REAL is known as widening. You willmeet a di�erent kind of widening in setion 7.4.You an even supply an identi�er yielding the required mode on the right-hand side. Here are twoidentity delarations:REAL one = 1.0;REAL one again = oneYou annot ombine these two delarations into one with a omma as inREAL one = 1.0, one again = onebeause you annot guarantee that the identity delaration for one will be elaborated before the dela-ration for one again (beause the omma is not a go-on symbol).2Values of modes INT, REAL and CHAR are known as plain values. We shall be meeting another modehaving plain values in hapter 4, and modes in hapter 3 whih are not plain. Complex numbers are dealtwith in hapter 7.
Exerises1.10 Is there anything wrong with the following identity delarations?REAL x = 5.,y = .5;z = 1001.11 Given that light travels 2:997 925�108 metres per seond in a vauum, write an identity delarationfor the identi�er light year in terms of metres to an auray of 5 deimal plaes (use a alulator).
1.8 Program strutureAlgol 68 programs an be written in one or more parts. Here is a valid Algol 68 program:PROGRAM firstprogram CONTEXT VOIDUSE standardBEGINprint(20)ENDFINISHOnly the three lines starting with BEGIN and ending with END are stritly part of the Algol 68 program.The �rst, seond and last lines are spei� to the Ctrans ompiler. The �rst line gives the identi�ation ofthe program as firstprogram and the fat that this �le ontains a program. The CONTEXT VOID phrasespei�es that the program stands on its own instead of being embedded in other parts. The phrase is avestige of the modular ompilation system originally provided by the ompiler at the heart of Ctrans.2The Ctrans ompiler does permit a subsequent delaration to use the value of a previous value, but it isstritly non-standard. You would be wise to restrit your programs to Algol 68 syntax beause other Algol 68ompilers will not neessarily be so lax.

1.9. COMMENTS 7A full explanation of the print phrase will be found in hapter 9 (Transput). For now, it is enoughto know that it auses the value in the parentheses to be displayed on the sreen.3 The standard preludemust be USEd if you want to use print. You an use any identi�er for the operating system �le in whihto store the Algol 68 soure ode of the program. Although it does not have to be the same as theidenti�er of the module, it is advisable to make it so.Both the print phrase and the denotation are units. Chapter 10 will explain units in detail. Phrasesare separated by the go-on symbol (a semiolon ;). Beause there is only one phrase in firstprogram,no go-on symbols are required. Here is another valid program:PROGRAM prog CONTEXT VOIDUSE standardBEGININT speial integer = 48930767;print(20) ; print(speial integer)ENDFINISHThe semiolon between the two print phrases is not a terminator: it is a separator. It means \throwaway any value yielded by the previous phrase and go on with the sueeding phrase". That is why it isalled the go-on symbol. Notie that there is no semiolon after the third phrase.Algol 68 programs are written in free format. This means that the meaning of your program isindependent of the layout of the soure program. However, it is sensible to lay out the ode so as to showthe struture of the program. For example, you ould write the �rst program like this:PROGRAM firstprogram CONTEXT VOIDUSE standard(print(20))FINISHwhih is just as valid, but not as omprehensible. Notie that BEGIN and END an be replaed by (and) respetively. How you lay out your program is up to you, but writing it as shown in the examples inthis book will help you write omprehensible programs.
Exerises1.12 What is wrong with this sample program?PROGRAM testBEGINprint("A"))ENDFINISH1.13 Using an editor, key in the two sample programs given in this setion, and ompile and exeutethem. What do they display on your sreen?
1.9 CommentsWhen you write a program in Algol 68, the piees of program whih do the work are alled \soureode". The Algol 68 ompiler translates this soure ode into C soure ode whih is then translatedby the GNU C ompiler into \objet ode". This is then onverted by a program alled a linker intomahine ode, whih is understood by the omputer. You then exeute the program by typing its nameat the ommand-line plus any arguments needed. This is alled running the program.When you write the program, it is usually quite lear to you what the program is doing. However,if you return to that program after a gap of several months, the soure ode may not be at all lear toyou. To help you understand what you have written in the program, it is possible, and reommended,to write omments in the soure ode. Comments an be put almost anywhere, but not in the middleof mode indiants and not in the middle of denotations. A omment is ignored by the ompiler, exeptthat omments an be nested. A omment is surrounded by one of the following pairs:3When Algol 68 was �rst implemented there were few monitors around, so print literally printed its outputonto paper.

8 CONTENTSCOMMENT ... COMMENTCO ... CO#...#{...}where the : : : represent the atual omment. The paired braes are peuliar to the Ctrans ompiler.Other ompilers may not aept them. Here is an Algol 68 program with omments added:PROGRAM prog CONTEXT VOIDUSE standardBEGININT i = 23, # My brother's age #s = 27; CO My sister's age COCHAR z = "&", COMMENT An ampersandCOMMENT y{aht}="y";REAL x = 1.25;print(i); print(s); print(z);print(y); print(x)ENDFINISHThere are four omments in the above program. If you start a omment with CO then you must also �nishit with CO, and likewise for the other omment symbols (exept the braes). Here is a program with abit of soure ode \ommented out":PROGRAM prog CONTEXT VOIDUSE standardBEGININT i = 1, j = 2 #, k = 3#;print(i); print(j)ENDFINISHThe advantage of ommenting out soure is that you only have to remove two haraters and that sourean be inluded in the program again. You an use any of the omment symbols for ommenting out.Here is another program with a part of the program ontaining a omment ommented-out:PROGRAM prog CONTEXT VOIDUSE standardBEGININT i = 1;COMMENTREAL six = 6.0, # Used subsequently #one by 2 = 0.5;COMMENTCHAR x = "X";print(i); {print(six);} print(x)ENDFINISHThis is an example of nested omments. You an use any of the omment symbols for this purpose aslong as you �nish the omment with the mathing symbol. However, if the part of your program thatyou want to omment out already ontains omments, you should ensure that the enlosing ommentsymbols should be di�erent. One way of using omment symbols is to develop a standard method. Forexample, the author uses the #...# omment symbols for one line omments in the ode, CO symbols formultiline omments and COMMENT symbols for extensive omments required at the start of programs orsimilar ode hunks.
Exerises1.14 Write a short program whih will print the letters of your �rst name. You should delare anidenti�er of mode CHAR for eah letter, and write a print phrase for eah letter. Remember to putsemiolons in the right plaes. Add omments to your program to explain what the program does.

1.10. EXTERNAL VALUES 91.10 External valuesValues denoted or manipulated by a program are alled internal values. Values whih exist outside aprogram and whih are data used by a program or data produed by a program (or both) are known asexternal values.In the previous setions we have been learning how plain values are denoted in Algol 68 programs.This internal display of values is not neessarily the same as that used for external values. If you opythe following program into a �le and ompile and run it you will get +10A +.15000000000000000e +1output on your sreen.PROGRAM test CONTEXT VOIDUSE standardBEGINprint(10); print("A"); print(1.5)ENDFINISHNotie that although the denotation for the �rst letter of the alphabet is surrounded by quote haraters,when it is displayed on your sreen, the quote haraters are omitted. The rules for numbers are asfollows: if a number is not the �rst value in the line it is preeded by a spae. Integers are always printedin the spae required by max int plus one position for the sign. Both positive and negative integers havea sign. A real number is always printed using the print positions required by max real, plus a sign forthe number. The exponent is also preeded by a sign. If you want extra spaes, you have to insert them.Try the following program:PROGRAM print2 CONTEXT VOIDUSE standardBEGINprint(10); print(blank); print("A");print(0.015); print(0.15); print(1.5);print(15.0); print(150.0); print(1500.0);print(15e15)ENDFINISH
1.11 SummaryAn Algol 68 program manipulates values. A value is haraterised by its mode. A mode is indiated bya mode indiant. Plain values an be denoted. Values our in ontexts, and an sometimes be oeredinto values of di�erent modes. Identi�ers an be linked to values using identity delarations. The valuesmanipulated by a program are alled internal values. External values are data used by, or produed by,a program. Comments desribe a program, but add nothing to its elaboration.Finally, here are some exerises whih test you on onepts you have met in this hapter.
Exerises1.15 Give denotations of the following values:(a) one thousand nine hundred and ninety six.(b) The �fth letter of the lower-ase Roman alphabet.() The fration 17 expressed as a deimal fration to 6 deimal plaes.1.16 Is there anything wrong with the following mode indiants?(a) C H A R(b) INT.CHAR() THISISANEXTREMELYLONGMODEINDICANT(d) 2CHAR

10 CONTENTS1.17 Write suitable identity delarations for the following identi�ers:(a) fifty five(b) three times two point seven() olon1.18 Is there anything wrong with the following identity delarations?REAL x = 1.234,y = x;1.19 What is the di�erene in meaning between 0 and 0.0?1.20 Write a program ontaining print phrases to print the following values on your sreen, separatedby one spae between eah value:0.5 "G" 1 ":" 34000000

Chapter 2
Formul�
Formul� onsist of operators with operands. Operators are predelared piees of program whih om-pute a value determined by their operands. Algol 68 is provided with a rih set of operators in thestandard prelude and you an de�ne as many more as you want. In this hapter, we shall examine allthe operators in the standard prelude whih an take operands of mode INT, REAL or CHAR. In hapter 6,we shall return to operators and look at what they do in more detail, as well as how to de�ne new ones.Operators are written as a ombination of one or more symbols, or in apital letters like a modeindiant. We shall meet both kinds in this hapter.
2.1 Monadi operatorsOperators ome in two avours: monadi and dyadi. A monadi operator has only one operand, buta dyadi operator has two operands. A monadi operator is written before its operand. For example, themonadi minus - reverses the sign of its operand:-3000This ould equally well be written - 3000 sine spaes are, generally speaking, not signi�ant. There is,likewise, a monadi + operator whih doesn't do anything to its operand, but is useful where you want torefer expressly to a positive number. It has been provided for the sake of onsisteny. You should notethat -3000 is not a denotation, but a formula onsisting of a monadi operator operating on an operandwhih is a denotation. We say that the monadi operator - takes an operand of mode INT and yields avalue of mode INT. It an also take an operand of mode REAL when it will yield a value of mode REAL.A formula an be used as the value part of an identity delaration. Thus the following identitydelarations are both valid:INT minus 2 = -2;REAL minus point five = -0.5The operator ABS takes an operand of mode INT and yields the absolute value again of mode INT. Forexample, ABS -5 yields the value denoted by 5:INT five = ABS -5Note that when two monadi operators are ombined, they are elaborated in right-to-left order, as in theabove example. That is, the - ats on the 5 to yield -5, then the ABS ats on -5 to yield +5. This is justwhat you might expet. ABS an also take an operand of mode REAL yielding a value of mode REAL. Forexample:REAL x = -1.234;REAL y = ABS xAnother monadi operator whih takes an INT operand is SIGN. This yields �1 if the operand isnegative, 0 if it is zero, and +1 if it is positive. Thus you an delareINT res = SIGN iif i has been previously delared. 11

12 CONTENTS2.2 Dyadi operatorsA dyadi operator takes two operands and is written between them. The simplest operator is dyadi +.Here is an identity delaration using it:INT one = 1;INT two = one + oneThis operator takes two operands of mode INT and yields a result of mode INT. It is also de�ned for twooperands of mode REAL yielding a result of mode REAL:REAL x = 1.4e5 + 3.7e12The + operator performs an ation quite di�erent for REAL operands from that performed for INT operands.Yet the meaning is essentially the same, and so the same symbol is used for the two operators.Before we ontinue with the other dyadi operators, a word of aution is in order. As we have seen,the maximum integer whih the omputer an use is max int and the maximum real is max real. Thedyadi + operator ould give a result whih is greater than those two values. Adding two integers suhthat the sum exeeds max int is said to give \integer overow". Algol 68 ontains no spei� rules aboutwhat should happen in suh a ase.1The dyadi - operator an take two operands of mode INT or two operands of mode REAL and yieldsan INT or REAL result respetively:INT minus 4 = 3 - 7,REAL minus one point five = 1.9 - 3.4Note that the dyadi - is quite di�erent from the monadi -. You an have both operators in the sameformula:INT minus ten = -3 - 7The �rst minus sign represents the monadi operator and the seond, the dyadi.Sine a formula yields a value of a partiular mode, you an use it as an operand for another operator.For example:INT six = 1 + 2 + 3The operators are elaborated in left-to-right order. First the formula 1+2 is elaborated, then the formula3+3. What about the formula 1-2-3? Again, the �rst - operator is elaborated giving -1, then the seondgiving the value -4.Instead of saying \the value of mode INT", we shall sometimes say \the INT value" or even \theINT"|all these expressions are equivalent.
Exerises2.1 Write an identity delaration for the INT value -35.2.2 What is the value of eah of the following formul�?(a) 3 - 2(b) 3.0 - 2.0() 3.0 - -2.0(d) 2 + 3 - 5(e) -2 + +3 - -42.3 Given the following delarationsINT a = 3, REAL b = 4.51The standard prelude supplied with the Linux port of the Ctrans ompiler provides the programmer a meansof speifying what should be done if integer overow ours. See setion 13.6.1 for the details. Likewise for\oating-point overow" and \oating-point underow" (setion 13.6.1).

2.3. MULTIPLICATION 13what is the value of the following formul�?(a) a+a(b) -a-a() b+b+b(d) -b - -b + -b
2.3 MultipliationThe operand * (often said "star") represents normal arithmeti multipliation and takes INT operandsyielding an INT result. For example:INT produt = 45 * 36Likewise, * is also de�ned for multipliation of two values of mode REAL:REAL real produt = 2.4e-4 * 0.5It is important to note that although the ations of the two operators are quite di�erent, they bothrepresent multipliation so they both use the same symbol.Like + and -, multipliation an our several times:INT fatorial six = 1 * 2 * 3 * 4 * 5 * 6the order of elaboration being left-to-right.You an also ombine multipliation with addition and subtration. For example, the value of theformula 2+3*4 is 14. At shool, you were probably taught that multipliation should be done beforeaddition (your teahers may have used the mnemoni BODMAS to show the order in whih operationsare done. It stands for Brakets, Over, Division, Multipliation, Addition and Subtration). In Algol 68,the same sort of thing applies and it is done by operators having a priority. The priority of multipliationis higher than the priority for addition or subtration. The priority of the dyadi + and - operators is 6,and the priority of the * operator is 7.Here are identity delarations using a ombination of multipliation and addition and subtration:INT i1 = 3, i2 = -7;INT result1 = i1 * i2 - 8;REAL r1 = 35.2, r2 = -0.04;REAL result2 = r1 * -r2 + 12.67 * 10.0In the elaboration of result2, the multipliations are elaborated �rst, and then the addition.Remember from hapter 1 that widening is allowed in the ontext of the right-hand side of an identitydelaration, so the following delaration is valid:REAL a = 24 * -36It is important to note that an operand is not in a strong ontext, so no widening is allowed. The ontextof an operand is �rm. Beause widening is not allowed in a �rm ontext, it is possible for the ompiler toexamine the modes of the operands of an operator and determine whih delaration of the operator is tobe used in the elaboration of the formula. This also applies to monadi operators (see 6.2.1 for details).Looking again at the above identity delaration, the ontext of the denotation 36 is �rm (it is theoperand of the monadi -), the ontexts of the 24 and the -36 are also �rm beause they are the operandsof the dyadi *, but the value yielded by the formula is on the right-hand side of the identity delaration,so it is in a strong ontext. It is this value whih is oered to a value of mode REAL by the widening.Note that the value of the formula (whih has mode INT) does not hange. Instead, it is replaed by theoerion with a value of mode REAL whose whole number part has the same value as the INT value. It isworth saying that the value of the formula obtained by elaboration is lost after the oerion. You ouldhang on to the intermediate integer value by using another identity delaration:INT intermediate value = 24 * -36;REAL a = intermediate value

14 CONTENTS
Exerises2.4 In this exerise, these delarations are assumed to be in fore:INT d1 = 12, d2 = -5;REAL d3 = 4.0 * 3.5, d4 = -3.0What is the value of eah of the following formul�?(a) ABS d2(b) - ABS d4 + d3 * d4() d2 - d1 * 3 + d2 * 4
2.4 DivisionIn the preeding setions, all the operators mentioned yield results whih have the same mode as theoperand or operands. In this and following setions, we shall see that this is not always the ase.Division poses a problem beause division by integers an have two di�erent meanings. For example,3� 2 an be taken to mean 1 or 1.5. In this ase, we use two di�erent operator symbols.Integer division is represented by the symbol %. It takes operands of mode INT and yields a valueof mode INT. It has the alternative representation OVER. The formula 7 % 3 yields the value 2, and theformula -7 % 3 yields the value -2. The priority of % is 7, the same as multipliation. Here are someidentity delarations using the operator:INT r = 23 OVER 4, s = -33 % 3;INT q = r * s % 2Using the given values of r and s, the value of q is -27. When a formula ontaining onseutive dyadioperators of the same priority is elaborated, elaboration is always left-to-right, so in this ase the multipli-ation is elaborated �rst, followed by the integer division. Of ourse, % an be ombined with subtrationas well as all the other operators already disussed.The modulo operator MOD gives the remainder after integer division. It requires two operands of modeINT and yields a value also of mode INT. Thus 5 MOD 3 yields 2, and 12 MOD 3 yields 0. It does workwith negative integers, but the results are unexpeted. You an explore MOD with negative integers in anexerise. MOD an also be written as %*. The priority of MOD is 7.Division of real numbers is performed by the operator /. It takes two operands of mode REAL andyields a REAL result. Thus the formula 3.0/2.0 yields 1.5. Again, / an be ombined with * and theother operators already disussed. It has a priority of 7. The operator is also de�ned for integer operands.Thus 3/2 yields the value 1.5. No widening takes plae here sine the operator is de�ned to yield a valueof mode REAL when its operands have mode INT.Here are some identity delarations using the operators desribed so far:REAL pi by 2 = pi / 2,pm3 = pi - 3.0 * -4.1;INT = 22 % 3 - 22 MOD 3;INT d = MOD 6 + SIGN -36
Exerises2.5 What is the value yielded by eah of the following formul�, and what is its mode?(a) 5 * 4(b) 5 % 4() 5 / 4(d) 5 MOD 4(e) 5.0 * 3.5 - 2.0 / 4.02.6 Write a short program to print the results of using MOD with negative integer operands. Try eitheroperand negative, then both operands negative.2.7 Give an identity delaration for the identi�er two pi.

2.5. EXPONENTIATION 152.5 ExponentiationIf you want to ompute the value of 3*3*3*3 you an do so using the multipliation operator, but itwould be learer and faster if you used the exponentiation operator **. The mode of its left operandan be either REAL or INT, but its right operand must have mode INT. If both its operands have themode INT, the yield will have mode INT (in this ase the right operand must not be negative), otherwisethe yield will have mode REAL. Thus the formula 3**4 yields the value 81, but 3.0**4 yields the value81.0. Its priority is 8. In a formula involving exponentiation as well as multipliation or division, theexponentiation is elaborated �rst. For example, the formula 3*2**4 yields 48, not 1296.Every dyadi operator has a priority of between 1 and 9 inlusive, and all monadi operators bind moretightly than all dyadi operators. For example, the formula -2**2 yields 4, not -4. Here the monadiminus is elaborated �rst, followed by the exponentiation.
Exerises2.8 Given these delarations:INT two = 2, m2 = -2;REAL x = 3.0 / 2.0, y = 1.0what is the value and mode yielded by the following formul�?(a) two ** -m2(b) x ** two + y ** two() 3 * m2 ** two
2.6 Mixed arithmetiUp to now, the four basi arithmeti operators have always had operands of the same modes. In pratie,it is quite surprising how often you want to ompute something like 2 * 3.0. Well, fortunately, thedyadi operators +, -, * and / (but not %) are also de�ned for mixed modes. That is, any ombinationof REAL and INT an be used. With mixed modes the yield is always REAL. Thus the following formul�are all valid:1+2.5 3.1*-4 2*3.5**3 2.4-2The priority of the mixed-mode operators is unhanged. As we shall see later, the priority relates to theoperator symbol rather than the avour of the operator in use.
2.7 Order of elaborationEven though the order of elaboration is dependent on the priority of operators, it is often onvenient tohange the order. This an be done by inserting parentheses (and) (or BEGIN and END): the formulainside the parentheses is evaluated �rst. Here are two formul� whih di�er only by the insertion ofparentheses:3 * 4 - 23 *(4 - 2)The �rst has the value 10, and the seond 6. Parentheses an be nested to any depth.REAL a = (3*a3*(xmin+eps1)**2)/4;REAL alpha g=(ymax - ymin)/(xmax - xmin);INT p=BEGIN 2 * 3**4 % (13-2**3) END - 4.0It is unommon to �nd BEGIN and END in short formul�. If you use BEGIN at the start of a formula, youmust use END to omplete it even though these symbols and parentheses are equivalent.

16 CONTENTS2.8 Changing the modeWe have seen that in a strong ontext, a value of mode INT an be oered by widening to a value ofmode REAL. What about the other way round? Is it possible to oere a value of mode REAL to a value ofmode INT? Fortunately, it is impossible using oerion. The reason behind this is related to the fat thatreal numbers an ontain frational parts. In replaing an integer by a real number there is no essentialhange in the value, but when a real number is hanged to an integer, in general the frational part willbe lost. It is undesirable that data should be lost without the programmer notiing.If you want to onvert a REAL value to an INT, you must use one of the operators ROUND or ENTIER.The operator ROUND takes a single operand of mode REAL and yields an INT whose value is the operandrounded to the nearest integer. Thus ROUND 2.7 yields 3, and ROUND 2.2 yields 2. The same rule applieswith negative numbers, thus ROUND -3.6 yields -4. At the half way ase, for example, ROUND 2.5, thevalue is rounded away from zero if the whole number part is odd, and rounded toward zero if it is even(zero, in this ase, is taken to be an even number). This ensures that rounding errors over a large numberof ases tend to anel out.The operator ENTIER (Frenh for \whole") takes a REAL operand and likewise yields an INT result, butthe yield is the largest integer equal to or less than the operand. Thus ENTIER 2.2 yields 2, ENTIER -2.2yields -3.The operator SIGN an also be used with a REAL operand. Its yield has mode INT with the same valuesas before, namely: -1 if the operand is negative, 0 if it is zero, and +1 if it is positive. We shall see insubsequent hapters that this property of SIGN an be useful.
Exerises2.9 What is the value and mode of the yield of eah of the following formul�?(a) ROUND(3.0 - 2.5**2)(b) ENTIER -4.5 + ROUND -4.5() SIGN(ROUND 3.6 / 2.0) * 2.02.10 What is the value of the formula(ENTIER -2.9 + 3**2)/4.0
2.9 Misellaneous operatorsThe operators MAX and MIN are de�ned for any ombination of INT and REAL operands and yield themaximum, or minimum, of two values. They an also be ombined in the same formula:INT max min = 345 MAX 249 MIN 1000whih yields 345. Like +, -, and *, they only yield a value of mode INT if both their operands are INT.Otherwise, they yield a value of mode REAL. They both have a priority of 9.
2.10 Operators using CHARThis hapter has been rather heavy on arithmeti up to now. You might wonder whether operators anhave operands of mode CHAR. The answer is yes. Indeed, the + and * operators are so delared, andwe shall meet them in hapter 3. There are two monadi operators whih involve the mode CHAR. Theoperator ABS (whih we have already met) an take a CHAR operand and yields the integer orrespondingto that harater. For example, ABS "A" yields 65 (the number assoiated with the letter "A" as de�nedby the ASCII standard). The identi�er max abs har is delared in the standard prelude with the value255. Conversely, we an onvert an integer to a harater using the monadi operator REPR. The formulaREPR 65yields the value "A". REPR an at on any integer in the range 0 to max abs har. REPR is of partiularvalue in allowing aess to ontrol haraters. For example, the tab harater is delared in the standardprelude as tab h. Consult setion 13.2.2 for the details.

2.11. PRINT REVISITED 172.11 print revisitedIn hapter 1, we used the print phrase to onvert internal values to external haraters. We ought tosay what print is and how it works, but we don't yet know enough about the language. Just use it forthe moment, and we shall learn more about it later.Besides being able to onvert internal values to external haraters, print an take two parameters(see hapter 6 for the low-down on parameters) whih an be used to format your output. newlinewill ause following output to be displayed on a new line, and newpage will emit a form-feed harater(REPR 12). newline and newpage will be desribed in detail in setion 13.7.11.If you want to print the haraters emitted by your Algol 68 programs you an use �le rediretion torediret your output to a �le, whih you an later opy to the printer. For example, suppose you haveompiled a program alled tt. To rediret its output to a �le alled tt.res, whih you an later opy tothe printer, you issue the ommandtt > tt.resat the ommand line. Alternatively, you send the output diretly to the printer using the ommandtt | lprat the ommand line. Try ompiling and running the following program:PROGRAM tt CONTEXT VOIDUSE standardBEGINprint(newpage);INT a = ENTIER (3.6**5);REAL p = 4.3 / 2.7;print(a); print(newline);print(b); print(newline)ENDFINISH
2.12 SummaryOperators ombined with operands are alled formul�. Operators are monadi or dyadi. Monadi oper-ators take a single operand, bind more tightly than dyadi operators and when ombined are elaboratedfrom right to left. Dyadi operators take two operands and have a priority of 1 to 9. Suessive dyadioperators having the same priority are elaborated from left to right. Parentheses, or BEGIN and END, maybe used to alter the order of elaboration.A summary of all the operators desribed in this hapter, together with their priorities, an be foundin hapter 13.Here are some exerises whih test you on what you have learned in this hapter. The exerisesinvolving ABS and REPR will need to be written as small programs and ompiled and run. In fat, itwould be a good idea to write all the answers as small programs (or inorporate them all in one largeprogram). Don't forget to use the print phrase with newline and newpage to separate your output.
Exerises2.11 The following delarations are assumed to be in fore for these exerises:INT i = 13, j = -4, k = 7;CHAR s = "s", t = "T";REAL x = -2.4, y = 2.7, z = 0.0What is the value of eah of the following formul�?(a) (2 + 3) * (3 - 2)(b) j+i-k

18 CONTENTS() 3*ABS s(d) ABS"t"-ABS t(e) REPR(k**2)(f) ROUND(x**2-y/(x+1))(g) z**92.12 Beause of the kind of arithmeti performed by the ompiler, division of values of mode REAL byzero does not ause a program to fail (but see setion 13.6.1). Write a program ontaining thephrases REAL z=0.0/0.0; and REAL iz=1/0; and see what happens. In pratie, it's probably agood idea to hek for division by zero.2.13 Now try the phrase print(1%0).2.14 What is wrong with the following formul�?(a) [4-j℄*3(b) (((3-j)*x+3)*x+5.6() ROUND "e"(d) ENTIER 4 + 3.0

Chapter 3
Repetition
Up to now, we have dealt with plain values: that is, values with modes INT, REAL or CHAR. In pratie,plain values are of limited use when dealing with a lot of data. For example, ommerial programs areontinually dealing with strings of haraters and engineers use vetors and matries. In this hapter, westart the proess of building more ompliated modes. Firstly, we onsider repetition of values.
3.1 MultiplesA multiple onsists of a number of elements, eah of whih have the same mode (sometimes knownas the base mode). The mode of a multiple onsists of the mode indiant for eah element preededby brakets, and is said \row of mode". For example, here is an identity delaration of a row of CHARmultiple:[℄CHAR a = "abd"The phrase on the left-hand side of the equals symbol is read \row of ar a". The phrase on the right-hand side of the equals symbol is the denotation of a value whose mode is [℄CHAR. Spaes an, of ourse,appear before, between or after the brakets.Multiples of mode [℄CHAR are so ommon that this denotation was devised as a kind of shorthand.The maximum number of elements in a multiple is equal to the maximum positive integer (max int),although in pratie, your program will be limited by the available memory. The denotation of a [℄CHARmay extend over more than one line. There are two ways of doing this. You an simply write thedenotation on more than one line in whih ase every harater \between" the starting and ending quoteharaters is inluded exept the newline haraters, or you an split the denotation with quote haratersat the end of one line and at the start of the ontinuation of the denotation on the next line. Here aretwo delarations whih exemplify these rules:[℄CHAR long1 = "The first stage in the development of a new program onsists of analysingthe problem that the program must solve.";[℄CHAR long2 = "The first stage in the ""development of a new ""program onsists of ""analysing the problem ""that the program must ""solve."Notie that the seond method is neater beause you an indent the subsequent parts of the denotation.Everything \between" the seond and third quote haraters and \between" the fourth and �fth quoteharaters is ignored, although you should not put anything other than spaes or tabs and newlines there.If you want to plae a quote harater (") in the denotation, you must double it, just as in the haraterdenotation. Here are two [℄CHAR denotations, eah ontaining two quote haraters:[℄CHAR ra = """Will you ome today?""",rb = "The minority report stated ""that ""in their opinion""";The repeated quote haraters are di�erent from the quote haraters whih hain the two parts of thedenotation of rb. 19

20 CONTENTS3.1.1 Row-displaysMultiples of other modes annot be denoted as shown above, but use a onstrut alled a row-display.A row-display onsists of none or two or more units separated by ommas and enlosed by parentheses(or BEGIN and END). Here is the identity delaration for a written using a row-display:[℄CHAR a = ("a","b","","d")It is important to note that the units in the row-display ould be quite ompliated. For example, hereis another delaration for a multiple with mode [℄CHAR:[℄CHAR b = ("a","P",REPR 36,"""")In eah of these two delarations, the number of elements is 4.Here are identity delarations for a multiple of mode [℄INT and a multiple of mode [℄REAL:[℄INT = (1, 2+3, -2**4, 7, -11, 2, 1);[℄REAL d = (1.0, -2.9, 3e4, -2e-2, -5)Note that the last unit of the row-display for has the same value as the �rst unit. In a multiple of mode[℄INT, the individual elements an have any value of mode INT: that is to say, any integer or formulayielding an integer. In d, the unit yielding the last element is written as a formula yielding a value ofmode INT. Sine the ontext of the row-display is strong (beause it ours on the right-hand side of anidentity delaration), this ontext is passed on to its onstituent units. Thus, the ontext of the formulais also strong, and so the value yielded by the formula is widened to yield -5.0.An empty row-display an be used to yield a at multiple (one with no elements). For example, hereis an identity delaration using an empty row-display:[℄REAL empty = ()The denotation for a at [℄CHAR is used in the identity delaration[℄CHAR none = ""A multiple an also have a single element. However, a row-display annot have a single unit (beause itwould be an enlosed lause, whih is a di�erent onstrut). In this ase, we use a unit (or a formula,whih is another kind of unit) for the only element, and the value of that unit is oered to a multiplewith a single element using the rowing oerion. For example,[℄INT ri = 4yields a multiple with one element. An enlosed lause an be used instead:[℄INT ri1 = (4)sine an enlosed lause is also a unit (see setion 10.4).Rowing an only our in strong ontexts (and the right-hand side of an identity delaration is astrong ontext). Here is another example:[℄CHAR r = "p"A row-display an only be used in a strong ontext. Beause the ontext of an operand is �rm, a row-display annot appear in a formula (but there is a way round this, see setion 10.5). The shorthanddenotation for a [℄CHAR is not a row-display and so does not su�er from this limitation.3.1.2 DimensionsOne of the properties of a multiple is its number of dimensions. All the multiples delared so far haveone dimension. The number of dimensions a�ets the mode. A two-dimensional multiple of integers hasthe mode[,℄INT(said \row-row-of-int"), while a 3-dimensional multiple of reals (real numbers) has the mode[,,℄REAL

3.1. MULTIPLES 21Note that the number of ommas is always one less than the number of dimensions. In Algol 68, multiplesof any number of dimensions an be delared.1To ater for more than one dimension, eah of the units of a row-display an also be a row-display.For example, the row-display for a multiple with mode [,℄INT ould be((1,2,3),(4,5,6))The fat that this is the row-display for a 2-dimensional multiple would be learer if it were written((1,2,3),(4,5,6))For two dimensions, it is onvenient to talk of \rows" and \olumns". Here is an identity delarationusing the previous row-display:[,℄INT e = ((1,2,3),(4,5,6))The �rst \row" of e is yielded by the row-display (1,2,3) and the seond \row" is yielded by (4,5,6).The �rst \olumn" of e is yielded by the row-display (1,4), the seond \olumn" by (2,5) and the third\olumn" by (3,6). Note that the number of elements in eah \row" is the same, and the number ofelements in eah \olumn" is also the same, but that the number of \rows" and \olumns" di�er. Wesay that e is a retangular multiple. If the number of \rows" and \olumns" are the same, the multipleis said to be square. Here is an identity delaration for a square multiple:[,℄CHAR f = (("a","b",""),("A","B","C"),("1","2","3"))All square multiples are also retangular, but the onverse is not true. Note that in the row-display fora multi-dimensional multiple of haraters, it is not possible to use the speial denotation for a [℄CHAR.The base mode of a multiple an be any mode, inluding another row mode. For example:[℄[℄CHAR days =("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday")The mode is said \row of row of CHAR". Note that days is one-dimensional, eah element onsisting of aone-dimensional [℄CHAR. The shorthand denotation for a [℄CHAR an be used in this ase. Beause thebase mode is [℄CHAR, the individual [℄CHARs an have di�erent lengths. Here is another example usingintegers:[℄[℄INT trapezium = ((1,2),(1,2,3),(1,2,3,4))3.1.3 Subsripts and boundsEah element of a multiple has one integer assoiated with it for eah dimension. These integers inreaseby 1 from the �rst to the last element in eah dimension. For example, in the delaration[℄INT r1 = (90,95,98)the integers assoiated with the elements are [1℄, [2℄ and [3℄ (see the next setion for an explanationof why the integers are written like this). Remember that the �rst element in a row-display always hasan assoiated integer of [1℄. These integers are known as subsripts2 or indexers. Thus the subsript of98 in r1 is [3℄. In the two-dimensional multiple[,℄INT r2 = ((-40, -30, -20),(100, 130, 160))1However, the Ctrans Algol 68 ompiler limits the number of dimensions to three. If you try to delare rowshaving more than three dimensions, the translation proeeds without error messages, but the resulting C odewill fail to ompile.2From the pratie of mathematiians who write x1; x2; : : :

22 CONTENTSthe subsripts for -40 are [1,1℄ and the subsripts for 160 are [2,3℄.We say that the lower bound of r1 is 1, and its upper bound is 3. The multiple r2 has a lowerbound of 1 for both the �rst and seond dimensions, an upper bound of 2 for the �rst dimension (2\rows") and an upper bound of 3 for the seond dimension (3 \olumns"). We shall write the bounds ofr1 and r2 as [1:3℄ and [1:2,1:3℄ respetively. The bounds of a at multiple, unless spei�ed otherwise(see the setion on trimming), are [1:0℄.The bounds of a multiple an be interrogated using the operators LWB for the lower bound, and UPBfor the upper bound. The bounds of the �rst, or only, dimension an be interrogated using the monadiform of these operators. For example, using days de�ned above, LWB days yields 1, and UPB days yields7. Where the multiple is multi-dimensional, the bounds are interrogated using the dyadi form of LWBand UPB: the left operand is the dimension while the right operand is the identi�er of the multiple. Forexample, 1 UPB r2 yields 2 and 2 UPB r2 yields 3. The priority of the dyadi operators is 8.
Exerises3.1 What is wrong with the following identity delarations?(a) ()CHAR 1 = "Today"(b) [℄CHAR 2 = 'Yesterday'() [℄INT i1 = (1, 2.0, 3)3.2 Using the identi�er first 4 odd numbers, write an appropriate identity delaration.3.3 Given the identity delarations[℄CHAR s = "abdefgh";[℄REAL r = (1.4e2, 3.5e-1, -4.0);[,℄INT t = ((2,3,5),(7,11,13),(17,19,23))what is the value of the following:(a) UPB s(b) LWB r() 2 UPB t - 1 LWB t + 13.4 Write the formul� whih give the upper and lower bounds of eah of the following multiples:(a) [,,℄INT a = (((1,2,3),(4,5,6)),((7,8,9),(10,11,12)))(b) [℄REAL b = ()
3.2 SliingIn the previous setion, it was mentioned that a subsript is assoiated with every element in a multiple.The lower-bound of the multiple for a dimension determines the minimum subsript for that dimensionand the upper-bound for that dimension determines the maximum subsript. Thus there is a set ofsubsripts for eah dimension. The individual elements an be aessed by quoting all the subsripts forthat element. For example, the elements of the multiple[℄INT odds = (1,3,5)an be aessed as odds[1℄, odds[2℄ and odds[3℄. The �rst of these is read \odds sub one bus" (\bus"is the opposite of \sub"). In a multi-dimensional multiple, two or more subsripts are required to aessa single element, the subsripts being separated by ommas. For example, in the multiple

3.3. TRIMMING 23[,℄REAL rs = ((1.0, 2.0, 3.0),(4.0, 5.0, 6.0))rs[1,2℄ yields 2.0. Similarly, rs[2,3℄ yields 6.0. Thus one an delareREAL rs12 = rs[1,2℄,rs23 = rs[2,3℄Although, tehnially, a multiple with all its subsripts spei�ed is alled a slie, the term is usuallyreserved for a multiple with less than the maximum number of subsripts (in other words, at least one ofthe dimensions does not have a subsript). For example, using rs delared above, we an write[℄REAL srs = rs[1,℄whih yields the multiple denoted by (1.0,2.0,3.0). The omma must be present in the slie on theright-hand side otherwise the ompiler will report an error of \wrong number of indies".Vertial sliing is also possible. The phrase rs[,2℄ yields the multiple (2.0,5.0). In the ontext ofthe delaration[,℄CHAR rs2 = (("a","b","","d"),("e","f","g","h"),("i","j","k","l"))the slie rs2[,3℄ yields the value "gk" with a mode of [℄CHAR. Note, however, that vertial sliing isonly possible for multiples with at least two dimensions. The multiple days, delared in the previoussetion, is one-dimensional and so annot be slied vertially.In a 3-dimensional multiple, both 2-dimensional and 1-dimensional slies an be produed. Here aresome examples:[,,℄INT r3 = (((1,2),(3,4),((5,6),(7,8)));[,℄INT r31 = r3[1,,℄,r32 = r3[,2,℄,r33 = r3[,,3℄;[℄INT r312 = r31[2,℄, r4 = r31[,2℄
Exerises3.5 The delaration[,℄INT r = ((1, 2, 3, 4),(5, 6, 7, 8),(9,10,11,12),(13,14,15,16))is in fore for this and the following exerise. Give the value of the following slies:(a) r[2,2℄(b) r[3,℄() r[,2 UPB r℄3.6 Write slies for the following values(a) 10(b) (5,6,7,8)() (3,7,11,15)
3.3 TrimmingThe bounds of a multiple an be hanged using the � onstrution. For example, in the delaration[℄CHAR digits = "0123456789"[�0℄the bounds of digits are [0:9℄. Bounds do not have to be non-negative. For example,[,℄INT ii = ((1,2,3),(4,5,6));[,℄INT jj = ii[�-3,�-50℄whene the bounds of jj are [-3:-4,-50:-48℄. Notie that you annot hange the bounds of a row-display (exept by using a ast|see setion 10.5). For now, always delare an identi�er for the display,and then alter the bounds. The bounds of a slie an be hanged:

24 CONTENTS[,℄INT ij = ((1,3,5),(7,9,11),(13,15,17));[℄INT ij2 = ij[2,℄[�0℄The delaration for ij2 ould also be written[℄INT ij2 = ij[2,�0℄� an also be written AT.Wherever an integer is required in the above, any unit yielding an integer will do. Thus it is quite inorder to use the formula(a+b) UPB rwhere the parentheses are neessary if a+b is expeted to yield the dimension of r under onsideration(beause the priority of UPB is greater than the priority of +).A trimmer uses the : onstrution. In the ontext of the delaration of digits above, the phrasedigits[1:3℄ yields the value "123" with mode [℄CHAR. Again, using the delaration of r in the last setof exerises, r[1:2,1℄ yields (1,2), and r[1:2,1:2℄ yields ((1,2),(5,6)).Trimming is partiularly useful with values of mode [℄CHAR. Given the delaration[℄CHAR quote = "Habent sua fata libelli"(the quotation at the start of the aknowledgements in the \Revised Report"),quote[:6℄quote[8:10℄quote[12:15℄yield the �rst three words. Note that when the �rst subsript in a trimmer is omitted, the lower boundfor that dimension is assumed, while omission of the seond subsript assumes the orresponding upperbound. Again, any unit yielding INT may be used for the trimmers. The ontext for a trimmer or asubsript is meek.Omission of both subsripts yields the whole slie with a lower bound of 1. So, the upper bound ofthe phrase digits[:℄ is 10 whih is equivalent to digits[�1℄.The lower bound of a trimmer is, by default, 1, but may be hanged by the use of �. For example,digits[3:6℄ has bounds [1:4℄, but digits[3:6�2℄ has bounds [2:5℄. The bounds of quote[17:℄mentioned above are [1:7℄.
Exerises3.7 Write an identity delaration for months on the lines of the delaration of days in setion 3.1.3.8 Given the delarations[,℄INT i = ((1,-2,3,4),(-5,6,7,8));[℄REAL r= (1.4,0,-5.4,3.6);[℄CHAR s= "abdefghijklmnopqrstuvwxyz"[� ABS"a"℄what are the values of the following phrases?(a) 2 UPB i + UPB s[�1℄(b) r[2:3℄() i[2,2℄ - r[3℄(d) i[2,2:℄(e) s[ABS"p":ABS"t"℄
3.4 Printing multiplesWe have already used print to onvert plain values to haraters displayed on your sreen. In fat, printan be supplied with a row of values to be onverted, so it is quite valid to write[℄INT i1 = (2,3,5,7,11,13); print(i1)You an also present an atual row-display. Instead of usingprint(2); print(blank); print(3)

3.5. OPERATORS WITH MULTIPLES 25you an write print((2,blank,3)). The doubled parentheses are neessary: the outer pair are neededby print anyway, and the inner pair are part of the row-display. Notie that the modes of the elementsof the row-display are quite di�erent. We shall learn in hapter 8 how that an be so.Here is a program whih will print the answers to the last exerise.PROGRAM test CONTEXT VOIDUSE standardBEGIN[,℄INT i = ((1,-2,3,4),(-5,6,7,8));[℄REAL r= (1.4,0,-5.4,3.6);[℄CHAR s= "abdefghijklmnopqrstuvwxyz"[� ABS"a"℄;print(("i=",i,newline,"r=",r,newline,"s=[",s,"℄",newline,"2 UPB i + UPB s[�1℄=",2 UPB i+UPB s[�1℄,newline,"r[2:3℄=",r[2:3℄,newline,"i[2,2℄ - r[3℄=",i[2,2℄ - r[3℄,newline,"i[2,2:℄=",i[2,2:℄,newline,"s[ABS""p"":ABS""t""℄=",s[ABS"p":ABS"t"℄,newline))ENDFINISHAs you an see, print will quite happily take values of modes [℄CHAR, [,℄INT, [℄REAL and so on3.Notie also that in order to get quote symbols in the last line to be printed, they are doubled. A ommonmistake is to omit a quote symbol or a losing omment symbol. If your editor provides lexial highlighting(usually alled \syntax" highlighting), an omitted quote or omment symbol will ause a large part ofyour program to be highlighted as though it were a [℄CHAR or a omment. The mistake will be verylear. If your editor does not support lexial highlighting, you will get an odd message from the ompiler(usually to the e�et that it has run out of program!).
Exerises3.9 Write short programs to print the answers to all the exerises in this hapter from 3.2.1. Youshould insert multiples of CHAR at suitable points, as in the example above, so that you an identifythe printed answers.
3.5 Operators with multiplesNo operators are de�ned in the standard prelude for multiples whose elements have modes INT or REAL.This is not a drawbak as you will learn in hapter 6. Nor are there any monadi operators in the standardprelude for multiples of CHAR. However, multiples of CHAR our so often, that two dyadi operators areavailable for them.The operator + is de�ned for all ombinations of CHAR and [℄CHAR. Thus, the formula"ab" + "d"yields the value denoted by "abd". With these operands, + ats as a onatenation operator. Theoperator has a priority of 6 as before.Multipliation of values of mode CHAR or [℄CHAR is de�ned using the operator *. The other operandhas mode INT and the yield has mode [℄CHAR. For example, in the delaration3but Ctrans will only aept multiples of upto three dimensions.

26 CONTENTS[℄CHAR repetitions = "ab" * 3repetitions identi�es "ababab". The formula ould have been written with the integer as the leftoperand. In both ases, the operator only makes sense with a positive integer.
Exerises3.10 Given the identity delarations[℄CHAR s = "Dog bites man",t = "aeiou"what is the value of the following formul�?(a) "M"+s[UPB s-1:℄+s[4:10℄+"d"+s[2:3℄(b) s[5℄*3+2*s[6℄
3.6 RangesIf you ast your mind bak to the form of an Algol 68 program, you will remember that it onsists ofa number of phrases enlosed by BEGIN and END (or parentheses) preeded by a PROGRAM phrase withan optional USE phrase. The part of the program enlosed by BEGIN and END (inluding the BEGIN andEND) is alled a losed lause. The important point here is that a losed lause onsists of one or morephrases separated by semiolons; (the last phrase being a unit), surrounded by parentheses (or BEGINand END). Sine a delaration is not a unit, the last phrase annot be a delaration. We say that thevalue of a losed lause is the value yielded by the �nal unit. As an example, here is a losed lause witha value of mode INT:BEGININT i = 43;print((i,newline));iENDAn important adjunt of a losed lause is that any identi�ers delared in the lause do not existoutside the lause. We say that the range of an identi�er is on�ned to that setion of the losed lausefrom its delaration to the end of the lause.
3.7 Program repetitionHaving investigated the onstrution and use of multiple values, it is now time to address repetition ofprogram ations. For example, suppose you wanted to output 8 blank lines. You ould writeprint((newline,newline,newline,newline,newline,newline,newline,newline))A simpler way would be to writeTO 8 DO print(newline) ODThe integer following the TO an be any unit yielding an integer (not neessarily positive) in a meekontext. If the value yielded is zero or negative, then the ensuing lause enlosed by DO and OD will notbe elaborated at all. The TO : : : OD onstrut is alled a loop lause or, more simply, a loop.If you omit the TO integer onstrut, the loop will be repeated inde�nitely. In that ase, you wouldneed some way of terminating the program inside the loop.A more useful form of the loop lause is shown by the following exampleFOR i TO 10DO print((i,newline))OD

3.7. PROGRAM REPETITION 27The i is an identi�er, whose delaration ours at that point and whose mode is INT. The example willprint the numbers 1 to 10, eah on its own line. The range of i is the whole of the loop lause, but doesnot inlude the unit following TO. Any identi�er may be used in plae of i. When the TO part is omitted,it is as though TO 1 had been written.It is possible to modify the number of times the loop is obeyed. The simplest way is to de�ne thestarting point using the FROM onstrut. Here is an example:FOR n FROM -10 TO 10 DO print((n,blank)) ODThis prints the numbers from -10 to +10 on the sreen. The integer after FROM an be any unit whihyields a value of mode INT in a meek ontext. When FROM is omitted, it is assumed that the �rst valueof the identi�er following FOR is 1.This example prints the square of eah of the numbers from 0.2 to 0.9:FOR number FROM 2 TO 9DO REAL value = number / 10;print((value," squared =",value * value,newline))In these examples, the value of the identi�er has always inreased by 1. The inrease an be hangedusing the BY onstrut. For example, to print the ubes of the even numbers between 30 and 50 inlusive,you ould write4FOR n FROM 30 BY 2 TO 50DO print((n**3,newline))ODThe BY onstrut is partiularly useful for dereasing the value of the identi�er:[℄CHAR title ="Programming Algol 68 Made Easy";FOR FROM UPB title BY -1 TO LWB titleDO print(title[℄)ODThis last example shows how useful the loop lause an be for aessing some of or all of the elements ofa multiple. Here is another example:[℄INT hh=(7,17,27,37,47);INT two=2;FOR i BY two TO UPB hhDO print(hh[i℄ * hh[i℄)ODwhih will print+49 +729 +2209on one line. Omitting the BY onstrut assumes a default step of 1.Notie how use of the LWB and UPB operators ensures that your program does not try to use a subsriptoutwith the bounds of the multiple. If you try to aess an element whose subsript is greater than theupper bound (or less than the lower bound), the program will fail at run-time with an appropriate errormessage.An important use of the identity delaration is that of optimisation. In the previous example, theomputation of the ith element of hh takes a little time, and there is no point in repeating it. In thefollowing example, the identity delaration omputes the value of hh[i℄ and the print statement usesthe resulting value twie:4Unfortunately, there is a bug in the Ctrans ompiler whih prevents you from using a denotation after BY.Nor does BY (2) or BY +2 work. You an get round this bug by delaring INT two = 2; and then using BY twofor your loop lause. For other ways see hapter 6.

28 CONTENTSFOR i BY 2 TO UPB hhDO INT hhi = hh[i℄;print((hhi * hhi,newline))ODEverything said about multiples with elements of mode INT or CHAR applies equally well to multipleswhose elements have mode REAL. A FOR loop yields no value (f setion 6.1.5).
Exerises3.11 Write an Algol 68 program whih will print the ubes of the numbers from 1 to 25.3.12 Write a program whih will print the haraters of the alphabet bakwards, all on one line.
3.8 Nested loopsWhen dealing with two-, and higher-dimensional multiples, it is often neessary to run a subsidiary loop.For example, suppose we wanted to print the square of eah element in the multiple delared as[,℄INT primes = ((2, 3, 5, 7),(11,13,17,19),(23,29,31,37),(41,43,47,53))with eah row on one line. Here is a piee of program whih will do it:FOR i FROM 1 LWB primes TO 1 UPB primesDO [℄INT pri=primes[i,℄;FOR j FROM LWB pri TO UPB priDO INT prij = pri[j℄;print(prij * prij)OD;print(newline)ODNotie the optimisations. The �rst de�nes the ith \row", and the seond de�nes the jth element in that\row". The point is that any piee of program an appear inside the loop lause. Loop lauses an benested to any depth. Beause the loop lause is an enlosed lause, it must ontain at least one phrase,and the last phrase must be a unit (see hapter 10 for a thorough disussion of units).
Exerises3.13 Using a nested loop, write a short program to display the �rst 25 letters of the alphabet on yoursreen in �ve rows of �ve letters. Separate eah letter with a omma.3.14 Write a program to print the value of a 3-dimensional multiple of real numbers whih you havedelared in your program.
3.9 Program strutureIn hapter 1, it was mentioned that the basi struture of an Algol 68 program onsists ofBEGINphrasesENDThis is not stritly true. It is quite possible to write a program onsisting solely of a DO loop! For example:

3.10. THE FORALL LOOP 29PROGRAM dosumUSE standardFOR i TO 5DO print((i**2,newline))ODFINISH
3.10 The FORALL loopThe FORALL loop is not part of Algol 68, but an extension introdued by the Ctrans ompiler. It is similarto the FOR loop, but the identi�er has the mode of an element of the multiple under onsideration. Lookat this example:[℄REAL r1 = (1.0,2.0,3.0,4.0,5.0);FORALL e IN r1 DO print(e * e) ODIn the FORALL loop, e takes the value of eah element in r1 and so has mode REAL. The ompiler generatesmore eÆient ode using the FORALL loop by avoiding the normal overheads of the subsripting mehanism.However, the FORALL loop an only be used when all the elements of a dimension are required. If youwant to limit the proessing to a few elements, you an trim the multiple or use the FOR loop.The elements of more than one multiple an be ombined simultaneously. For example:[℄INT i = (1,2,3,4,5),j = (11,12,13,14,15);FORALL ii IN i, jj IN jDO print((ii * jj,newline))ODThe omma between ii IN i and jj IN j means that the onstruts are elaborated ollaterally. Thebounds of i must be the same as the bounds of j.FORALL lauses an be nested as in the ase of FOR lauses. If we use l and m delared in a previousexample, thenFORALL ll IN lDO FORALL mm IN mDO print(ll * mm)ODODould be used to print the produts of all the integers.
3.11 SummaryModes of multiples start with brakets ([℄). A multiple of haraters has a speial denotation. Allmultiples an be onstruted using a row-display. Rows have bounds and dimensions. Rows an be sliedand trimmed, and their bounds an be hanged using the � onstrut.The FOR loop has the formFOR id FROM a BY b TO DO ... ODwhere the default values of a, b and are 1, 1 and 1 respetively, but may take any value of mode INTin a meek ontext. If is greater than or equal to a and b is negative, the loop will not be exeuted. If bis zero, the loop will be exeuted inde�nitely. The range of id exludes the units a, b and . The FORALLloop has the formFORALL id1 IN row1 DO ... ODWe have overed a good deal of ground in this hapter, so here are some more exerises revising whatyou have learnt. It is most instrutive to verify your answers by writing appropriate Algol 68 programs.

30 CONTENTSExerises3.15 What is wrong with the following identity delarations?(a) [℄REAL r1 = [2.5,-2.5,3.5℄(b) [,℄INT i1 = ((1,2,3),(4,5,6,7))() [℄CHAR s1 = "abde'fg"3.16 What are the upper and lower bounds of the following?(a) ((10,20,30),(-10,-20,-30))(b) ("a","b","")() "abdef"[3:4℄3.17 If a is delared as[,℄INT a = ((9,8,7),(6,5,4),(3,2,1))what is the value and mode of(a) a[2,℄(b) a[,2℄() a[:2,3℄(d) a[2:,:2℄3.18 What value does "ab"*3+"defg" yield?3.19 Write a program to display every �fth letter of the alphabet all on one line.

Chapter 4
Choie
One of the essential properties of a omputer program is its ability to modify its ations depending on itsirumstanes and environment. In other words, its behaviour is not predetermined, but an vary fromone exeution to another. In this hapter, we shall introdue a new plain mode, desribe the operatorsusing or yielding values of the new mode, and then investigate the program strutures whih allow anAlgol 68 program to hoose between alternatives.
4.1 Boolean valuesThe mode BOOL is named after George Boole, the distinguished nineteenth entury mathematiian whodeveloped the system of logi whih bears his name. There are only two values of mode BOOL, and theirdenotations are TRUE and FALSE. Let us delare two identi�ers:BOOL t = TRUE,f = FALSEThe print phrase, when fed with Boolean values prints T for TRUE, and F for FALSE, with spaes neitherbefore nor after. Thusprint((t,f,t,f,t))produes TFTFT on the sreen.
4.2 Boolean operatorsThe simplest operator whih has an operand of mode BOOL is NOT. If its operand is TRUE, it yields FALSE.Conversely, if its operand is FALSE, it yields TRUE. The operator ODD yields TRUE if its operand is an oddinteger and FALSE if it is even. The operators an be ombined, soNOT ODD 2yields TRUE.ABS onverts its operand of mode BOOL and yields an integer: ABS TRUE yields 1, ABS FALSE yields 0.Boolean dyadi operators ome in two kinds: those that take operands of mode BOOL, yielding TRUEor FALSE, and those that operate on operands of other modes.Two dyadi operators are delared in the standard prelude whih take operands of mode BOOL. Theoperator AND (alternative representation &) yields TRUE if, and only if, both its operands yield TRUE, sothatt AND fyields FALSE (t and f were delared earlier). Both the operands are elaborated before the operator (butsee the setion later on pseudo-operators). The priority of AND is 3.The operator OR yields TRUE if at least one of its operands yields TRUE. Thust OR fyields TRUE. It has no alternative representation. Again, both operands are elaborated before the operator.The priority of OR is 2.You will learn in hapter 6 how to de�ne new operators if you need them.31

32 CONTENTS4.3 Relational operatorsValues of modes INT, REAL, CHAR and [℄CHAR an be ompared with eah other. The expression3 = 1+2yields TRUE. Similarly,1+1=1yields FALSE. The equals symbol = an also be written EQ. Likewise, the formula35.0 EQ 3.5e1should also yield TRUE, but you should be hary of omparing two REALs for equality or inequality beausethe means of transforming the denotations into binary values may yield values whih di�er slightly. Theoperator is also de�ned for both operands being CHAR or [℄CHAR. In the latter ase, the two multiplesmust have the same number of elements, and orresponding elements must be equal if the operator is toyield TRUE. Thus"a" = "ab"yields FALSE. Notie that the bounds do not have to be the same. So a and b delared as[℄CHAR a = "Dodo" [�0℄,b = "Dodo"yield TRUE when ompared with the equals operator. Beause the rowing oerion is not allowed informul�, the operator is delared in the standard prelude for mixed modes (suh as REAL and INT).The onverse of = is /= (not equal). So the formula3 /= 2yields TRUE, and"r" /= "r"yields FALSE. An alternative representation of /= is NE. The priority of both = and /= is 4. The operandsof = and /= an be any ombination of values of mode INT and REAL. No widening takes plae, theoperators being delared for the mixed modes.The ordering operators <, >, <= and >= an be used to ompare values of modes INT, REAL, CHAR and[℄CHAR in the same way as = and /=. They are read \less than", \greater than", \less than or equal to"and \greater than or equal to" respetively. The formula3 < 3.1yields TRUE.If the identi�ers b and are delared as having mode CHAR, then the formula < bwill yield the same value asABS < ABS band similarly for the operator >. The operators <= and >= an both be used with equal values. Forexample,24 <= 24.0yields TRUE.For values of mode [℄CHAR, the formula"abd" > "ab"yields TRUE. Two values of mode [℄CHAR of di�erent length an be ompared. For example, both

4.4. COMPOUND BOOLEAN FORMUL� 33"aaa" <= "aaab"and"aaa" <= "aaaa"yield TRUE. Alternative representations for these operators are LT and GT for < and > and LE and GE for<= and >= respetively. The priority of all four ordering operators is 5.Note that apart from values of mode [℄CHAR, no operators are de�ned in the standard prelude formultiples.
Exerises4.1 What is the value of eah of the following formul�?(a) ABS NOT TRUE(b) 3.4 + ABS TRUE() -3.5 <= -13.4(d) 2e10 >= 3e9(e) "abd" > "ab"4.2 In the ontext of these delarations[℄INT i1 = (2,3,5,7);[℄CHAR t = "uvwxyz"what is the value of eah of the following?(a) UPB i1 < UPB t(b) t[2:4℄ >= t[2:3℄() i1[3℄ < UPB t[2:℄
4.4 Compound Boolean formul�Formul� yielding TRUE or FALSE an be ombined. For example, here is a formula whih tests whether �lies between 3 and 4pi > 3 & pi < 4whih yields TRUE. The priorities of <, > and & are so de�ned that parentheses are unneessary in thisase. Likewise, we may write"ab" < "aa" OR 3 < 2whih yields FALSE. More ompliated formul� an be written:3.4 > 2 & "a" < "" OR "b" >= "ab"whih yields TRUE. Beause the priority of the operator & is higher than the priority of OR, the & in theabove formula is elaborated �rst. The order of elaboration an be hanged using parentheses.There does not seem muh point to these formul� sine everything is known beforehand, but all willbeome lear in the next hapter.Compound Boolean formul� an be onfusing. Being aware of the onverse of a ompound onditionhelps you to ensure you have onsidered all possibilities. For example, the onverse of the formulaa < b & = dis the formulaa >= b OR /= dOne of the formul� would yield TRUE and the other FALSE.

34 CONTENTSExerises4.3 What is the value of eah of the following:(a) NOT ODD 3 OR 3 < 4(b) 3 > 2 & (5 > 12 OR 7 <= 8)() (TRUE OR FALSE) AND (FALSE OR TRUE)(d) NOT("d">"e")ANDFALSEORNOT(ODD 5 & 3.6e12 < 0)(e) 3<4 & 4<5 & 5<6 & 6>74.4 For eah ondition, write out its onverse:(a) FALSE(b) 4 > 2() a > b AND b > (d) x = y OR x = z
4.5 Conditional lausesNow we an disuss lauses whih hoose between alternatives. We have met the enlosed lause onsistingof at least one phrase enlosed by BEGIN and END (or parentheses) in the struture of an Algol 68 program,and also in the DO : : : OD loop of a FOR or FORALL lause. The part of the enlosed lause inside theparentheses (or BEGIN and END) is alled a serial lause beause, historially, sequential elaborationused to be alled \serial elaboration". The value of the serial lause is the value of the last phrase whihmust be a unit.There are two kinds of lause whih enable programs to modify their behaviour. They are alledhoie lauses. The onditional lause allows a program to elaborate ode depending on the value ofa boolean serial lause, alled a BOOL enquiry lause. Here is a simple example:IF salary < 5000THEN 0ELSE (salary-allowanes)*rateFIThe enquiry lause onsists of the formulasalary < 5000whih yields a value of mode BOOL. Two serial lauses, both ontaining a single unit an be elaborated. Ifthe value yielded by salary is less than 5000, the value 0 is yielded. Otherwise, the program alulatesthe tax. That is, if the BOOL enquiry lause yields TRUE, the serial lause following THEN is elaborated,otherwise the serial lause following ELSE is elaborated. The FI following the ELSE serial lause must bethere.The enquiry lause and the serial lauses may onsist of single units or possibly delarations andformul� and loops. However, the last phrase in an enquiry lause must be a unit yielding BOOL. Therange of any identi�ers delared in the enquiry lause extends to the serial lauses as well. The range ofany identi�ers delared in either serial lause is limited to that serial lause. For example, assuming thata and i are predelared, we ould write:IF INT ai = a[i℄; ai < 0THEN print((ai," is negative",newline))ELSE print((ai," is non-negative",newline))FIThe onditional lause an be written wherever a unit is permitted, so the previous example ould alsobe written

4.5. CONDITIONAL CLAUSES 35INT ai = a[i℄;print((ai,IF ai < 0THEN "is negative"ELSE "is non-negative"FI,newline))The value of eah of the serial lauses following THEN and ELSE in this ase is [℄CHAR. Here is an examplewith a onditional lause inside a loop:FOR i TO 100DO IF i MOD 10 = 0THEN print((i,newline))ELSE print((i,blank))FIODThe ELSE part of a onditional lause an be omitted. Thus the above example ould also be writtenFOR i TO 100DO print((i,blank));IF i MOD 10 = 0 THEN print(newline) FIODThe whole onditional lause an appear as a formula or as an operand. The short form of the lause isoften used for this: IF and FI are replaed by (and) respetively, and THEN and ELSE are both replaedby the vertial bar |1. For example, here is an identity delaration whih assumes a previous delarationfor x:REAL xx = (x < 3.0|x**2|x**3)If the ELSE part is missing then its serial lause is regarded as ontaining the single unit SKIP. In thisase, SKIP will yield an unde�ned value of the mode yielded by the THEN serial lause. This is an exampleof balaning (explained in hapter 10). This is partiularly important if a onditional lause is used asan operand.2Sine the right-hand side of an identity delaration is in a strong ontext, widening is allowed. Thus,in REAL x = (i < j|3|4)whihever value the onditional lause yielded would be widened to a value of mode REAL.Sine the enquiry lause is a serial lause, it an have any number of phrases before the THEN. Forexample:IF [℄CHAR line ="a growing gleam glowing green";INT sz = UPB line - LWB line + 1;sz > 35THEN...Conditional lauses an be nestedIF a < 4.1THENIF b >= 35THEN print("yes")ELSE print("no")1Some editors insert a di�erent harater when you press the key marked |. Chek that the harater produedis aepted by the Algol 68 ompiler.2The Ctrans ompiler generates ode whih will ause a run-time fault if your program tries to exeute anELSE part whih has been omitted. You an get around that bug by expliitly writing ELSE SKIP.

36 CONTENTSFIELSEIF <= 20THEN print("perhaps")ELSE print("maybe")FIFIThe ELSE IF in the above lause ould be replaed by ELIF, and the �nal FI FI with a single FI, giving:IF a < 4.1THENIF b >= 35THEN print("yes")ELSE print("no")FIELIF <= 20THEN print("perhaps")ELSE print("maybe")FIHere is another ontrated example:INT p = IF = "a" THEN 1ELIF = "h" THEN 2ELIF = "q" THEN 3ELSE 4FIThe range of any identi�er delared in an enquiry lause extends to any serial lause beyond itsdelaration but within the overall onditional lause. Consider this onditional lause:IF INT p1 = ABS(="a"); p1=1THEN p1+2ELIF INT p2 = p1-ABS(="h"); p2 = -1THEN INT i1 = p1+p2; i1+p1ELSE INT i2 = p1+2*p2; i2-p2FIThe range of p1 extends to the enlosing FI; likewise the range of p2. The ranges of i1 and i2 areon�ned to their serial lauses.In the abbreviated form, |: an be used instead of ELIF. For example, the above identity delarationfor p ould be writtenINT p = (="a"|1|:="h"|2|:="q"|3|4)In both identity delarations, the opening parenthesis is an abbreviated symbol for IF.Sometimes it is useful to inlude a onditional lause in the IF part of a onditional lause. In otherwords, a BOOL enquiry lause an be a onditional lause yielding a value of mode BOOL. Here is anexample with a and b predelared with mode BOOL:IF IF aTHEN NOT bELSE bFITHEN print("First possibility")ELSE print("Seond possibility")FI
4.5.1 Pseudo-operatorsAs was mentioned in hapter 2, both the operands of an operator are elaborated before the operatoris elaborated. The Ctrans ompiler implements the pseudo-operator ANDTH whih although it lookslike an operator, has its right-hand operand elaborated only if its left-hand operand yields TRUE. Com-pare ANDTH (whih is read \and then") with the operator AND. The priority of ANDTH is 1. The phraseIF p ANDTH q THEN ... FI is equivalent to

4.6. MULTIPLE CHOICE 37IF IF NOT p THEN FALSEELIF q THEN TRUEELSE FALSEFITHEN ...FIYou should be hary of using ANDTH in a ompound boolean expression. For example, given theonditionUPB s > LWB sANDTHs[UPB s℄="-"AND(CHAR =s[UPB s-1℄; >="a" & <="z")the intention of the ompound ondition is to determine whether a terminating hyphen is preeded bya lower-ase letter. Clearly, testing for a harater whih preedes the hyphen an only be elaborated ifthere are at least two haraters in s. The �rst boolean formula (the left operand of ANDTH) ensures thatthe seond formula (the right operand of ANDTH) is only elaborated if s identi�es at least two haraters.Unfortunately, beause the priority of AND is greater than the priority of ANDTH and beause both operandsof an operator must be elaborated before the operator is elaborated, the right-hand operand of AND willbe elaborated whatever the value of the left operand of ANDTH. In order to ahieve the above aim, theompound ondition should be writtenUPB s > LWB sANDTH(s[UPB s℄="-"AND(CHAR =s[UPB s-1℄; >="a" & <="z"))Note the additional parentheses whih ensure that the boolean formula ontaining AND is treated as awhole as the right-hand operand of the pseudo-operator ANDTH.There is another pseudo-operator OREL (read \or else") whih is similar to the operator OR exept thatits right-hand operand is only elaborated if its left-hand operand yields FALSE. Like ANDTH, the priority ofOREL is 1. The remarks given above about the use of ANDTH in ompound boolean formul� apply equallyto OREL.Neither ANDTH nor OREL are part of Algol 68.
Exerises4.5 Write a onditional lause whih tests whether a REAL value is less than �, and prints "Yes" if it isand "No" otherwise.4.6 Write a onditional lause inside a loop lause to display the �rst 96 multiples of 3 (inluding 3)in lines of 16. Use the operator MOD for the test.4.7 Replae the operator OREL in the following program with a suitable onditional lause:PROGRAM p CONTEXT VOIDUSE standardIF INT a=3, b=5, =4;a > b OREL b > THEN print("Ok")ELSE print("Wrong")FIFINISH
4.6 Multiple hoieSometimes the number of hoies an be quite large or the di�erent hoies are related in a simple way.For example, onsider the following onditional lause:

38 CONTENTSIF n = 1THEN ation1ELIF n = 2THEN ation2ELIF n = 3THEN ation3ELIF n = 4THEN ation4ELSE ation5FIThis sort of hoie an be expressed more onisely using the ase lause in whih the boolean enquirylause is replaed by an integer enquiry lause. Here is the above onditional lause rewritten using aase lause:CASE nIN ation1,ation2,ation3,ation4OUTation5ESACwhih ould be abbreviated as(n|ation1,ation2,ation3,ation4|ation5)Notie that ation1, ation2, ation3 and ation4 are separated by ommas (they are not termina-tors). Eah of ation1, ation2 and ation3 is a unit, so that if you want more than one phrase foreah ation, you must make it an enlosed lause by enlosing the ation in parentheses (or BEGIN andEND). If the INT enquiry lause yields 1, ation1 is elaborated, 2, ation2 is elaborated and so on. Ifthe value yielded is negative or zero, or exeeds the number of ations available, ation5 in the OUT partis elaborated. The OUT part is a serial lause so no enlosure is required if there is more than one unit.In the following ase lause, the seond unit is a onditional lause to show you that any piee ofprogram whih happens to be a unit an be used for one of the ases:CASE i IN 3,(x>3.5|4|-2),6 OUT i+3 ESACThe �rst ation yields 3, the seond yields 4 if x exeeds 3.5 and -2 otherwise, and the third ationyields 6.Sometimes the OUT lause onsists of another ase lause. For example,CASE n MOD 4IN print("ase 1"),print("ase 2"),print("ase 3")OUTCASE (n-10) MOD 4IN print("ase 11"),print("ase 12"),print("ase 13")OUTprint("other ase")ESACESAC

4.6. MULTIPLE CHOICE 39Just as with ELIF in a onditional lause, OUT CASE : : : ESAC ESAC an be replaed by OUSE : : : ESAC. Sothe above example an be rewrittenCASE n MOD 4IN print("ase 1"),print("ase 2"),print("ase 3")OUSE (n-10) MOD 4IN print("ase 11"),print("ase 12"),print("ase 13")OUT print("other ase")ESACHere is a ase lause with embedded ase lauses:CASE ommandIN ation1,ation2,(subommand1|subation1,subation2|subation3)OUSE subommand2IN subation4,subation5,subation6OUTsubation7ESACCalendar omputations, whih are notoriously diÆult, give examples of ase lauses:INT days = CASE month IN31,IF year MOD 4 = 0&year MOD 100 /= 0ORyear MOD 400 = 0THEN 29ELSE 28FI,31,30,31,30,31,31,30,31,30,31OUT -1ESACAnd here is one in dealing ards:[℄CHAR suit=(i|"spades","hearts","diamonds","lubs"|"")

40 CONTENTSLike the onditional lause, if you omit the OUT part, the ompiler assumes that you wrote OUT SKIP.In the following example, when i is 4, nothing gets printed:3PROGRAM prog CONTEXT VOIDUSE standardFOR i TO 5DO print((i MOD 4|"a","g","r"))ODFINISH
Exerises4.8 What is wrong with the following identity delaration, assuming that p has been predelared as avalue of mode BOOL:INT i = (p|1,2,3|4)4.9 Write a program onsisting solely of a ase lause whih uses the SIGN operator to give threedi�erent ations depending on the sign of a number of mode REAL.
4.7 SummaryThere are two values having mode BOOL. Operators with operands of mode BOOL are predelared in thestandard prelude. A onditional lause uses an enquiry lause yielding a value of mode BOOL. A aselause uses an enquiry lause yielding a value of mode INT. Both onditional and ase lauses an beabbreviated. Extended onditional and ase lauses an be written using ELIF and OUSE respetively.Conditional lauses and ase lauses are sometimes grouped together and termed hoie lauses. Choielauses are examples of enlosed lauses, and are units.Here are some exerises whih test you on the material overed in this hapter.
Exerises4.10 Whih values have the mode BOOL?4.11 What is the value of eah of the following formul�?(a) 3 < 4(b) 4.0 >= 0.4e1() 2 < 3 & 3 > 2(d) 11 < 2 OR 10 < ABS TRUE(e) NOT TRUE & ABS "A" < ABS "D"(f) NOT(3 > 2 & 3 > 1 OR 10 < 6)4.12 What is wrong with the following (m is predelared):IF m>4|print("ok")ELSE print(".")ESAC4.13 What would be displayed on your sreen by the following:FOR i TO 10 DO print(ODD i) OD4.14 Use a onditional lause to print "Units" if m (whih has mode INT) is less than 10, "Tens" if itis less than 100, "Hundreds" if it is less than 1000 and "Too big" otherwise.4.15 Use a ase lause to print the value of a ard in words. For example, if it is a queen, print "Queen".

3The Ctrans ompiler objets to this with a run-time error. Ensure that at least OUT SKIP ours in everyase lause.

Chapter 5
Names
Previous hapters dealt with values that have always been known when the program was written. If aprogram is to be able to reat to its environment, it must be able to onvert external values into internalvalues and then manipulate them. Analogous to print, the onversion an be done by read whihonstruts internal values from external harater sequenes. In order to manipulate suh onvertedvalues, we need some way of referring to them. Algol 68 an generate values whih an refer to othervalues. This kind of value is alled a name. Although a name has a value, it is quite di�erent from thevalue referred to. The di�erene is rather like your name: your name refers to you, but is quite distintfrom you.For example, suppose read is presented with the harater sequene \123G" and is expeting aninteger. read will onvert the digits into the number \one hundred and twenty-three", held in a speialinternal form alled \2's-omplement binary". To manipulate that value, a name must be generated torefer to it. The mode of a name is alled a \referene mode".A name whih an refer to a value of mode INT is said to have the mode REF INT. Likewise, we anreate names with modesREF BOOL REF[℄CHAR REF[,℄REALAs you an see, REF an preede any mode. It an also inlude a mode already ontaining REF. Thus itis possible to onstrut modes suh asREF REF INTREF[℄REF REALREF[℄REF[℄CHARREF REF REF BOOLbut we shall defer disussion of these latter modes to hapter 11.Names are reated using generators. There are two kinds of generator: loal and global. The extentto whih a name is valid is alled its sope. The sope of a loal name is restrited to the smallestenlosing lause whih ontains delarations. The sope of a global name extends to the whole program.In general, values have sope, identi�ers have range. We shall meet global generators in hapters 6 and 11.The phrase LOC INT generates a name of mode REF INT whih an refer to a value of mode INT.1 TheLOC stands for loal. It is quite reasonable to write the phraseread(LOC INT)Unfortunately, the reated name is an anonymous name in the sense that it has no identi�er so thatone the read has ompleted, the name disappears. We need some way of linking an identi�er with thegenerated name so that we an aess the name after read has �nished. This is done with an identitydelaration. Here is an identity delaration with a loal generator:REF INT a = LOC INTThe value identi�ed by a has the mode REF INT beause the phrase LOC INT generates a name of modeREF INT. Thus it is a name, and it an refer to a value (as yet unde�ned) of mode INT (the value referredto always has a mode of one less REF). So now, we an write1Historially, programmers were more interested in the value referred to than the name (Algol 68 was the �rstlanguage to distinguish learly between a name and the value referred to), so the generator is followed by themode of the value to whih the name will refer. 41

42 CONTENTSread(a)After that phrase has been elaborated, a identi�es a name whih now refers to an integer.Names an also be delared using a predelared name on the right-hand side of the identity delaration.Here is another identity delaration using a:REF INT b = aIn this delaration, b has the mode REF INT so it identi�es a name. a also has the mode REF INT andtherefore also identi�es a name. The identity delaration makes b identify the same name as a. Thismeans that if the name identi�ed by a refers to a value, then the name identi�ed by b (the same name)will always refer to the same value.
5.1 AssignmentThe proess of ausing a name to refer to a value is alled assignment. Using the identi�er delaredabove, we an writea:=3We say \a assign 3". Note that the mode of the name identi�ed by a is REF INT, and the mode of thedenotation 3 is INT. After the assignment, the name identi�ed by a refers to the value denoted by 3.Suppose now we want the name identi�ed by a to refer to the value denoted by 4 (this may seempedanti, but as you will see below, it is neessary to distinguish between the denotation of a value andthat value itself). We writea:=4Let us juxtapose these two assignments:a:=3;a:=4If you look arefully at the two assignments, a number of things spring to mind. Firstly, an assignmentonsists of three parts: on the left-hand side is an identi�er of a name, in the middle is the assignmenttoken, and on the right-hand side is a denotation. Seondly, the left-hand side of the two assignmentsis the same identi�er: a. Sine the identi�er is the same, the value must be the same.2 That is, in thetwo assignments, a is synonymous with a value whih does not hange. The value is a name and has themode REF INT (in this ase). Thus the value of the left-hand side of an assignment is a name.Thirdly, the values on the right-hand side of the two assignments di�er. Firstly, a is assigned thevalue denoted by 3, then (after the go-on symbol), a is assigned the value denoted by 4.After the seond assignment, a refers to 4. Of ourse, when we say \a refers to", we mean \the nameidenti�ed by a refers to". What has happened to the value 3? To understand this, we need to look alittle more losely at what we mean by the value 3. The denotation 3 represents the number three. Now,of ourse, the number three exists independently of a omputer program. When the digit 3 is elaboratedin an Algol 68 program, an instane of the number three is reated. Likewise, elaborating the digit 4reates an instane of the number four. When a is assigned an instane of the value four, the instaneof the value three disappears. This property of assignment is very important. Beause an assignmentauses data to disappear, it is dangerous to use. You have to be areful that the data whih disappearsis not data you wanted to keep. So the instane of a value an disappear, but the value still exists (likethe number three).It is worth reiterating that however many times a name is assigned a value, the value of the nameremains unhanged. It is the value referred to whih is superseded. Outwith the realm of omputers,if an individual is assigned to a department of an organisation, learly the department hasn't hanged.Only its members have hanged.When an identi�er for a name has been delared, the name an be made to refer to a value immediatelyafter the delaration. For exampleREF REAL x = LOC REAL := pi2Provided that both identi�ers appear in the same range.

5.1. ASSIGNMENT 43where pi is the value delared in the standard prelude. LOC REAL generates a name of mode REF REAL.The right-hand side of an assignment is a strong ontext so widening is allowed. Thus we an writex:=3where the 3 is widened to 3.0 before being assigned to x. In reality, the value denoted by 3 is not hangedto the value denoted by 3.0: it is replaed by the new value. There is an important priniple here. It isalled the \priniple of value integrity": one an instane of a value has been reated, it does not hangeuntil suh time as it disappears. Thus, in Algol 68, every value is a onstant. Every oerion de�ned inAlgol 68 replaes a value of one mode with a related value of another mode.5.1.1 Copying valuesHere is another identity delaration with an initial assignment:REF INT = LOC INT := 5Using the identi�er a delared earlier, we an writea:=and say \a assign ". The name on the left-hand side of the assignment has mode REF INT, so a valuewhih has mode INT is required on the right-hand side, but what has been provided is a name with modeREF INT. Fortunately, there is a oerion whih replaes a name with the value to whih it refers. It isalled dereferening and is allowed in a strong ontext. In the above assignment, the name identi�edby is dereferened yielding an instane of the value �ve whih is a opy of the instane referred to by .That new instane is assigned to a. It is important to remember that the proess of dereferening yieldsa new instane of a value.Try the following program:PROGRAM assign CONTEXT VOIDUSE standardBEGINREF INT a = LOC INT,b = LOC INT:=7;print(("b=",b,newline));print("Please key 123G:"); read(b);a:=b;print(("a now refers to",a,newline,"b now refers to",b,newline))ENDFINISHThis should onvine you that dereferening involves opying.Every onstrut in Algol 68 has a value exept an identity delaration. We said above that the valueof the left-hand side of an assignment is a name. In fat, the value of the whole of the assignment isthe value of the left-hand side. Beause this is a name, it an be used on the right-hand side of anotherassignment. For example:a:=b:=You should note that an assignment is not an operator. The assignments are performed from right to left :�rstly, is dereferened and the resulting value assigned to b. Then b is dereferened and the resultingvalue is assigned to a.5.1.2 Assigning operatorsThe following assignmenta:=adoes not do anything useful, but serves to remind us that the name identi�ed by a on the right-hand sideof the assignment is dereferened, and the resulting value is assigned to a. However, a now refers to anew instane of the value it previously referred to and the previous instane has now disappeared.Now onsider the phrases

44 CONTENTS:=5; a:=+1The right-hand side of the seond assignment is now a formula. The name identi�ed by is now in a�rm ontext (it is the left-operand of the + operator). Fortunately, dereferening is also allowed in a�rm ontext. Thus the value of (a name with mode REF INT) is replaed in the formula by a opy ofthe value to whih it refers (5), whih is added to 1, and a is assigned the new value (6). We say \a isassigned plus one".What about the phrasea:=a+1In exatly the same way as the previous phrase, the name on the right-hand side is dereferened, the newvalue reated is added to 1, and then the same name is assigned the new value.One of the features of assignment is that the elaboration of the two sides is performed ollaterally.This means that the order of elaboration is unde�ned. This does not matter in the last example beausethe value of the name identi�ed by a is the same on the two sides of the assignment. Remember that thevalue of a is a name with mode REF INT. It is the value to whih a referred whih was supereded.Assignments of this kind are so ommon that a speial operator has been devised to perform them.The above assignment an be writtena+:=1and is read \a plus-and-assign one". The operator has the alternative representation PLUSAB.3 Note thatthe left-hand operand must be a name. The right-hand operand must be any unit whih yields a valueof the appropriate mode in a �rm ontext.The operator +:= is de�ned for a left-operand of mode REF INT or REF REAL, and a right-operand ofmode INT or REAL respetively. The yield of the operator is the value of the left-operand (the name).If the left-operand has mode REF REAL, the right-operand an also have mode INT. No widening oursin this ase, the operator having been delared for operands having these modes. Beause the operatoryields a name, that name an be used as the operand for another assigning operator. For examplex +:= 3.0 *:= 4.0whih results in x referring to 4.0*(x+3.0). The formula is elaborated in left-to-right order beause theoperators have the same priority. The operators are more eÆient than writing out the assignments infull.There are four other operators like +:=. They are -:=, *:=, /:=, %:= and %*:=. Their alternativerepresentations are respetively MINUSAB, TIMESAB, DIVAB, OVERAB and MODAB. The operators OVERAB andMODAB are only delared for operands with modes REF INT and INT. The priority of all the operators is 1.The assignment operators are operators, not assignments (although they perform an assignment), sothat the previous example is not an assignment, but a formula.The right-hand side of an assignment an be any unit whih yields a value whose mode has one lessREF than the mode of the name on the left-hand side. Names whose mode ontains more than one REFwill be onsidered in hapter 11.
Exerises5.1 The following identity delarationsREF CHAR s = LOC CHAR,REF INT i = LOC INT,REF REAL r = LOC REALhold in this and the following exerises.4 What is the mode of i?5.2 After the assignment r:=-2.7 has been elaborated, what is the mode of the value referred to byr?5.3 What is wrong with the assignment i:=r and how would you orret it?3PLUSAB stands for \plus-and-beomes". When Algol 68 was �rst designed, people were more onerned withthe values referred to than the names, so PLUSAB was intended to desribe what happens to the value referredto. Bearing in mind the priniple of value integrity, the value referred to by a does not beome anything, but isreplaed by its value plus 1.4The Ctrans ompiler requires that you write semiolons instead of ommas to separate these three delarations.

5.2. ASSIGNMENTS IN FORMUL� 455.2 Assignments in formul�Sine an assignment yields a name, it an be used in a formula. However, the assignment must beonverted into an enlosed lause (using parentheses or BEGIN and END) ensuring that the assignment iselaborated �rst. For example, in3*(a:=+4)+2if refers to 3, the value of the formula will be 23 with mode INT, a will refer to 7, the value of theassignment is a name of mode REF INT and will still refer to 3. Remember that assignment is not anoperator.Here is an example of two assignments in a onditional lause:IF a<2 THEN x:=3.2 ELSE x:=-5.0 FIThis an be written with greater eÆieny asx:=IF a < 2 THEN 3.2 ELSE -5.0 FIThe left-hand side of an assignment has a soft ontext. In a soft ontext, dereferening is not allowed(it is the only ontext in whih dereferening is not allowed). In the following phrase, the onditionallause on the left yields a name whih is then assigned the value of the right-hand side:IF a < 2 THEN x ELSE y FI := 3.5In the next assignment, a onditional lause appears on both sides of the assignment:(a<2|x|y):=(b<2|x|y)The result depends on the values referred to by both a and b as muh as on the values referred to byboth x and y.
Exerises5.4 What is wrong with the following program fragment?REF REAL x = LOC REAL,y = LOC REAL:=3.5;y:=4.2+x5.5 If x refers to 3.5 and y refers to -2.5, what is the mode and value yielded by the following phrases:(a) x:=-y(b) ABS y5.6 What does x refer to afterx:=1.5; x PLUSAB 2.0 DIVAB 3.0(try it in a small program).
5.3 Multiple namesHere is an identity delaration for a name whih an refer to a multiple::REF[℄INT i7 = LOC[1:7℄INTThere are two things to notie about this delaration. Firstly, the mode on the left-hand side is known asa formal-delarer. It says what the mode of the name is, but it says nothing about how many elementsthere will be in any multiple to be assigned, nor what its bounds will be. All the identity delarationsfor multiples in hapter 3 used formal-delarers on the left-hand side. In fat, only formal-delarers areused on the left-hand side of any identity delaration.Seondly, the generator on the right-hand side is an atual-delarer. It spei�es how many elementsan be assigned. In fat, the trimmer represents the bounds of the multiple whih an be assigned. Ifthe lower bound is 1 it may be omitted, so the above delaration ould well have been writtenREF[℄INT i7 = LOC[7℄INTwhih an be read as \ref row of int i7 equals lo row of seven int". The bounds of a multiple do nothave to start from 1 as we saw in hapter 3. In this identity delaration

46 CONTENTSREF[℄INT i7 at 0 = LOC[0:6℄INTthe bounds of the multiple will be [0:6℄.
5.4 Assigning to multiple namesWe an assign values to the elements of a multiple either individually or olletively.5.4.1 Individual assignmentYou may remember from hapter 3 that we an aess an individual element of a multiple by speifyingthe subsript(s) of that element. For example, suppose that we wish to aess the third element of i7as delared in the last setion. The rules of the language state that a subsripted element of a multiplename is itself a name. In fat, the elaboration of a slie of a multiple name reates a new name. Thusthe mode of i7[3℄ is REF INT. We an assign a value to i7[3℄ by plaing the element on the left-handside of an assignment:i7[3℄:=4Unless you de�ne a new identi�er for the new name, it will ease to exist after the above assignment hasbeen elaborated (see below for examples of this).Sine eah element of i7 has an assoiated name (reated by sliing) of mode REF INT, it an be usedin a formula:i7[2℄:=3*i7[i7[1℄℄ + ENTIER(4.0/i7[3℄)As you an see, an element was used to ompute a subsript. It has been presumed that the valueobtained after dereferening lies between 1 and 7 inlusive. If this were not so, a run-time error would begenerated. In the above assignment, all three elements on the right-hand side of the assignment wouldbe dereferened before being used in the formula. Note that subsripting (or sliing or trimming) bindsmore tightly than any operator. Thus, in the last term in the above example, i7 would be slied �rst,then the yielded name dereferened, and �nally, the new value would be divided into 4.0.Here is a FOR loop whih assigns a value to eah element of i7 individually:FOR e FROM LWB i7 TO UPB i7DO i7[e℄:=e**3ODUsing the bounds interrogation operators is useful beause:1. The fat that the lower bound of i7 is 1 is masked, but the formula LWB i7 ensures that the orretvalue is used.2. If the bounds of i7 are hanged when the program is being maintained, the loop lause an remainunhanged. This simpli�es the maintenane of Algol 68 programs.3. The ompiler an omit bounds heking. For large multiples, this an speed up proessing onsid-erably.Here is a program whih uses a name whose mode is REF[℄BOOL. It omputes all the prime numbersless than 1000 and is known as Eratosthenes' Sieve:PROGRAM sieve CONTEXT VOIDUSE standardBEGININT size = 1000;REF[℄BOOL flags = LOC[2:size℄BOOL;FOR i FROM LWB flags TO UPB flagsDO flags[i℄ := TRUEOD;

5.4. ASSIGNING TO MULTIPLE NAMES 47
FOR i FROM LWB flags TO UPB flagsDO IF flags[i℄THENFOR kFROM 2*i BY i TO UPB flagsDO flags[k℄ := FALSECO Remove multiples of i COODFIOD;FOR i FROM LWB flags TO UPB flagsDO IF flags[i℄ THEN print((i,blank)) FIODENDFINISH5.4.2 Colletive assignmentThere are two ways of assigning values olletively. Firstly, it an be done with a row-display or a [℄CHARdenotation. For example, using the delaration of i7 above:i7:=(4, -8, 11, ABS "K",ABS TRUE, 0, ROUND 3.4)Notie that the bounds of both i7 and the row-display are [1:7℄. In the assignment of a multiple,the bounds of the multiple on the right-hand side must math the bounds of the multiple name on theleft-hand side. If they di�er, a fault is generated. If the bounds are known at ompile-time, the ompilerwill generate an error message. If the bounds are only known at run-time (see setion 5.8 on dynaminames), a run-time error will be generated. The bounds an be hanged using a trimmer or the � symbol(or AT). See hapter 3 for details.The seond way of assigning to the elements of a multiple olletively is to use an identi�er of amultiple with the required bounds. For example:[℄INT i3 = (1,2,3);REF[℄INT k = LOC[1:3℄INT := i3The right-hand side has been assigned to the multiple name k.As mentioned above, parts of a multiple an be assigned using sliing or trimming. For example, giventhe delarationsREF[,℄REAL x = LOC[1:3,1:3℄REAL,y = LOC[0:2,0:2℄REALand the assignmentx:=((1,2,3),(4,5,6),(7,8,9))we an writey[2,0℄:=x[3,2℄The multiple name y is slied yielding a name of mode REF INT. Then5 the multiple name x is sliedalso yielding a name of mode REF INT whih is then dereferened yielding a new instane of the valueto whih it refers (8) whih is then assigned to the new name on the LHS of the assignment. Here is anidentity-delaration whih makes the new name permanent:5But beause the two sides of an assignment are elaborated ollaterally, the RHS might be elaborated beforethe LHS or even in parallel.

48 CONTENTSREF INT y20 = y[2,0℄; y20:=x[3,2℄whih has its uses (see below).Here are some examples of sliing with (implied) multiple assignments:y := x[�0,�0℄;y[2,℄ := x[1,�0℄;y[,1℄ := x[2,�0℄In the �rst example, the right-hand side is a slie of a name whose mode is REF[,℄REAL. Beause the sliehas no trimmers its mode is also REF[,℄REAL. Using the � symbol, the lower bounds of both dimensionsare hanged to 0, ensuring that the bounds of the multiple name thus reated math the bounds of themultiple name y on the left. After the assignment (and the dereferening), y will refer to a opy of themultiple x and the name reated by the sliing will no longer exist.In the seond assignment, the multiple x has been slied yielding a name whose mode is REF[℄REAL.It refers, in fat, to the �rst \row" of x. The �0 ensures that the lower bound of the seond dimension ofx is 0. The left-hand side yields a name of mode REF[℄REAL whih refers to the last \row" of the multipley. The name on the right-hand side is dereferened. After the assignment y[2,℄ will refer to a opy ofthe �rst \row" of x and the name produed by the sliing will no longer exist.In the third assignment, the seond \row" of x is assigned to the seond \olumn" of y. Again, the�0 onstrution ensures that the lower bound of the seond dimension of x is zero. After the assignment,the name reated by the sliing will no longer exist.Notie how the two delarations for x and y have a ommon formal-delarer on the left-hand side,with a omma between the two delarations. This is a ommon abbreviation. The omma means that thetwo delarations are elaborated ollaterally (and on a parallel proessing omputer, possibly in parallel).It was stated in the setion on names that names an be put on the right-hand side of an identitydelaration. This is partiularly useful for aessing elements of rows. Consider the following:REF[℄INT r = LOC[100℄INT;FOR i FROM LWB r TO UPB r DO r[i℄:=i*i OD;FOR i FROM LWB r TO UPB r-1DO IF REF INT ri=r[i℄, ri1=ri[i+1℄;ri > ri1THEN ri:=ri1ELSE ri1:=riFIODThis is another example of optimisation, but in this ase, we need names beause the THEN and ELSElauses ontain assignments. Both ri and ri1 are used thrie in the onditional lause, but the multipler is only subsripted twie in eah loop. In the ondition following the IF, both ri and ri1 would bedereferened (but not in the identity delarations). The values of ri and ri1 remain onstant: the namesare assigned new values. You an see from the identity delarations that the modes of the names ri andri1 are both REF INT.Here is a program fragment whih uses a REF[℄REAL identity delaration for optimisation:REF[,℄REAL m = LOC[3,4℄REAL; read(m);FOR i FROM 1 LWB m TO 1 UPB mDO REF[℄REAL mi = m[i,℄;FOR j FROM LWB mi TO UPB miDO REF REAL mij = mi[j℄;mij*:=mijODOD;print((m,newline))

5.5. FLEXIBLE NAMES 49As you an see, read behaves just like print in that a whole multiple an be read at one go (see hapter 3for the use of print with multiples). The only di�erene between the way read is used and the wayprint is used is that the values for read must be names (or identi�ers of names) whereas print an usedenotations or identi�ers of names or identi�ers whih are not names.
Exerises5.7 After the assignments of x to y disussed above, what is the �nal value of y (areful)?5.8 Given these delarationsREF[,℄INT m = LOC[3:5,-2:0℄INT,REF[℄INT n = LOC[1:3℄INT:=(1,2,3)

(a) What is wrong with the assignment m[1,℄:=n?(b) How would you assign the seond \olumn" of m to its third \row"?5.9 Modify Eratosthenes' Sieve to ompute the 365th prime.
5.5 Flexible namesIn the previous setion, we delared mutliple names. The bounds of the multiple to whih the name anrefer are inluded in the generator. In subsequent assignments, the bounds of the new multiple to beassigned must be the same as the bounds given in the generator. In Algol 68, it is possible to delarenames whih an refer to a multiple of any number of elements (inluding none) and, at a later time, anrefer to a di�erent number of elements. They are alled exible names. Here is an identity delarationfor a exible name:REF FLEX[℄INT fn = LOC FLEX[1:0℄INTThere are several things to note about this delaration. Firstly, the mode of the name is not REF[℄INT,but REF FLEX[℄INT. The FLEX means that the bounds of the multiple to whih the name an refer andi�er from one assignment to the next. Seondly, the bounds of the name generated at the time of thedelaration are [1:0℄. Sine the upper bound is less than the lower bound, the multiple is said to beat; in other words, it has no elements at the time of its delaration6. Thirdly, FLEX is present on bothsides of the identity delaration (but in the last setion of this hapter we shall see a way round that).We an now assign multiples of integers to fn:fn:=(1,2,3,4)The bounds of the multiple to whih fn now refers are [1:4℄. Again, we an writefn:=(2,3,4)Now the bounds of the multiple to whih fn refers are [1:3℄. We an even writefn:=7in whih the right-hand side will be rowed to yield a one-dimensional multiple with bounds [1:1℄, andfn:=()giving bounds of [1:0℄.In the original delaration of fn the bounds were [1:0℄. The ompiler will not ignore any boundsother than [1:0℄, but will generate a name whose initial bounds are those given. So the delarationREF FLEX[℄INT fn1 = LOC FLEX[1:4℄INT6The Revised Report mentions a \ghost element" in this ontext (see setion 10.11 for details)

50 CONTENTSwill ause fn1 to have the bounds [1:4℄ instead of [1:0℄.The lower bound does not have to be 1. In this example,REF[℄INT m1 = LOC[-1:1℄INT;FOR i FROM LWB m1 TO UPB m1 DO m1[i℄:=i+3 OD;REF FLEX[℄INT f1 = LOC FLEX[1:0℄INT := m1the bounds of f1 after the initial assignment are [-1:1℄.If a exible name is slied or trimmed, the resulting name is alled a transient name beause it anonly exist so long as the exible name stays the same size. Suh names have a restrited use to avoid theprodution of names whih ould refer to nothing. For example, onsider the delaration and assignationREF FLEX[℄CHAR 1 = LOC FLEX[1:0℄INT;1:="abdef";Suppose now we have the delarationREF[℄CHAR l1=1[2:4℄; #WRONG#followed by this assignment:1:="z";It is lear that l1 no longer refers to anything meaningful. Thus transient names annot be assignedwithout being dereferened, nor given identi�ers, nor used as parameters for a routine (whether operatoror proedure). However there is nothing to prevent them being used in an assignment. For example,REF FLEX[℄CHAR s=LOC[1:0℄CHAR:="abdefghijklmnopqrstuvwxyz";s[2:7℄:=s[9:14℄where the name yielded by s[9:14℄ is immediately dereferened. Note that the bounds of a trim are�xed even if the value trimmed is a exible name. So the assignments[2:7℄:="ab"would produe a run-time fault.
Exerises5.10 The delarationREF FLEX[℄CHAR s = LOC FLEX[1:0℄CHARapplies to the following:(a) What is the value of s?(b) After the assignments:="aeiou"what are the bounds of s?
5.6 The mode STRINGThe mode STRING is de�ned in the standard prelude as having the same mode as the expression FLEX[1:0℄CHAR.That is, the identity delarationREF STRING s = LOC STRINGhas exatly the same e�et as the delarationREF FLEX[℄CHAR s = LOC FLEX[1:0℄CHARYou will notie that although the mode indiant STRING appears on both sides of the identity dela-ration for s, in the seond delaration the bounds are omitted on the left-hand side (the mode is aformal-delarer) and kept on the right-hand side (the atual-delarer). Without getting into abstrusegrammatial explanations, just aept that if you de�ne a mode like STRING, whenever it is used on theleft-hand side of an identity delaration the ompiler will ignore the bounds inherent in its de�nition.We an now writes:="String"

5.7. REFERENCE MODES IN TRANSPUT 51whih gives bounds of [1:6℄ to s. We an slie that row to get a value with mode REF CHAR whih anbe used in a formula. If we want to hange the bounds of s, we must assign a value whih yields a valueof mode [℄CHAR to the whole of s as ins:="Another string" or s:=s[2:4℄Wherever [℄CHAR appears in hapter 3, it may be safely replaed by STRING. This is beause it is onlynames whih are exible so the exibility of STRING is only available in REF STRING delarations.There are two operators de�ned in the standard prelude whih use an operand of mode REF STRING:PLUSAB, whose left operand has mode REF STRING and whose right operand has mode STRING or CHAR,and PLUSTO, whose left operand has mode STRING or CHAR and whose right operand has mode REF STRING.Using the onatenation operator +, their ations an be summarised as follows:a PLUSAB b � a:=a+ba PLUSTO b � b:=a+bThus PLUSAB onatenates b onto the end of a, and PLUSTO onatenates a to the beginning of b. Theiralternative representations are +:= and +=: respetively. For example, if a refers to "ab" and b refers to"def", after a PLUSAB b, a refers to "abdef", and after a PLUSTO b, b refers to "abdefdef" (assumingthe PLUSAB was elaborated �rst).
Exerises5.11 Write a program whih delares a name with mode REF STRING and then onseutively assigns therows of haraters "ab", "ab", upto the whole alphabet and prints eah row on a separate line.Use a FOR loop lause.5.12 Delare a exible name whih an refer to a 2-dimensional row whose elements have mode REAL.Assign a one-dimensional row whose elements are5.0 10.0 15.0 20.0Write the print phrase whih will display eah bound on the sreen followed by a spae, all onone line.
5.7 Referene modes in transputWherever previously we have used a value of mode INT with print, we an safely use a name with modeREF INT, and similarly with all the other modes (suh as [,℄REAL). This is beause the parameters forprint (the identi�ers or denotations used for print) are in a �rm ontext and so an be dereferenedbefore being used.In the preamble to this hapter, print's ounterpart read was mentioned. It is now time to examineread more losely. Generally speaking, values displayed with print an be input with read. The maindi�erenes are that �rstly, the parameters for read must be names. For example, we may writeREF REAL r = LOC REAL;read(r)and the program will skip spaes, tabs and end-of-line and new-page haraters until it meets an optionalsign followed by optional spaes and at least one digit, when it will expet to read a number. If an integeris present, it will be read, onverted to the internal representation of an integer and then widened to areal.Likewise, read may be used to read integers. The plus and minus signs (+ and -) an preede integersand reals. Absene of a sign is taken to mean that the number is positive. Any non-digit will terminatethe reading of an integer exept for a possible sign at the start. Reals an ontain e as in 3.41e5. It isbest to ensure that eah number is preeded by a sign so that the reading of any preeding number willbe terminated by that sign.For a name of mode REF CHAR, a single harater will be read, newline or newpage being alled ifneessary. In fat, tabs and any other ontrol haraters (whose absolute value is less than ABS blank)will also be skipped.If read is used to read a [℄CHAR with �xed bounds as in

52 CONTENTSREF[℄CHAR sf = LOC[36℄CHAR;read(sf)then the number of haraters spei�ed by the bounds will be read, newline and newpage being alledas needed. You an all newline and newpage expliitly to ensure that the next value to be input willstart at the beginning of the next line or page.Just like print, read an take more than one parameter by enlosing them in a row-display.You should note that the end of a line or page will not terminate the reading of a number. So if youwant to read a number from the keyboard, you should follow the number with a non-digit before pressing\Enter". In this ase, you don't have to read a newline as well, but the \Enter" generates a newline andthat newline will be pending in the input.7The only exible name for whih read an be used is REF STRING. When reading values for REF STRING,the reading pointer will not go past the end of the urrent line.8 If the reading position is already at theend of the line, the row will have no elements. When reading a STRING, newline must be alled expliitlyfor transput to ontinue. The haraters read are assigned to the name.
Exerises5.13 Write a program to read two real numbers and then print their sum and produt.5.14 Write a program whih will input text line by line (the lines being of di�erent length) and whihwill then write out eah line with the haraters reversed. For example, the line "and so on" willbe displayed as "no os dna". Continue reading until a line of zero length is read.
5.8 Dynami namesHitherto, all the names whih an refer to rows were delared with bounds whose values were given byinteger denotations. In fat, the bounds given on the right-hand side of the identity delaration an beany unit whih yields an integer in a meek ontext. So it is quite reasonable to writeREF INT size = LOC INT; read(size);REF[℄INT a = LOC[1:size℄INTor evenREF[℄INT r=LOC[1:(REF INT i=LOC INT;read(i);i)℄INTsine an enlosed serial lause has the value of its last unit. The value of the lause in the parenthesesis a name of mode REF INT and sine the ontext of the lause is meek, dereferening is allowed. Theontext is passed on to the last unit in the lause. Thus the integer read by read will be passed to thegenerator.A dynami name is one whih an refer to a multiple whose bounds are determined at the time theprogram is elaborated. It means that you an delare names referring to multiples of the size you atuallyrequire, rather than the maximum size that you might ever need.
Exerises5.15 Delare a name whih an refer to a multiple of reals whose upper bound is determined by readingan integer from the keyoard.5.16 Write a program whih will read an integer whih says how many integers follow it. Compute thesum of all the integers and print it.7Console input is better handled using the kbd hannel desribed in setion 13.7.2.8See setion 9.4 for details of string terminators.

5.9. LOOPS REVISITED 535.9 Loops revisitedIn setion 3.7, we introdued the loop lause whose start, step and �nish were spei�ed by integerdenotations. Instead of an integer, a unit whih yields a value of mode INT in a meek ontext an besupplied. The priniple oerions not available in a meek ontext are rowing and widening. In pratie,almost any unit yielding INT will do. In partiular, a name with mode REF INT an be given.There is an extra onstrut whih is extremely useful for ontrolling the exeution of the DO : : : ODloop. It is very ommon to exeute a loop while a partiular ondition holds. For example, while integersare negative:WHILEREF INT int=LOC INT; read(int); int < 0DO print((ABS int,newline))ODIn this example, no loop ounter was needed and so the FOR id part was omitted. The phrase followingthe WHILE must be an enquiry lause yielding BOOL. In this ase, an integer is read eah time the loopis elaborated until a non-negative integer is read. The range of any delarations in the enquiry lauseextends to the DO : : : OD loop.It happens quite often that the WHILE enquiry lause performs all the ations whih need repeatingand nothing is required in the DO part. Sine the loop lause must ontain at least one unit, SKIP an beused as inFOR i FROM LWB a TO UPB aWHILE (sum+:=a[i℄) <= maxDO SKIPODThe omplete loop lause thus takes the form:FOR id FROM from-unit BY by-unit TO to-unitWHILE boolean-enquiry-lauseDO serial lauseOD
Exerises5.17 Write a program whih will read integers until zero is enountered. The program should print thesums of the negative and positive integers.5.18 Write a program whih will read lines from the keyboard and then ompute a unique ode for eahline as follows: if "did" is read, ompute the value ofABS"d" + ABS"i"*2 + ABS"d"*3Display the string and its orresponding number on the sreen. Terminate the program when azero-length line has been read (if the result exeeds max int, you will normally not get an error:just erroneous results|see setion 13.6.1).
5.10 Abbreviated delarationsYou have now met many identity delarations. When delaring names, it is apparent that muh of thedelaration is repeated on both sides. For example:REF[℄REAL r = LOC[10℄REALDelarations of names are very ommon in Algol 68 programs and abbreviated delarations are available.The above delaration an be written

54 CONTENTSLOC[10℄REAL ror, most ommonly[10℄REAL rAn abbreviated delaration uses the atual-delarer (the right-hand side of an identity delaration) fol-lowed by the identi�er; and if the atual-delarer ontains the generator LOC, you an omit the LOC (seesetion 6.1 whih explains atual-delarers and formal-delarers).Here are some of the delarations given as examples in this hapter rewritten in their abbreviatedform:INT a;REAL x:=pi;CHAR s;[7℄INT i7;[0:6℄INT i7 at 0;[3℄INT k:=(1,2,3);[3,3℄REAL x; [0:2,0:2℄REAL y;FLEX[1:0℄INT fn;[36℄CHAR sf;[(INT i; read(i); i)℄INT rIt is important to note that identity delarations should not be mixed with abbreviated name delarationsbeause the modes are quite di�erent. For example, inREAL a:=2.4;REAL b = a+2.1the mode of a is REF REAL, but the mode of b is REAL. In the abbreviated delaration of a name, themode given is that of the value to whih the name will refer (the atual-delarer).When you delare a new objet, if you do not intend assigning to it, use an identity delaration. Onlydelare it as a name if you intend superseding the value to whih it will refer. Remember that assignmentan be dangerous beause values are superseded.
Exerises5.19 Write abbreviated delarations for the following:(a) REF[℄CHAR r = LOC[1000℄CHAR(b) REF FLEX[℄INT fi = LOC FLEX[1:0℄INT() REF BOOL b = LOC BOOL := TRUE5.20 Write full identity delarations for the following:(a) INT a,b,(b) REAL x;[5℄CHAR y;[3,3℄REAL z() FLEX[1:0℄CHAR s
5.11 SummaryA name is a value whose mode always begins with the mode onstrutor REF. A name an refer to avalue whose mode starts with one less REF than the mode of the name. An assignment auses a nameto refer to a value. The value to whih a name refers an be superseded using a further assignment. Anassignment is a kind of unit and an appear in a formula if it is enlosed by parentheses (or BEGIN andEND). Multiple assignments an be used to assign the same value to more than one name.A name an be generated using a loal or global generator and an be made to refer to a value in thesame phrase in whih it is delared.

5.11. SUMMARY 55Algol 68 provides exible names as well as �xed names for multiples. The mode indiant for FLEX[℄CHARis de�ned in the standard prelude as STRING. Names for multiples an have bounds determined at run-time.read will onvert external harater sequenes into internal values. Its parameters must be names ornewline or newpage.Name delarations may be written as identity delarations or in an abbreviated form.Before ontinuing with hapter 6, it would be wise to revise the material in the �rst �ve hapters sinethese omprise the basis of the language.
Exerises5.21 Delare a name to refer to a multiple of 1000 integers, �rst as an identity delaration, and seondlyin abbreviated form.5.22 Write a program whih will ompute the average of a number of salaries (eg, 1010.53) read fromthe keyboard until the number -1 is read. Display the average on the sreen.5.23 Write a program whih will read a line and then san it, writing out the individual words on oneline apiee. The program should read the line into a REF STRING name, then remove leading andtrailing spaes and add a spae to the end. Use a boolean name alled in word and make it referto FALSE. As you step along the line, make in word refer to FALSE if you read a spae and TRUEotherwise. Keep a trak of the length of the urrent word. Whenever the value in word hangesfrom TRUE to FALSE, extrat the word using an appropriate trimmer and print it. Allow for therebeing more than one spae between words. Ignore the possibility of ommas, brakets et.

56 CONTENTS

Chapter 6
Routines
Routines onsist of two types: operators and proedures. They have muh in ommon, so the �rst setionovers their ommon aspets. These are followed by a setion on operators and a setion on proedures.The length of this hapter reets the importane of routines in the language.
6.1 RoutinesA routine is a number of enapsulated ations whih an be elaborated in their entirety in other partsof the program. A routine has a well-de�ned mode. The value of a routine is expressed as a routinedenotation. Here is an example:([℄INT a)INT:(INT sum:=0;FOR i FROM LWB a TO UPB a DO sum+:=i OD;sum)In this example, the header of the routine is given by([℄INT a)INT:whih ould be read as \with (parameter) row of INT a yielding INT". The mode of the routine is givenby the header, less the olon and any identi�ers. So the mode of the above routine is([℄INT)INTWe say that the routine takes one parameter of mode [℄INT and yields a value of mode INT.As you an see from the body of the routine (everything exept the header), the routine yields thesum of the individual elements of the parameter. The body of a routine is a unit. In this ase, it is anenlosed lause.We have met parameters before in a di�erent guise. The formal de�nition of an identity delarationis <formal-mode-param> = <atual-mode-param>The formal-mode-param onsists of an identi�er preeded by a formal-mode-delarer (referred to in thelast hapter as a formal-delarer). An atual-mode-param is a piee of program whih yields an internalobjet whih heneforth is identi�ed by the identi�er. For example, in the identity delaration[℄INT a = (2,3,5,7,11)[℄INT a is the formal (mode) parameter, [℄INT is the formal (mode) delarer, the identi�er is a, and theatual (mode) parameter is the row-display (2,3,5,7,11). The word \mode" was plaed in parenthesesbeause it is ommon usage to omit it. Heneforth, we shall talk about formal parameters and atualparameters.In the header of the above routine, a is delared as a formal parameter. The mode of a is [℄INT.At the time the routine is delared, a does not identify a value. That is why it is alled a \formal"57

58 CONTENTSparameter. It is only when the routine is used that a will identify a value. We'll ome to that later. Anyidenti�er may be used for the formal parameter of a routine.In the body of the routine, a is treated as though it has a value. Sine its mode is [℄INT, it is amultiple and so it an be slied to aess its individual elements.The body of the routine written above onsists of an enlosed lause. In this ase, the enlosureonsists of the parentheses (and), but it might well have been written using BEGIN and END. Insidethe enlosure is a serial lause onsisting of three phrases. The �rst is a delaration with an initialassignment. Although an assignment yields a name, an identity delaration with an initial assignment,even an abbreviated one, does not. This is the only exeption.The seond phrase is a FOR loop lause whih yields VOID (see setion 6.1.4). The third phrase onsistsof the identi�er sum whih yields its name of mode REF INT.Now, aording to the header of the routine, the routine must yield a value of mode INT. The ontextof the body of a routine is strong. Although a serial lause annot be oered, the ontext of the seriallause is passed to the last phrase of that lause. In this ase, we have a value of mode REF INT whih,in a strong ontext, an be oered to a value of mode INT by dereferening.
Exerises6.1 What is the formal de�nition of an identity delaration?6.2 Why is the parameter of a routine denotation alled a formal parameter?6.3 In the routine denotation(REAL r)INT: ENTIER r;(a) What is the mode of the formal parameter?(b) What is the mode of the value yielded?() What is the ontext of the body of the routine?(d) If the value of r were -4.6, what value would the routine yield?6.4 Write a routine whih takes a parameter of mode [℄INT and yields a value of mode [℄CHAR, whereeah element of the result yields the harater equivalent of the orresponding element in theparameter (use FOR and REPR).
6.1.1 Routine modesIn general, a routine may have any number of parameters, inluding none, as we shall see. The modeof the parameters may be any mode, and the value yielded may be any mode. The modes written forthe parameters and the yield are always formal delarers, so no bounds are used if the modes of theparameters or yield involve multiples.Here is a possible header of a more ompliated routine:(INT i,REF[,℄CHAR ,REAL a,REAL b)BOOL:A minor abbreviation would be possible in this ase. TheREAL a,REAL bould be written REAL a,b giving(INT i,REF[,℄CHAR ,REAL a,b)BOOL:Notie that the parameters are separated by ommas. This means that when the routine is used, theatual parameters are evaluated ollaterally. We shall see later that this is important when we onsiderside-e�ets.The order in whih parameters are written in the header is of no partiular signi�ane.The mode of the routine whose header is given above is(INT,REF[,℄CHAR,REAL,REAL)BOOL(\with int ref row row of ar real real yielding bool").

6.1. ROUTINES 596.1.2 Multiples as parametersSine a formal parameter whih is a multiple has no bounds written in it, any multiple having thatmode ould be used as the atual parameter. This means that if you need to know the bounds of theatual multiple, you will need to use the bounds interrogation operators. For example, here is a routinedenotation whih �nds the smallest element in its multiple parameter:([℄INT a)INT:(INT min:=a[LWB a℄;FOR i FROM LWB a TO UPB aDO min:=min MIN a[i℄OD;min)6.1.3 Names as parametersThe seond parameter in the more ompliated routine header given in setion 6.1.1 had the modeREF[,℄CHAR. When a parameter is a name, the body of the routine an have an assignment whih makesthe name refer to a new value. For example, here is a routine denotation whih assigns a value to itsparameter:(REF INT a)INT: a:=2Notie that the unit in this ase is a single phrase and so does not need to be enlosed. Here is a routinedenotation whih has two parameters and whih yields a value of mode BOOL:(REF[℄CHAR r,[℄CHAR)BOOL:IF UPB r - LWB r /= UPB - LWB THEN FALSEELSE r[:℄:=[:℄; TRUEFIHere, the body is a onditional lause whih is another kind of enlosed lause. Note the use of trimmersto ensure that the bounds of the multiples on eah side of the assignment math.If a exible name ould be used as an atual parameter, then the mode of the formal parameter mustinlude the mode onstrutor FLEX. For example,(REF FLEX[℄CHAR s)INT:(CO Code to ompute the number of words CO)Of ourse, in this example, the mode of s ould have been given as REF STRING.6.1.4 The mode VOIDA routine must yield a value of some mode, but it is possible to throw away that value using the voidingoerion. The mode VOID has a single value whose denotation is EMPTY. In pratie, beause the ontextof the yield of a routine is strong, use of EMPTY is usually unneessary (but see setion 8.2). Here isanother way of writing the last routine in the previous setion:(REF[℄CHAR r,[℄CHAR)VOID:IF UPB r - LWB r /= UPB - LWB THENprint(("Bounds mismath",newline));stopELSE r[:℄:=[:℄FIThis version produes an emergeny error message and terminates the program prematurely (see setion4 for details of stop). Sine the yield is VOID, any value the onditional lause might yield will be thrownaway. A FOR loop yields EMPTY and a semiolon voids the previous unit. Delarations yield no value, noteven EMPTY.

60 CONTENTS6.1.5 Routines yielding namesSine the yield of a routine an be a value of any mode, a routine an yield a name, but there is arestrition: the name yielded must have a sope larger than the body of the routine. This means thatany names delared to be loal, annot be passed from the routine. Names whih exist outwith the sopeof the routine an be passed via a parameter and yielded by the routine. For example, here is a routinedenotation whih yields the name passed by suh a parameter:(REF INT a)REF INT: a:=2Compare this routine with the �rst routine denotation in setion 6.1.3.In hapter 5, we said that a new name an be delared using the generator LOC. For example, here isan identity delaration for a name:REF INT x = LOC INTThe range of the identi�er x is the smallest enlosed lause in whih it has been delared. The sope ofthe value it identi�es is limited to that smallest enlosed lause beause the generator used is the loalgenerator LOC. Here is a routine whih tries to yield a name delared within its body:(INT a)REF INT:(REF INT x = LOC INT:=a; x) #wrong!#This routine is wrong beause the sope of the name identi�ed by x is limited to the body of the routine.Note, however, the Ctrans Algol 68 ompiler provides neither ompile-time nor run-time sope hekingso that it is possible to yield a loally delared name. However, the rest of the program would beunde�ned|you might or might not get meaningful things happening. When sopes are heked, this sortof error annot our.However, there is a way of yielding a name delared in a routine. This is ahieved using a globalgenerator. If x above were delared asREF INT x = HEAP INTor, in abbreviated form, HEAP INT x, then the sope of the name identi�ed by x would be from itsdelaration to the end of the program even though the range of the identi�er x is limited to the body ofthe routine:(INT a)REF INT: (HEAP INT x:=a; x)Notie that the mode of the yield is still REF INT. All that has hanged is the sope of the value yielded.Of ourse, you would not be able to identify the yielded name using x, but we'll ome to that problemwhen we deal with how routines are used. Notie that the global generator is written HEAP instead ofGLOB as you might expet. This is beause global generators use a di�erent method of alloating storagefor names with global sope and, historially, this di�erent method is reorded in the mode onstrutor.The di�erene between range and sope is that identi�ers have range, but values have sope. Further-more, denotations have global sope.
Exerises6.5 Write the header of a routine with a parameter of mode REF REAL and whih yields a value ofmode REAL.6.6 Write the header of a routine whih takes two parameters eah of whih is a name of mode REF CHAR,and yields a name of mode REF CHAR.6.7 Write a routine whih takes a parameter of mode STRING and yields a value of mode [℄STRINGonsisting of the words of the parameter (use your answer to exerise A).
6.1.6 Parameterless routinesA routine an have no parameters. In the header, the parentheses normally enlosing the formal parameterlist (either one parameter, or more than one separated by ommas) are also omitted. Here is a routinewith no parameters and whih yields a value of mode INT:INT: 2*3**4 - ENTIER 36.5It would be more usual to use identi�ers whih had been delared in some enlosing range. For example,INT: 2*a**4 - ENTIER b

6.2. OPERATORS 61Routines whih have no parameters and yield no value are fairly ommon. For example,VOID: print(2)Stritly speaking, there is one value having the mode VOID, but there's not a lot you an do with it. Inpratie, VOID routines usually use identi�ers delared in an enlosing range (they are alled identi�ersglobal to the routine). For example:VOID: (x:=a; x<=2|print(x)|print("Over 2"))where the body is an abbreviated onditional lause, and x and a have been delared globally withappropriate modes.Assignment of values to names delared globally1 to the routine is known as a side-e�et. We shalldeal with side-e�ets when we desribe how routines are used, and we shall show why side-e�ets areundesirable. If you write parameterless routines, it is preferable not to put any assignments to globally-delared names in them. In fat, it would be safer to say: \In a routine, don't assign to names notdelared in the routine or not provided as parameters". Side-e�ets are messy and are usually a sign ofbadly designed programs. It is better to use a parameter (or an extra parameter) using a name, andthen assign to that name. This ensures that values an only get into or out of your routines via theheader, and results in a muh leaner design. Cleanly designed programs are easier to write and easierto maintain.
Exerises6.8 Write the header of a routine whih yields a value of mode REAL, but takes no parameters.6.9 Write a routine of mode VOID whih printsHi, thereon your sreen.
6.2 OperatorsIn the preamble to this hapter, it was mentioned that routines onsist of two kinds: proedures andoperators. See setion 6.3 for details of proedures.An operator has a mode and a value (its routine denotation) and, if dyadi, a priority. The parametersto routines whih are de�ned as operators are alled operands. Monadi operators, while not having apriority, behave as though they had a priority greater than any dyadi operator and take one operandand yield a value of some mode.Here is an identity delaration of the monadi operator B:OP(INT)INT B = (INT a)INT: aThere are several points to note.1. The mode of the operator is OP(INT)INT. That is, it takes a single operand of mode INT and yieldsa value of mode INT.2. The symbol for the operator looks like a mode indiant. It isn't a mode indiant, but obeys thesame rules (starts with an upperase letter and possibly ontinues with upperase letters or digits,and no spaes are allowed inside the symbol).3. The right-hand side of the identity delaration is a routine denotation. A speial identity delarationis used for operators: instead of the mode of the operator, the mode onstrutor OP is used followedby the operator symbol. The abbreviated delaration of the operator B isOP B = (INT a)INT: a1The phrase \names delared globally" is intended to mean here that the names have been delared in a rangewhih enloses the routine, not that HEAP has neessarily been used in the delaration. We use the phrase \aglobal name" in the latter ase.

62 CONTENTSChapter 2 desribed how operators are used in formul�. A possible formula using B ould beB 2whih would yield 2.26.2.1 Identi�ation of operatorsThis setion is more diÆult than preeding setions and ould be omitted on a �rst reading. You areunlikely to fall afoul of what is desribed here unless you are delaring many new operators.One of the most useful properties of operators is that there an be more than one delaration of thesame operator symbol using an operand having a di�erent mode. This is alled \operator overloading".How does the ompiler know whih version of the operator to use? Before answering this question,onsider the following program fragment:1 BEGIN2 OP D = (INT a)INT: a+2;3 OP D = (REAL a)REAL: a+2.0;4 REAL x:=1.5, a:=-2.0; INT i:=4;56 x:=IF OP D = (REF REAL a)REF REAL:7 a+:=2.0;8 ENTIER(D a:=x) > i9 THEN D i10 ELSE D x11 FI;1213 OP D = (REF REAL a)REF REAL: a+:=3.0;14 x:=D a15 ENDThe numbers on the left-hand side are not part of the program. As you an see, there are four delarationsof D: one with an INT operand, one with a REAL operand and two with a REF REAL operand. If you tryompiling this you will get the errorERROR (146) more than one version of Dfor the last delaration. There are two points to be made here.1. Outside the onditional lause, there are three delarations of D: on lines 2, 3 and 13. Now, anoperator is used in a formula and the ontext of the operand of an operator is �rm. Of the oerionswe have met so far, only one, namely dereferening, is allowed in a �rm ontext. If you look atthe assignment on line 14, you an see that the mode of the operand of D is REF REAL (fromthe delaration of a on line 4). Now a value of mode REF REAL is �rmly oerible to REAL (bydereferening). So there are two delarations of D whih ould be used: the delaration on line 3and the delaration on line 13 (the range of the delaration on line 6 is on�ned to the onditionallause). Aording to the rules for the identi�ation of operators (see below), the ompiler wouldnot be able to distinguish between the two delarations. Hene the error message.2. Why did the idential delaration of D on line 6 not ause a similar error message? Answer:beause the delaration on line 6 is at the start of a new range: the enlosed lause starting online 6 and extending to the FI on line 11. Sine that is a new range, any operator delarations witha mode whih is �rmly related to the mode of an operator delared in an outer range makes thedelaration in the outer range inaessible. Thus, the assignment on line 8 will use the version ofD delared on line 6, the D on line 9 identi�es the D delared on line 2, and the D on line 10 againuses the D delared on line 6.Thus, in determining whih operator to use, the ompiler �rstly �nds a delaration whose mode an beobtained from the operands in question using any of the oerions allowed in a �rm ontext (hapter 10will state all the oerions allowed). Seondly, it will use the delaration in the smallest range enlosingthe formula.2In hapter 3, we mentioned a bug in the Ctrans Algol 68 ompiler onneted with the BY onstrut in looplauses. Using the B operator is another way of getting round the bug.

6.2. OPERATORS 63The delaration of an objet is known as its de�ning ourrene. Where the objet is used is alledits applied ourrene. In pratie, it is rare to �nd like operator delarations in nested ranges.
Exerises6.10 This and the following exerise use the following program fragment:1 IF2 OP T = (INT a)INT: a*a;3 OP T = (CHAR a)INT: ABS a * ABS a;4 INT p:=3, q:=4; CHAR :=REPR 3;5 T p < T 6 THEN7 OP T = (REF INT a)REF INT: a*:=a;8 IF T 4 < T q9 THEN "Yes"10 ELSE T REPR 211 FI12 ELSE T > T q13 FIThere are 3 de�ning ourrenes of the operator T on lines 2, 3 and 7. There are 7 appliedourrenes of the operator (on lines 5, 8, 10 and 12). Whih de�ning ourrene is used for eahapplied ourrene?6.11 What is the mode and value yielded by(a) T q on line 8(b) T q on line 12() T on line 12(d) T REPR 2 on line 106.12 What is wrong with these two delarations ourring in the same range:OP TT = ([℄INT a)[℄INT:FOR i FROM LWB a TO UPB aDO print(a[i℄*3) OD;OP TT = (REF[℄INT a)[℄INT:FOR i FROM LWB a TO UPB aDO print(a[i℄*3) OD
6.2.2 Operator usageBefore we go on to dyadi operators, there is one more point to onsider. Given the operator delarationOP PLUS2 = (REAL a)REAL: a+2.0what is the mehanism by whih the formal parameter gets its value? Firstly, we must remember thata partiular version of the operator is hosen on the basis of �rmly relatedness. In other words, onlyoerions allowed in a �rm ontext an determine whih delaration of the operator to use. Seondly, inelaborating the formulaPLUS2 xwhere x has the mode REF REAL, the ompiler elaborates the identity delarationREAL a = x

64 CONTENTSwhere REAL a is the formal parameter. Sine the ontext of the right-hand side of an identity delarationis strong, any of the strong oerions would normally be allowed (all oerions, inluding dereferening).However, beause the version of the operator was hosen on the basis of �rmly relatedness, the oerionsavailable in a strong ontext whih are not available in a �rm ontext (that is, widening and rowing)are not available in the ontext of an operand. If an operand of mode INT is supplied to an operatorrequiring a REAL, the ompiler will ag an error: widening would not our. This is the only exeptionto the rule that the right-hand side of an identity delaration is a strong ontext.It was pointed out in setion 6.1.5 that a routine an yield a name. An operator does not usuallyyield a name beause subsequent use of the name usually involves dereferening and using the value thename refers to. However, here is an operator delaration whih yields a name of a multiple whih is usedin a subsequent phrase:OP NAME = (INT a)REF[℄INT:(HEAP[2℄INT x:=(a,a); x);REF[℄INT a = NAME 3After the elaboration of the identity delaration, the name ould be aessed wherever neessary.
Exerises6.13 Given the delarationsOP M3 = (INT i)INT: i-3;OP M3 = ([℄INT i)[℄INT:FORALL n IN i DO n-3 OD;INT i:=1,[3℄INT j:=(1,2,3)whih operator delarations would be used for the following formul�(a) M3 i(b) M3 j[2℄() M3 j(d) M3 j[:2℄
6.2.3 Dyadi operatorsThe only di�erenes between monadi and dyadi operators are that the latter have a priority and taketwo operands. Therefore the routine denotation used for a dyadi operator has two formal parameters.The priority of a dyadi operator is delared using the indiant PRIO:PRIO HMEAN = 7; PRIO WHMEAN = 6The delaration of the priority of the operator uses an integer denotation in the range 1 to 9 on theright-hand side.Conseutive priority delarations do not need to repeat the PRIO, but an be abbreviated in the usualway. The priority delaration relates to the operator symbol. Hene the same operator annot havetwo di�erent priorities in the same range, but there is no reason why an operator annot have di�erentpriorities in di�erent ranges. A priority delaration does not ount as a delaration when determiningthe sope of a loal name.If an existing operator symbol is used in a new delaration, the priority of the new operator must bethe same as the old if it is in the same range, so the priority delaration should be omitted.The identi�ation of dyadi operators proeeds exatly as for monadi operators exept that the mostreently delared priority in the same range is used to determine the order of elaboration of operatorsin a formula. Again, two operators using the same symbol annot be delared in the same range if theyhave �rmly related modes (see setion 6.2.1).These delarations apply to the remainder of this setion:

6.2. OPERATORS 65PRIO HMEAN = 7, WHMEAN = 6;OP HMEAN = (REAL a,b)REAL:2.0/(1.0/a+1.0/b);OP WHMEAN = (REAL a,b)REAL:2.0/(1.0/a+2.0/b)If HMEAN appears in the formulax HMEAN ywhere x and y both have mode REF REAL, the ompiler onstruts the identity delarationsREAL a = x, REAL b = yNotie that the two identity delarations are elaborated ollaterally (due to the omma separating them),whih ould be important (see below). If x refers to 2.5 and y refers to 3.5, the formula will yield2.0/(1.0/2.5 + 1.0/3.5)whih is 2:91_6. Likewise, the formulax WHMEAN ywould yield 2 � 058 823 529 411 76. Now onsider the formula(x+:=1.0) WHMEAN (x+:=1.0)whih ause the value referred to by x to be inremented twie as a side-e�et. The resulting identitydelarations areREAL a = (x+:=1.0), REAL b = (x+:=1.0)The de�nition of Algol 68 says that the operands of a dyadi operator should be elaborated ollaterally,so the order of elaboration is unknown. Suppose x refers to 1.0 before the formula is elaborated. Thereare three ases:1. The identity delaration for a is elaborated �rst, giving a=2.0 and b=3.0. The formula will yield1:714 285 714.2. The identity delaration for b is elaborated �rst, giving b=2.0 and a=3.0. The formula will yield1:5.3. The identity delarations are elaborated in parallel. In this ase, the result ould be indeterminate.If you ompile a program using Ctrans with the delaration for WHMEAN and try to ompute the formulagiven above, you get the result +1.5000000000000000 whih suggests that ase 2 holds.If x refers to 1.0, then the formula1.0/(x+:=1.0) + 1.0/(x+:=1.0)yields +.83333333333333339e +0 whih is orret provided that the two operands are elaborated se-quentially. The moral of all this is: avoid side-e�ets like the plague.What happens if the identi�er of an atual parameter is the same as the identi�er of the formalparameter? There is no lash. Consider the identity delarationINT a = awhere the a on the left-hand side is the formal parameter for a routine denotation, and the a on theright-hand side is an atual parameter delared in some surrounding range. The formal parameter oursat the start of a new range. Within that range, the identi�er a in the outer range beomes inaessible,but at the moment that the identity delaration is being elaborated, the formal parameter is made toidentify the value of the atual parameter whih, of ourse, is not an identi�er. So go ahead and useidential identi�ers for formal parameters and atual parameters.

66 CONTENTS6.2.4 Operator symbolsMost of the operators desribed in hapters 2 to 5 used symbols rather than upper-ase letters. You mayuse any ombination of the <=>*/: symbols (and any number of them) exept :=, :=: and :/=: (thelatter two are desribed in hapter 11). Any of the symbols +-?&% an only start a ompound symbol. Ofourse, they an stand on their own for an operator. In hapter 11, you will �nd the << and >> operatorsdesribed as well as more delarations for existing operators. Here are some delarations of operatorsusing the above rules:OP *** = (INT a)INT: a*a*a;OP %< = (CHAR)CHAR: (<" "|" "|);OP -:: = (CHAR)INT: (ABS -ABS"0")We have now overed everything about operators in the language.
Exerises6.14 Why are side-e�ets undesirable?6.15 What is wrong with these operator symbols:(a) M*(b) %+/() :=:6.16 Delare an operator using the symbol PP whih will add 1 to the value its REF INT operand refersto, and whih will yield the name of its parameter.
6.3 ProeduresThe seond way of using routines is to delare them as proedures. We have seen that an operator an bedelared and used, have a mode and a value (its routine denotation), but apart from having an operatorsymbol, it annot be identi�ed with an identi�er in the way that a name or a denotation of a CHAR valuean. Proedures are quite di�erent.Firstly, here are some general remarks on the way proedures di�er from operators. The modeof a proedure always starts with the mode onstrutor PROC. A proedure an have any number ofparameters, inluding none. Two proedures having the same identi�er annot be delared in the samerange (so \overloading" is not allowed). When a proedure is used, its parameters, if any, are in a strongontext. This means that rowing and widening are available.Proedures are delared using the mode onstrutor PROC. Here is a proedure whih reates a rangeof haraters:PROC(CHAR,CHAR)[℄CHAR range =(CHAR a,b)[℄CHAR:BEGINCHAR aa,bb;(a<=b|aa:=a; bb:=b|aa:=b; bb:=a);[ABS aa:ABS bb℄CHAR r;FOR iFROM LWB r TO UPB rDO r[i℄:=REPR iOD;rEND

6.3. PROCEDURES 67This proedure identity delaration resembles the delaration for a multiple: muh of the mode is repeatedon the right-hand side and the formal-delarer on the left-hand side has no identi�ers for the modes ofthe parameters. Notie that the modes of the parameters must be repeated in the formal-delarer, butthat the mode of the proedure on the right-hand side an ontain the usual abbreviation. Here is theabbreviated header:PROC range = (CHAR a,b)[℄CHAR:The formal-delarer is important for reating synonyms:PROC(REAL)REAL sine = sinTwo or more proedure delarations an be separated by ommas, even if the proedures have di�erentmodes. Consider, for example:PROC pa = (INT i)INT: i*i,pb = (INT i)CHAR: REPR(i*i),p = (INT i)REAL: (i=0|0|1/i)6.3.1 Parameterless proeduresProedures an have no parameters. Suppose the following names have been delared:INT i,jHere is a proedure with mode PROC INT whih yields an INT:PROC INT p1 = INT: i:=3+jA proedure an be invoked or alled by writing its identi�er. For example, the proedure p1 would bealled byp1or INT a = p1The right-hand side of this identity delaration requires a value of mode INT, but it has been given a unitof mode PROC INT. This is onverted into a value of mode INT by the oerion known as deproeduring.This oerion is available in every ontext (even soft).Have you realised that print must be the identi�er of a proedure? Well done! However, we annottalk about its parameters yet beause we don't know enough about the language.Here is another proedure whih yields a name of mode REF INT. The mode of the proedure isPROC REF INT:PROC p2 = REF INT: IF i < 0 THEN i ELSE j FIand assumes that the names identi�ed by i and j had already been delared. Here is an identitydelaration whih uses p2:REF INT i or j = p2Beause p2 yields a name, it an be used on the left-hand side of an assignment:p2:=4Here, 4 will be assigned to i or j depending on the value i refers to. The left-hand side of an assignmenthas a soft ontext in whih only the deproeduring oerion is allowed.In proedures p1 and p2, the identi�er i had been delared globally to the proedures. Assignment tosuh an identi�er is, as already stated, a side-e�et. Here is another proedure of mode PROC INT whihuses a global identi�er, but does not assign to it:

68 CONTENTSPROC p3 = REAL:([i℄REAL a; read((a,newline));REAL sum:=0.0;FOR i FROM LWB a TO UPB aDO sum+:=a[i℄OD;sum)and here is a all of p3:print(p3)In the identity delarationREAL r = p2p2 is deproedured to yield a name of mode REF INT, dereferened to yield an INT, and then widenedto yield a REAL. All these oerions are available in a strong ontext (the right-hand side of an identitydelaration).The all of a proedure an appear in a formula without parentheses. Here is an example:p2:=p1 * ROUND p3If we all the proedure p1, delared above, its value does not have to be used. For example, inp1;the value yielded by p1 has been voided by the following semiolon after the proedure had been alled.In the setion on routines, we introdued the mode VOID. Here is a proedure yielding VOID:PROC p4 = VOID: print(p3)and a possible use:; p4;where the semiolons show that the all stands on its own.When a parameterless proedure yields a multiple, the all of that proedure an be slied to get anindividual element. For example, suppose we delarePROC p5 = [,℄REAL:([i,j℄REAL a;read((a,newline));a)where i and j were delared above, and then all p5 in the formulaREAL x = p5[i-3,j℄ * 2When p5 is alled, it yields a two-dimensional multiple of mode [,℄REAL whih is then slied using thetwo subsripts (assuming that i-3 is within the bounds of the �rst dimension) to yield a value of modeREAL, whih is then used in the formula.Proedure p2, delared above, yielded a name delared globally to the proedure. As explained inthe setions on routines, a proedure annot yield a loally-generated name. However, if the name isgenerated using HEAP, then the name an be yielded as in p6:PROC p6 = REF INT: (HEAP INT i:=3; i)

6.3. PROCEDURES 69Here is a all of p6 where the yielded name is aptured with an identity delaration:REF INT global int = p6Then print(global int) will display 3.The yield of a proedure an be another proedure. Consider this program fragment:PROC q2 = INT: max int % 2,q3 = INT: max int % 3,q4 = INT: max int % 4,q5 = INT: max int % 5;INT i; read((i,newline));PROC q = PROC INT:CASE i+1 IN q2,q3,q4 OUT q5 ESACProedure q will yield one of the predelared proedures depending on the value of i. Here, the yieldedproedure will not be deproedured beause the mode required is a proedure.One parameterless proedure is provided in the standard prelude. Its identi�er is random, and whenalled returns the next pseudo-random real number of a series. If alled a large number of times, thenumbers yielded are uniformly distributed in the range [0; 1).
Exerises6.17 Write a proedure whih assigns a value to a name delared globally to the proedure.6.18 Write a proedure whih reads an integer from the keyboard, then delares a dynami name of amultiple of one dimension, and reads that number of integers from the keyboard. Now omputethe sum of all the integers, and yield its value as the yield of the proedure.6.19 Write a proedure whih yields the name of a two dimensional multiple ontaining haraters readfrom the keyboard. The mode of the multiple should be REF[,℄CHAR.
6.3.2 Proedures with parametersParameters of proedures an have any mode (inluding proedures). Unlike operators, proedures anhave any number of parameters. The parameters are written as a parameter list whih onsists of oneparameter, or two or more separated by ommas.Here is a proedure with a single parameter:PROC(INT)CHAR p7 = (INT i)CHAR: REPR(i>0|i|0)This is a full identity delaration for p7. It an be abbreviated toPROC p7 = (INT i)CHAR: REPR(i>0|i|0)The mode of p7 is PROC(INT)CHAR. That is, p7 is a proedure with a single integer parameter and yieldinga harater. Here is a all of p7:CHAR = p7(-3)Note that the single parameter is written between parentheses. Sine the ontext of an atual parameterof a proedure is strong, a name of mode REF INT ould be used:CHAR = p7(i)or CHAR = p7(ai[j℄)where ai has mode REF[℄INT and j has mode INT or REF INT or PROC INT (or even PROC REF INT).Here is a proedure whih takes three parameters:

70 CONTENTSPROC har in string =(CHAR ,REF INT p,STRING s)BOOL:(BOOL found:= FALSE;FOR k FROM LWB s TO UPB sWHILE NOT foundDO (= s[k℄ | i:=k; found:= TRUE)OD;found)The proedure (whih is in the standard prelude) tests whether a harater is in a string, and if it is,returns its position in the parameter p. The proedure yields TRUE if the harater is in the string, andFALSE if not. Here is a possible all of the proedure:IF INT p; har in string(har,"abde",p)THEN ...where har was delared in an outer range. Notie that the REF INT parameter of har in string isnot assigned a new value if the harater is not found in the string.When alling a proedure, the all must supply the same number of atual parameters, and in thesame order, as there are formal parameters in the proedure delaration.If a multiple is one of the formal parameters, a row-display an be supplied as an atual parameter(remember that a row-display an only our in a strong ontext). In this ase, the row-display ounts asa single parameter, but the number of elements in the row-display an di�er in suessive alls sine thebounds of the multiple an be determined by the proedure using the bounds interrogation operators.Here is an example:PROC pb = ([℄INT m)INT:(INT sum:=0;FOR i FROM LWB m TO UPB m DO sum+:= m[i℄ OD;sum)and here are some alls of pb:pb((1,2,3)) pb((2,3,5,7,11,13))Again, proedures with parameters an assign to, or use, globally delared names and other values,but it is better to inlude the name in the header of the proedure. Here is a proedure whih reads datainto a globally delared multiple using that multiple as a parameter:PROC rm = (REF[℄REAL a)VOID:read((a,newline))It ould now be alled byrm(multiple)where multiple had been previously delared as having mode REF[℄REAL.As desribed in setion 6.1.3, a exible name an be used as an atual parameter provided that theformal parameter has also been delared as being exible. For example, here is a proedure whih takesa single parameter of mode REF STRING and whih yields an INT:PROC read line = (REF STRING s)INT:(read((s,newline));UPB s #LWB is 1#)read line reads the next line of haraters from the keyboard, assigns it to its parameter, whih is aexible name, and yields the length of the line.

6.3. PROCEDURES 71Exerises6.20 Write a proedure whih takes a REF REAL parameter, divides the value it refers to by �, multipliesit by 180, assigns the �nal value to its parameter, and yields the parameter (that is, its name).6.21 Write a proedure whih takes two parameters: the �rst should have mode STRING and the seondmode INT. Display the string on the sreen the number of times given by the integer. If the integeris negative, display a newline �rst and then use the absolute value (use the operator ABS) of theinteger. Yield the mode VOID.6.22 Write a proedure, identi�ed as num in multiple, whih does for an integer what har in stringdoes for a harater.
6.3.3 Proedures as parametersHere is a proedure whih takes a proedure as a parameter:PROC sum = (INT n,PROC(INT)REAL p)REAL:(REAL s:=0;FOR i TO n DO s+:=p(i) OD;s)Notie that the mode of the proedure parameter is a formal mode so no identi�er is required for its INTparameter in the header of the proedure sum. In the loop lause, the proedure is alled with an atualparameter.When a parameter must be a proedure, there are two ways in whih it an be supplied. Firstly, apredelared proedure identi�er an be supplied, as inPROC pa = (INT a)REAL: 1/a;sum(34,pa)Seondly, a routine denotation an be supplied:sum(34,(INT a)REAL: 1/a)A routine denotation is a unit. In this ase, the routine denotation has the mode PROC(INT)REAL, so itan be used in the all of sum. Notie also that, beause the routine denotation is an atual parameter,its header inludes the identi�er a. In fat, routine denotations an be used wherever a proedure isrequired, so long as the denotation has the required mode. The routine denotation given in the all ison the right-hand side of the implied identity delaration of the elaboration of the parameter. It is anexample of an anonymous routine denotation.
Exerises6.23 Given the delaration of sum in the text, what is the value of:(a) sum(4,(INT a)REAL: a)(b) sum(2,(INT b)REAL: 1/(5*b))() sum(0,pa) (pa is delared in the text)
6.3.4 ReursionOne of the fun aspets of using proedures is that a proedure an all itself. This is known as reursion.For example, here is a simplisti way of alulating a fatorial:PROC fatorial = (INT n)INT:(n=1|1|n*fatorial(n-1))Try it with the all

72 CONTENTSfatorial(7)Here is another reursively de�ned proedure whih displays an integer on the sreen in minimum spae:PROC ai = (INT i)VOID:IF i < 0 THEN print("-"); ai(ABS i)ELIF i < 10 THEN print(REPR(i+ABS"0"))ELSE ai(i%10); ai(i MOD 10)FIIn eah of these two ases, the proedure inludes a test whih hooses between a reursive all andphrases whih do not result in a reursive all. This is neessary beause, otherwise, the proedure wouldnever omplete. Neither of these proedures uses a loally delared value. Here is one whih does:PROC new fat = (INT i)INT:IF INT n:=i-1; n = 1THEN 2ELSE i*new fat(n)FIThe example is somewhat arti�ial, but illustrates the point. If new fat is alled by, for example,new fat(3), then in the �rst all, n will have the value 2, and new fat will be alled again with theparameter equal to 2. In the seond all, n will be 1, but this n this time round will be a new n, with the�rst n inaessible (it being delared in an enlosing range). new fat will yield 2, and this value will beused in the formula on line 4 of the proedure. The �rst all to new fat will then exit with the value 6.Apart from being fun, reursive proedures an be an eÆient way of programming a partiularproblem. Chapter 11 deals with, amongst other topis, reursive modes, and there, reursive programmingomes into its own.A di�erent form of reursion, known as mutual reursion, is exempli�ed by two proedures whihall eah other. You have to ensure there is no irularity. The prinipal diÆulty of how to use aproedure before it has been delared is overome by �rst delaring a proedure name and then assigninga routine denotation to the proedure name after the other proedure has been delared. Here is a simpleexample:3PROC(INT)INT pb;PROC pa = (INT i)INT: (i>0|pb(i-1)|i);pb:=(INT i)INT: (i<0|pa(i+1)|i);Then pa(4) would yield 3 and pa(-4) would yield -4. Similarly, pb(4) would yield 4 and pb(-4) wouldyield -3. Notie that the right-hand side of the assignment is an anonymous routine denotation.
Exerises6.24 Write a reursive proedure to reverse the order of letters in a value of mode [℄CHAR. It shouldyield a value also of mode [℄CHAR.6.25 Write two mutually reursive proedures whih take an integer parameter and whih yield an INT.The �rst should all the seond if the parameter is odd, and the seond should all the �rst if theparameter is even. The alternative option should yield the square of the parameter for the �rstproedure and the ube of the parameter for the seond proedure. Use square and ube as theproedure identi�ers.
6.3.5 Standard proeduresThe standard prelude ontains the delarations of more than 60 proedures, most of them onerned withtransput (see hapter nine). A number of proedures, all having the modePROC(REAL)REALare delared in the standard prelude and yield the values of ommon mathematial funtions. Theseare sqrt, exp, ln, os, sin, tan, artan, arsin and aros. Naturally, you must be areful to ensurethat the atual parameter for sqrt is non-negative, and that the atual parameter for ln is greater thanzero. The proedures os, sin and tan expet their REAL parameter to be in radians.3A ompiler whih implements the Algol 68 de�ned by the Revised Report would not have to resort to thisdevie beause the delaration of eah proedure would be available everywhere in the enlosing range (but seesetion 6.3.6).

6.3. PROCEDURES 73New proedures using these predelared proedures an be delared:PROC sinh =(REAL x)REAL: (exp(x) + exp(-x))/2A variety of pseudo-random numbers an be produed using random int. The mode of the proedurerandom int isPROC(INT)INTand yields a pseudo-random integer greater than or equal to one, and less than or equal to its integerparameter. For example, here is a proedure whih will ompute the perentage of eah possible diethrow in 10 000 suh throws:PROC perentage = [℄REAL:(PROC throw = INT: random int(6);[6℄REAL result:=(0,0,0,0,0,0);TO 10 000 DO result[throw℄+:=1 OD;FOR i FROM LWB result TO UPB resultDO result[i℄ /:= 10 000 OD;result)Notie that perentage has another proedure (throw) delared within it. There is no limit to suhnesting.6.3.6 Other features of proeduresSine a proedure is a value, it is possible to delare values whose modes inlude a proedure mode. Forexample, here is a multiple of proedures:[℄PROC(REAL)REAL pr = (sin,os,tan)and here is a possible all:pr[2℄(2)whih yields�0:416 146 836 5. We ould also delare a proedure whih ould be alled with the expressionpr(2)[2℄but this is left as an exerise.Similarly, names of proedures an be delared and an be quite useful. Instead of delaringPROC p = (INT i)PROC(REAL)REAL: pr[i℄using pr delared above, with a possible all of p(2) we ould writePROC(REAL)REAL pn:=pr[i℄and then use pn instead of p. The advantage of this would be that pr would be subsripted only oneinstead of whenever p is elaborated. Furthermore, another proedure ould be assigned to pn and theproedure it refers to again alled. Using pn would usually involve dereferening.There are soping problems involved with proedure names. Although the sope of a denotation isglobal, proedure denotations may inlude an identi�er whose range is not global. For this reason, thesope of a proedure denotation is limited to the smallest enlosing lause ontaining a delaration of anidenti�er or mode or operator indiant whih is used in the proedure denotation.For example, in this program fragment

74 CONTENTSPROC REAL pp; REAL y;BEGINREAL x:=3.0;PROC p = REAL: x:=4.0;print(p);pp:=p; CO wrong COprint(x)END;print(("pp=",pp)) #wrong#the assignment in line 6 is wrong beause the sope of the right-hand side is less than the sope of theleft-hand side. Unfortunately, the Ctrans ompiler does not perform sope heking and so will not agthe inorret assignment.There are times when SKIP is useful in a proedure delaration:PROC p = REAL:IF x<0THEN print("Negative parameter"); stop; SKIPELSE sqrt(x)FIThe yield of the proedure is REAL, so eah part of the onditional lause must yield a value of modeREAL. The onstrut stop yields VOID, and even in a strong ontext, VOID annot be oered to REAL.However, SKIP will yield an unde�ned value of any required mode. In this ase, SKIP yields a value ofmode REAL, but the value is never used, beause the program is terminated just before.Grouping your program into proedures helps to keep the logi simple at eah level. Nesting proeduresmakes sense when the nested proedures are used only within the outer proedures. This topi is overedin greater depth in hapter 12.
6.4 SummaryThe fat that this is one of the longer hapters in the book reets the importane of routines in Algol 68programs. Every formula uses operators, and proedures enable a program to be written in small hunksand tested in a pieewise manner.A routine denotation forms the basis of both operators and proedures. Routine denotations have awell-de�ned mode, the value being the denotation itself. A routine an delare identi�ers within its body,inluding other routines (whether operators or proedures).Operators an have one or two operands (as the parameters are alled) and usually yield a value ofsome mode other than VOID. Dyadi operators have a priority of 1 to 9. Firmly related operators annotbe delared in the same range. The operator symbol an be a bold indiant (like a mode indiant) or oneof or a ombination of various symbols.Proedures an have none or more parameters of any mode, and an yield a value of any mode(inluding VOID). Proedures an all themselves: this is known as reursion.Rows of proedures, names of proedures and other modes using proedure modes an all be delaredand, on oasion, an be useful.Here are some exerises whih over some of the topis disussed in this rather long hapter.
Exerises6.26 At the time of the all of a proedure or operator, what is the relationship between the formalparameters and the atual parameters?6.27 Write an operator whih will �nd the largest element in its two-dimensional row-of-reals parameter.6.28 Write a proedure, identi�ed by pr, whih an be alled by the phrase pr(2)[2℄.6.29 Write a proedure whih omputes the length of a line read from the keyboard.

Chapter 7
Strutures
Strutures are a powerful piee of Algol 68, partiularly when ombined with the unions desribed inthe next hapter. In this hapter, we shall meet another mode onstrutor, examine omplex numbersand their assoiated operators and learn how to onstrut new modes. In doing so, you will deepen yourunderstanding of the language.
7.1 Struture denotationsIn hapter 3, we saw how a number of individual values an be olleted together to form a multiplewhose mode was expressed as \row of" the base mode. The prinipal harateristi of multiples is thatall the elements have the same mode. A struture is another way of grouping data elements, but inthis ase, the individual parts an be, but need not be, of di�erent modes. In general, aessing theelements of a multiple is determined at run-time by the elaboration of a slie. In a struture, aess tothe individual parts, alled �elds, are determined at ompile time. Strutures are, therefore, an eÆientmeans of grouping data elements.The mode onstrutor STRUCT is used to reate struture modes. Here is a simple identity delarationof a struture:STRUCT(INT i,CHAR) s = (2,"e")The mode of the struture isSTRUCT(INT i,CHAR)and its identi�er is s. The i and the are alled �eld seletors and are part of the mode. They are notidenti�ers, even though the rule for identi�er onstrution applies to them, beause they are not valuesin themselves. You annot say that i has mode INT beause i annot stand by itself. We shall see in thenext setion how they are used.The expression to the right of the equals symbol is alled a struture-display. Like row-displays,struture-displays an only appear in a strong ontext. In a strong ontext, the ompiler an determinewhih mode is required and so it an tell whether a row-display or a struture-display has been provided.We ould now delare another suh struture:STRUCT(INT i,CHAR) t = sand t would have the same value as s.Here is a struture delarationSTRUCT(INT j,CHAR) ss = (2,"e")whih looks almost exatly like the �rst struture delaration above, exept that the �eld seletor i hasbeen replaed with j. The struture ss has a di�erent mode from s beause not only must the onstituentmodes be the same, but the �eld seletors must also be idential.Struture names an be delared:REF STRUCT(INT i,CHAR) sn =LOC STRUCT(INT i,CHAR) 75

76 CONTENTSBeause the �eld seletors are part of the mode, they appear on both sides of the delaration. Theabbreviated form isSTRUCT(INT i,CHAR) snWe ould then writesn:=sin the usual way.The modes of the �elds an be any mode. For example, we an delareSTRUCT(REAL x,REAL y,REAL z) vetorwhih an be abbreviated toSTRUCT(REAL x,y,z)vetorand here is a possible assignment:vetor:=(1.3,-4,5.6e10)where the value -4 would be widened to -4.0.Here is a struture with a proedure �eld:STRUCT(INT int,PROC(REAL)REAL p,CHAR har) method = (1,sin,"s")Here is a name referring to suh a struture:STRUCT(INT int,PROC(REAL)REAL p,CHAR har) m := methodA struture an even ontain another struture:STRUCT(CHAR ,STRUCT(INT i,j)s) double=("",(1,2))In this ase, the inner struture has the �eld seletor s and its �eld seletors are i and j.
Exerises7.1 Delare a struture ontaining three integer values with �eld seletors i, j and k.7.2 Delare a name whih an refer to a struture ontaining an integer, a real and a boolean using�eld seletors i, r and b respetively.
7.2 Field seletionThe �eld-seletors of a struture mode are used to \extrat" the individual �elds of a struture. Forexample, given this delaration for the struture s:STRUCT(INT i,CHAR) s = (2,"e")we an selet the �rst �eld of s using the seletioni OF sThe mode of the seletion is INT and its value is 2. Note that the onstrut OF is not an operator. Theseond �eld of s an be seleted using the seletion OF s

7.2. FIELD SELECTION 77whose mode is CHAR with value "e". The �eld-seletors annot be used on their own: they an only beused in a seletion.A seletion an be used as an operand. Consider the formulai OF s * ABS OF sIn the struture method, delared in the previous setion, the proedure in the struture an be seletedby p OF methodwhih has the mode PROC(REAL)REAL. For a reason whih will be lari�ed in hapter 10, if you want toall this proedure, you must enlose the seletion in parentheses:(p OF method)(0.5)Remembering that the ontext of the atual-parameters of a proedure is strong, you ould also write(p OF method)(int OF method)where int OF method would be widened to a real number and the whole expression would yield a valueof mode REAL.The two �elds of the struture double (also delared in the previous setion), an be seleted bywriting OF doubles OF doubleand their modes are CHAR and STRUCT(INT i,j) respetively. Now the �elds of the inner struture s ofdouble an be seleted by writingi OF s OF doublej OF s OF doubleand both seletions have mode INT.Now onsider the struture name sn delared bySTRUCT(INT i,CHAR s) sn;The mode of sn isREF STRUCT(INT i,CHAR s)This means that the mode of the seletioni OF snis not INT, but REF INT, and the mode of the seletion OF snis REF CHAR. That is, the modes of the �elds of a struture name are all preeded by REF (they are allnames). This is partiularly important for reursively de�ned strutures (see hapter 11). Thus, insteadof assigning a omplete struture using a struture-display, you an assign values to individual �elds.That is, the assignmentsn:=(3,"f")is equivalent to the assignmentsi OF sn := 3; OF sn := "f"exept that the assignments to the individual �elds are separated by the go-on symbol (the semiolon ;)and the two units in the struture-display are separated by a omma and so are elaborated ollaterally.Given the delaration and initial assignment

78 CONTENTSSTRUCT(CHAR ,STRUCT(INT i,j)s)dn:=doublethe seletions OF dnhas the mode REF STRUCT(INT i,j), and so you ould assign diretly to it:s OF dn:=(-1,-2)as well as to one of its �elds:j OF s OF dn:=0
Exerises7.3 Given the delarationsSTRUCT(STRUCT(CHAR a,INT b),PROC(STRUCT(CHAR a,INT b))INT p,INT d)st;STRUCT(CHAR a,INT b)stawhat is the mode of(a) OF st(b) a OF OF st() a OF sta(d) (p OF st)(sta)(e) b OF OF st * b OF sta(f) sta:= OF st7.4 Delare a proedure whih ould be assigned to the seletion p OF st in the last question.
7.3 Mode delarationsStruture delarations are very ommon in Algol 68 programs beause they are a onvenient way ofgrouping disparate data elements, but writing out their modes every time a name needs delaring is error-prone. Using the mode delaration, a new mode indiant an be delared to at as an abbreviation.For example, the mode delarationMODE VEC = STRUCT(REAL x,y,z)makes VEC synonymous for the mode spei�ation on the right-hand side of the equals symbol. Heneforth,new values using VEC an be delared in the ordinary way:VEC ve = (1,2,3);VEC vn := ve;[10℄VEC va;PROC(VEC v)VEC pv=CO a routine-denotation CO;STRUCT(VEC v,w,x) tensorHere is a mode delaration for a struture whih ontains a referene mode:MODE RV = STRUCT(CHAR ,REF[℄CHAR s)but we shall onsider suh advaned modes in hapter 11. Using a mode delaration, you might betempted to delare a mode suh asMODE CIRCULAR =STRUCT(INT i,CIRCULAR) CO wrong CObut this is not allowed. However, there is nothing wrong with suh modes as

7.3. MODE DECLARATIONS 79MODE NODE = STRUCT(STRING s,REF NODE next),PNODE = STRUCT(STRING s,PROC(PNODE)STRING pro)beause the NODE inside the STRUCT of its delaration is hidden by the REF. Likewise, the PNODE parameterfor pro in the delaration of PNODE is hidden by the PROC.Suppose you want a mode whih refers to another mode whih hasn't been delared, and the seondmode will refer bak to the �rst mode. Both mode delarations annot be �rst. In Algol 68 proper, yousimply delare both modes in the usual way. However, the Ctrans ompiler is a single-pass ompiler (itreads the soure program one only) and so all applied-ourrenes must our later in the soure programthan the de�ning-ourrenes. In this ase, one of the modes is delared using a stub delaration. Hereis an example:MODE MODE2,MODE1 = STRUCT(CHAR ,REF MODE2 rb),MODE2 = STRUCT(INT i,REF MODE1 ra)There is nothing irular about these delarations. This is another example of mutual reursion. Goahead and experiment.This raises the point of whih modes are atually permissible. We shall deal with this in hapter 10.For now, just ensure that you don't delare modes like CIRCULAR, and avoid modes whih an be stronglyoered into themselves, suh asMODE WRONG = [1:5℄WRONGIf you inadvertently delare a disallowed mode, the ompiler will delare that the mode is not legal.Mode delarations are not on�ned to strutures. For example, the mode STRING is delared in thestandard prelude asMODE STRING = FLEX[1:0℄CHARand you an write delarations likeMODE FDES = INT,MULTIPLE = [30℄REAL,ROUTINE = PROC(INT)INT,MATRIX = [n,n℄REALNotie that the mode delarations have been abbreviated (by omitting MODE eah time and using ommas).In the delaration of ROUTINE, notie that no identi�er is given for the parameter of the proedure. Inthe last delaration, the bounds will be determined at the time of the delaration of any value using themode MATRIX. Here, for example, is a small program using MATRIX:PROGRAM tt CONTEXT VOIDUSE standardBEGININT n;MODE MATRIX = [n,n℄REAL;WHILEprint((newline,"Enter an integer ","followed by a blank:"));read(n);n > 0DO MATRIX m;FOR i TO 1 UPB mDO FOR j TO 2 UPB m

80 CONTENTSDO m[i,j℄:=random*1000ODOD;FOR i TO 1 UPB mDO print((m[i,℄,newline))ODODENDFINISH
Exerises7.5 Delare a mode for a struture ontaining two �elds, one of mode REAL and one of mode PROC(REAL)REAL.
7.6 Delare a mode for a struture whih ontains three �elds, the �rst being the mode of the previousexerise, the seond a proedure whih takes that mode as a parameter and yields VOID, and thethird being of mode CHAR.7.7 What is wrong with these two de�nitions?MODE AMODE = STRUCT(INT i,BMODE b),BMODE = STRUCT(CHAR ,AMODE a)Try writing a program ontaining these delarations, with names of modes AMODE and BMODE and�nish the program with the unit SKIP.
7.4 Complex numbersThis setion desribes the mode used to perform omplex arithmeti. This kind of arithmeti is useful toengineers, partiularly eletrial engineers. Even if you know nothing about omplex numbers, you maystill �nd this setion useful.The standard prelude ontains the mode delarationMODE COMPL = STRUCT(REAL re,im)You an use values based on this mode to perform omplex arithmeti. Here are delarations for valuesof modes COMPL and REF COMPL respetively:COMPL z1 = (2.4,-4.6);COMPL z2:=z1Most of the operators you need to manipulate omplex numbers have been delared in the standardprelude.You an use the monadi operators + and - whih have also been delared for values of mode COMPL.The dyadi operator ** has been delared for a left-operand of mode COMPL and a right-operand ofmode INT. The dyadi operators + - * / have been delared for all ombinations of omplex numbers,real numbers and integers, and so have the boolean operators = and /=. The assigning operators TIMESAB,DIVAB, PLUSAB, and MINUSAB all take a left operand of mode REF COMPL and a right-operand of modesINT, REAL or COMPL. In a strong ontext, a real number will be widened to a omplex number. So, forexample, in the following identity delarationCOMPL z3 = -3.4z3 will have the same value as if it had been delared byCOMPL z3 = (-3.4,0)

7.4. COMPLEX NUMBERS 81This is the only ase where a real number an be widened into a struture.The dyadi operator I takes left- and right-operands of any ombination of REAL and INT and yieldsa omplex number. It has a priority of 9. For example, in a formula, the ontext of operands is �rm andso widening is not allowed. Nevertheless, the yield of this formula is COMPL:2 * 3 I 4Some operators at only on omplex numbers. The monadi operator RE takes a COMPL operand andyields its re �eld with mode REAL. Likewise, the monadi operator IM takes an operand of mode COMPLand yields its im �eld with mode REAL. For example, given the delaration above of z3, RE z3 would yield-3.4, and IM z3 would yield 0.0. Given the omplex number z delared asCOMPL z = 2 I 3then CONJ z would yield RE z I - IM z or (2.0,-3.0). The operator ARG gives the argument of itsoperand: ARG z would yield 0:982 793 723 2, lying in the interval (��; �℄. The monadi operator ABS witha omplex number may be de�ned asOP ABS = (COMPL z)REAL:sqrt(RE z**2 + IM z**2)Remember that in the formula RE z**2, the operator RE is monadi and so is elaborated �rst.As desribed in the previous setion, the mode COMPL an be used wherever a mode is required. Inpartiular, proedures taking COMPL parameters and yielding COMPL values an be delared. Struturesontaining COMPL an be delared as above.From the setion on �eld seletion, it is lear that in the delarationsCOMPL z = (2.0,3.0);COMPL w:=zthe seletionre OF zhas mode REAL (and value 2.0), while the seletionre OF whas mode REF REAL (and its value is a name). However, the formulaRE wstill yields a value of mode REAL beause RE is an operator whose single operand has mode COMPL. In theabove phrase, the w will be dereferened before RE is elaborated. Thus it is quite legal to writeim OF w:=RE wor im OF w:=re OF win whih ase the right-hand side of the assignment will be dereferened before a opy is assigned.
Exerises7.8 If the omplex number za has the mode COMPL and the value yielded by (2,-3), what is the valueof(a) CONJ za(b) IM za * RE za * RE za() ABS za(d) ARG za7.9 What is the value of the formula 23 - 11 I -10?7.10 Given the delarationsCOMPL a = 2 I 3;COMPL b:= CONJ awhat is the mode and value of eah of the following:(a) im OF b(b) IM b

82 CONTENTS() im OF a(d) IM a
7.5 Multiples in struturesIf multiples are required in a struture, the struture delaration should only ontain the required boundsif it is an atual-delarer. For example, we ould delareSTRUCT([℄CHAR forename,surname,title)leturer=("Nerissa","Leith","Dr")where the mode on the left is a formal-delarer (remember that the mode on the left-hand side of anidentity delaration is always a formal-delarer). We ould equally well delareSTRUCT([℄CHAR forename,surname,title)student=("Tom","MaAllister","Mr")As you an see, the bounds of the individual multiples di�er in the two ases.When delaring a name, beause the mode preeding the name identi�er is an atual-delarer (in anabbreviated delaration), the bounds of the required multiples must be inluded. A suitable delarationfor a name whih ould refer to leturer would beSTRUCT([7℄CHAR forename,[6℄CHAR surname,[3℄CHAR title)new leturer := leturerbut this would not be able to refer to student. A better delaration would use STRING:STRUCT(STRING forename,surname,title)personin whih ase we ould now writeperson:=leturer;person:=studentUsing �eld seletion, we an writetitle OF personwhih would have mode REF STRING. Thus, using �eld seletion, we an assign to the individual �elds ofperson:surname OF person:="MRae"When sliing a �eld whih is a multiple, it is neessary to remember that sliing binds more tightlythan seleting (see hapter 10 for a detailed explanation). Thus the �rst harater of the surname ofstudent would be aessed by writing(surname OF student)[1℄whih would have mode CHAR. The parentheses ensure that the seletion is elaborated before the sliing.Similarly, the �rst �ve haraters of the forename of person would be aessed as(forename OF person)[:5℄with mode REF[℄CHAR.Consider the following program:

7.5. MULTIPLES IN STRUCTURES 83PROGRAM t1 CONTEXT VOIDBEGINMODE AMODE = STRUCT([4℄CHAR a,INT b);AMODE a = ("abde",3);AMODE b:=a;SKIPENDFINISHIn the identity delaration for a, the mode required is a formal-delarer. In this ase, the Ctrans ompilerwill ignore the bounds in the delaration of AMODE giving the modeSTRUCT([℄CHAR a,INT b)whih explains why the struture-display on the right is aepted ("abde" has bounds [1:5℄). However,although the program ompiles without errors, when it is run, it fails with the error messageRun time fault (aborting):ASSIGN2: bounds do not math in [℄ assignmentbeause the mode used in the delaration of the name b is an atual-delarer (it ontains the boundsgiven in the mode delaration) and you annot assign a [℄CHAR with bounds [1:5℄ to a REF[℄CHAR withbounds [1:4℄.With more ompliated strutures, it is better to use a mode delaration. For example, we oulddelareMODE EMPLOYEE =STRUCT(STRING name,[2℄STRING address,STRING dept,ni ode,tax ode,REAL basi,overtime rate,[52℄REAL net pay,tax);EMPLOYEE empand then read spei� values from the keyboard (hapter 9 overs reading data from �les):read((name OF emp,newline,(address OF emp)[1℄,newline,(address OF emp)[2℄,newline,...The modes ofname OF empaddress OF empnet pay OF empare REF STRINGREF[℄STRINGREF[℄REALrespetively. The phrase(net pay OF emp)[:10℄has the mode REF[℄REAL with bounds [1:10℄ and represents the net pay of emp for the �rst 10 weeks.Note that although the monetary values are held as REAL values, the auray with whih a REAL numberis stored is suh that no rounding errors will ensue. See setion 12.1.5 whih desribes whih modes aresuitable for storing monetary values.

84 CONTENTSExerises7.11 Given the delaration of emp in the text, what would be the mode of eah of the following:(a) address OF emp(b) basi OF emp() (tax OF emp)[12℄(d) (net pay OF emp)[10:12℄7.12 What are the bounds of the name in (d) above?
7.6 Rows of struturesIn the last setion, we onsidered multiples in strutures. What happens if we have a multiple eah ofwhose elements is a struture? No problem. If we had delared[10℄COMPL z4then the seletion re OF z4 would yield a name with mode REF[℄REAL and bounds [1:10℄.1 It wouldbe possible, beause it is a name, to assign to it:re OF z4:=(1,2,3,4,5,6,7,8,9,10)Seleting the �eld of a slied multiple of a struture is straightforward. Sine the multiple is sliedbefore the �eld is seleted, no parentheses are neessary. Thus the real part of the third COMPL of z4above is given by the expressionre OF z4[3℄Now onsider a multiple of a struture whih ontains a multiple. Here is its delaration:[100℄STRUCT(CHAR ,[5℄INT i)sThen the fourth integer in the 25th struture of s is given by(i OF s[25℄)[4℄and all the haraters are given by the seletion OF swith mode REF[℄CHAR and bounds [1:100℄.2
Exerises7.13 Suppose a �rm had 20 employees, and in writing one of the programs in their payroll system, themodes of setion 7.5 were used. Suppose now that we have the delaration[20℄EMPLOYEE employee;What would be the mode of eah of the following:(a) (dept OF employee[3℄)[3℄(b) dept OF employee[10:12℄() ni ode OF employee[1℄(d) net pay OF employee[15℄(e) (tax OF employee[2℄)[50:51℄
7.7 Transput of struturesThe following program fragment will print the details of the name emp delared in setion 7.5:print((emp,newline))For details of how this works, see the remarks on \straightening" in setion 9.2. However, the individualstrings would be printed together and so, in this ase, it would be better to write the following:1Unfortunately, there is a bug in the Ctrans ompiler whereby this seletion (and similar seletions) aredisallowed.2But this is disallowed by the Ctrans ompiler.

7.8. SUMMARY 85print((name OF emp,newline));FOR i TO UPB address OF empDO print((address OF emp)[i℄,newline))OD;print((dept OF emp,newline,ni ode OF emp,newline,tax ode OF emp,basi OF emp,overtime OF emp,net pay OF emp,tax OF emp,newline))In pratie, it would be sensible to delare a proedure or an operator whih would print the strutureand then all it as required.
7.8 SummaryThis hapter has signi�antly inreased the number of di�erent modes we an onstrut. Struturesare onstruted using the mode onstrutor STRUCT. Compliated strutures are best delared using themode delaration (using MODE). Strutures an have any number of �elds from one up, and the �elds anhave any mode, inluding the same modes. The mode COMPL has been delared in the standard preludetogether with the neessary operators to manipulate omplex numbers.Strutures an ontain proedures and multiples and multiples of strutures an be delared. Althoughstrutures ontaining referene modes an be delared, they are overed in hapter 11. Operators andproedures whih have struture parameters or yield an be delared.Here are some exerises to hek what you have learned.
Exerises7.14 Write a suitable mode for a football team whih ontains the names of its 11 members, the nameof the team (ordinary name, not the Algol 68 meaning), the number of games played, won anddrawn, and the number of goals sored for and against.7.15 Given the delarationSTRUCT(INT i,[3℄REAL r)sexplain why parentheses are needed in the phrase(r OF s)[2℄7.16 Given the delaration[3℄STRUCT(INT i,REAL r)sexplain why parentheses are not needed in the phraser OF s[2℄7.17 Given the delarationsMODE S2,S1 = STRUCT([3℄CHAR n,PROC S2 p),S2 = STRUCT([3℄CHAR m,PROC(S1)S2 p);S1 s1; S2 s2;what are the modes of eah of the following:(a) p OF s1(b) p OF s2() (n OF s1)[2:℄

86 CONTENTS

Chapter 8
Unions
From time to time, you have been using the proedure print to display values on your sreen. You musthave notied that it seems to be able to take a large variety of values of di�erent modes and that it anproess more than one value in one all. You may therefore be wondering how the parameter of printis spei�ed. It annot be a struture beause a struture has a �xed number of �elds, but if it is a row,how an a row have di�erent modes for its elements? Although the elements of a row must eah have thesame mode, the explanation is that print takes one parameter whih is a row of a united mode.This very short hapter introdues the �nal mode onstrutor available in Algol 68. It shows thepriniples behind the onstrution and use of united modes. It does not and annot show all the possibleusages.
8.1 United mode delarationsUNION is used to reate a united mode. Here is a delaration for a simple united mode:UNION(INT,STRING) u = (random < .5|4|"ab")The �rst thing to notie is that, unlike strutures, there are no �eld seletors. This is beause a unitedmode does not onsist of onstituent parts. The seond thing to notie is that the above mode ould wellhave been writtenUNION(STRING,INT) u = (random < .5|4|"ab")The order of the modes in the union is irrelevant.1 What is important is the atual modes present in theunion. Moreover, a onstituent mode an be repeated, as inUNION(STRING,INT,STRING,INT) u =(random < .5|4|"ab")This is equivalent to the previous delarations.2Like strutured modes, united modes are often delared with the mode delaration. Here is a suitabledelaration of a united mode ontaining the onstituent modes STRING and INT:MODE STRINT = UNION(STRING,INT)We ould reate another mode STRINTR in two ways:MODE STRINTR = UNION(STRINT,REAL)or MODE STRINTR = UNION(STRING,INT,REAL)Using the above delaration for STRINT, we ould delare u bySTRINT u = (random < .5|4|"ab")1Unfortunately, for the Ctrans ompiler, this is not true.2But not for the Ctrans ompiler. 87

88 CONTENTSIn this identity delaration, the mode yielded by the right-hand side is either INT or STRING, but themode required is UNION(STRING,INT). The value on the right-hand side is oered to the required modeby uniting.The united mode STRINT is a mode whose values either have mode INT or mode STRING. It was statedin hapter 1 that the number of values in the set of values de�ned by a mode an be zero. Any valueof a united mode atually has a mode whih is one of the onstituent modes of the union. So thereare no new values for a united mode. u identi�es a value whih is either an INT or a STRING. Beauserandom yields a pseudo-random number, it is not possible to determine when the program is ompiled(that is, at ompile-time) whih mode the onditional lause yields. As a result, all we an say is thatthe underlying mode of u is either INT or STRING. We shall see later how to determine that underlyingmode.3Beause a united mode does not introdue new values, there are no denotations for united modes,although denotations may well exist for the onstituent modes.Almost any mode an be a onstituent of a united mode. For example, here is a united mode ontaininga proedure mode and VOID:MODE PROID = UNION(PROC(REAL)REAL,VOID)and here is a delaration using it:PROID pd = EMPTYThe only limitation on united modes is that none of the onstituent modes may be �rmly related (seethe setion 6.2.1) and a united mode annot appear in its own delaration. The following delaration iswrong beause a value of one of the onstituent modes an be deproedured in a �rm ontext to yield avalue of the united mode:MODE WRONG = UNION(PROC WRONG,INT)Names for values with united modes are delared in exatly the same way as before. Here is adelaration for suh a name using a loal generator:REF UNION(BOOL,INT) un = LOC UNION(BOOL,INT);The abbreviated delaration givesUNION(BOOL,INT) un;Likewise, we ould delare a name for the mode STRINT:STRINT sn;In other words, objets of united modes an be delared in the same way as other objets.
Exerises8.1 Write a mode delaration for the united mode BINT whose onstituent modes are BOOL and INT.8.2 Write an identity delaration for a value of mode BINT.8.3 What is wrong with the mode delarationMODE UB = UNION(REF UB,INT,BOOL)8.4 Delare a name for a mode united from INT, [℄INT and [,℄INT.

3Note that an Algol 68 union is quite di�erent from a C union. The latter is simply a remapping of a piee ofmemory. In an Algol 68 union, where the underlying value is kept is the business of the ompiler and it annotbe remapped by the programmer.

8.2. UNITED MODES IN PROCEDURES 898.2 United modes in proeduresWe an now partly address the problem of the parameters for print and read. If we extend the answer tothe last exerise, we should be able to onstrut a united mode whih will aept all the modes aeptedby those two proedures. In fat, the united modes used are almost the same as the two followingdelarations:MODE SIMPLOUT = UNION(CHAR, [℄CHAR,INT, [℄INT,REAL, [℄REAL,COMPL,[℄COMPL,BOOL, [℄BOOL,),SIMPLIN = UNION(REF CHAR, REF[℄CHAR,REF INT, REF[℄INT,REF REAL, REF[℄REAL,REF COMPL,REF[℄COMPL,REF BOOL, REF[℄BOOL,);As you an see, the mode SIMPLIN used for read is united from modes of names.The modes SIMPLOUT and SIMPLIN are a little more ompliated than this beause they inlude modeswe have not yet met (see hapters 9 and 11), but you now have the basi idea.The uniting oerion is available in a �rm ontext. This means that operators whih aept operandswith united modes will also aept operands whose modes are any of the onstituent modes. We shallreturn to this in the next setion.Here is an example of the uniting oerion in a all of the proedure print. If a has mode REF INT,b has mode [℄CHAR and has mode PROC REAL, then the allprint((a,b,))auses the following to happen:1. a is dereferened to mode INT and then united to mode SIMPLOUT.2. b is united to mode SIMPLOUT.3. is deproedured to produe a value of mode REAL and then united to mode SIMPLOUT.4. The three elements are regarded as a row-display for a [℄SIMPLOUT.5. print is alled with its single parameter.print uses a onformity lause (see next setion) to extrat the atual value from eah element in therow.In setion 6.3.2, we gave the delaration of a proedure identi�ed as har in string. The header ofthat proedure wasPROC har in string=(CHAR h,REF INT pos,[℄CHAR s)BOOL:The proedure yielded TRUE if h was present in s, in whih ase pos ontained the position. Otherwise,the proedure yielded FALSE. The same proedure ould be written to yield the position of h in s if itis present, and VOID if not:PROC uis = (CHAR h,[℄CHAR s)UNION(INT,VOID):The body of the proedure has been left as an exerise.

90 CONTENTSExerises8.5 A proedure has the headerPROC pu = ([℄UNION(CHAR,[℄CHAR) up)VOID:Explain what happens to the parameters if it is alled by the phrasepu((CHAR: REPR(ABS"a"+1),LOC[4℄CHAR))8.6 Write the body of the proedure uis given in the text.
8.3 Conformity lausesIn the last setion, we disussed the onsequenes of the uniting oerion; that is, how values of variousmodes an be united to values of united modes. This raises the question of how a value of a unitedmode an be extrated sine its onstituent mode annot be determined at ompile-time. There is node-uniting oerion in Algol 68. The onstituent mode or the value, or both, an be determined using avariant of the ase lause disussed in hapter 4 (see setion 4.6). It is alled a onformity lause. Forour disussion, we shall use the delaration of u in setion 8.1 (u has mode STRINT).The onstituent mode of u an be determined by the following:CASE u IN(INT): print("u is an integer"),(STRING): print("u is a string")ESACIf the onstituent mode of u is INT, the �rst ase will be seleted. Notie that the mode seletor isenlosed in parentheses and followed by a olon. Otherwise, the onformity lause is just like the aselause (in fat, it is sometimes alled a onformity ase lause). This partiular example ould also havebeen writtenCASE uIN (STRING): print("u is a string")OUTprint("u is an integer")ESACThis is the only irumstane when a CASE lause an have one hoie. Usually, however, we want toextrat the value. A slight modi�ation is required:CASE u IN(INT i):print(("u identifies the value",i)),(STRING s):print(("u identifies the value ",s))ESACIn this example, the mode seletor and identi�er at as the left-hand side of an identity delaration. Theidenti�er an be used in the following unit (or enlosed lause).The two kinds of onformity lause an be mixed. For example, here is one way of using the proedureuis:CASE uis(,s) IN(VOID):print("The harater was not found"),(INT p):print(("The position was",p))ESAC

8.4. SUMMARY 91We mentioned in the last setion that operators with united-mode operands an be delared. Here isone suh:MODE IC = UNION(INT,CHAR);OP * = (IC a,b)IC:CASE a IN(INT ai):(b|(INT bi): ai*bi,(CHAR b): ai*b),(CHAR a):(b|(INT bi): a*bi,(CHAR b): ABS a*ABS b)ESACIn eah of the four ases, the resulting produt is united to the mode IC.You an have more than one mode in a partiular ase. For example:MODE ICS = UNION(INT,CHAR,STRING);OP * = (ICS a,INT b)ICS:CASE aIN (UNION(STRING,CHAR) i):(i|(CHAR): *b,(STRING s): s*b),(INT n): n*bESACNote that onformity lauses do not usually have an OUT lause beause the only way of extrating a valueis by using the (MODE id): onstrution. However, they do have their uses. See the standard prelude formore examples of onformity lauses.Although read and print use united modes in their all, you annot read a value of a united modeor print a value of a united mode (remember that united modes do not introdue new values). You haveto read a value of a onstituent mode and then unite it, or extrat the value of a onstituent mode andprint it.
Exerises8.7 The modesMODE IRC = UNION(INT,REAL,COMPL),MIRC= UNION([℄INT,[℄REAL,[℄COMPL)are used in this and the following exerises.Write a proedure whih takes a single parameter of mode MIRC and whih yields the sum of allthe elements of its parameter as a value with mode IRC.8.8 Write the body of the operator * whose header is delared asOP * = (IRC a,b)IRC:Use nested onformity lauses. Remember that there are 9 separate ases.
8.4 SummaryUnited modes introdue no new values. A united mode an have any mode as one of its onstituentsexept a mode whih an be �rmly oered to itself. The uniting oerion is available in �rm ontexts.Beause the values supplied to print or read are united, the ontext of the parameter of those proeduresis �rm. A onformity lause is used to extrat the onstituent mode or value. The mode VOID an beone of the onstituents of a united mode and is useful to signal an exeptional yield from a proedure.United modes are used in a variety of ways.

92 CONTENTSExerises8.9 Write a delaration for the united mode CRIB whose onstituent modes are CHAR, REAL, INT andBOOL.8.10 Write a delaration for the operator UABS whih has a single operand of mode CRIB and whihyields the absolute value of its operand.8.11 Write four formul� whih use UABS and a denotation for eah of the onstituent modes of CRIB.

Chapter 9
Transput
At various points you have been reading external values from the keyboard and displaying internal valueson the sreen. This hapter addresses the means whereby an Algol 68 program an obtain external valuesfrom other soures and send internal values to plaes other than the sreen. straightening is the onlynew language onstrut involved and all the matters disussed are available in the standard prelude.Algol 68 transput gives the �rst taste of \event-driven programming". In e�et, all programs areevent-driven, but simple programs are driven only by the originating event: that is, the initiation ofthe program. In other words, simple programs, one started, run to ompletion, unless, of ourse, theyontain errors. Event-driven programs, however, are dependent on the ourrene of events whih areoutwith the ontrol of the program. We shall be examining later the kinds of event whih an a�et yourprograms if they read or write data.
9.1 Books, hannels and �lesIn Algol 68 terms, external values are held in a book. Books have various properties. They usually havean identi�ation string. Some books an be read, some written to and some permit both reading andwriting. Some books allow you to browse: that is, they allow you to start anywhere and read (or write)from that point on. If browsing is allowed, you an restart at the beginning. Some books allow you tostore external values in text form (human-readable form) only, while others allow you to store values ina ompat internal form known as binary. In the latter form, values are stored more or less in the sameform as they are held in the program. The values will not usually be human-readable, being more suitedto fast aess by omputer programs.In operating-system terms, Algol 68 books are alled \�les" (just to onfuse you, of ourse), but a bookhas a wider meaning than an operating-system �le.1 When reading external values from the keyboard,your program is reading data from a read-only book. When printing data, your program is writing datato a write-only book. When aessing a devie, suh as /dev/ttyS2, to whih you an attah a modem,your program an both read from and write to the book, but it annot browse in it.The data (as external values are alled) in a book, or the data to be put in a book, travels between thebook and your program via a hannel. Three prinipal hannels are provided in the standard prelude:stand in hannel, stand out hannel and stand bak hannel. The �rst is used for books whihan only be read (they are \read-only"), the seond for books whih an only be written to (they are\write-only") and the last for books whih permit both reading and writing. This lassi�ation is a littleover-simpli�ed. Many books permit both reading and writing, but you may only want your programto read it. The three standard hannels mentioned are all \bu�ered". This means that when you, forexample, write data to a book, the data is olleted in memory until a �xed amount has been transput,when the olletion is written to the book in its entirety. The standard hannels use a bu�er of 4096bytes. The mode of a hannel is CHANNEL and is delared in the standard prelude.Your program keeps trak of where you are in a book, whih book is being aessed and whether youhave ome to the end of the book by means of a speial struture whih has the mode FILE. This is aompliated struture delared in the standard prelude. The internals of values of mode FILE are likelyto hange from time to time, but the methods of using them will remain the same.
9.2 Reading booksBefore you an read the ontents of an existing book, you need to onnet the book to your program.The proedure open with the header1In Linux, a �le has the mode, more-or-less, REF BOOK.93

94 CONTENTSPROC open = (REF FILE f,STRING idf,CHANNEL han)INT:performs that funtion. open yields zero if the onnetion is established and non-zero otherwise. Hereis a program fragment whih establishes ommuniation with a read-only book whose identi�ation istestdata:FILE inf;IF open(inf,"testdata",stand in hannel)/=0THENprint(("Cannot open book testdata",newline));exit(1)FINotie that the program displays a short message on the sreen if for any reason the book annot beopened and then terminates with a suitable error number. The proedure exit is not standard Algol 68,but is provided by a system routine whose delaration is in the standard prelude issued with the Ctransompiler.After a book has been opened, data an be read from the book using the proedure get whihtransforms external values into internal values like read (you will meet read again shortly). It has theheaderPROC get=(REF FILE f,[℄SIMPLIN items)VOID:The mode SIMPLIN is delared in the standard prelude asMODE SIMPLIN=UNION(REF CHAR, REF[℄CHAR, REF STRING,REF BOOL, REF[℄BOOL,REF LONG BITS, REF[℄LONG BITS,REF BITS, REF[℄BITS,REF SHORT BITS, REF[℄SHORT BITS,REF SHORT SHORT BITS,REF[℄SHORT SHORT BITS,REF LONG INT, REF[℄LONG INT,REF INT, REF[℄INT,REF SHORT INT, REF[℄SHORT INT,REF SHORT SHORT INT,REF[℄SHORT SHORT INT,REF REAL, REF[℄REAL,REF SHORT REAL, REF[℄SHORT REAL,REF COMPL, REF[℄COMPL,REF SHORT COMPL, REF[℄SHORT COMPL,STRAIGHT SIMPLIN),The mode BITS is overed in hapter 11 together with LONG and SHORT modes. As you an see, allthe onstituent modes of the union are the modes of names, exept for the STRAIGHT SIMPLIN and thePROC(REF FILE)VOID. The PROC mode lets you use routines like newpage and newline as one of theparameters. The atual header of newline isPROC newline = (REF FILE f)VOID:

9.3. WRITING TO BOOKS 95and you an all it outwith get if you want. On input, the rest of the urrent line is skipped and a newline started. The position in the book is at the start of the new line, just before the �rst harater of thatline. Here is a program fragment whih opens a book and then reads the �rst line and makes a name ofmode REF STRING to refer to it. After reading the string, newline is alled expliitly:FILE inf;open(inf,"book",stand in hannel);STRING line; get(inf,line); newline(inf)This ould equally well have been writtenFILE inf;open(inf,"book",stand in hannel);STRING line; get(inf,(line,newline))There is no reason why you should not delare your own proedures with mode PROC(REF FILE)VOID.Here is an example:PROC nl3 = (REF FILE f)VOID:TO 3 DO newline(f) OD;This proedure ould then be used in get, for example:STRING line1, line2;get(inf,(line1,nl3,line2))where line2 would be separated by 2 skipped lines from line1.The STRAIGHT operator onverts any struture or multiple into a row of values of the onstituent �eldsor elements. This means that get an read diretly any struture or multiple (or even rows of struturesor multiples).There are four names of mode REF FILE delared in the standard prelude. One of these is identi�edby stand in. The proedure read whih you have already used is delared asPROC read=([℄SIMPLIN items)VOID:get(stand in,items)in the standard prelude. As you an see, it gets data from stand in. If you want to, you an use getwith stand in instead of read. The �le stand in is already open when your program starts and shouldnot be losed2. Note that input from stand in is unbu�ered, that is, it does not use the hannel standin hannel.When you have �nished reading data from a book, you should sever the onnetion between the bookand your program by alling the proedure lose. This loses the book. Its header isPROC lose=(REF FILE f)VOID:
Exerises9.1 Write a program alled list whih will read lines from a text book until a zero length line is read.The program should display eah line on the sreen on separate lines.9.2 Write a program whih will read a positive integer from a text book and whih will then read thatnumber of numbers (integer or real) from the book and display their total.
9.3 Writing to booksYou should use the establish proedure to reate a new book. Here is a program fragment whih reatesa new book alled results:FILE outf;IF establish(outf, "results", stand out hannel, 0,0,0) /= 0THENprint(("Cannot establish book results", newline));exit(1)FI2Unless you know what you are doing!

96 CONTENTSAs you an see, establish has a similar header to open. What are the integers used for? The headerfor establish isPROC establish = (REF FILE f,STRING idf,CHANNEL hann,INT p,l,)INT:The p, l and in establish determine the maximum number of pages, lines and haraters in the bookwhih is being reated. Values of 0 for all three integers mean that the �le should be established with zerolength. However, they are ignored by the stand out hannel in the QAD standard prelude providedwith the Ctrans ompiler.The proedure used to write data to a book is put. Its header isPROC put=(REF FILE f,[℄SIMPLOUT items)VOID:You an examine the soure of the standard prelude to see how the mode SIMPLOUT is delared.Again, newline and newpage an be used independently of put as in the following fragment:FILE outf;IF establish(outf,"newbook",stand out hannel,0,0,0)/=0THENput(stand err,("Cannot establish newbook",newline));exit(2)ELSEput(outf,("Data for newbook",newline));FOR i TO 1000 DO put(outf,i) OD;newline(outf);lose(outf)FIOn output, the newline harater is written to the book.newpage behaves just like newline exept that a form feed harater is searhed for on input, andwritten on output.The proedure establish an fail if the disk you are writing to is full or you do not have write aess(in a network, for example) in whih ase it will return a non-zero value.When you have ompleted sending data to a book, you must lose it with the lose proedure. Thisis partiularly important with books you write to beause the hannel is bu�ered as explained above.Using lose ensures that any remaining data in the bu�er is ushed to the book.The proedure print uses the REF FILE name stand out. Soprint(("Your name",newline))is equivalent toput(stand out,("Your name",newline))Again, stand out is open when your program is started and it should not be losed. Transput viastand out is unbu�ered. You annot read from stand out, nor write to stand in. The proedurewrite is synonymous with print.
Exerises9.3 Change the seond program in the last set of exerises to put its total into a newly-reated bookwhose identi�ation is result.9.4 Adapt Eratosthenes' Sieve (see setion 5.4.1) to output all the prime numbers less than 10,000 intoa book alled primes.

9.4. STRING TERMINATORS 979.4 String terminatorsOne of the really useful failities available for reading data from books is that of being able to speifywhen the reading of a string should terminate. Usually, this is set as the end of the line only. However,using the proedure make term, the string terminator an be a single harater or any one of a set ofharaters. The header of make term isPROC make term=(REF FILE f,STRING term)VOID:so if you want to read a line word by word, de�ning a word as any sequene of non-spae haraters, youan make the string terminator a spae by writingmake term(inf,blank)beause blank (synonymous with " ") is rowed in the strong ontext of a parameter to [℄CHAR. However,this would remove the end-of-line as a terminator. A better all would bemake term(inf,blank+lf)where the seond parameter is a value of mode STRING. Here, inf is the identi�er for your FILE. Youshould remember that when a string is read, the string terminator is available for the next read|it hasnot been read by the previous read.
Exerises9.5 Write a program alled opy whih opies its input text book to its output text book, stoppingwhen a blank line is read (all blanks or zero length). The input book is alled inbook and theoutput book outbook.9.6 Rewrite the program in exerise A using make term. The data should be read from a book alledlines and written to a book alled words. Write one word to a line. Terminate the lines withan asterisk (*) on a line by itself.
9.5 EventsAlgol 68 transput is haraterised by its use of events. In the limited transput supplied with the Ctransompiler, only four kinds of events are deteted. These are:1. The end of the �le when reading. This is alled the \logial �le end".2. The end of the �le when writing. This is alled the \physial �le end".3. A value error.4. A harater error.The default ation when an event ours depends on the event. However, the default ation an bereplaed by a programmer-de�ned ation using one of the \on"-proedures.9.5.1 Logial �le endWhen the logial end of a �le has been deteted, the default ation is to terminate the program imme-diately. All open �les will be losed by the operating system, but any bu�ered output �les will lose anydata in the bu�er. A programmer-supplied ation must be a proedure with the header(REF FILE f)BOOL:The yield should be TRUE if some ation has been taken to remedy the end of the �le, in whih asetransput is re-attempted, or FALSE, when the default ation will be taken.The proedure on logial file end has the headerPROC on logial file end=(REF FILE f,PROC(REF FILE)BOOL p)VOID:

98 CONTENTSand an example will help explain its use. Here is a program whih will display the ontents of its textinput �le and print a message at its end.PROGRAM readfile CONTEXT VOIDUSE standardIF FILE inf; [℄CHAR infn="textbook";open(inf,infn,stand in hannel)/=0THENput(stand err,("Cannot open ",infn,newline));exit(1)ELSEon logial file end(inf,(REF FILE f)BOOL:(write(("End of ",idf(f)," read",newline));lose(f); FALSE));STRING line;DO get(inf,(line,newline));write((line,newline))ODFIFINISHThe anonymous proedure provided as the seond parameter to on logial file end prints an in-formative message and loses the book before yielding FALSE. Sine in this ase all we want is for theprogram to end when the input has been read, the default ation is �ne. Notie also that the DO loopsimply repeats the reading of a line until the logial file end proedure is alled. The proedure idfis desribed in setion 9.11.You should be areful if you do any transput on the parameter f in the anonymous routine otherwiseyou ould get an in�nite loop (a loop whih never ends). Also, beause the on logial file endproedure assigns its proedure parameter to its REF FILE parameter, you should be wary of usingon logial file end in limited ranges. The way out of this problem is to make a loal opy of theREF FILE parameter as in:BEGINFILE lo f:=stand in;on logial file end(f,(REF FILE f)BOOL: ...);...ENDAny piee of program whih will yield an objet of mode PROC(REF FILE)BOOL in a strong ontext issuitable as the seond parameter of on logial file end.If you want to reset the ation to the default ation, use the phraseon logial file end(f,no file end)
9.5.2 Physial �le endThe physial end of a �le is met on writing if, for example, the disk is full. It an also our when usingthe mem hannel (see setion 9.10). The default ation loses all open �les (but the bu�ers of bu�ered�les will not be ushed to disk) and terminates the program with an exit value of 255.A replaement proedure should have the modePROC(REF FILE)BOOL

9.5. EVENTS 99and it should yield TRUE if the event has been remedied in some way, in whih ase transput will bere-attempted, and FALSE otherwise (when the default ation will be elaborated).The default proedure an be replaed with a proedure de�ned by the programmer using the proe-dure on physial file end whih has the header:PROC on physial file end =(REF FILE f,PROC(REF FILE)BOOL p)VOID:9.5.3 Value errorThis event is aused by the following irumstanes:1. If an integer is expeted, then the value read exeeds max int.2. If a real number is expeted, then the value read exeeds max real.3. If a omplex number is expeted, then the value read for either the real part or the imaginary partexeeds max real.The proedure on value error lets the programmer provide a programmer-defined proedure whoseheader must be(REF FILE f)BOOL:although any identi�er ould replae the f. Transput on the �le f within the proedure should be avoided(but see bakspae below), but any other transput is allowable, but try to ensure that a value error won'tour!If the programmer-supplied routine yields TRUE, transput ontinues, otherwise an error message isissued to stand err and the program aborted with an exit value of 247.9.5.4 Char errorThis event an our when reading a number if the number is entirely absent so that the �rst harateris neither a sign nor a digit. In this ase a default proedure is alled having the header(REF FILE f,REF CHAR)BOOL:The default proedure an be replaed with a programmer-defned proedure using the proedureon har error.The har error proedure is alled with the referring to a suggested value for the next harater.The replaement harater must be a member of a partiular set of haraters. The default value is 0. Ifthe proedure returns FALSE the default suggested harater will be used, otherwise the value referred toby will be used. Thus the programmer-supplied proedure an not only hange the default suggestedharater, but an also perform suh other ations as are deemed neessary (suh as logging the error).The event an also our when reading the digits before a possible "." for real numbers and the digitsafter the ".". For omplex numbers, after the real part, an i or I is expeted and its non-appearanewill ause the har error proedure to be exeuted. The default suggestion is i, but an be replaedby another harater and optional ations.For a BITS3 value, whenever a harater whih is neither flip nor flop is met, the har errorproedure is alled with flop as the suggested value. Thus the available suggested harater sets are:1. For digits: 0 : : : 92. For exponent: e E n3. For plus i times: i I4. For ip or op: FT (upperase only) respetively
3This mode is desribed in setion 11.2

100 CONTENTSExerises9.7 Write a program whose input book has the identi�ation inbook and whih ontains lines ofdi�ering length. Use on logial file end to speify a proedure whih establishes the outputbook outbook, writes the average length and loses it and then yields FALSE.
9.6 The ommand lineWhen you exeute a program at the ommand prompt, you type the identi�ation of the program andthen press return. You an speify parameters (sometimes alled arguments) for the program after theprogram identi�ation. These an then be aessed by the program to modify its ativities.Hitherto, the identi�ations of books have always been written into the atual ode. In the lastexerise, the input book was alled inbook and the output book outbook. If your program ould begiven the identi�ations of the books whenever you exeuted the program, then it ould have a muhwider appliability.The ommand line is available to the program via the hannel arg hannel. Here is a small programwhih reads its �rst argument and prints it on the sreen:PROGRAM arg1 CONTEXT VOIDUSE standardIF FILE args; open(args,"",arg hannel)/=0THENput(stand err,("Cannot aess the ommand line",newline));stopELSEon logial file end(arg,(REF FILE f)BOOL:(put(stand err,("No parameters",newline));FALSE));STRING id;get(arg,id); write((id,newline))FIFINISHSome points to note:1. stand err is an output FILE whih is usually used for error messages.2. The identi�ation �eld in the all to open is ignored by arg hannel. In the example, it is writtenas the empty string.3. stop is equivalent to exit(0).4. In Linux, the �rst parameter is always the full path of the identi�ation of the program.You an only read via the arg hannel (using get). make term has already been set to make thestring terminator blank (the last argument is always followed by a spae) so you an read the individualparameters from the ommand line by reading strings. However, you should note that when you haveread a string, the next harater will be the terminator of the string. So when you have read a string,you will need to skip all haraters whih ould possibly terminate the reading of a string (known asterminators) otherwise the next read of a string will yield the null string (denoted by ""). The proedureskip terminators with headerPROC skip terminators=(REF FILE f)VOID:is used for this purpose.

9.7. ENVIRONMENT STRINGS 101Exerises9.8 Modify exerise ex9 4 1 (see A) to get the identi�ers of its input and output books from theommand line (remember that the �rst argument is always the program id, so use a LOC STRINGfor it). Remember to ater for the end of the input �le.9.9 Write a program to replae all the spaes in its input book with the asterisk and write out theresulting lines to its output book, the book identi�ers being given on the ommand line.
9.7 Environment stringsIn Linux, if, at the ommand prompt in a Bash shell, you key set followed by return, you will get alisting of the values of all the environment strings de�ned in your session. The value of the environmentstring PATH gives all the paths that the operating system will searh when you try to exeute a program.Eah string is identi�ed by what is alled an environment variable whih behaves rather like aname of mode REF STRING exept that eah string is terminated with a null h. You an open a bookontaining the environment string using env hannel. For example:FILE p; open(p,"PATH",env hannel)The open will fail if PATH has not been de�ned, so a plain open (as shown in the above example) wouldbe better replaed byFILE p;IF open(p,"PATH",env hannel)/=0THEN #ode to take emergeny ation#ELSE #ode to perform the usual ations#FIIf you now use make term to make the olon : the string terminator, you an get the individual pathsusing get:make term(p,":"+nul h);STRING path;on logial file end(p,(REF FILE f)BOOL:(GOTO eof; SKIP));DO get(p,(skip terminators,path));IF UPB path >= LWB pathTHEN write((path,newline))FIOD;eof:lose(p);You should lose the book after using it. Notie the use of a GOTO. It is preeded by a label whih looksjust like an identi�er followed by a olon.
Exerises9.10 Write a program whih will display the individual paths in the PATH environment string, one to aline, on the sreen.9.11 Write a program whih will read some arguments from its ommand line, eah argument onsistingof the identi�er of an environment string terminated by "/" followed by a non-blank terminator.Using this data, read the environment string and display its onstituent parts on the sreen, one toa line. Allow for the possibility that the string might not end with the terminator (the ode givenin the answer aters for that possibility). Try an environment string whih exists and one whihdoesn't.

102 CONTENTS9.12 At the ommand line, by using the ommandABC="12 14 16"you reate (using bash) an environment string identi�ed by ABC. Now write a program whih willread the individual numbers from ABC and print their total. Try hanging the value of ABC to givedi�erent numbers (not in the program). Inlude a test in your program to determine whether ABCis present in the environment (verb|open| will fail if it isn't) and terminate your program witha useful message if not.
9.8 Writing reportsOne of the problems of using the rather primitive failities given so far for the output of real and integernumbers is that although they allow numbers to be printed in olumns, the olumn widths are �xed. Youmight not always want 18 deimal plaes. To print reports where numbers must be neatly tabulated, itis neessary to have some other means of ontrolling the size of the resulting strings. The proedureswhole, fixed and float provide this apability.The proedure whole has the headerPROC whole = (NUMBER v, INT width)STRING:and takes two parameters. The �rst is a real or integer value (modes REAL or INT)4 and the seond is aninteger whih tells whole the �eld width of the output number (the spae in your output book requiredto aommodate a value is often alled a �eld). If width is zero, then the number is printed with theminimum possible width and this will be wider for larger numbers. A positive value for width will givenumbers preeded by a "+" if positive and a "-" if negative and the number output right-justi�ed withinthe �eld with spaes before the sign. A negative value for width will only provide a minus sign fornegative numbers and the width will be ABS width.Try writing a program with the following fragment inluded:[℄INT ri = (0,99,-99,9 999,99 999);[℄CHAR wh pr = "Parameter for whole is";OP B = (INT n)INT: n;FOR wi FROM -6 BY B 3 TO 6DO print((wh pr,wi,newline));FOR i TO UPB riDO write((whole(ri[i℄,wi),newline))ODODNotie that where the integer is wider than the available spae, the output �eld is �lled with the haraterdenoted by error har (whih is delared in the standard prelude as the asterisk (*) with mode CHAR),so it is wise to ensure that your output �eld is large enough to aommodate the largest number youmight want to print.If you give a real number to whole, it alls the proedure fixed with parameters width and 0.The proedure fixed has the headerPROC fixed = (NUMBER v,INT width, after)STRING:and takes three parameters. The �rst two are the same as those for whole and the third spei�es thenumber of deimal plaes required. The rules for width are the same as the rules for width for whole.When you want to print numbers in sienti� format (that is, with an exponent), you should usefloat whih takes four parameters and has the headerPROC float = (NUMBER v,INT width, after, exp)STRING:4NUMBER is de�ned for more modes than REAL and INT whih you will meet in hapter 11.

9.9. BINARY BOOKS 103The �rst three are the same as the parameters for fixed, while the fourth is the width of the exponent�eld. The version of float supplied in the transput library uses e to separate the exponent from the restof the number. Thus the allprint(("[",float(pi*10,8,2,-2),"℄"))produes the output [+3.14e 1℄. The parameter exp obeys the same rules as width.Note that the transput of data in Algol 68 is so organised that values output by an Algol 68 programan be input by another (or the same) program.Here are some exerises whih test you on your understanding of whole, fixed and float.
Exerises9.13 The monthly rainfall for a partiular loation is given by the following �gures:6.54 12.3 10.1 13.83 5.04 9.1514.34 16.38 13.84 10.45 8.49 7.57Write a program whih will print the �gures vertially, eah preeded by the name of the month.The months and the �gures should line up vertially, the months left-justi�ed, the �gures withdeimal points aligned.9.14 Write a program whih will print the square roots of all the integers from 1 to 100 to 4 deimalplaes. Eah number should be preeded by the orresponding integer. So, for example, theprogram should print 2 1.4142 as a olumn-pair. Print the whole table in four olumns with25 entries in eah olumn, the numbers 1{25 being in the �rst olumn.9.15 Write a program whih will list the terms in the series �, �2, �3, : : :, �10. Eah value should bewritten in sienti� notation with 6 deimal plaes, and should be preeded by the value of thepower (i.e., the numbers 1 to 10). Use a �eld width of 12.
9.9 Binary booksIn setion 9.1, it was mentioned that some books ontain data in a ompat form whih is not usuallyhuman-readable. Most large books, espeially those ontaining design �gures in the engineering sienesas well as books ontaining the payroll data for a number of employees, will be stored in this form. Theyare alled binary books.Algol 68 allows you to write anything to binary books, just as for text books. Indeed, you an writean integer and a harater to a binary book and then read bak the data as a harater followed by aninteger. The results may not be partiularly meaningful, but you an do it.The only di�erene between transput to, or from, binary books is that instead of using the proeduresput and get, you use the proedures put bin and get bin. The modes aepted by these proedures areidential with those aepted by put and get respetively exept that you annot transput proedureswith modePROC(REF FILE)BOOLHere is a program whih will output the data produed by the program in the last exerise:PROGRAM binary CONTEXT VOIDUSE standardBEGINFILE f;IF establish(f, "pipowers", stand out hannel)/=0THENput(stand err, ("Cannot reate pipowers", newline));stopFI;FOR i TO 10 DO put bin(f,(i,pi**i)) OD;lose(f)ENDFINISH

104 CONTENTSRun the program and then look at the book it has produed. Compare it with the data produed by theprogram in the last exerise.Another aspet of binary books is that of being able to browse. The prinipal proedure provided forthis purpose is set whih has the headerPROC set=(REF FILE f,INT p,l,)VOID:The last three parameters speify the position in the book where you want to start browsing, whetherreading or writing. The QAD transput provided with the Ctrans ompiler ignores the p and l parametersbeause it regards a �le as onsisting of one page of one line. The start of a book in the QAD transputis zero.There are two other related proedures. One is reset whih has the headerPROC reset=(REF FILE f)VOID:and is equivalent to set(f,0). One possible use of this proedure is to output data to a book, thenuse reset followed by get to read the data from the book. The sort of book used in this way is oftenalled a work �le (in operating system terms). Suh a book ontains data of use while a program isbeing elaborated, but is deleted at the end of the program. In fat, every program has suh a book whoseontrolling FILE is alled stand bak. It uses the stand bak hannel and is deleted when the programhas �nished. However, you an write to it, reset it, then read the ontents and opy them to anotherbook. Note that the proedure read bin is equivalent to get bin(stand bak,...) and the proedurewrite bin is equivalent to put bin(standbak,...).The other related proedure is logial end whih has the headerPROC logial end = (REF FILE f)INT:and yields the value of the position at the end of the book, whih is the size of the book. The positionan be set to the end of the book by writingset(f,logial end(f))Here is a proedure whih opens an existing book and sets the writing position to its end, then writesdata to the end of the book:PROC debug=(REF FILE dbg,[℄SIMPLOUT st)VOID:(open(dbg,idf(dbg),stand bak hannel);set(dbg,logial end(dbg));put(dbg,st);lose(dbg))We shall use this proedure in hapter 12 to store data about the running of a program while we aredeveloping it. Notie that textual data is written to the book even though the proedures set andlogial end are used. The point is that binary and textual data an be mixed in any book whih allowsbinary transput.In the QAD standard prelude, the urrent position in a book an be obtained from the proedureurrent pos whih has the headerPROC urrent pos = (REF FILE f)POS:This partiular proedure is very useful if you want to store the book position of the beginning of agroup of data in a book (suh a group is often alled a reord). In the QAD standard prelude, POS is asynonym for INT.
Exerises9.16 Write a program whih reates a binary book ontaining the �rst 1000 whole numbers. Use set toread every 17th number and display them on the sreen, one to a line.9.17 Write a program to read a book ontaining text and write eah individual word to one book, andthe position of the start of eah word and the length of the word to another book. Both outputbooks should be written using put bin.

9.10. INTERNAL BOOKS 1059.10 Internal booksSometimes it is desirable to onvert information from binary to text forms and then manipulate theresulting values. Conversely, when performing data entry (that is, reading data from the keyboard), it isusually better to perform the atual data entry in harater format and then onvert to internal valuesrather than onverting the external data to internal values diretly. The means of aomplishing this sortof speialised transput is provided by internal books.Unfortunately, the QAD transput provided with the Ctrans ompiler does not provide the usualAlgol 68 mehanism for internal books. However, a book onsisting of a single line an be establishedusing the mem hannel. Here is an example:PROGRAM memh CONTEXT VOIDUSE standardBEGINFILE mf;establish(mf,"",mem hannel,1,1,36);FOR i TO 3 DO put(mf,i**3) OD;print((file buffer(mf)[:urrent pos(mf)℄,newline));lose(mf)ENDFINISHWhen establishing a memory book using the mem hannel, both the p and the l parameters should be1 and the parameter should be positive indiating the length of the line. All the transput proeduresmentioned may be used on memory books. The proedure file buffer yields the internal bu�er of a �le,but uses a mode we have not yet met (see hapter 13: Standard Prelude). The proedure urrent posgives the urrent position of its REF FILE parameter. For examples of �les opened using the mem hannel,see the example program lf desribed in setions 12.3 to 12.3.3.
9.11 Other transput proeduresThe proedure idf has the headerPROC idf=(REF FILE f)[℄CHAR:and yields the identi�ation of the book handled by the �le f.There are two other ways of losing a �le. One is srath and the other is lok. Here are theirheaders:PROC srath=(REF FILE f)VOID:PROC lok=(REF FILE f)VOID:The proedure srath deletes the �le one it is losed. It is often used with work �les. The proedurelok loses its �le and then loks it so that it annot be opened without some system ation. In theQAD transput supplied with the Ctrans ompiler, lok removes all permissions from the �le so that itannot be aessed without �rst using the program hmod.
Exerises9.18 Write a program to print the rainfall �gures given in an earlier exerise. Start your report with asuitable heading.9.19 Write a program whih will read a text �le and print eah line preeded by a line number.
9.12 SummaryExternal values (usually alled data) are stored in books. A program uses an internal struture, alled a�le (of mode FILE), to keep trak of the proess of transferring data to or from books. The link betweenthem is ontrolled by a hannel.A number of proedures are provided in the standard prelude to failitate the transfer of data to andfrom books, as well as hanging the position reorded by a �le within a book.

106 CONTENTSBooks an be reated and written to, or opened and read from, or both read from and written to. A�le should be losed to sever the link between itself and its orresponding book, and to ensure that anydata storage areas (usually alled bu�ers) are ushed to the storage medium.Formatting of numbers an be performed with the proedures whole, fixed and float. This failitatesthe prodution of reports.String terminators make it easier to read values of mode STRING. They are set with the proeduremake term.The ommand line an be read just like any other book (text only) and environment variables an beread.
Exerises9.20 Write a program to read real numbers from the keyboard, and write them to the sreen in sienti�notation and 3 deimal plaes. Continue until zero is read.9.21 Using the mode EMPLOYEE delared in setion 7.5, write a program to read the employee reordsfrom a binary book, and write a report of the name of eah employee, her or his net pay for theurrent week and the total net pay and number of employees read. In the binary book, eah stringis preeded by the length of that string as an integer. Get the book idf and the week number fromthe ommand line.

Chapter 10
Units
The aim of this hapter is to desribe the grammar of units in a fairly rigorous manner. The hapterovers units, ontexts and oerions, as well as a number of lesser, but still important, ideas suh as astsand balaning. In desribing some of the grammatial aspets of the language in previous hapters, ithas been neessary to gloss over or distort some of the fats. The de�nitive truth about suh matters isin this hapter.An Algol 68 program onsists of a losed VOID lause whih means that any value yielded by thelosed lause will be voided. Any losed lause an be used inluding onditional and loop lauses. Itis unusual to write a program whih starts other than with BEGIN (and ends other than with END), butthere is nothing in the de�nition of the language to prelude it. On our round tour of units, we shallstart at the bottom and work up.
10.1 PhrasesA phrase is a delaration or a unit. Delarations yield no value, even if they inlude an initial assignment.Units are the parts of the language whih atually manipulate values. There are 22 di�erent kinds ofunit whih an be subdivided into 5 lasses arranged in a hierarhy:QuaternariesTertiariesSeondariesPrimariesEnlosed lauseswhere eah lass inludes the lower lass. For example, all enlosed lauses are primaries, but not allprimaries are enlosed lauses.The distintions between di�erent lasses of units prevent the writing of ambiguous programs andhelp to provide the meaning you might expet.The units in eah lass are as follows:� Quaternaries{ assignments{ identity relations{ routine denotations{ SKIP� Tertiaries{ formul�{ NIL� Seondaries{ generators{ seletions

107

108 CONTENTS� Primaries{ applied-identi�ers{ alls{ asts{ denotations (exept routine denotations){ slies� Enlosed lauses{ ase lauses{ losed lauses{ ollateral lauses{ onditional lauses{ onformity lauses{ loop lauses{ parallel lauses{ row-displays{ struture-displays
10.2 ContextsThe irumstanes whih allow ertain oerions are alled ontexts. Eah ontext has an intrinsistrength. There are �ve ontexts alled strong, �rm, meek, weak and soft. The plaes in a programwhih have these ontexts are:� Strong ontexts{ The atual-parameters of alls{ The enlosed lauses of asts{ The right-hand side of assignments{ The right-hand side of identity delarations{ The right-hand side of initialised name delarations{ The units of routine denotations{ VOID units{ All onstituents exept one of a balaned lause{ One side of an identity relation� Firm ontexts{ Operands of formul�{ The atual parameters of transput alls� Meek ontexts{ Enquiry-lauses (inluding WHILE){ Primaries of alls{ The units following FROM, BY and TO in a loop lause{ Trimmers, subsripts and bounds (must yield an INT)� Weak ontexts{ Primaries of slies{ Seondaries of seletions� Soft ontexts{ The left-hand side of assignments{ The other side of an identity relation (see strong ontext)

10.3. COERCIONS 10910.3 CoerionsThere are seven oerions in the language, namely� voiding� rowing� widening� uniting,� deproeduring� dereferening� weakly-derefereningRoughly speaking, the oerions an be arranged in a hierarhy within the hierarhy of ontexts thus:� Strong ontext{ deproeduring{ rowing{ voiding{ widening� Firm ontext{ uniting� Meek ontext{ dereferening� Weak ontext{ weakly-dereferening� Soft ontext{ deproeduringThe only oerion not yet met is weakly-dereferening. However, it is useful to desribe all theoerions here. Before we do so, it should be noted that one of the limitations of the language is that youannot speify the kind of ontext. Thus if you have a weak ontext and you would like a �rm ontext,you annot speify it. However, in any ontext, you an use a ast (see the setion on primaries below)whih will always make a ontext strong and beause all oerions are available in a strong ontext, youan use the ast to speify the mode you require.10.3.1 DeproeduringThis oerion is available in all ontexts. Deproeduring is the proess by whih a parameterless proedureis alled. For example, the proedure random, delared in the standard prelude as having mode PROC REAL,when alled yields a REAL. We an represent the oerion byPROC REAL =) REALThe PROC is \removed", whih is why it is alled deproeduring.There are oasions when the identi�er of a proedure an be written without the proedure beingalled. In the program fragmentPROC REAL rnd:=randomthe right-hand side of the assignment requires the mode PROC REAL beause the mode of the nameidenti�ed by rnd is REF PROC REAL. Clearly, random is not alled here.The only possible ambiguities with deproeduring are those of assignments and asts. For example,having delared rnd above, the subsequent assignment

110 CONTENTSrnd:=random;yields a value of mode REF PROC REAL, beause the value of an assignment is the value of the left-handside (see setion 10.8). However, the following \go-on symbol" indiates that the assignment should nowbe voided. It is a rule of the language that voiding takes plae before deproeduring if the unit beingvoided is an assignment. If, however, rnd had been used on its own, as inrnd;then it would have been dereferened, then deproedured and the resulting REAL value voided. This wouldensure that any side-e�ets (see setions 6.1.6 and 6.2.3) would take e�et.Similarly, in the unitPROC REAL(rnd);rnd (with mode REF PROC REAL) will be dereferened, but the resulting value of mode PROC REAL willbe voided immediately sine it is lear that a REAL value is not required. Note that all the ode examplesusing a go-on symbol ould have been written with END or FI et, provided that the resulting ontextwould have resulted in voiding.When writing a program, it is ommon to make mistakes1, and one mistake is to write the identi�erof a proedure without its parameters (the primary of a all). This is not, stritly speaking, an error. Atleast, not a grammatial error. However, in suh a ase, the Ctrans ompiler will issue a warning:Pro with parameters voided,parameters of all forgotten perhapsin whih ase the mistake should be obvious. Suppose you write the identi�er of a proedure in a formulawithout its parameters, as inPROC p1 = (INT n)INT: n**2+3;INT a:=4; a:=4+p1;then the Ctrans ompiler will issue the messageop + not delared for INT and PROC (INT)INTThe error message for a proedure identi�er on the right-hand side of an assignment isPROC (INT)INT annot be oered to INTDeproeduring only ours with parameterless proedures.10.3.2 DerefereningThis is the proess of moving from a name to the value to whih it refers (whih ould also be a name|seehapter 11). For example, if x has mode REF REAL, then in the formulax * 3.5the name x will be dereferened to yield a new instane of the REAL referred to by x. The oerion anbe represented by REF REAL =) REALIf rx has mode REF REF REAL (that is, rx an refer to a name of mode REF REAL), then the formularx * 3.5will result in rx being dereferened twie. In this ase, the oerion ould be represented asREF REF REAL =) REALDereferening is available in all ontexts exept soft.When a name, suh as rx, is dereferened twie, new instanes of both the values referred to (in thease of rx, the REF REAL and the REAL values) are reated. However, the new instane of the REF REALvalue is disarded after the reation of the REAL value. This has no e�et on the elaboration of theprogram.1You should expet to make one mistake every 20 lines. Congratulate yourself if you do better!

10.3. COERCIONS 11110.3.3 Weakly-derefereningThis is a variant of the dereferening oerion in whih any number of REFs an be removed exept thelast. Thus, in the ase of rx above, weakly-dereferening would yield a mode of REF REAL and ould berepresented by REF REF REAL =) REF REALThis oerion is only available in weak ontexts. It is partiularly useful in the seletion of seondariesof struture modes whih ontain �elds whose mode starts with REF (see setion 10.6 and hapter 11).10.3.4 UnitingIn this oerion, the mode of a value beomes a united-mode. For example, if OO is an operator both ofwhose operands are UNION(INT,REAL), then in the formula3.0 OO -2both operands will be united to UNION(INT,REAL) before the operator is elaborated. These oerions anbe represented by INTREAL � =) UNION(INT,REAL)Uniting is available in �rm and strong ontexts and must preede rowing.10.3.5 WideningIn a strong ontext, an integer an be replaed by a real number and a real number replaed by a omplexnumber, depending on the mode required. This an be represented byINT =) REALREAL =) COMPLWidening is not available in formul� (�rm ontexts).10.3.6 RowingIf, in a strong ontext, a multiple is required and a value is provided whose mode is the base mode of themultiple, then the value will be rowed to provide the required multiple. There are two ases to onsider:1. If the mode required is not a name and the base-mode of the multiple is the mode of the valuegiven, then the value will be rowed to give [℄base-mode. For example, if the required mode is[℄INT, then the base-mode is INT. In the identity delaration[℄INT i = 3the value yielded by the right-hand side (an integer) will be rowed and the oerion an be expressedas INT =) [℄INTIf the value given is a row mode, suh as [℄INT, then there are two possible rowings that an our.(a) In the identity delaration[,℄INT a = iwhere i was delared above with mode [℄INT, the oerion an be expressed as[℄INT =) [,℄INTIn this ase, an extra dimension is added to the multiple.(b) If the required mode is [℄[℄INT as in[℄[℄INT r = i

112 CONTENTSthen the value on the right-hand side is rowed to yield a one-dimensional multiple whosebase-mode is [℄INT. This oerion an be represented as[℄INT =) [℄[℄INT2. If the multiple required is a name, then a name of a non-multiple an be supplied. For example,if the value supplied is a name with mode REF INT, then a name with mode REF[℄INT will bereated. In this identity delarationREF[℄INT ni = LOC INTthe loal generator yields a name with mode REF INT and the rowing oerion yields a name withmode REF[℄INT and bounds [1:1℄. The oerion an be represented byREF INT =) REF[℄INTThe �rst kind of rowing ould also our. The identity-delaration[℄REF INT rri = LOC INTprodues the oerion represented byREF INT =) [℄REF INTLikewise, a name of mode REF[℄INT an be rowed to a name with mode REF[,℄INT or a non-namewith mode [℄REF[℄INT, depending on the mode required. Although INT has been taken as anexample, any mode ould have been used.10.3.7 VoidingIn a strong ontext, a value an be thrown away, either beause the mode VOID is expliitly stated, asin a proedure yielding VOID, or beause the ontext demands it, as in the ase of a semiolon (thego-on symbol). In this ase, there are two exeptions to the rule that the value yielded depends only onthe ontext. Casts and assignments are voided after the elaboration of the unit, but all other units aresubjeted to the usual oerions in a strong ontext. The following program illustrates this:PROGRAM tpro CONTEXT VOIDUSE standardBEGINPROC INT p;PROC pp = INT:(INT i=random int(6);print(i);i);p:=pp;print((" p:=pp",newline));pp;print((" pp",newline));p;print((" p",newline));PROC INT(p);print((" PROC INT(p)",newline))ENDFINISHThe output isp:=pp +6 pp+1 pPROC INT(p)

10.4. ENCLOSED CLAUSES 113In the assignment p:=pp, the mode required on the right-hand side is PROC INT so pp is not deproedured,and p is neither dereferened nor deproedured after the assignment has been elaborated. The astPROC INT(p) is elaborated (that is, p is dereferened) and then voided without the proedure p (or pp)being alled.10.3.8 Legal oerionsIn any ontext, you have a unit whih has, or yields, a value of some mode; and in that ontext you havea mode whih you need. If the value of the mode you have an be oered to a value of the mode youneed (assuming that the two modes di�er), then the oerion is legal.For example, suppose you have a value of mode PROC REF INT in a strong ontext and the mode youwant is [℄COMPL. The required mode an be got via� deproeduring to mode REF INT� dereferening to mode INT� widening to mode REAL� widening to mode COMPL� rowing to mode [℄COMPLIn pratie, oerions are not usually as ompliated as this.Notie that deproeduring an take plae before or after dereferening, that widening must ourbefore rowing and that voiding an only take plae after all other oerions. For example, you annotoere [℄INT to [℄REAL.
Exerises10.1 Whih oerions are available in a meek ontext?10.2 Whih oerions are not available in a strong ontext?10.3 For eah of the following, state whether the given mode an be oered to the mode to the rightof the arrow:(a) Weak ontext: REF REF BOOL =) REF BOOL(b) Firm ontext:PROC INT =) UNION(REAL,COMPL)() Soft ontext: REF PROC CHAR =) CHAR(d) Meek ontext: PROC REF REAL =) [℄REAL(e) Weak ontext: PROC REF BOOL =) BOOL(f) Strong ontext:PROC INT =) UNION([℄INT,[℄REAL)
10.4 Enlosed lausesThere are nine kinds of enlosed lause, most of whih we have already met.21. The simplest is the losed lause whih onsists of a serial lause enlosed in parentheses (or BEGINand END). The range of any identi�ers delared in the losed lause is limited to the losed lause.The Ctrans ompiler limits the use of any identi�ers delared in the losed lause to the losedlause at and after their delaration. Here are some examples of losed lauses:(3)BEGIN p + 3 END(INT s; read(s); s)(REAL q:=i+2; sqrt(q))2Note that a serial lause is not an enlosed lause.

114 CONTENTS2. Collateral lauses look like row-displays: there must be at least two units. Remember that dela-rations are not units. The units are elaborated ollaterally. This means that the order is unde�nedand may well be in parallel. Examples of ollateral lauses are3(m:=3, n:=-2)((INT m:=2; m),(CHAR a=REPR i; a))The seond ollateral lause has two units eah of whih is a losed lause.A parallel lause looks exatly like a ollateral lause preeded by PAR. The onstituent units (theremust be at least two) are exeuted in parallel.4The other enlosed lauses have already been disussed:3. row-display in setion 3.1.14. loop lause in setion 3.75. onditional lause in setion 4.56. ase lause in setion 4.67. struture-display in setion 7.18. onformity lause in setion 8.3It should be noted that the enquiry lause (in a onditional- or ase-lause) is in a meek ontext whateverthe ontext of the whole lause. Thus, the ontext of the lause is passed on only to the �nal phrase (itmust be a unit) in the THEN, ELSE, IN or OUT lauses.
Exerises10.4 What kind of enlosed lause ould eah of the following be?(a) ((INT p:=ENTIER-4.7; p),37.5)(b) PAR BEGIN 3, 15 END() (i|3,-3|4)(d) (si|(INT i): i,(STRING i): i)(e) (a < 3|4|5)(f) (a:=2; b:=-a)
10.5 PrimariesPrimaries are denotations, applied identi�ers, asts, alls and slies. We have met denotations in hapters1, 4 and 6. Only plain values, routines and a speial name (NIL) have a denotation. NIL is dealt with inthe setion on tertiaries and the mode BITS is overed in hapter 11. Applied-identi�ers means identi�ersbeing used in a ontext, rather than in their delarations. We have met numerous examples of these.Routine denotations are not primaries.A ast onsists of a mode indiant followed by an enlosed lause, usually a losed lause. Here is aformula with a ast:3.4 * REAL (i)where i has mode INT. The ast puts the enlosed lause in a strong ontext. Thus, in the above formula,the normal ontext of an operand is �rm (see hapter 2), but the ast auses the value of i to be widenedto a REAL. Casts are usually used in formul� and identity relations (see setions 10.8 and 11.6). Casts aresometimes used to oere a onditional or ase lause where balaning is insuÆient to provide the moderequired (see setion 10.9 later in this hapter). The mode indiant an be any mode and an ontainany of the mode-onstrutors suh as REF or PROC or [℄ (but it should not be a generator, whih is nota mode indiant). Care should be taken when using a strutured mode. For example, in this formula,3The Ctrans ompiler does not provide ollateral lauses other than row- and struture-displays.4The Ctrans ompiler does not provide parallel lauses.

10.6. SECONDARIES 1153 * STRUCT(INT k)(4)assuming that the operator has been delared for operands of modes INT and STRUCT(INT k), the astmust inlude the �eld seletor beause it is part of the mode.Calls were disussed in setions 6.3.1 and 6.3.2. Here is a simple example:sqrt(0.7)In this all, sqrt is itself a primary (it is an applied-identi�er). In setion 10.2, it was mentioned thatthe primary of a all is in a meek ontext. This applies even if the all itself (as a whole) is in a strongontext. The primary of a all an be an enlosed lause. For example,(a>4|sqrt|sin)(x)whih yields sqrt(x) if a > 4 and sin(x) otherwise. In this ase, the primary is(a>4|sqrt|sin)We disussed slies in setion 3.2. They inlude simple subsripting. For example, given the delaration[,℄INT r = ((1,2,3),(4,5,6))the units r[1,℄ and r[2,3℄ are both slies. Whatever the ontext of the slie, the ontext of the primaryof the slie (r in these examples) is always weak. This means that only weak-dereferening is allowed.Thus, given the phrases[2,3℄INT s:=r; INT p:=s[2,1℄the slie s[2,1℄ is in a strong ontext, but the s is in a weak ontext, so the name that s identi�es, whihhas the mode REF[,℄INT will not be dereferened, though the slie, whih has mode REF INT, will be.There is another onsequene of the weak ontext of the primary of a slie: row-displays an only beused in a strong ontext. So if you want to hange the bounds of a row-display, beause the slier willprodue a weak ontext, the row-display must be enlosed in a ast.The ontext of subsripts and bounds in trimmers is meek and they must be units.All enlosed lauses are primaries, but not all primaries are enlosed lauses.
Exerises10.5 What are the ontexts of(a) p (mode REF[℄REAL) in [℄REAL (p[3℄)(b) q (mode PROC(REAL)INT) in REAL(q(0.5))10.6 How many primaries are there in eah of the following units:(a) 3 * (1.4 + r)/2**6(b) p:=sqrt(r) - 6() num:=x[3,ENTIER r℄(d) i * [℄CHAR("e")
10.6 SeondariesWe have disussed both kinds of seondary (seletions and generators), but there are other points whihneed mentioning.There are two kinds of generator (see setion 5.1). Oasionally, when a proedure has a nameparameter, the name may not be needed. Instead, therefore, of using an identi�er of a name whih isused for another purpose, whih would be onfusing, or delaring a name just for this purpose, whihwould be unneessary, an anonymous name an be used. For example, a possible all of the proedurehar in string ould behar in string(h,LOC INT,str)

116 CONTENTSif you are only interested in whether the harater is in the string and not in its position.Another ase where an anonymous name is useful is in the reation of odd-shaped multiples. Considerthe program fragment:[10℄REF[℄INT ri; INT j;FOR i TO UPB riDO read(j);ri[i℄:=LOC[j℄INT; read(ri[i℄)ODSine there are no delarations in the loop lause, the sope of the name reated by the generator is theenlosed lause surrounding the loop lause, whih inludes the delarations for ri and j. The mode ofthe slie ri[i℄ is REF REF[℄INT. Thus the value of ri[i℄ is a name with two REFs in its mode, and itis made to refer to a name of mode REF[℄INT, whih has one REF less. Assignments of this type will beonsidered in detail in the next hapter. Note that the ontext of a parameter to read is �rm so theparameter is dereferened one before a value is read.When disussing seletions in setion 7.2, you may have wondered about the peuliar rules of plaingparentheses when talking about rows in strutures, rows of strutures and rows in rows of strutures.Firstly, it should be mentioned that in the seondaryim OF zwhere z has mode COMPL or REF COMPL, the z itself is not only a seondary, it is also a primary (it is anapplied-identi�er). This means that using the delarationsMODE AM = STRUCT(INT i,CHAR),BM = STRUCT(INT i,AM a);BM bthe seletion OF a OF bis valid beausea OF bis also a seondary. We shall meet extended seletions like this in hapter 11.Seondly, a primary is a seondary, but not neessarily the other way round. Consider these delara-tions:STRUCT(INT i,[3℄REAL r)s1;[3℄STRUCT(INT i,REAL r)s2The seletion r OF s1 has the mode REF[℄REAL. If you want to slie it, to get one of the onstituentnames of mode REF REAL say, you annot do so diretly. The reason is that in a slie, as mentioned inthe previous setion, what is slied must be a primary. To onvert the seondary into a primary youhave to enlose it in parentheses thus onverting it into an enlosed lause; and enlosed lauses are alsoprimaries (in setion 10.1, it was said that the four lasses of units are arranged in a hierarhy in whiheah lass inludes the lower lasses). So the seond name of r OF s1 is yielded by (r OF s1)[2℄.On the other hand, onsidering the name identi�ed by s2, the seletionr OF s2[2℄an be written without parentheses beause s2 is not only a seondary, it is also a primary (an applied-identi�er) with mode REF[℄STRUCT.... The phrase s2[2℄ is perfetly valid, it having mode REF STRUCT(...).The seletion r OF s2 has the mode REF[℄REAL and so it too an be slied by writing (r OF s2)[2℄.The e�et is the same for both of the ases involving s2. Note that the Ctrans ompiler does not permitseletion of a �eld from a row of strutures. Doing so will yield the following error message:OPERATORS - selet: [℄strut not implementedFATAL ERROR (661) Compiler error:ENVIRONMENT (ASSERT) - assertion failureTo summarise, any primary an be regarded as a seondary, but not vie-versa.

10.7. TERTIARIES 117Exerises10.7 Give an example of a primary whih is also a seondary.10.8 Give an example of a seondary whih is not a primary.10.9 In this exerise, the following delarations hold:MODE AM = STRUCT(CHAR a,b),BM = STRUCT(AM a,STRUCT(CHAR a,AM b) ,REF BM d);BM pHow many seondaries are there in eah of the following units?(a) a OF p(b) a OF a OF p() a OF OF p(d) a OF a OF d OF p
10.7 TertiariesTertiaries are formul� and NIL. Formul� were overed in hapter two. All that needs to be said here isthat a formula an onsist solely of a single seondary or primary or enlosed lause although this is notusual. If a formula, ontaining at least one operator, is to be used as a primary or a seondary, it mustbe enlosed in parentheses (or BEGIN and END). For example, in the formula x * (3 + q), the seondoperand of the * is a losed lause.The only name having a denotation is NIL. Its mode is REF whatever. In other words, it an have anymode whih starts with REF. It does not refer to any value and, although it must only our in a strongontext, it annot be oered. Its uses are desribed in the next hapter.
10.8 QuaternariesQuaternaries are assignments, routine denotations, identity relations and SKIP. Of the four, the assign-ment is the most ommon. An assignment onsists of three parts. The left-hand side must be a tertiary.It is usually an applied identi�er or, less ommonly, an enlosed lause. Its value must be a name. Itsontext is soft, so no dereferening is allowed unless a ast is used (see the next hapter), but deproedur-ing is allowed. The seond part is the assignment token. The right-hand side (the third part) an be anyquaternary (inluding, of ourse, another assignment). Its ontext is strong so any oerion is permitted.The mode of its value must ontain one less REF than the mode of the left-hand side.The right-hand side of an assignment is, most ommonly, a formula whih is a tertiary (all tertiariesare quaternaries, but not vie-versa). The left-hand side an also be a formula provided that the valueyielded is a name (whih is the ase with the assigning operators|see setion 5.1.2). If an assignment isto be used as a primary, a seondary or a tertiary, then it must be enlosed in parentheses(or BEGIN andEND). The value of an assignment is the value of the left-hand side: that is, it is a name. Assignmentswere disussed in hapter 5.Routine denotations were disussed in hapter 6.SKIP yields an unde�ned value of any mode and an only our in a strong ontext. It is partiularlyuseful in the following ase. Consider the proedurePROC p=(REAL a,b)REAL:IF b=0THEN print(("Division by zero",newline)):stop; SKIPELSE a/bFI

118 CONTENTSSine the yield has mode REAL, and the ELSE part of the onditional lause yields a value of mode REAL,by the priniple of balaning (see below) the THEN part also must yield a value of mode REAL. Now theonstrut stop yields a value of mode VOID whih annot be oered to REAL in any ontext. If theproedure is going to ompile suessfully, the THEN part must yield REAL (or, at least, a value whihan be oered to REAL in the ontext of the body of the proedure whih is strong) even though thevalue yielded will never be used (beause the stop will terminate the program). The SKIP will yield anunde�ned value of mode REAL. Although SKIP must our in a strong ontext, it annot be oered.Another use for SKIP is in row- or struture-displays where not all the units are known at the time ofa delaration. For example:[3℄INT ii:=(4,?,5)Before the multiple ii is used, the seond element should be given a value. If no suh value is assigned,and you try to print the value of ii[2℄ the Ctrans ompiler will generate ode whih will print whatevervalue was there at the time the multiple was generated, whih may well be rubbish.The identity relation is disussed in the next hapter, but its grammar has important onsequenes.The identity relation onsists of two tertiaries separated by an identity relator (one of :=: or :/=:).Sine a formula is a tertiary, it an safely be inluded in an identity relation. For example, given thedelarationsINT x:=3, y:=1;PROC x or y = (REAL r)REF INT: (r<0.5|x|y)the identity relationx or y(random) :=: xis legal. However, if you want to inlude an identity relation in a formula then you must surround it withparentheses to make it into a tertiary, as inIF (x or y(random) :=: x) AND x*y > 0THENSine one side of an identity relation is in a soft ontext while the other is in a strong ontext, onlyone side of an identity relation an be strongly-dereferened. The soft side an be weakly-dereferenedwhih means that one REF will always be left on that side. Balaning applies to identity relations (seethe disussion in setion 11.6).This ompletes the general disussion of units.
Exerises10.10 What kind of units are eah of the following:(a) A ast.(b) An applied-identi�er.() A seletion.(d) A multiple.(e) A name.(f) A formula.(g) A loop lause.(h) An assignment.(i) A delaration.(j) A proedure denotation.10.11 Whih units are to be found in eah of the following:(a) 3.5 * (a - 2 * x)(b) p OR q AND a = 4() sin(x)(d) a[3,2:4℄(e) x:=(<"e"|2.4|-y)(f) (i|x,y,z):=(p|2|-4)(g) PAR(x:=1.2,y:=3.6)

10.9. BALANCING 11910.9 BalaningIn setion 6.1, it was pointed out that the ontext of a routine denotation is passed on to the last unit inthe denotation. In the example given, the body of the routine denotation was a losed lause. The yieldof the routine was a value of mode INT, but the yield of the last unit was a name with mode REF INT.Sine the ontext of the body of a routine denotation is strong, the name is dereferened to get an INT.This priniple is appliable to all enlosed lauses.Now onditional lauses, ase lauses and onformity lauses an yield one of a number of units, andso it is quite possible for the units to yield di�erent values of di�erent modes. The priniple of balaningallows the ontext of all these units, exept one, to be promoted to strong whatever the ontext of theenlosed lause. Balaning is also invoked for identity relations whih are dealt with in the next hapter.Considering, for example, the formulax * (a > 0|3.0|2)the ontext of the onditional lause is �rm whih means that widening is not allowed. Without balaning,the onditional lause ould yield a REAL or an INT. In this example, the priniple of balaning wouldpromote the ontext of the INT to strong and widen it to REAL. Balaning thus means \making the modesthe same".In a balaned lause, one of the yielded units is in the ontext of the whole lause and all the othersare in a strong ontext, irrespetive of the atual ontext of the lause. Here is an example of a balanedase lauseINT i:=3,j:=4,a:=2;PROC ij = REF INT: (random < 0.5|i|j);print(2 + (a|i,ij|random))where the a yields an INT in a meek ontext (that of the enquiry lause). In this example, the modes ofthe values that an be yielded by the ase lause are REF INT (i), PROC REF INT (ij) and PROC REAL(random). In a �rm ontext, the modes beome INT, INT and REAL. Thus the ontext of random is takento be �rm, and the ontext of i and ij is promoted to strong and they are both dereferened and widenedto REAL. The result is that the ase lause will yield a REAL value even though the lause as a whole is ina �rm ontext (it is an operand of the operator +).If instead, we hadPROC REAL r:=random;(a|i,ij|j):=ENTIER rusing the delaration of ij in the previous example, then balaning would not be needed to produe therequired mode. The modes of the yielded units are REF INT, PROC REF INT and REF INT respetively. Ina soft ontext, these modes would yield REF INT (no dereferening allowed), REF INT (deproeduring isallowed) and REF INT. Thus the ase lause would yield REF INT on the left-hand side of the assignment.Here is an example of a onditional lause whih annot be balaned:INT i:=2, REAL a:=3.0;(random > 0.5|i|r):=randomIn this ase, the two parts of the onditional lause yield REF INT and REF REAL. There is no oerionwhih will onvert a REF INT into a REF REAL. When you try to ompile this, the Ctrans ompiler givesthe following error message:lhs of assignment must be a refereneThe balaning means that one of the yields is in a strong ontext and so is dereferened whih yields avalue whih is not a name.The method of determining whether balaning is possible is as follows:1. Determine the ontext of the hoie lause.2. In the ontext found in step 1, determine the mode yielded by eah unit in the hoie lause.3. If there is a mode suh that all the modes but that one an be strongly oered to that mode, thelause an be balaned.

120 CONTENTSExerises10.12 In eah of the following lauses, state whether balaning is possible, and if so, the mode yieldedby the balaned lause. These delarations are in fore:INT i,j, REAL a,b:=random;PROC ij = REF INT: (b>0.5|i|j);PROC r = REAL: random * random;UNION(INT,REAL) ri:=(random>0.6|i|b)(a) a:=2.0*(random<0.3|i|b)(b) (j<2|ij|b):=r() a:=((ri|(INT r):r,(REAL r):r)<1|2|3)(d) b:=2.0*(j>3|4|SKIP)
10.10 Well-formed modesIn hapter 6, the mode delaration was presented and it was pointed out that not all possible mode de-larations are allowed. The rules for determining whether a mode delaration is well-formed are straight-forward.There are two reasons why a mode might not be well-formed:1. the elaboration of a delaration using that mode would need an in�nite amount of memory2. the mode an be strongly oered to a related modeLet us look at some examples of modes whih are not well-formed. Firstly, in the mode delarationMODE WRONG = STRUCT(CHAR ,WRONG w)the WRONG within the STRUCT would expand to a further STRUCT and so on ad in�nitum. Even thisdelarationMODE WRONGAGAIN = STRUCT(WRONGAGAIN wa)will not work for the same reason. However, if the mode within the STRUCT is shielded by REF or PROC,then the mode delaration is legal:MODE ALRIGHT = STRUCT(CHAR ,REF ALRIGHT a);In the delarationALRIGHT ar = ("A",LOC ALRIGHT)the seond �eld of the struture is a name whih is quite di�erent from a struture. Likewise, thedelarationMODE OKP = STRUCT(CHAR ,PROC OKP po)is well-formed beause in any delaration, the seond �eld is a proedure (or a name referring to suh aproedure) whih is not the original struture and so does not require an in�nite amount of storage. Itshould be noted, however, that a UNION does not shield the mode suÆiently. Thus, the mode delarationsMODE MW1 = UNION(INT,MW1);MODE MW2 = STRUCT(UNION(CHAR,MW2) u,CHAR)are not well-formed. In fat, the mode delaration of MW1 fails on reason 2 above.Seondly, a mode whih ould be strongly oered to a related mode would lead to ambiguity inoerions. Thus the mode delarationsMODE WINT = PROC WINT;MODE WREF = REF WREF;MODE WROW = [5℄WROW

10.10. WELL-FORMED MODES 121are not well-formed.All the above delarations have been reursive, but not mutually reursive. Is it possible to delareMODE WA = STRUCT(WB wb,INT i),WB = STRUCT(WA wa,CHAR)Again, the elaboration of delarations using either mode would require an in�nite amount of storage, sothe modes are not well-formed. The following pair of mode delarations are all right:MODE RA = STRUCT(REF RB rb,INT i),RB = STRUCT(PROC RA pra,CHAR)All non-reursive mode delarations are well-formed. It is only in reursive and mutually-reursivemodes that we have to apply a test for well-formedness.Determination of well-formednessIn any mutually-reursive mode delarations, or any reursive mode delaration, to get from a partiularmode on the left-hand side of a mode delaration to the same mode indiant written on the right-handside of a mode delaration, it is neessary to traverse various mode onstrutors suh as REF, PROC orUNION. Above eah STRUCT or set of proedure parameters write \yang". Above eah REF or PROC write\yin". Now trae the path from the mode in question on the left-hand side of the mode delaration untilyou arrive at the same mode indiant on the right-hand side. If you have at least one \yin" and at leastone \yang", the mode is well-formed.Let us try this method on the reursive mode delarations given in this setion. In the mode delarationfor WRONG, write \yang" above the STRUCT. Thus to get from WRONG on the left to WRONG on the right, asingle \yang" is traversed. Thus WRONG is not well-formed. Likewise, WRONGAGAIN is not well-formed. Inmode ALRIGHT, you have to traverse a \yang" (STRUCT) and a \yin" (REF), so ALRIGHT is well-formed.Try it with the mode OKP.Conversely, to get from MW1 to MW1 requires neither \yin" nor \yang", so MW1 is not well-formed. Toget from MW2 to MW2, only a STRUCT is traversed (the UNION does not ount) so MW2 is also not well-formed.Similar arguments hold for WINT, WREF and WROW.Now onsider the mutually-reursive mode delarations of WA and WB. At whihever mode we start,getting bak to that mode means traversing two \yangs" (both STRUCT). Two \yangs" are all right, butthere should be at least one \yin", so the modes are not well-formed. On the other hand, from RA to RAtraverses a STRUCT and a REF and, via RB, a STRUCT and a PROC giving \yang-yin-yang-yin", so both RAand RB are well-formed.Remember that if you want to delare modes whih are mutually-reursive, the Ctrans ompilerrequires that one of the modes should �rst be delared with a stub delaration.
Exerises10.13 For eah of the following mode delarations, determine whether the modes are well-formed:(a) MODE MA = INT(b) MODE MB = PROC(MB)VOID() MODE MC =[3,2℄MC(d) MODE MD = STRUCT(BOOL p,MD m)(e) MODE ME = STRUCT(STRING s,REF ME m)(f) MODE MF2,MF1 = STRUCT(REF MF2 f),MF2 = PROC(INT)MF1(g) MODE MGB,MGA = PROC(MGB)VOID,MGB = STRUCT(MGA a)

122 CONTENTS(h) MODE B, C,MODE A = PROC(B)A,MODE B = STRUCT(PROC C ,STRUCT(B b,INT i)d),MODE C = UNION(A,B)(i) C = PROC(C)C
10.11 Flexible namesFlexible names were introdued in setion 5.5, but only one-dimensional names. What has not beenmade apparent in the text hitherto is that a multiple onsists of two parts: a desriptor and the atualelements. The desriptor ontains the lower and upper bounds of eah dimension, the \stride" (that is, thenumber of bytes between two suessive elements of the dimension in question), the address in memoryof the �rst element of that dimension and whether the dimension is exible. Consider the delarationFLEX[1:0℄[1:3℄INT flexfixBeause the mode of flexfix is REF FLEX[℄[℄INT, when it is subsripted, the mode of eah element isREF[℄INT with bounds of [1:3℄. Clearly, after the delaration, flexfix has no elements. In pratie,beause the �rst (and only) dimension is exible, there must be some way of referring to a \ghost" elementwhose desriptor (it is a one-dimensional multiple) will give its properties. flexfix is quite di�erent fromFLEX[1:0℄FLEX[1:3℄INT flexflexeah of whose elements (when it has any) have the mode REF FLEX[℄INT with initial bounds [1:3℄.If the delaration of flexfix is followed by the assignment and slieflexfix:=LOC[1:1℄[1:3℄INT;flexfix[1℄:=(1,2,3)then it is lear that the mode of flexfix[1℄ is REF[℄INT. Note that afterflexfix:=LOC[1:4℄[1:3℄INTflexfix refers to a multiple of whih eah element has the mode [℄INT. However, the single dimensionof flexfix[1℄is not exible, whih is why the assignmentflexfix:=LOC[1:4℄[1:4℄REAL #this is wrong#will fail5.
10.12 OrthogonalityWe have ome a long way and introdued many new ideas, yet all these ideas are based on the primitiveonepts of value, mode, ontext, oerion and phrase. These onepts are independent of eah other,but their ombination provides Algol 68 with a exibility that few programming languages possess. Forexample, if a value of mode INT is required, suh as in a trimmer or the bounds of the delaration of amultiple, then any unit whih will yield an integer in that ontext will suÆe. The onsequene is thatAlgol 68 programs an be written in a wide variety of styles. Here is a simple example: given the problemof printing the sum of two numbers read from the keyboard, it ould be programmed in two ompletelydi�erent ways. The onventional solution would be something likeINT a,b; read((a,b));print((a+b,newline))5The Ctrans ompiler will wrongly allow this last assignment both at ompile-time and run-time.

10.13. SUMMARY 123but an equally valid solution isprint(((INT a,b;read((a,b));a+b),newline))Provided that what you write is legal Algol 68, you an adopt any approah you please. Orthogonalityrefers to the independene of the basi onepts in that you an ombine them without side-e�ets.Another onsequene of that independene is that there are very few exeptions to the rules of thelanguage. This makes the language muh easier to learn.
10.13 SummaryThe grammar of Algol 68 is expressed in terms of a few primitive onepts: value, mode, ontext, oerionand phrase. A phrase is either a delaration or a unit. There are 5 ontexts, 7 oerions, 22 di�erent kindsof unit and potentially an in�nite number of values and modes. The oerions available in eah ontexthave been desribed. Balaning is the means by whih alternatives in onditional, ase and onformitylauses and the two sides of an identity relation are oered to a ommon mode, possibly making oerionsavailable whih would not normally be so in the ontext of the onstrut onerned.No exerises are provided at this point.

124 CONTENTS

Chapter 11
Advaned onstruts
We have now overed most of Algol 68. All that remains is the identity relation, the parallel lause, themode BITS, ompleters, di�erent preisions of numbers and means of aessing operating system failities.Most of these are deeptively simple. The identity relation is used with modes ontaining multiple REFswhih take up the greater part of this hapter. The BITS mode and the parallel lause are introdued inlater setions. Di�erent numerial preisions and aess to operating system failities is mainly overedin hapter 12. We start with aess to the mahine word.
11.1 Bits, bytes and wordsIn our disussion of plain values (values of modes CHAR, INT, REAL, and BOOL), we have omitted sayinghow these values are stored in omputer memory for one important reason: Algol 68 is a high-levelprogramming language. A high-level programming language is one in whih the onepts of omputerprogramming are not expressed in terms of a omputer, its instrutions and its memory, but in termsof high-level onepts suh as values and modes. Basially, the manner in whih integers and haratersand so on are stored in the omputer are not our business. However, sine programs written in Algol 68need to aess the operating system, it is useful to know something about memory, whether the mainmemory of the omputer or the storage memory found on hard disks and other devies.Computer memory onsists of millions of bits (short for binary digits) whih are grouped together asbytes or words. A bit an take two values: 0 and 1. A word is 16, 24, 32, 36, 60, 64 or 72 bits \wide",and a byte is 6, 8 or 9 bits \wide". Almost all miroomputers use 8-bit bytes. Miroomputers using theIntel Pentium proessor (or ompatibles) or later hips, use a 32-bit word and an 8-bit byte. Generallyspeaking, a byte is used to store a harater and a word is used to store an integer. Real numbers aremuh more ompliated than integers and we shall not desribe how they are stored in memory. Beforewe an understand about the equivalenes of values of mode CHAR and bytes, and values of mode INTand words, we need to say something about radix arithmeti. If this is something you already know,please skip the next setion.
11.1.1 Radix arithmetiOur ordinary arithmeti uses the ten digits 0, 1, : : :, 9 and expresses numbers in powers of ten. Thus thenumber 1896 onsists of 1 thousand, 8 hundreds, 9 tens and 6 units. This ould be written1896 = 1� 1000 + 8� 100 + 9� 10 + 6� 1Remembering that 100 is ten squared (102) and 1000 is ten ubed (103), we ould rewrite this equationas 1896 = 1� 103 + 8� 102 + 9� 101 + 6� 100As you an see, the powers of ten involved are 3, 2, 1 and 0. When we write whole numbers, we understandthat the digits we use represent powers of ten. We say that the base, or radix, of our arithmeti is ten,whih is why it is frequently referred to as \deimal arithmeti" (deimal is derived from the Latin wordfor ten).Now it is quite meaningful to develop an arithmeti having a di�erent radix. For example, supposewe use two as the radix. We should express our numbers in terms of powers of two and they would be125

126 CONTENTSwritten using the digits 0 and 1 only. In an arithmeti of radix two, when we write a number, eah digitwould represent a power of two. For example, the number 101 would mean101 = 1� 22 + 0� 21 + 1� 20in an exatly analogous way to the number 1896 in deimal arithmeti. In fat, the deimal equivalentof 101 would be 4 + 0 + 1 = 5 (in deimal). Here is another example:1101 = 1� 23 + 1� 22 + 0� 21 + 1� 20= 8 + 4 + 0 + 1= 13 (thirteen, in deimal)We ould then onstrut addition and multipliation tables as follows:+ 0 10 0 11 1 10 � 0 10 0 01 0 1As you an see from the addition table, 1 + 1 = 10 (take row 2 and olumn 2). When you read thisequation, you must say \one-zero" for the number after the equals symbol. \Ten" means ten+zero unitswhih this number de�nitely is not. The number 10 in radix 2 means \two+0 units" whih is what youwould expet for the sum of 1 and 1.Two radies of partiular use with omputers are sixteen and two. Arithmeti with a radix of sixteenis alled hexadeimal and arithmeti with a radix of two is alled binary.In hexadeimal arithmeti, the digits 0 to 9 are used, but digits are also required for the numbers tento �fteen. The �rst six letters of the alphabet are used for the latter six numbers. They are ommonlywritten in upper-ase, but in Algol 68 they are written in lower-ase for a reason whih will beomeapparent in a later setion. Thus the \digits" used for hexadeimal arithmeti are0,1,2,3,4,5,6,7,8,9,a,b,,d,e,fAddition and multipliation tables ould be onstruted for hexadeimal arithmeti on the same linesas those for radix two arithmeti. You should note that when writing a number ontaining more thanone digit with a radix other than ten, the radix is ommonly written (in deimal) as follows:2� 3 = 124Thus, in hexadeimal arithmeti, we ould write7� 9 = 3f16and there are some exerises at the end of this setion in whih you an try your hand at hexadeimaland other arithmetis. Writing numbers in hexadeimal is sometimes alled \hexadeimal notation".A byte onsists of eight binary digits and an take any value from 000000002 to 111111112. Theequivalent deimal value an be obtained by rewriting it as the sum of desending powers of two:100110112 = 1� 27 + 1� 24 + 1� 23 + 1� 21 + 1� 20= 128 + 16 + 8 + 2 + 1 (in deimal)= 15510The exerises at the end of this setion will give you some pratie in this kind of onversion.If you ompare the number of digits used to express the same number, you will �nd that hexadeimalarithmeti uses the least. For example, the deimal number 135 an be written135 = 8716= 20134= 100001112When onverting numbers written in binary to hexadeimal, the simplest way is to split the binary numberinto two groups of 4 bits and then onvert eah group into one hexadeimal digit. Thus 00101011 an besplit into 0010 and 1011, and their hexadeimal equivalents are 2 and b. If you intend aessing mahinewords, it would ertainly be a good idea to learn the binary equivalents of the 16 hexadeimal digits 0-f.To help you, here is the proedure itostr whih onverts a positive value of mode INT to a value of modeSTRING (with minimum width) using any radix from 2 to 16:

11.2. THE MODE BITS 127[℄CHAR digits="0123456789abdef"[�0℄;PROC itostr=(INT n#umber#,r#adix#)STRING:IF n < rTHEN digits[n℄ELSE itostr(n%r,r)+digits[n MOD r℄FINotie how its reursive de�nition simpli�es the ode.
Exerises11.1 Using the proedure itostr, write a program whih will display the 16 integers between 0 and 15(deimal) in deimal, hexadeimal and binary (the binary equivalent should be displayed as 4 bits)in three olumns.11.2 For eah of the following, rewrite the number in the given radix:(a) 9410) 16(b) 1310) 2() 1111 10012) 16(d) 3e116) 10(e) 216) 2(f) 101012) 1011.3 Express the value of eah of the following using the radix of that exerise:(a) 1012 + 1102(b) 3516 + ae16() 178 + 378
11.2 The mode BITSA value oupying a mahine word has the mode BITS. The number of binary digits in one mahine wordis given by the environment enquiry (see setion 13.2) bits width whih, for the Ctrans ompiler is 32.A BITS value an be denoted in four di�erent ways using denotations written with radies of 2, 4, 8 or 16.Thus the delarationsBITS a = 2r 0000 0000 0000 00000000 0010 1110 1101BITS b = 4r 0000 0000 0002 3231BITS = 8r 000 0000 1355BITS d = 16r 0000 02edare all equivalent beause they all denote the same value. Notie that the radix preedes the r and iswritten in deimal. Notie also that the numbers an be written with spaes, or newlines, in the middleof the number. However, you annot put a omment in the middle of the number. Sine a mahine wordontains 32 bits, eah denotation should ontain 32 digits in radix 2, 16 digits in radix 4, 11 digits inradix 8 and 8 digits in radix 16, but it is ommon pratie to omit digits on the left of the denotationwhose value is zero. Thus the delaration for d ould have been writtenBITS d = 16r2edWhen disussing values of mode BITS where the values of more signi�ant bits is important, full denota-tions like the above may be more appropriate.

128 CONTENTSMonadi operators for BITSThere are many operators for BITS values. Firstly, the monadi operator BIN takes an INT operand andyields the equivalent value with mode BITS. The operator ABS onverts a BITS value to its equivalentwith mode INT. The NOT operator whih you �rst met in hapter 4 (setion 4.2) takes a BITS operandand yields a BITS value where every bit in the operand is reversed. ThusNOT 2r 1000 1110 0110 01010010 1111 0010 1101yields 2r 0111 0001 1001 10101101 0000 1101 0010Notie that spaes have been used to make these binary denotations more omprehensible. NOT is said tobe a bit-wise operator beause its ation on eah bit is independent of the value of other bits.
Dyadi operators for BITSAND and OR (both of whih you also met in hapter 4) both take two BITS operands and yield a BITSvalue. They are both bit-wise operators and their ations are summarised as follows:Left Operand Right Operand AND OR0 0 0 00 1 0 11 0 0 11 1 1 1For OR, the yield of2r 100110 OR 2r 10101is 2r 110111. The priority of AND is 3 and the priority of OR is 2.The AND operator is partiularly useful for extrating parts of a mahine word. For example, supposeyou have a BITS value where the least-signi�ant 8 bits are equivalent to a harater. You ould writeCHAR = REPR ABS (b AND 16rff)Here, the operators REPR and ABS do not generate mahine-ode instrutions, but merely satisfy theompiler that the modes are orret. This sort of formula is, in fat, very eÆient in Algol 68.It is possible to extrat a single bit from a word using the operator ELEM whih has the header(INT n,BITS t)BOOL:For example, given the delarationBITS bi = 16r 394a 2716then eah hexadeimal digit represents 4 bits: the 3 oupies bit positions 1{4, the 9 oupies bit positions5{8, the 4, bit positions 9{12, and so on. Suppose we want the third bit (the leftmost bit is bit-1). Thefollowing delaration is valid:BOOL bit3 = 3 ELEM biThus, if the third bit is a 1, the delaration will give the value TRUE for bit 3. In fat, 3 written in binaryis 00112, so bit 3 is 1. Thus2 ELEM bi

11.2. THE MODE BITS 129would yield FALSE. The priority of ELEM is 7.Inidentally, notie that in Algol 68 the most signi�ant bit in a mahine word is bit-1 and theleast signi�ant bit is bit-32. This strongly suggests that omputers in the 1960's were \big-endian".Intel miroproessors and other ompatible proessors are \little-endian"1. Beause the Ctrans ompilertranslates Algol 68 programs into C programs, it is quite possible for the Ctrans system to be implementedon a \big-endian" miroproessor, suh as the Motorola 68000-series. A \big-endian" proessor stores amahine word as four bytes (eah of 8-bits) with the most signi�ant byte at the lowest memory address.\Little-endian" proessors store the least signi�ant byte at the lowest memory address. Whatever kindof miroproessor is used to elaborate your programs, the most signi�ant bit of the word is bit-1 andthe least signi�ant bit is bit-32 in Algol 68.The dyadi operators SHL and SHR shift a mahine word to the left or to the right respetively by thenumber of bits spei�ed by their right operand. To illustrate their ation we shall suppose that they alloperate on the BITS value 16r 89ab def. Both the shifts are by four bits whih is equivalent to onehexadeimal digit (4 bits is half a byte and is ommonly alled a nibble: yes, omputer experts do possessa sense of humour!).The result of shifting the above value by 4 bits is given by the following table:Original value = 16r 89ab defOperator Bits shifted YieldSHL 4 9ab def0SHL -4 089a bdeSHR 4 089a bdeSHR -4 9ab def0When shifting left (SHL), bits shifted beyond the most signi�ant part of the word are lost. New bitsshifted in from the right are always zero. When shifting right (SHR), the reverse happens. Note that thenumber of bits shifted should be in the range [�32;+32℄. For SHL, if the number of bits to be shifted isnegative, the BITS value is shifted to the right and likewise for SHR. The header for SHL isOP SHL = (BITS b,INT i)BITS:and orrespondingly for SHR. The value b is the value to be shifted and the integer i is the number ofbits to shift. UP and DOWN are synonyms for SHL and SHR respetively.As well as the operators = and /= (whih have the usual meaning), the operators <= and >= are alsode�ned for mode BITS. The formulas >= tyields TRUE only if for all bits in t that are 1, the orresponding bits in s are also 1. This is sometimesregarded as \s implies t". Contrariwise, the formulas <= tyields TRUE only if for all bits in t whih are 0, the orresponding bits in s are also 0. Likewise, this issometimes regarded as \NOT t implies s".
Exerises11.4 Given the delarationsBITS a = 16r 1111 1111,b = 16r 89ab defwhat is the value of eah of the following:(a) a AND b(b) a OR b() NOT a OR b [Hint: onvert eah value to radix 2 and then ombine℄(d) a = b1These terms ome from the book by Jonathan Swift entitled \Gulliver's Travels" and they refer to the habitof some people of eating boiled eggs at the \big" end or the \little" end!

130 CONTENTS11.5 What is the value of(a) 16rab SHL 3(b) 16rba SHR 3
11.3 Overlapping sliesWhathappens if two trimmed multiples overlap? For example, onsider the programPROGRAM slies CONTEXT VOIDUSE standardBEGINOP B=(INT n)INT: n;[4℄INT r;PROC res = VOID:FOR n FROM LWB r TO UPB rDO r[n℄:=n OD;PROC mpr = ([℄INT m)VOID:(FOR i FROM LWB m TO UPB mDO print((whole(m[i℄,0),blank))OD;print(newline)); #mpr#res;print("Original ontents:"); mpr(r);r[:UPB r-1℄:=r[1+LWB r:℄;print((newline,"r[:3℄:=r[2:℄",newline,"Compiler does it: ")); mpr(r);res;FOR i FROM LWB r TO UPB r-1DO r[i℄:=r[i+1℄ OD;print("Forwards loop: "); mpr(r);res;FOR i FROM UPB r-1 BY B-1 TO LWB rDO r[i℄:=r[i+1℄ OD;print("Bakwards loop: "); mpr(r);res; r[1+LWB r:℄:=r[:UPB r-1℄;print((newline,"r[2:℄:=r[:3℄",newline,"Compiler does it: ")); mpr(r);res;FOR i FROM 1+LWB r TO UPB rDO r[i℄:=r[i-1℄ OD;print("Forwards loop: "); mpr(r);res;FOR i FROM UPB r BY B-1 TO 1+LWB rDO r[i℄:=r[i-1℄ OD;print("Bakwards loop: "); mpr(r)ENDFINISH

11.4. COMPLETERS 131When ompiled and exeuted, the program gives the following output:Original ontents:1 2 3 4r[:3℄:=r[2:℄Compiler does it: 2 3 4 4Forwards loop: 2 3 4 4Bakwards loop: 4 4 4 4r[2:℄:=r[:3℄Compiler does it: 1 1 2 3Forwards loop: 1 1 1 1Bakwards loop: 1 1 2 3Notie that lines 5 and 8 of the results are de�nitely wrong, but that the ompiler gets it right both times.The lesson is, do not worry about overlapping multiples: the ompiler will ensure you get the e�et youwant.A di�erent matter is when you want to replae a olumn of a square multiple with a row. Here, theoverlap is more of a \rossoverlap". In this ase you need to be areful|see the next exerise.
Exerises11.6 Given a square two-dimensional multiple of integers, write a proedure whih uses trimmers (notneessarily overlapping) to onvert its olumns to rows and its rows to olumns. For example:((1,2,3), ((1,4,7),(4,5,6), => (2,5,8),(7,8,9)) (3,6,9))Your proedure should ater for any size of square multiple.
11.4 CompletersSometimes it is desirable to have more than one possible end-point of a serial lause. This often happenswhen a loop needs to be prematurely terminated so that a surrounding serial lause an yield a valuewhih is unexpeted. A ompleter is so-alled beause it provides a ompletion point for a serial lause.A ompleter an be plaed wherever a semiolon (the go-on symbol) an appear exept in enquiry lauses(whether BOOL enquiry lauses or INT enquiry lauses). It onsists of the onstrut EXIT followed by alabel and a olon (:). A label is formed with the same rules as for an identi�er and should not be thesame as any identi�er in the urrent range. Here is an example of a ompleter:EXIT label:The label must be referened by a GOTO lause within the same serial lause in whih the ompleterours, or in an inner lause (not neessarily serial). Here is an example of suh a ompleter:a:=(INT i; read((i,newline));IF i < 0 THEN GOTO negative FI;sqrt(i) EXITnegative:sqrt(-i))The example is arti�ial, but serves to illustrate the use of a ompleter.A ompleter an sometimes save the delaration of a boolean name. For example, here is a proedurewithout a ompleter:

132 CONTENTSPROC is in str = (STRING t, CHAR)BOOL:(BOOL found := FALSE;FOR n FROM LWB t TO UPB tWHILE ~foundDO found:= = t[n℄OD;found);Here is the proedure with a ompleter:PROC is in str = (STRING t,CHAR)BOOL:(FOR n FROM LWB t TO UPB tDO IF = t[n℄ THEN GOTO foundOD;FALSE EXITfound:TRUE)In fat, GOTO lauses are valid almost anywhere in Algol 68. They are partiularly useful when it isrequired to jump out of nested lauses. Let us reonsider the program eho in setion 9.5.1 with a GOTOlause:PROGRAM eho CONTEXT VOIDUSE standardBEGINFILE args;IF open(args,"",arg hannel)/=0THENput(stand err,("Cannot aess the arguments",newline));stopELSEFILE ff:=args;on logial file end(ff,(REF FILE f)BOOL:lose(f); GOTO end; FALSE));DO STRING arg;get(ff,(skip terminators,arg));print((arg,newline))OD;end:print(("End of arguments",newline))FIENDFINISHUse of GOTO lauses should be on�ned to exeptions beause otherwise they an destroy the naturalstruture of your programs making them muh more diÆult to understand and maintain.

11.5. REFERENCES TO NAMES 13311.5 Referenes to namesThe idea that a mode an ontain more than one REF, or that a mode might be REF[℄REF[℄CHAR wasbroahed at the start of hapter 5 and mentioned in setion 10.3.2. The time has now ome to addressthis topi fully.Any mode whih starts with REF is the mode of a name. The value to whih a name refers has a modewith one REF less. Sine names are values in their own right, there is no reason at all why a name shouldnot refer to a name. For example, suppose we delareINT x,ythen the mode of both x and y is REF INT. We ould also delareREF INT xx, yyso that xx and yy both have the mode REF REF INT.Now, aording to the de�nition of an assignment (see setion 10.8), it is perfetly legitimate to writexx:=xwithout any dereferening beause the identi�er on the left has mode REF REF INT and the identi�eron the right has mode REF INT. Leaving aside for the moment of how useful suh delarations andassignments might be (and they are very useful, essential even), let us give our attention to the mehanis.We ould assign y to xx and a value to y with the double assignmentxx:=y:=3Again, no dereferening is involved. Now, given that xx refers to y whih refers to 3, how ould we makey refer to 4, say? Simple. Assign 4 diretly to y. However, if the assignment to xx wasxx:=(random>0.8|x|y)we should not know whih name xx referred to. Finding out whih name xx refers to is the subjet ofthe next setion.You may remember that the ontext of the left-hand side of an assignment is soft so no derefereningis allowed. The way to oere a name of mode REF REF INT to a name of mode REF INT is to use a ast:REF INT(xx):=4Note that the unitprint(xx)will yield 4 with xx being dereferened twie. There is nothing to stop us writingREF REF INT xxx:=xxwith assignments likeREF REF INT(xxx):=xREF INT(xxx):=-2and we shall see in a later setion that names with modes REF REF REF some-mode have a use. Althoughyou an use as many REFs as you like, there does not seem to be any need for more than three.Now onsider the assignmentsxx:=yy:=x:=4Both xx and yy refer to di�erent instanes of the name x, but when those instanes are dereferened,they both yield 4. This means that if we assign 5 to x, when xx and yy are dereferened twie, they willboth yield 5. We an represent this relationship by the diagram

134 CONTENTS
xx yy

x
5

RRI RRI
RI

where RRI and RI stand for REF REF INT and REF INT respetively. Thus, although stritly speaking xxand yy refer to di�erent instanes of the name identi�ed by x, we shall regard them as both referring tox.
Exerises11.7 Given the delarationREF REAL xx:=LOC REALhow would you make the anonymous name refer to 120.5?11.8 Write a delaration for rrq whih has the mode REF REF REF[℄CHAR and make it refer to ananonymous name whih refers to an anonymous name whih refers to a multiple of 10 haraters.11.9 Write the delaration of a name whih an refer to a exible name whih an refer to a row ofintegers. In a separate assignment, assign the row-display(3,-2,4) to your name.
11.6 Identity relationsConsider the delarations of the last setion:INT x,y; REF INT xx,yyWe had assigned a name to xx with the assignmentxx:=(random > 0.8|x|y)and we wished to asertain whether xx referred to x or to y. Unfortunately, we annot use the equalsoperator = for this purpose beause its operands would be ompletely dereferened and the underlyingintegers would be ompared. Instead, we use an identity relationwhih is used exlusively for omparingnames. The identity relationxx :=: xyields TRUE if xx refers to x. The alternative representation of :=: is IS. The identity relationxx :/=: xyields TRUE if xx does not refer to x. The alternative representation of :/=: is ISNT. Here is a shortprogram whih illustrates the di�erene between = and IS:PROGRAM test CONTEXT VOIDUSE standardBEGINREF INT xx, INT x:=2,y:=3;TO 3DO xx:=(random>0.5|x|y);

11.7. THE VALUE NIL 135print(("xx :=: x =",(xx :=: x|"TRUE"|"FALSE"),newline,"xx = ",xx,newline))ODENDFINISHIf you want to ompare the names that both xx and yy refer to, it is no good writingxx IS yyThis always yields FALSE beause the names that xx and yy identify always di�er (they were reatedusing two loal generators so the names are bound to be di�erent). The point is that no automatidereferening takes plae in an identity relation. To ompare the names that both xx and yy refer to,you should plae one side or both sides in a ast:REF INT(xx) IS yyThis will ensure that the right-hand side (in this ase) is dereferened to yield a name of the same modeas the left-hand side. This is beause an identity relation is subjet to balaning: one side of the relationis in a soft ontext and the other side is in a strong ontext. Given the ast on the left-hand side, the twosides of the identity relation would yield REF INT and REF REF INT. Sine no dereferening is allowed ina soft ontext, it an be seen that the left-hand side is in the soft ontext and the right-hand side is inthe strong ontext.The IS and ISNT in the identity relation are not operators. Sine the identity relation is a quaternary(see setion 10.8), remember to enlose it in parentheses if you want to use it in a formula:IF (field OF strut ISNT xx) & x>=-5THEN field OF strut = 0ELSE FALSEFI
Exerises11.10 The program fragmentREF STRING ff, ss; STRING f, s;f:="Joan of Ar";s:="Robert Burns";ff:=(random<0.1|f|s);ss:=(ff IS f|s|f)applies to this and the following exerises.What are the modes of f and ss?11.11 What does f refer to?11.12 Write a formula whih ompares the 3rd and 4th haraters of the multiple f refers to with the 7thand 8th haraters of the multiple s refers to. What are the modes of the operands of the operator?11.13 Write an expression whih ompares the name referred to by ff with the name referred to by ss.
11.7 The value NILSometimes it is desirable that a name of mode REF REF whatever should not refer to a de�nite name(see, for example, the disussion of queues below). This an be arranged by making it refer to NIL whihis the only denotation of a name. The mode of NIL is REF whatever. For example, onsiderREF[℄CHAR r=NIL;REF INT ri=NILThe �rst NIL has the mode REF[℄CHAR and the seond has the mode REF INT.Given the delarationREF INT xx:=NIL

136 CONTENTSthe mode of NIL is REF INT. However, although NIL is a name, you annot assign to it. That is, theassignmentREF INT(xx):=4would ause the run-time errorSegmentation faultand, very likely, a ore dump, when using the Ctrans ompiler.Nor an you use NIL in a formula if that would involve dereferening. The only use of NIL is fordetermining, by using an identity relation, that a name refers to it. However, we shall see in the setionson queues and trees that this is a vital funtion.Now onsider the delarationREF REF INT rrri;where the mode of rrri is REF REF REF INT. We ould make rrri refer to NIL diretly using theassignmentrrri:=NILwhene the mode of NIL is REF REF INT. Or we ould use a NIL of mode REF INT by using an anonymousname:rrri:=LOC REF INT:=NILwhene the mode of the anonymous name is REF REF INT. In the identity relationrrri IS NILhow an we tell whih NIL is in use? Of ourse, we ould use a ast for rrri, but there is a simpler andmore useful way. First we delareREF INT nil ri = NILthen balaning will ensure that the identity relationrrri IS nil rigives the required answer with rrri being dereferened twie. Alternatively, with the delarationREF REF INT nil rri = NILwe an ensure that the identity relationrrri IS nil rriwill also be elaborated orretly. We shall see in the setions on queues and trees that the delaration ofnil ri is more useful.Now onsider the delarationsINT x:=ENTIER(random * 6), y;REF INT xx,yy;PROC x or y = REF INT: (random>0.8|x|y)and the identity relationCASE randint(3) IN xx,x or y, NIL ESACISCASE y IN x, SKIP, yy ESACThe balaning of the identity relation inludes balaning of the ase lauses. The modes yielded are

11.8. QUEUES 137xx REF REF INTx or y PROC REF INTNIL REF whateverx REF INTSKIP who knows?yy REF REF INTIn a soft ontext, these modes beome:REF REF INT REF INTREF whateverREF INTwho knows?REF REF INTThus the left-hand side is the soft ontext and the right-hand side (of the identity relation) is the strongontext (remember that SKIP is only allowed in a strong ontext), and the �nal modes are all REF INT.In pratie, it is rare that identity relations are so ompliated.
Exerises11.14 Given the delarationsFILE f1:=stand in, f2;REF FILE ur file:=f2;PROC p = REF FILE:(ur file IS f1|f1|f2)what is the value of(a) ur file:=f2(b) ur file :/=: stand in() p:=f1(d) p:=:f111.15 Given the delarations of exerise 1, what is the mode of NIL in(a) ur file:=NIL(b) REF REF FILE ff:=NIL
11.8 QueuesConsider the problem of representing a queue. We shall suppose that the queue is at a football mathand that eah fan in the queue has a name, in the ordinary sense, and a tiket number. Rather than justpresent the solution to this problem, we shall disuss the problem in detail and show why the solution iswhat it is.A suitable mode for the fan would beFAN:MODE FAN = STRUCT(STRING name,INT tiket)but what would be a suitable delaration for a queue? At �rst sight, it would appear that a exible namewhih an refer to a multiple of fans would be suitable:MODE QUEUE = FLEX[1:0℄FANbut there are diÆulties. Firstly, the only way a new fan ould be added to the queue would be to assigna whole new multiple to a name (in the Algol 68 sense) referring to the queue:QUEUE q; q:=q+FAN("Jim",1)

138 CONTENTSassuming that the operator + has been delared with the headerOP + = ([℄QUEUE a,FAN b)[℄QUEUE:If the queue were long, this would be very ineÆient. Seondly, given a partiular fan, how would we �ndthe fan behind him or her? Knowing the subsript of the fan would seem to be the answer, but whathappens if someone joins the queue somewhere in front of the fan in question? Given that there mightbe several fans under onsideration, the program would have to update all the relevant subsripts andkeep a reord of whih subsripts would be relevant.The solution is to represent a queue as a reursive struture:MODE QUEUE=STRUCT(FAN fan,REF QUEUE next)Then a queue with two fans in it ould be represented by the diagramQF RQfan next FQ RQfan next
where the mode of eah box is QUEUE and F and RQ stand for FAN and REF QUEUE respetively. Notiethat the next �eld of the �rst struture refers to the struture on its right. The next �eld of the seondstruture does not refer to anything.From the delaration of the mode QUEUE, we an see that the next �eld of the struture is a namewith mode REF QUEUE. It would appear that it is possible to onstrut a queue in the way depited bythe last diagram: eah next �eld of eah struture would refer to the next struture (of mode QUEUE)and the last next �eld would have the mode REF QUEUE and value NIL.Now onsider adding another QUEUE to the right-hand end of the queue. We immediately run intoa diÆulty. The value of the next �eld of the last QUEUE is NIL with mode REF QUEUE. However, weannot assign to NIL, nor an we replae the name NIL with another name to make it refer to a newQUEUE. The reason is that a name of mode REF QUEUE an only be replaed by another name of modeREF QUEUE if the �rst name is referred to by a name of mode REF REF QUEUE. In other words, insteadof making the strutures have mode QUEUE, we should make them have mode REF QUEUE. In setion 7.2,on �eld seletion, we pointed out that the modes of the �elds of a struture name are all preeded bya REF. This also applies to a reursively-de�ned struture. In this ase, the mode of the next �eldbeomes REF REF QUEUE and ould refer to NIL (with mode REF QUEUE) or to another struture of modeREF QUEUE. We an depit this as

fan next fan nextRQRF RRQ RQRF RRQ NIL
where RQ, RRQ and RF represent the modes REF QUEUE, REF REF QUEUE and REF FAN respetively.Now let us onsider how suh a queue ould be reated. Sine the length of the queue at the timethe program is written is unknown (and will hange as fans join or leave the queue), it is not possible tohave an identi�er for eah struture forming the queue. Instead, we an reate anonymous names usinga generator. However, we must be able to refer to the queue in order to manipulate it. Let us delare aname, identi�ed by head, to refer to the beginning of the queue:REF QUEUE head:=NILWe have made it refer to NIL (with mode REF QUEUE) beause the queue is urrently empty. Using thesuggestion of the last setion, we shall delareREF QUEUE nilq = NIL;REF QUEUE head:=nilqwhere head has the mode REF REF QUEUE.Let us assign the �rst fan to the queue:head:=LOC QUEUE:=(("Jim",1),nilq)We an represent this by the diagram

11.8. QUEUES 139RRQ
fan
head

next
"Jim" 1 FAN

nilqRQ

We an now assign another fan to the queue:next OF head:=LOC QUEUE:=(("Fred",2),nilq)Let us be quite lear what is happening here. The mode of head is REF REF QUEUE. It is a name whihrefers to a name so it has no �elds. We an selet �elds only from a QUEUE or a REF QUEUE. However, theontext of a seletion is weak(see setion 10.3) and so only weak-dereferening is allowed. Thus innext OF headhead is dereferened to mode REF QUEUE and the next �eld seleted (with mode REF REF QUEUE). Theanonymous name LOC QUEUE has mode REF QUEUE, so the struture display (with mode QUEUE) is assignedto it, and it in turn is assigned to next OF head without dereferening. This means that the nilq whihnext OF head referred to after the �rst fan ("Jim",1) was added to the queue has been replaed by theseond LOC QUEUE whih is what we wanted. We an now depit the queue byRRQ
fan
head

next
"Jim" 1 FAN

RQ nilqfan next RQ
FAN"Sam" 2We ould now extend the queue by writingnext OF next OF queue:=LOC QUEUEbut sine we do not know how long the queue might beome, learly we annot go on writingnext OF next OF ...What we need is some way of referring to the tail of the queue without lots of seletions. Beause thetail of the queue always has mode REF REF QUEUE (it is the next �eld of a REF QUEUE), what we need isa name of mode REF REF REF QUEUE (yes, three REFs). Here it is:REF REF QUEUE tail;but again we run into a diÆulty (the last one). When the queue is empty, head refers to nilq, butwhat does tail refer to sine we annot selet from nilq (beause it is NIL)? The solution is to makehead have the mode REF REF REF QUEUE as well as tail and generate a name of mode REF REF QUEUEto refer to nilq! (bear with it, we're almost there):tail:=head:=LOC REF QUEUE:=nilqIn this triple assignment, only head is dereferened. We an depit this as

140 CONTENTS
head

nilq RQ
RRQ
RRRQ tail

Now we an assign the �rst fan to the head of the queue:REF REF QUEUE(head):=LOC QUEUE:=(("Jim",1),nilq))and make tail refer to the tail of the queue withtail:=next OF headin whih head is dereferened twie, but the seletion is not dereferened at all. The queue an now bedepited as shown below.
head

RRQ
tailRRRQ

fan next nilqRQ
"Jim" 1 FAN

A queue is one example of what is alled a linked-list.
Exerises11.16 Extend the queue by assigning another REF QUEUE to tail.11.17 Now make tail refer to the tail of the queue again.11.18 Has the name referred to by head hanged after adding the new REF QUEUE?
11.9 The proedure add fanWe are now ready to develop a proedure to add a fan to the end of the queue. Clearly, there are twodi�erent situations: an empty queue and a non-empty queue. Although we only need tail to extend thequeue, we need head to determine whether the queue is empty. So here is the header:PROC add fan = (REF REF REF QUEUE head,tail,REF FAN fan)VOID:

11.10. MORE QUEUE PROCEDURES 141Firstly, we need to test whether the queue is empty:IF head IS nilqRemember that the mode of head is REF REF REF QUEUE, so in the identity relation head is dereferenedtwie.Seondly, if the queue is empty, we assign an anonymous REF QUEUE to the name head refers to andassign (fan,nilq) to the REF QUEUE:THEN REF REF QUEUE(head):=LOC QUEUE:=(fan,nilq)but this will not work beause the sope of the LOC QUEUE is limited to the routine denotation. We mustuse a global generator:THEN REF REF QUEUE(head):=HEAP QUEUE:=(fan,nilq)Then we have to ensure that tail refers to the tail of the queue:tail:=next OF headIf the queue is not empty, we assign an anonymous REF QUEUE to the name that tail points to:ELSE REF REF QUEUE(tail):=HEAP QUEUE:=(fan,nilq)and make tail refer to the new tail:tail:=next OF tailHere is the omplete proedure:PROC add fan = (REF REF REF QUEUE head,tail,REF FAN fan)VOID:IF head IS nilqTHEN #the queue is empty#REF REF QUEUE(head):=HEAP QUEUE:=(fan,nilq);tail:=next OF headELSEREF REF QUEUE(tail):=HEAP QUEUE:=(fan,nilq);tail:=next OF tailFI #add fan#
Exerises11.19 It looks as though add fan ould be optimised. Rewrite the body of add fan so that the overallstruture istail:=next OF (REF REF QUEUECO IF ... FI plus two assignments CO)11.20 Write a program ontaining the neessary delarations and loop to reate a queue ontaining 1000fans|alternate the names of the fans between Iain and Fiona and inrement the tiket numbersby 1. Compile and run the program to hek that there are no errors (no output will be produed).
11.10 More queue proeduresWe an now address three more proedures: how to insert a fan into a queue, how to remove a fan fromthe queue, and how to print the queue. Let us take the printing proedure �rst. Here it is:PROC print queue = (REF REF QUEUE head)VOID:IF head IS nilq THEN print(("NIL",newline))ELSE print((newline,"(",name OF fan OF head,",",whole(tiket OF fan OF head,0),")=>"));print queue(next OF head)FI

142 CONTENTSBy not using the triple REF name for the head of the queue, we an use reursion to simplify theproedure. Reursion is ommon in proedures for linked-lists.Inserting a fan is a little more diÆult. There are several possibilities: the queue an be empty ornon-empty. If it is non-empty, the fan an be inserted at the head of the queue, or if there are at leasttwo fans in the queue, the fan ould be inserted somewhere between the head and the tail. The questionis, how many parameters are required for the proedure? Clearly, we need head to determine whetherthe queue is empty, tail to be updated in ase it is or if the fan is to be added to the end of the queue.Here is a possible header:PROC insert fan=(REF REF REF QUEUE head,tail,REF FAN fan)VOID:We need a riterion for determining where in the queue a fan should be inserted. Here is one: the fansshould be inserted in the order of tiket number (using a queue is not an eÆient way of doing this, butthis riterion will do for our purposes). Here is insert fan with a diagram to help you understand it:PROC insert fan=(REF REF REF QUEUE head,tail,REF FAN fan)VOID:IF head IS nilqTHEN #the queue is empty#REF REF QUEUE(head):=HEAP QUEUE:=(fan,nilq);tail:=next OF headELIF tiket OF fan < tiket OF fan OF headTHEN#insert the fan at the head of the queue#REF REF QUEUE(head):=HEAP QUEUE:=(fan,head)ELIF next OF head IS nilqTHEN #add the fan after the head#REF REF QUEUE(tail):=HEAP QUEUE:=(fan,nilq);tail:=next OF tailELIF REF QUEUE marker:=head;WHILEIF (next OF marker ISNT nilq)THENtiket OF fan>tiket OF fan OF next OF markerELSE FALSEFIDO marker:=next OF marker OD;next OF marker IS nilqTHEN#add the fan to the end of the queue#REF REF QUEUE(tail):=HEAP QUEUE:=(fan,nilq);tail:=next OF tailELSECO insert the fan between `marker'and `next of marker' COnext OF marker:=HEAP QUEUE:=(fan,next OF marker)FI

11.11. TREES 143

fan next fan next
fan next

Existing list ofREF QUEUEs
REF QUEUE to be inserted

RRQmarker

There are three lines where you need to look arefully at the modes and values involved:� the line whih ends in (fan,head),� the line whih ends in (fan,next OF marker),� the line ontaining the > operator.Disussion of this proedure ompletes our examination of queues.
Exerises11.21 In the proedure insert fan, explain the irumstanes in whih the loop will terminate.11.22 Using the proedure print queue, on�rm that the proedure insert fan works.11.23 Write the proedure delete fan whih will delete a fan with a given tiket number from the queue.It should yield the fan if it has been deleted and FALSE if it annot be found. This diagram shouldhelp you:

("Fiona", n-1)

("Fiona", n-1)

("Fiona", n+1

("Fiona", n+1

("Iain", n

("Iain", n

))

)
)garbage

Inlude the proedure in a program and test it.
11.11 TreesBoth queues and trees are examples of reursive strutures. Queues ontain only one link betweenindividual strutures, trees ontain at least two. Trees are another kind of linked-list and are interestingbeause they give more examples of how reursive proedures are used to manipulate reursively-de�neddata strutures.There are two prinipal kinds of trees in ommon use: B-trees and binary trees. B-trees (sometimesalled balaned trees) are too advaned to be desribed here.

144 CONTENTSA binary tree onsists of a number of forks, usually alled nodes, whih are linked with two links pernode.Here is an example of a small tree:
1there

1was1a
1lady 1young

1of
1Ryde

The topmost node is alled the root (trees are usually depited upside-down2). Eah node onsists ofthree parts: the data whih eah node bears and left and right referenes whih an refer to other nodes.In the small tree shown above, there are seven nodes on �ve levels. There are 4 nodes on the left branhof the root and 2 on the right, so that the tree is unbalaned.A binary tree is partiularly suitable for the ordering of data: that is, for arranging data in a prede�nedorder3. In the previous setion, in proedure insert fan, we onsidered inserting a fan into a queuein asending order of tiket number. This is an ineÆient way of ordering data. For example, supposethere are 100 fans in the queue. Then, on average, we an expet to insert a fan halfway down the queue;whih means 50 omparisons of tiket numbers. If the fans were stored as a balaned binary tree, themaximum number of omparisons would be only 7 (beause 26 < 100 < 27). For larger numbers, thedi�erene between the two kinds of linked-list is even more marked. For 1000 fans, a queue would need500 omparisons on average, whereas a balaned binary tree would need 10 at most. While it is true thatthese �gures are minima (they assume that the tree is balaned, that is, that there are as many nodes tothe left of the root as to the right), nevertheless, on average, a binary tree is muh more eÆient than aqueue for ordering data.Here is a typial mode delaration for a binary tree:MODE WORD = STRUCT(STRING wd, INT t, REAL fq),TREE = STRUCT(REF WORD w, REF TREE left,right);2The remainder of the intriguing limerik runs as follows:Who ate sour apples and died.The apples fermented inside the lamentedand made ider inside 'er inside.3but only if the tree is reasonably balaned

11.12. PARALLEL PROGRAMMING 145The mode of the data in the delaration of TREE is REF WORD so that if an item of data is moved around,it is only the referene whih is moved. This is more eÆient than moving the data item itself.We shall give two example tree proedures: adding an item of data to the tree and printing the tree.We need to hek whether the tree at some node is empty. For this, we use the delarationREF TREE leaf = NILHere is the proedure add word:PROC add word = (REF REF TREE root,REF WORD w)VOID:IF root IS leafTHEN root:=HEAP TREE:=(w,leaf,leaf)ELIF wd OF w < wd OF w OF rootTHEN add word(left OF root,w)ELIF wd OF w > wd OF w OF rootTHEN add word(right OF root,w)ELSE t OF w OF root+:=1FIThe ordering relation in add word is the alphabetial ordering of the string in eah data item. Whenthe string in the data item to be added to the tree has been found in the tree, the ourrene number isinremented by 1 (see the ELSE lause above). Note the use of reursion.Printing the tree follows a similar pattern, but when the \root" under onsideration is a leaf, nothinghappens:PROC print tree=(REF FILE f,REF REF TREE root)VOID:IF root ISNT leafTHEN print tree(f,left OF root);put(f,(wd OF w OF root,t OF w OF root,newline));print tree(f,right OF root)FIAs you an see, reursion is vital here. Although it is true that reursion an be avoided by using a loop,reursion is better beause it lari�es the logi.The alloation and release of memory for linked-lists (inluding trees) are quite transparent to theprogram. When a tree is read, and nodes possibly deleted, all the lost memory is olleted every so oftenby a garbage olletor. You do not have to worry about the details of memory maintenane|it is alldone for you by the ompiler and the run-time system. If you write a program whih relies heavily onglobal generators, then you should alloate extra memory to the heap (see the on-line information fordetails of how to use the Algol 68 ompilation system).
Exerises11.24 Write a program whih reads a text book and reates a binary tree ontaining the number ofourrenes of eah of the letters A{Z and a{z (that is, ase is signi�ant). Print a report withthe frequeny of ourrene represented by a perentage of the total number of letters in the bookto 2 deimal plaes. You should print the letters going downwards with 13 lines for eah olumn:�rst the upper ase letters, then the lower ase. Only print lines for those letters whih our inthe book (use mem hannel to build the omplete table in memory before printing).
11.12 Parallel programmingUnfortunately, the Ctrans ompiler does not provide parallel programming, so this setion has beenremoved for the third edition of this book. It will be reinstated when an Algol 68 ompiler is madeavailable inorporating parallel programming.

146 CONTENTS11.13 SummaryA mahine word is aessed using the mode BITS and a number of operators. A value of mode BITS anbe denoted using binary, quaternary (radix 4), otal or hexadeimal digits. Names whih refer to namesform the basis of self-referential modes (via STRUCT and REF) from whih we an onstrut queues andtrees. Some of the basi proedures were overed whih manipulate these data strutures.

Chapter 12
Program development
Of ourse, there is more to writing programs than learning a programming language. Although youwill �nd many books on programming languages, you will not �nd many on omputer programming assuh. That is beause it is very muh a raft. Be aware that this book does not, and annot, train youto beome a professional programmer. Only on-the-job training and experiene an do that|but afterworking through this hapter, you will have an idea of some of the ativities a professional programmerdoes.In the omputer industry, there is a widespread attitude that program maintenane helps build goodprogrammers. There are sound reasons for this. One is that reading other people's programs helps youlearn how to lay out programs, how to organise the soure, how to write strutured ode and how tosolve the sort of problems that a programmer meets daily. Another reason is that program maintenaneusually involves either removing errors (usually alled bugs) or making small hanges to the program toadapt it to hanging requirements. You have to learn how a program works before you hange it andreading someone else's program means that the philosophy of the program (the approah of the programto solving a problem) is already there|you do not have to reate it.However, there is no substitute for writing your own programs. The �rst setion of this hapter isonerned with how to write your own programs, from problem analysis to doumentation. The nexttopi disusses how to aess operating system proedures. This introdues almost all those aspets ofAlgol 68 whih involve diret mahine aess apart from the mode BITS and its assoiated operatorswhih were overed in hapter 11.Next, we turn to the �rst aspet of program maintenane: how to understand a program. A smallutility (lf) is provided with the Ctrans ompilation system doumentation. This setion looks at lf andanalyses its funtioning.
12.1 Writing programsThe �rst stage in the development of a new program onsists of analysing the problem that the programmust solve. Unfortunately, there is no known method or methodology whih will solve any kind ofproblem. However, a partiularly good book on problem solving was written by George P�olya(see theBibliography) and although the book is geared towards mathematial problems, it will help you solvemost tehnial problems.Problem analysis is not usually taught to beginners at omputer programming beause, so far as weknow, it is mainly an intuitive ativity (it is a branh of Heuristis). Learning to analyse a problem withthe intention of writing a omputer program is largely aomplished by writing simple programs followedby programs of inreasing sophistiation|this is sometimes alled \learning by doing". When we startanalysing atual programs later in the hapter, eah suh analysis will be preeded by a problem analysis.You will be able to see how the program, as presented, aords with that analysis.Nevertheless, even though no de�nitive method an be given, there are guidelines whih help you toappreiate and analyse problems suitable for omputer solution. In the �eld of systems analysis, youwill �nd various methodologies (suh as SSADM). These are usually geared towards large-sale systemsand are designed to prevent systems designers from forgetting details. In the ontext of program design,knowing the data to be used by the program and the data to be produed by the program is the prinipalguide to knowing what manipulations the program must perform. Data knowledge spei�es the booksaessed by the program and usually onstitutes a substantial part of the program's doumentation.One you know the data your program operates on, you an determine the atual manipulations, oralulations, required. At this stage, you should be able to determine whih data strutures are suitable147

148 CONTENTSfor the solution of your problem. The data strutures in turn lead you to the mode delarations. The kindof data struture also helps to determine the kind of proedures required. Some examples: if your datastrutures inlude a queue, then queue proedures will be needed; or, if you are using multiples (repeateddata), then you will almost invariably be using loops. Again, if an input book ontains strutured data,suh as an item whih is repeated many times, then again your program will ontain a proessing loop.The Jakson programming methodology is a useful way of speifying proedures given the data struturesto be manipulated (see the bibliography).
12.1.1 Top-down analysisAfter you have determined suitable modes and proedures, you need to analyse the problem in a top-downmanner. Basially, top-down analysis onsists of determining the prinipal ations needed to performa given ation, then analysing eah of the prinipal ations in the same way. For example, suppose wewished to write a program to opy a book whose identi�er is given on the ommand line. The topmoststatement of the problem ould beopy an identified bookThe next stage ould beget the book identifieropen the bookestablish the output opy bookopy the input book to outputlose both booksAt this stage, the proess \opy the input book to output" will depend on the struture of the inputbook. If it is text, with lines of di�ering length, you ould use a name of mode REF STRING. If thebook ontains similar groupings of data, alled reords, then it would be more appropriate to delare astrutured mode and write appropriate input and output proedures:DO get reord from input bookput reord to output bookODThe analysis is ontinued until eah ation an be diretly oded.
12.1.2 Program layoutBefore you start oding the program (writing the atual Algol 68 soure program), you should be awareof various programming strategies besides the di�erent means of manipulating data strutures. The �rstto address is the matter of soure program layout.In the examples given in this book, ode has been indented to reet program struture, but evenin this matter, there are hoies. For example, some people indent the THEN and ELSE lauses of an IFlause:IF ...THEN ...ELSE ...FIinstead ofIF ...THEN ...ELSE ...FIOthers regard the parts of the IF lause as some kind of braketing:

12.1. WRITING PROGRAMS 149IF ...THEN...ELSE...FISome people write a proedure as:PROC ...BEGIN...ENDOthers never use BEGIN and END, but only use parentheses.Another point is whether to put more than one phrase on the same line. And what about blank lines|these usually improve a program's legibility. Whatever you deide, keep to your deision throughout theprogram (or most of the program) otherwise the format of the ode may prove onfusing. Of ourse, youwill learn by your mistakes and usually you will hange your programming style over the years.12.1.3 DelarationsAnother matter is whether to group delarations. Unlike many programming languages, Algol 68 allowsyou to plae delarations wherever you wish. This does not mean that you should therefore sprinkledelarations throughout your program, although there is something to be said for delarations beingas loal as possible. There are also advantages in grouping all your global delarations so that theyan be found easily. Generally speaking, it is a good idea to group all global names together (those inthe outermost range) and within that grouping, to delare together all names whih use the same basemode (for example, group delarations of modes CHAR, [℄CHAR and STRING). Some of the exerises in thisbook only delare names when they are immediately followed by related proedures. If your programneeds many global names, it makes sense to delare them near the beginning of the program, after modedelarations, so that if subsequent hanges are required, you know that all the global name delarationsare together and therefore you are unlikely to miss any.12.1.4 ProeduresThe next onsideration is breaking your ode into proedures. As you analyse the problem, you will �ndthat some of the proessing an be spei�ed in a single line whih must be analysed further before it anbe diretly oded. Suh a line is a good indiation that that proess should be written as a proedure.Even a proedure whih is used one only is worth writing if the internal logi is more than a ouple ofonditional lauses, or more than one onditional lause even.You also have to deide between repeating a proedure in a loop, or plaing the loop in the proedure.Deiding the level at whih logi should be put in a proedure is largely the produt of experiene|yoursand other people's|another reason for maintaining existing programs.When you have deided where to use proedures, you should then onsider the interfae between theproedure and the ode that alls it. What parameters should it have, what yield, should you use a unitedmode for the yield, and so on. Try to have as few parameters as possible, but preferably use parametersrather than assign to names global to the proedure. The design of individual proedures is similar tothe design of a omplete program.When you are oding a proedure, be espeially areful with ompound Boolean formul�. Fromexperiene, this is where most mistakes arise. If you are writing a proedure whih manipulates a linkedlist, draw a diagram of what you are trying to do. That is muh easier than trying to piture the struturesin your head.12.1.5 Monetary valuesProblems an arise when dealing with money in omputer programs beause the value stored must beexat. For this reason, it is usually argued that only integers should be used. In fat, real numbers anbe used provided that the preision of the mantissa is not exeeded. Real numbers are stored in twoparts: the mantissa, whih ontains the signi�ant digits of the value, and the exponent, whih multiplies

150 CONTENTSthat value by a power of 2. In other words, using deimal arithmeti, the number 3 � 14159 � 10�43 has3 � 14159 as a mantissa and �43 as an exponent. Beause real numbers are stored in binary (radix 2),the mantissa is stored as a value in the range 1 � value < 2 with the exponent adjusted appropriately.There are a number of identi�ers delared in the standard prelude, known as environment enquiries,whih serve to determine the range and preision of real numbers. The real preision is the numberof bits used to store the mantissa, while the value max exp real is the maximum exponent whih an bestored for a binary mantissa (not the number of bits, although it is a guide to that number). The realwidth and exp width say how many deimal digits an be written for the mantissa and the exponent.The values max real and min real are the maximum and minimum real numbers whih an be stored inthe omputer. All these values are spei�ed by the IEEE 754{1985 standard on \Binary Floating-PointArithmeti" whih is implemented by most miroproessors today.The value of real width is 15 meaning that 15 deimal digits an be stored aurately. Leaving amargin of safety, we an say that an integer with 14 digits an be stored aurately, so that the maximumamount is 99; 999; 999; 999; 999units. If the unit of urreny is divided into smaller units, suh as the sterling pound into pene, or thedollar into ents, then the monetary value should be stored in the smaller unit unless it is known thatthe smaller unit is not required. Thus the greatest sterling amount that an be handled would appear tobe $999,999,999,999.99.However, Algol 68 allows arithmeti values to be stored to a lesser or greater preision. The modesINT, REAL, COMPL and BITS an be preeded by any number of SHORTs or LONGs (but not both). ThusLONG LONG LONG REAL r;is a valid delaration for a name whih an refer to an exeptionally preise real. When delaringidenti�ers of other preisions, denotations of the required preision an be obtained by using a ast withthe standard denotation of the value as inLONG REAL lr = LONG REAL(1);One alternative is to use LONG with the denotation:LONG REAL lr = LONG 1.0;Another is to use the LENG operator, whih onverts a value of mode INT or REAL to a value of the nextlonger preision, as inLONG REAL lr = LENG 1.0;SHORTEN goes the other way.SHORT SHORT INT ssi = SHORTEN SHORTEN 3;All the arithmeti operators are valid for all the LONG and SHORT modes. Although you an write asmany LONGs or SHORTs as you like, any implementation of Algol 68 will provide only a limited number.The number of di�erent preisions available is given by some identi�ers in the standard prelude alledenvironment enquiries. They are� int lengths� int shorths� real lengths� real shorths� bits lengths� bits shorthsThe values for omplex numbers are the same as those for reals. For integers, where int lengthsis greater than 1, long max int and so on are also delared, and similarly for short max int. Ifint lengths is 1, then only the mode INT is available.For the Ctrans ompiler

12.1. WRITING PROGRAMS 151int lengths=2int shorths=3Thus it is meaningful to writeLONG INT long int:=long max int;INT int:=max int;SHORT INT sh int:=short max int;SHORT SHORT INT sh sh int:=short short max int;The same applies to the mode BITS. Try writing a program whih prints out the values of the environmentenquiries mentioned in this setion. The transput proedures get, put, get bin and put bin all handlethe available LONG and SHORT modes.Although you an still writeLONG LONG INT lli=LONG LONG 3;the atual value reated may not di�er from LONG INT depending on the value of int lengths. Notethat you annot transput a value whih is not overed by the available lengths/shorths. Use LENG orSHORTEN before trying to transput.For monetary values, LONG INT is available with the value of long max int being9,223,372,036,854,775,807whih should be big enough for most amounts.12.1.6 OptimisationThere are two well-known rules about optimisation:1. Don't do it.2. Don't do it now.However, often there is a great temptation to optimise ode, partiularly if two proedures are verysimilar. Using identity delarations is a good form of optimisation beause not only do they save somewriting, they also lead to more eÆient ode. However, you should avoid proedure optimisation like theplague beause it usually leads to more ompliated or obsure ode. A good indiator of bad optimisationis the neessity of extra onditional lauses. In general, optimisation is never a primary onsideration:you might save a few milliseonds of omputer time at the expense of a few hours of programmer time.12.1.7 Testing and debuggingWhen writing a program, there is a strong tendeny to write hundreds of lines of ode and then testit all at one. Resist it. The atual writing of a program rarely oupies more than 30% of the wholedevelopment time. If you write your overall logi, test it and it works, you will progress muh fasterthan if you had written the whole program. One your overall logi works, you an ode onstituentproedures, gradually re�ning your test data (see below) so that you are sure your program works ateah stage. By the time you omplete the writing of your program, most of it should already be working.You an then test it thoroughly. The added advantage of step-wise testing is that you an be sure ofexerising more of your ode. Your test data will also be simpler.The idea behind devising test data is not just giving your program orret data to see whether it willprodue the desired results. Almost every program is designed to deal with exeption onditions. Forexample, the lf program has to be able to ope with blank lines (usually, zero-length lines) so the testdata should ontain not one blank line, but also two onseutive blank lines. It also has to be able toope with extra-long lines, so the test data should ontain at least one of those. Programs whih hekinput data for validity need to be tested extensively with erroneous data.It is partiularly important that you test your programs with data designed to exerise boundaryonditions. For example, suppose the reation of an output book fails due to a full hard disk. Have youtested it, and does your program terminate sensibly with a meaningful error message? You ould trytesting your program with the output book being reated on a oppy disk whih is full.Sometimes a program will fault with a run-time error suh as

152 CONTENTSRun time fault (aborting):Subsript out of boundsor errors assoiated with sliing or trimming multiples. A good way of disovering what has gone wrongis to write a monitor proedure on the lines ofPROC monitor=(INT a,[℄UNION(SIMPLOUT,PROC(REF FILE)VOID)r)VOID:BEGINprint(("*** ",whole(a,0)));print(r)ENDand then all monitor with an identifying number and string at various points in the program. Forexample, if you think a multiple subsript is suspet, you ould writemonitor(20,("Subsript=",whole(subsript,0)))By plaing monitors at judiious points, you an follow the ation of your program. This an be parti-ularly useful for a program that loops unexpetedly: monitors will tell you what has gone wrong. If youneed to ollet a large amount of monitors, it is best to send the output to a book. The disadvantage ofthis is that the operating system does not register a book as having a size until it has been losed afterreating. This means that if your program reates a monitoring book, writes a large amount of data to itand fails before the book is losed, you will not be able to read any of the ontents beause, aording tomost operating systems, there will not be any ontents. A way round this problem is to open the bookwhenever you want to write to it, position the writing position at the end of the book, write your data toit and then lose the book. This will ensure that the book will have all the exeuted monitors (unless, ofourse, it is a monitor whih has aused the program to fail!). The proedure debug given in setion 9.9will do this.An alternative method of traing the ation of a program at run-time is to use a soure-level debugger.The DDD program an help you debug the C soure program produed by the Ctrans ompiler, but unlessyou understand the C programming language and the output of the Ctrans ompiler, you will not �nd ituseful. Monitors, although an old-fashioned solution to program debugging, are still the best means ofgathering data about program exeution.Another proven method of debugging (the proess of removing bugs) is dry-running. This involvesating as though you are the omputer and exeuting a small portion of program aordingly. An examplewill be given in the analysis of the lf program later.Sometimes, no matter what you do, it just seems impossible to �nd out what has gone wrong. Thereare three ploys you an try. The �rst, and easiest, is to imagine that you are explaining your program toa friend. The seond is to atually explain it to a friend! This �nds most errors. Finally, if all else fails,ontat the author.12.1.8 Compilation errorsYou an trust the ompiler to �nd grammatial errors in your program if any are there. The ompilerwill not display an error message for some weird, but legal, onstrution. If your program is syntatiallyorret (that is, it is legal aording to the rules of the language), then it will parse orretly.When ompiling a program of more than a hundred lines, say, you an use the parsing option (-hek)whih will more than double the speed of ompilation. When your program parses without error, thenit is worth doing a straight ompilation (see the online doumentation for program mm in the Ctransompilation system).A de�nitive list of error messages an be found in the �letrans-1.0.0/trans/a/message.a68You will �nd that most of the messages are easy to understand. Oasionally, you will get a messagewhih seems to make no sense at all. This is usually beause the atual error ours muh earlier inyour program. By the time the ompiler has disovered something wrong, it may well have ompiled (ortried to ompile) several hundred lines of ode. A typial error of this sort is starting a omment andnot �nishing it, espeially if you start the omment with an opening brae ({), whih gives rise to thefollowing error message:

12.1. WRITING PROGRAMS 153ERROR (112) end of file insideomment or pragmatIf you start a omment with a sharp (#) and forget to �nish it likewise, the next time a sharp appears atthe beginning of another omment, the ompiler will announe all sorts of weird errors.1Another kind of troublesome error is to insert an extra losing parenthesis or END. This an produelots of spurious errors. For example:ERROR (118) FI expeted here(at harater 48)ERROR (203) ELSE not expeted here(at harater 4)ERROR (140) BOOL, INT or UNION required here,not VOIDERROR (116) brakets mismath(at harater 2)ERROR (159) elements of in-partsmust be unitsERROR (117) FINISH expeted here(at harater 3)Omitting a semiolon, or inadvertently inserting one will also ause the appearane of urious errormessages. Messages about UNIONs usually mean that you should use a ast to ensure that the ompilerknows whih mode you mean. If, for example, you have a proedure whih expets a multiple of mode[℄UNION(STRING,[℄INT)and you present a parameter like((1,2),(4,2),(0,4))then the ompiler will not know whether the display is a row-display or a struture-display. Either youshould preede it with a suitable mode, or modify your proedure to take a single [℄INT and loop throughit in twos. Having to modify your program beause the ompiler does not like what you have written israre however.12.1.9 Arithmeti overowSometimes your program will fail at the time of elaboration or \run-time" due to arithmeti overow. If,during a alulation, an intermediate result exeeds the apaity of an INT, normally, no indiation willbe given other than erroneous results. In the standard prelude that omes with the Ctrans ompiler, anumber of speial arithmeti operators are provided whih hek for integer overow. These are PLUS,MINUS and TIMES. They are de�ned for LONG INT, INT, SHORT INT and SHORT SHORT INT (see setion13.6.1 for details).Overow of REAL numbers an be deteted by the oating-point unit. The standard prelude ontainsthe value fpu w algol 68 round of mode SHORT BITS and the proedurePROC set fpu w = (SHORT BITS w)VOID:The small test program testov (to be found with the Ctrans ompilation system doumentation) illus-trates testing for overow both with integers and real numbers.12.1.10 DoumentationThe most tedious aspet of writing a program is doumenting it. Even if you desribe what the programis going to do before you write it, but after you have designed it, doumentation is not usually a vitallyinteresting task. Large programming teams often have the servies of a tehnial writer whose job it isto ensure that all program doumentation is ompleted.21One way of avoiding this sort of error is to use \lexial" highlighting with your favourite editor. A missingquote or sharp will ause large amounts of your program to be displayed as a string denotation or a omment.2Various shemes have been developed for doumenting a program as it is written, They are often alled\literate programming".

154 CONTENTSExisting programs are usually doumented and there is no doubt that the best way of learning todoument a program is to see how others have done it. There are several doumentation standards inuse, although most large ompanies have their own. Generally speaking, the doumentation for a programshould ontain at least the following� the program name� the language used to write the program� a short desription of what the program does� the details of all books used by, or produed by, the program, inluding the sreen and the printer� an analysis of how the program works, partiularly any speial algorithms or data strutures (queuesand trees are examples)� who wrote the program, and when� the loation of the soure ode� the latest listing of the soure odebut not neessarily in the order given above. The aim of program doumentation is to make it easy toamend the program, or to use it for a subsequent rewrite.Lastly, it is worthwhile saying \don't be rigid in program design". If, as you reah the more detailedstages of designing your program, you disover that you have made a mistake in the high-level design, bewilling to baktrak and revise it. Design faults are usually attributable to faulty analysis of the problem.
12.2 Non-anonial inputThe nonanon program provides a means of entering data via the keyboard without ehoing it to thesreen. This is known as non-anonial input mode, the usual ehoing of input being anonial inputmode. The general details of terminal ontrol are very omplex, but simple aess has been providedwith the kbd hannel.Here is a sample program whih may be used to test the e�et of kbd hannel:PROGRAM nonanon CONTEXT VOIDUSE standardBEGINSTRING password;FILE kbd; open(kbd,"",kbd hannel);WHILECHAR h; get bin(kbd,h);h /= REPR lfDO password+:=h;print("*")OD;lose(kbd);print(("You entered [",password,"℄",newline))ENDFINISHNotie that the program annot be aborted by pressing ^C. Ensure you lose the FILE opened with thekbd hannel after use otherwise you'll �nd all your ommands at the ommand prompt unehoed. Ifthat happens, issue the following ommand at the prompt:$ stty sanewhen normal ehoing will be restored.

12.3. A SIMPLE UTILITY 15512.3 A simple utilityWhen you are writing omputer programs, it is very useful to be able to opy your Algol 68 soureprograms to a printer with line numbers. Many editors, inluding vim, Emas and FTE, use line numbers.When the Algol 68 ompiler �nds an error in your program, it displays the o�ending line together withits number and a desriptive message on the sreen and the number of the harater in the line wherethe error ourred. However, it is insuÆient to merely opy the ontents of a �le to the printer (unlessyou are using the spooling faility of a header �le) beause the output will not ontain any identifyinginformation.What is required is a small program whih will optionally write line numbers and whih will writethe name of the �le being printed together with the date and time at whih the �le was last modi�ed. Apage number is another useful item as it prevents pages being lost when the listing is made on separatesheets of paper. It would also be very useful to be able to speify where in a �le a listing should startand where it should �nish. Suh a program is alled a utility. Notie that the program must be able tohandle zero-length lines as well as lines whih are too long to be printed on one line alone. Lastly, someeditors allow you to insert tab haraters into your doument, so the utility must be able to print the �lewith the orret indentation.The preeding problem analysis shows that we ould write suh a program if we knew how toobtain the date and time of last modi�ation of a �le from the operating system. In the diretory/usr/share/do/trans/pame, you will �nd the soure of the program lf whih solves the problemdesribed above for the Linux operating system. The soure of lf is 520 lines long. Compile it and runit with the argument -h. The help information displayed by the program should be displayed by everyprogram you write whih is used at the ommand line: it prevents aidental use from ausing damageto your operating system �les or diretories.12.3.1 The soure odeThere are many ways of takling the understanding of a program, but here is a method whih does helpwith Algol 68 programs. In summary,1. See what the program does.2. Look at the prinipal proessing.3. Examine the mode delarations.4. Examine the routines.5. Repeat steps 2{4 for eah routine.Stage one of examining a program is to see what it does. Examples of its output, and possibly itsinput, help you to identify the ations of various parts of the program. Doumentation of the input andoutput would suÆe, but neither exists in this ase beause the input is a plain text �le and the outputis better seen than desribed. Compile the Algol 68 example program lf in/usr/share/do/trans/examplesand use it to list the �le test.lf (in the same diretory) with line numbers on your printer using theommandlf -pg -n test.lf | lprto pipe the output to the printer unless you have a LaserJet 4 or 6L when you an omit the -pg argument.Notie that the time and date the �le was last modi�ed appears at the top of eah page, together withthe identi�er of the �le and the page number. If you used the -n parameter to print the test �le, eahline will be preeded by a line number and a olon. If you did not list the �le with line numbers, do sonow beause the line numbers will highlight another feature of the program. The �rst line in test.lf istoo long to be printed on one line, so the program breaks it into two parts. The seond part does nothave a line number sine it is part of the same line in the input.The seond stage in understanding a program is to look at the prinipal proessing. Sine proeduresand other values must be delared before use in the Ctrans ompiler, the last part of the program ontainsthe main proessing logi. Now print (or display) the soure of lf.a68 using the ommandlf -n /usr/share/do/trans/pame/lf.a68

156 CONTENTSIn the soure, the main proessing logi is on lines 427{517. Examine those lines now.Before proessing any ommand line arguments, the program de�nes the ations to take when thelast argument has been read. In other words, what should be done when the logial end of �le has beenreahed for omm line. The default ation is to terminate the program immediately with a suitable errormessage. In lf, no identi�ation is given for omm line in the open proedure, beause it isn't relevant,but if you insert suh an identi�ation, for example, ommand line file, then any error message issuedby the transput system will inlude it. Notie that although the anonymous proedure used as theseond parameter for on logial file end on line 448 ours within the IF ... FI lause, beause itis a denotation (a proedure denotation) it has global sope. That is one of the reasons why anonymousproedures are so useful. Also note the use of SKIP to yield a value of mode BOOL: in fat, it will neverbe used beause stop is a synonym for GOTO end of program.In lines 442{517, the program proesses the ommand line argument by argument. If an argumentstarts with \-" it is assumed to be an option otherwise it is assumed to be a �lename. Note the useof skip terminators to skip spaes in the ommand line. Options that require a number (-s and -t)expet it to follow the option diretly (see lines 493 and 495). Lines 500{506 proess a solitary - to mean\list the standard input". Lines 507{516 proess a named �le. As you examine the ode, underline theidenti�ers of all proedure alls.The next stage in understanding a program is to look at all the mode delarations. There are threein this program: PRINTER, SEC and STAT. You should san the program to see what identi�ers have thator a related mode and where they are used.12.3.2 RoutinesFinally, you need to examine the routines delared. It is a good idea, espeially in a more ompliatedprogram, to list the identi�ers of all proedures with nested delarations of proedures indented undertheir parent proedure identi�ers. This helps to �x the struture of the program in your mind. Then youshould examine the proedures used in the main proessing loop. In lf, they are:har in string losedisp error getget mtime get numeri argget setions helpopen printprint file proess file namereset parameters skip terminatorsWhen you examine eah proedure, do the same as you did for the whole program: �rst the main logi,then the modes, then the proedures and operators. You will need to baktrak several times in a largeprogram. If a lot of names are delared, prepare a list together with a desription of what eah name isused for, where it is delared and the plaes where it is used. A ross-referene program would be reallyuseful, but it is not a simple program to write for Algol 68.The priniple proessing is performed by the proedure print file on lines 258{322. Firstly, tabstops are set aording to the urrent value of tabs, then lines is initialised and an initialisation stringoutput to the printer. If letter quality has been hosen (option -q), a speial string is sent to the printeraordingly. Then the logial file end event proedure is set. Eah setion spei�ed on the ommandline (or the default setion if no setions were spei�ed) is then printed using the proedure do line.Eah line is input using get line whose prinipal funtion is to expand tab haraters to the requirednumber of spaes (3 unless set by the -t option). Lines are not output until the beg OF ss line is reahed(1 unless set by the -s option). Notie the ode following FROM in the preamble to the inner DO ... ODloop (on lines 313{316) whih ensures that the �le is reset if the setions to be printed are not ordered(the de�nition of ordered is in the proedure get setions (lines 381{425).Similar to your list of nested proedures, prepare a list of proedures where indented proeduresidentify proedures alled by the parent proedure. Here is part of the list for lf:fstatlinux fstathelpexit, newline, putreset parameterslf print

12.3. A SIMPLE UTILITY 157ODD, printget mtimefstat, linux timeget setions+:=add setionhar in stringget numeri arghar in string12.3.3 Dry-running exampleThe proedure get line (lines 232{250) and its assoiated proedures set tabs (lines 220{224) andtab pos (lines 226{227) are worth examining in detail. The best way to see how they work is to dry-runthem. Take a blank sheet of paper and make a vertial list of all the names, both loal and global, usedby the proedures. Opposite in line, write a piee of text ontaining tab haraters (a piee of indentedprogram, for example). Then work your way through the proedure, marking the value referened byeah name as you omplete eah step. You should also note the value of eah non-name; for example,the loop identi�er i. Here is what your list ould look like after going 3 times round the outer loop (theinner loop is on lines 241{244):tabstops FFTFFTFFTFFTFFTFFTFFTFFT: : :line(ln) Tin line ! THEN h:="A"op 6 1 6 2 6 3 6 4 6 5 6i 6 1 6 2 3 6!6 TStruk-out values have been supereded and denotes a spae. Dry-running is a very useful method, iflaborious and time-onsuming, of �nding bugs. tab h is delared in the standard prelude.This utility program (lf) is quite short, but we have analysed its working in detail so that you ansee how it is done.12.3.4 ALIEN proeduresThe utility lf uses some of the extensions provided by the Ctrans ompiler, in partiular, the ALIENonstrut whih provides aess to proedures ompiled by other ompilers. In this setion we shall lookat the get wd and the fstat proedures.The proedure fstatThe proedure fstat is on lines 100{105. It depends on a all of the linux fstat proedure whoseseond parameter is a name referring to a value of mode STAT. The delaration of STAT is on lines 24{41.If you investigate the �le /usr/inlude/statbuf.h, you will �nd the C de�nition of the stat struturetherein. The STAT mode aurately reets this struture using LONG or SHORT as appropriate. Briey, aC unsigned int is equivalent to an Algol 68 BITS. For historial reasons, the C unsigned long int hasthe same meaning as an unsigned int so BITS ould have been used for those �elds as well. However,beause the value is required as an integer (and is stored as a positive integer), it is possible to regardthem as having mode INT. Some of the C modes3 are hidden by further mode delarations4, but if youhunt for __dev_t you will �nd it is a unsigned long long int whih is equivalent to the Algol 68LONG BITS or, as is used in STAT, LONG INT.Now look at the delaration of linux fstat on lines 85{89. Most of this onstrution is C soureode. The ALIEN onstrut may be written as<mode> <identifier> = ALIEN "<symbol>""<C soure ode>";where the angle brakets denote items to be replaed. In the delaration for linux fstat we have3C people all them types.4typedefs

158 CONTENTS� <mode> = PROC(INT,REF STAT)INT� <identifier> = linux fstat� <symbol> = FSTATfollowed by three lines of C soure ode. It is not my intention to delve into the mysteries of C. If youdon't understand that language, onsult someone who does. However, the point of the delaration is tomap the Algol 68 modes onto the C equivalents. The C proedure fstat takes two parameters: the �rsthas mode int (equivalent to INT) and the seond of mode strut stat* whih is equivalent to REF STAT.The ast in C onsists of a mode in parentheses (ompare with the Algol 68 ast in setion 10.5) so thethird line of C ode ensures that the seond parameter of the Algol 68 proedure linux fstat has theright mode. The A_int_INT(...) onstrut is a C language maro5 for a ast whih ensures that theyielded C integer is equivalent to the Algol 68 INT. If you want to see what the Ctrans ompiler generates,look for FSTAT in the �le lf..Reverting to line 102, the �eld sys file OF f has the orret mode for use as the \�le desriptor"for fstat. You should hek the manual page of fstat (in setion 2 of the Linux Programming Manual)for details of its funtioning and yield.The proedure get wdThe proedure get wd is more ompliated beause it uses several failities provided by the standardprelude as well as another extension provided by the Ctrans ompiler. Firstly, look at the ALIEN de-laration of linux getwd on lines 91{93. The mode VECTOR[℄CHAR is similar to the mode [℄CHAR, butthe lower bound is always 1 and is omitted from the generated onstrut. In fat, Ctrans translates thismode into the C equivalent ofSTRUCT(REF CHAR data, INT g, upb)The g �eld is an integer provided for the garbage-olletor (the run-time memory management systemwhih looks after the heap). The data �eld is a referene to the atual data (in fat it is a memoryaddress)6.The C proedure getwd requires two parameters: a referene to an area whih it an use to returnthe full path of the urrent working diretory and an integer whih states how big that area is. TheC soure ode in the delaration for linux getwd ontains the C maroA_VC_harptr(buf)whih expands into buf.data (equivalent to the Algol 68 expression data OF buf) and the C maroA_INT_int whih onverts an Algol 68 INT into a C int (diretly equivalent on Linux).The yield of linux getwd is a referene to the area in whih the urrent working diretory path hasbeen put. Stritly speaking, this is idential to the �rst parameter of the C proedure getwd, but theGNU C ompiler omplains if it is used as suh. To get around this, the author used the ast (void *)whih e�etively auses the referene to be a referene to an anonymous piee of memory. The Algol 68equivalent is CPTR whih is de�ned in the standard prelude as REF BITS.Now omes the lever bit. Look at line 98. The value of mode CPTR (REF BITS) is onverted by the op-erator CPTRTOCSTR into a value of mode CSTR (delared in the standard prelude as REF STRUCT 16000000 CHAR).Now look at the de�nition of that operator (on line 95)! BIOP stands for \built-in operator" and BIOP 99is the only built-in operator implemented by the Ctrans translator. BIOP 99 maps its parameter (of onemode) onto its yield (of another mode). It e�etively ats as a ast (in this ase) from one REF mode toanother REF mode. Have a look at the C soure ode in lf. if you are interested in the details. Thenthe value of mode CSTR is onverted using the operator CSTRTORVC to a value of mode REF VECTOR[℄CHARwhih is dereferened and then oered to a value of mode STRING. In fat, the Ctrans ompiler will silentlyoere values of mode REF STRUCT i MODE to mode REF VECTOR[℄MODE and thene to REF[℄MODE. Notiethat you annot oere a value of mode REF VECTOR[℄MODE to REF FLEX[℄MODE. The mode STRING hasno exibility (it is equivalent to [℄CHAR).Lastly, note that the parameter of linux getwd is an anonymous VECTOR[℄CHAR whose sope islimited to the sope of get wd (the Algol 68 proedure).If you want to examine the other maros used for the translated C soure, have a look at the �les inthe diretories5A synonym for another piee of text whih is expanded by the C preproessor6The VECTOR mode is not limited to CHAR. You an use it for any mode. See setion 13.5.1 for details

12.4. SUMMARY 159/usr/share/trans/Linux/usr/share/trans/inlude
12.4 SummaryIn this hapter, we have overed most of the ativities relating to program development, whether it bethe maintenane of existing programs or the development of new programs. The onstrutor ALIEN isused to introdue proedures ompiled by other ompilation systems (suh as C). We have desribed oneprogram and have shown how to analyse the workings of a program.

160 CONTENTS

Chapter 13
Standard Prelude
The funtion of this hapter is to desribe all the failities in the standard prelude supplied with theLinux port of the Ctrans ompiler. The standard prelude ontains both impliit delarations (failitiesprovided by the ompiler) and expliit delarations (those de�ned in, and made available by, the QADstandard prelude1). They are lassi�ed and dealt with as follows:1. Standard modesThese are the modes de�ned by the Algol 68 Revised Report, whih de�nes the language, plusmodes required by the transput.2. Environment enquiriesSome of these are de�ned in the Revised Report.3. Standard operatorsThere are a large number of these, all de�ned in the Revised Report and lassi�ed by the modesof their operands. They are preeded by a subsetion giving their priorities.4. Other operatorsSome operators are provided whih are not in the Revised Report. They are desribed in thissetion. However, operators peuliar to the Ctrans implementation are desribed in the setion onCtrans extensions.5. Standard proeduresOnly those proedures not used in transput and proess ontrol are de�ned here. They all appearin the Revised Report.6. Other proeduresProedures whih appear neither in the Revised Report nor in any other setion appear here.7. Ctrans extensionsAll the extensions to the language are desribed in this setion inluding modes, onstruts, oper-ators and proedures.8. Proess ontrolThese delarations provide ontrol over the working of the oating-point unit, integer overow andsignal handling. They inlude delarations for ontrolling the Algol 68 garbage olletor.9. TransputThis very large setion provides spei�ations for all the transput delarations available in theStandard Prelude, but omits those operators and proedures whih are intended for internal useonly.See the bibliography for details of the Revised Report.
13.1 Standard modesMany of the modes available in the standard prelude are built from the standard modes of the languagewhih are all de�ned in the Revised Report.1QAD stands for \quik-and-dirty" and was supposed to represent the provided standard prelude. While it isnot entirely standard (as far as Algol 68 is onerned), it was ertainly not implemented quikly!161

162 CONTENTS1. VOIDThis mode has one value: EMPTY. It is mainly used as the yield of routines and in unions.2. BOOLThis mode has two values, namely TRUE and FALSE.3. INTThis is the basi arithmeti mode. Various preisions are available:(a) LONG INT 64-bit integer(b) INT 32-bit integer() SHORT INT 16-bit integer(d) SHORT SHORT INT 8-bit integer4. REALThis mode is used mainly for approximate alulations although exat values an be manipulatedprovided that the number of signi�ant digits does not exeed the preision of the mantissa (seesetion 13.2.1). The following preisions are available:(a) REAL 64-bit real(b) SHORT REAL 32-bit real5. COMPLStritly speaking, this is not a fundamental mode beause it is regarded as a struture with two�elds:MODE COMPL = STRUCT(REAL re,im)However, the widening oerion will onvert a REAL value into a COMPL value and COMPL values arenot straightened (see setion 13.7.6). Like REALs, the following preisions are available:(a) COMPL 128-bit(b) SHORT COMPL 64-bit6. CHARThis mode is used for most harater operations. See setion 13.2.2 for further details.7. BITSThis mode is equivalent to a omputer word regarded as a group of bits (binary digits) numbered1 to bits width (see setion 13.2.1). Various preisions are available:(a) LONG BITS 64-bit(b) BITS 32-bit() SHORT BITS 16-bit(d) SHORT SHORT BITS 8-bit8. BYTESThe Revised Report desribes the mode, but the Ctrans ompiler does not implement it.9. STRINGThis mode is de�ned asMODE STRING = FLEX[1:0℄CHARand is provided with a shorthand onstrut for denotations of suh values (see setion 3.1).
13.2 Environment enquiriesAlgol 68 was the �rst programming language to ontain delarations whih enable a programmer todetermine the harateristis of the implementation. The enquiries divide neatly into arithmeti andharater set enquiries. The atual values of the Linux port of the Ctrans ompiler are plaed in squarebrakets. Those de�ned in the Revised Report are marked with (RR).

13.2. ENVIRONMENT ENQUIRIES 16313.2.1 Arithmeti enquiriesThese enquiries are so numerous that they are further subdivided.Enquiries about preisionsAny number of LONG or SHORT an be given in the mode spei�ation of numbers, but only a few suhmodes are distinguishable in any implementation. The following environment enquiries tell whikh modesare distinguishable. Note partiularly that there are more distinguishable preisions available for INT andBITS than there are for REAL and COMPL in the Ctrans implementation.1. INT int lengths (RR) [2℄1+ the number of extra lengths of integers.2. INT int shorths (RR) [3℄1+ the number of short lengths of integers.3. INT real lengths (RR) [1℄1+ the number of extra lengths of real numbers.4. INT real shorths (RR) [2℄1+ the number of short lengths of real numbers.5. INT bits lengths (RR) [2℄1+ the number of extra lengths of BITS.6. INT bits shorths (RR) [3℄1+ the number of short lengths of BITS.7. INT bytes lengths (RR) [0℄Bytes are not implemented by the Ctrans ompiler.8. INT bytes shorths (RR) [0℄Bytes are not implemented by the Ctrans ompiler.Enquiries about ranges1. SHORT SHORT INT short short max int (RR) [127℄The maximum value of mode SHORT SHORT INT.2. SHORT INT short max int (RR) [32 767℄The maximum value of mode SHORT INT.3. INT max int (RR) [2 147 483 647℄The maximum value of mode INT.4. LONG INT long max int (RR)[9 223 372 036 854 775 807℄The maximum value of mode LONG INT.5. SHORT REAL short min real [0:117 55e� 37℄The smallest representable short real. It should not be onfused with short small real.6. SHORT REAL short max real (RR) [0:340 28e+ 39℄The largest short real value storable.7. SHORT REAL short small real (RR)[1:192 09e� 7℄The smallest short real whih, when added to 1:0 makes a disernible di�erene.8. REAL min real [0:197 626 258 336 50e� 322℄The smallest representable real. It should not be onfused with small real.9. REAL max real (RR) [0:179 769 313 486 23e+ 309℄The largest real value storable.10. REAL small real (RR) [0:222 044 604 925 031e� 15℄The smallest real whih, when added to 1:0, makes a disernible di�erene.

164 CONTENTSInternal sizes of modes1. INT short short int width [3℄The maximum number of deimal digits expressible by a value of mode SHORT SHORT INT.2. INT short int width [5℄The maximum number of deimal digits expressible by a value of mode SHORT INT.3. INT int width [10℄The maximum number of deimal digits expressible by a value of mode INT.4. INT long int width [19℄The maximum number of deimal digits expressible by a value of mode LONG INT.5. INT short short bits width (RR) [8℄The number of bits required to hold a value of mode SHORT SHORT BITS.6. INT short bits width (RR) [16℄The number of bits required to hold a value of mode SHORT BITS.7. INT bits width (RR) [32℄The number of bits required to hold a value of mode BITS.8. INT long bits width (RR) [64℄The number of bits required to hold a value of mode LONG BITS.9. INT bytes width (RR) [0℄The mode BYTES is not implemented.10. INT short real preision [24℄The number of bits used for the mantissa of a short real.11. INT short real width [6℄The maximum number of signi�ant deimal digits in a small real.12. INT short min exp [�125℄The minimum exponent of a short real.13. INT short max exp [128℄The maximum exponent of a short real.14. INT short exp width [2℄The maximum number of deimal digits in the exponent of a short real. This an be less than thenumber of digits oupied by short max exp beause any deimal digit an be represented. Forexample, 99 but not 999.15. INT real preision [53℄The number of bits used for the mantissa of a real.16. INT real width [15℄The maximum number of signi�ant deimal digits in a real.17. INT min exp [�1021℄The minimum exponent of a real.18. INT max exp [1024℄The maximum exponent of a real.19. INT exp width [3℄The maximum number of deimal digits in the exponent of a real. See also short exp width.Partiular arithmeti values1. SHORT REAL short pi [3:14159℄2. REAL pi [3:141 592 653 589 79℄3. REAL log2[0:301 029 995 663 981℄This is the value of log10 2.

13.3. STANDARD OPERATORS 16513.2.2 Charater set enquiriesThe Ctrans implementation of Algol 68 is bedevilled by the peuliar limitations of the C programminglanguage in whih a harater is atually an integer and indistinguishable from suh. Furthermore, a C`harater' is a signed integer, equivalent to a value of mode SHORT SHORT INT. Thus C `haraters' rangefrom �128 to+127. Algol 68, on the other hand, has the mode CHAR whih, at a high level, is distintfrom values of both mode INT and mode SHORT SHORT INT. The absolute value of Algol 68 haratersrange from 0 to the value of max abs har. Furthermore, the operator REPR will onvert any INT uptomax abs har to a harater. Be warned that the C value of REPR 225, for example, is �31! Whatharater is represented by REPR 225 will depend on the harater set used by the displaying devie. AnISO 8859-1 harater set, for example, will display `�a'. The environment enquiries in this setion arelimited to a range enquiry and the values of ommonly required haraters.1. INT max abs har (RR) [255℄The largest positive integer whih an be represented as a harater. When Uniode is implementedin an Algol 68 ompiler (whether UCS2 or UCS4), this enquiry will hange.2. CHAR null harater (RR) [REPR 0℄3. CHAR nul h [REPR 0℄This is a synonym for null harater.4. CHAR blank (RR) [REPR 32℄This is a spae harater.5. CHAR error har (RR) [�℄This harater is used by the onversion routines for invalid values.6. CHAR flip (RR) [T℄This harater is used to represent TRUE as an external value.7. CHAR flop (RR) [F℄This harater is used to represent FALSE as an external value.8. CHAR r [REPR 13℄This harater is sometimes used as a line terminator, usually in assoiation with lf.9. CHAR lf [REPR 10℄This harater terminates lines on Linux.10. CHAR ff [REPR 12℄This harater is the \form-feed" harater often used for ontinuous stationery.11. CHAR tab h [REPR 9℄This harater is used to provide rude formatting of text �les, partiularly those whih mimidouments produed by typewriters.12. CHAR es [REPR 27℄This harater is mainly used to introdue \esape sequenes" whih ontrol the format and olourof output on Linux virtual terminals (VTs) and xterm windows.213. CHAR eof har [REPR 26℄This harater was used to denote the end of a plain text �le in the MS-DOS operating system.
13.3 Standard operatorsThe number of distint operators is vastly inreased by the availability of SHORT and LONG modes. Thusit is imperative that some kind of shorthand be used to desribe the operators. Following the subsetionon the method of desription are setions devoted to operators with lasses of operands. The end of thissetion ontains tables of all the operators.2See the �le /usr/share/do/xterm/tlseqs.ms.gz for the latter.

166 CONTENTS13.3.1 Method of desriptionWhere an operator has operands and yield whih may inlude LONG or SHORT, the mode is written usingL. For example,OP + = (L INT, L INT)L INT:is a shorthand for the following operators:OP + = (LONG INT,LONG INT)LONG INT:OP + = (INT,INT)INT:OP + = (SHORT INT,SHORT INT)SHORT INT:OP + = (SHORT SHORT INT,SHORT SHORT INT)SHORT SHORT INT:Ensure that wherever L is replaed by SHORTs or LONGs, it should be replaed by the same number ofSHORTs or LONGs throughout the de�nition of that operator. This is known as \onsistent substitution".Note that any number of SHORTs or LONGs an be given in the mode of any value whose mode aeptssuh onstruts (INT, REAL, COMPL and BITS), but the only modes whih an be distinguished are thosespei�ed by the environment enquiries in setion 13.2.1. However, you should note that even though valuesof modes LONG REAL and LONG LONG REAL annot be distinguished internally, the Algol 68 ompiler stillregards them as having unique modes and you will need to use the LENG operator to onvert a value ofmode LONG REAL to a value of mode LONG LONG REAL.The priority of an operator is independent of the mode of the operator and so is given in a separatesubsetion. Eah operator is aompanied by a short desription of its funtion.13.3.2 Standard prioritiesThe priority of delarations of the standard operators an be hanged in subsidiary ranges using the PRIOdelaration (see setion 6.2.3). Eah of the following enumerated nine setions ontains a list of thoseoperators whih have that priority. Operators in parentheses are not de�ned in the Revised Report. Seesetion 13.6 for their details.1. +:=, -:=, *:=, /:=, %:=, %*:=, +=:PLUSAB, MINUSAB, TIMESAB, DIVAB, OVERAB, MODAB, PLUSTO2. OR3. &, AND4. =, /=, EQ, NE5. <, <=, >=, >LT, LE, GE, GT6. -, +, (PLUS, MINUS)7. *, /, %, %*,OVER, MOD, ELEM, (TIMES)8. **, UP, DOWN, SHL, SHR, LWB, UPB9. +*, I, (MIN, MAX)13.3.3 Operators with row operandsBoth monadi and dyadi forms are available. We shall use the mode ROW to denote the mode of anymultiple.1. Monadi.OP LWB = (ROW)INT:OP UPB = (ROW)INT:Yields the lower or upper bound of the �rst or only dimension of its operand.2. Dyadi.OP LWB = (INT n,ROW r)INT:OP UPB = (INT n,ROW r)INT:Yields the lower or upper bound of the n-th dimension of the multiple r.

13.3. STANDARD OPERATORS 16713.3.4 Operators with BOOL operands1. OP OR = (BOOL a,b)BOOL:Logial OR.2. OP & = (BOOL a,b)BOOL:Logial AND (synonym AND).3. OP NOT = (BOOL a)BOOL:Logial NOT: TRUE if a is FALSE and vie versa.4. OP = =(BOOL a,b)BOOL:TRUE if a equals b (synonym is EQ).5. OP /= =(BOOL a,b)BOOL:TRUE if a not equal to b (synonym is NE).6. OP ABS = (BOOL a)INT:ABS TRUE is 1 and ABS FALSE is 0.13.3.5 Operators with INT operandsMost of these operators take values of any preision. The L shorthand is used for those that an.Monadi operatorsConsistent substitution applies to all those operators in this setion whih use the L shorthand: apartfrom LENG and SHORTEN, the preision of the yield is the same as the preiion of the operand.1. OP + = (L INT a)L INT:The identity operator. Does nothing.2. OP - = (L INT a)L INT:The negation operator.3. OP ABS = (L INT a)L INT:The absolute value. ABS -3 = +34. OP SIGN = (L INT a)INT:Yields �1 for a negative operand, +1 for a positive operand and 0 for a zero operand.5. OP ODD = (L INT a)BOOL:Yields TRUE if the operand is odd.6. OP LENG = (L INT a)LONG L INT:OP LENG = (SHORT L INT a)L INT:Converts its operand to the next longer preision. Note that you annot use both SHORT and LONGin the same mode.7. OP SHORTEN = (L INT a)SHORT L INT:OP SHORTEN = (LONG L INT a)L INT:Converts its operand to the next shorter preision. If the value exeeds l max int for the nextshorter preision, the value will be trunated. This an lead to erroneous results. See also LENG.Dyadi operatorsIn this setion, onsistent substitution is used wherever the L shorthand is used. For operators withmixed operands, see setion 13.3.8.1. OP + = (L INT a,L INT b)L INT:Arithmeti addition: a+ b. No hek is made for integer overow. See the operator PLUS in setion13.6.1 for addition with a hek for overow.2. OP - = (L INT a,L INT b)L INT:Arithmeti subtration: a � b. No hek is made for integer overow. See the operator MINUS insetion 13.6.1 for subtration with a hek for overow.

168 CONTENTS3. OP * = (L INT a,L INT b)L INT:Arithmeti multipliation: a� b. No hek is made for integer overow. See the operator TIMES insetion 13.6.1 for multipliation with a hek for overow.4. OP / = (L INT a,L INT b)L REAL:Arithmeti frational division. Even if the result is a whole number (for example, 6=3), the yieldalways has mode L REAL. Where a result of mode L REAL needs to be output, but annot beoutput due to the limitations built into the de�nition of the mode SIMPLOUT, the operators LENGor SHORTEN should be used. Floating-point overow an be heked (see setion 13.6.1).5. OP % = (L INT a,L INT b)L INT:Arithmeti integer division. Division by zero in the Ctrans implementation produes a oating-point exeption paradoxially (synonym OVER).6. OP ** = (L INT a,INT b)L INT:Computes ab for b � 0.7. OP %* = (L INT a,L INT b)L INT:Arithmeti modulo (synonym MOD). For example5 MOD 3 = 28. OP +* = (L INT a,L INT b)L COMPL:Converts two integers into a omplex number of the same preision (synonym I).9. OP < = (L INT a,L INT b)BOOL:Arithmeti \less than": a < b (synonym LT).10. OP <= = (L INT a,L INT b)BOOL:Arithmeti \less than or equals": a � b (synonym LE).11. OP >= = (L INT a,L INT b)BOOL:Arithmeti \greater than or equals": a � b (synonym GE).12. OP > = (L INT a,L INT b)BOOL:Arithmeti \greater than": a > b (synonym GT).13. OP = = (L INT a,L INT b)BOOL:Arithmeti equality: a = b (synonym EQ).14. OP /= = (L INT a,L INT b)BOOL:Arithmeti inequality: a 6= b (synonym NE).13.3.6 Operators with REAL operandsMost of these operators an have operands of any preision. The L shorthand is used for them.Monadi operators1. OP + = (L REAL a)L REAL:Arithmeti identity. Does nothing.2. OP - = (L REAL a)L REAL:Arithmeti negation: �a.3. OP ABS = (L REAL a)L REAL:The absolute value. ABS -3.0 = +3.04. OP SIGN = (L REAL a)INT:Yields �1 for negative operands, +1 for positive operands and 0 for a zero operand (0:0).5. OP ROUND = (REAL a)INT:Rounds its operand to the nearest integer. If the value ends with :5, it is rounded to the nearest evennumber. This is ontrary to normal Linux C library pratie, but is an internationally aeptedstandard whih ensures that rounding errors do not aumulate. The operator heks for integeroverow (see setion 13.6.1 for details).

13.3. STANDARD OPERATORS 1696. OP ROUND = (L REAL a)L INT: (for any preision exept REAL)Rounds its operand to the nearest integer. Does not hek integer overow. If its operand exeedsl max int, an erroneous result will ensue. ROUND should be used for a REAL operand if you wantto hek for integer overow (see setion 13.6.1 for details of oating-point overow heking).7. OP ENTIER = (REAL a)INT:Trunates its operand to the next lowest integer. The operator heks for integer overow (seesetion 13.6.1 for details).8. OP ENTIER = (L REAL a)L INT: (for any preision exept REAL)Trunates its operand to the next lowest integer. The operator does not hek integer overow.If its operand exeeds l max int, an erroneous result will ensue. Use ENTIER for a REAL operandif you want to hek for integer overow (see setion 13.6.1 for details of oating-point overowheking).9. OP LENG = (L REAL a)LONG L REAL:OP LENG = (SHORT L REAL a)L REAL:Converts its operand to the next longer preision. Note that you annot use both SHORT and LONGin the same mode.10. OP SHORTEN = (L REAL a)SHORT L REAL:OP SHORTEN = (LONG L REAL a)L REAL:Converts its operand to the next shorter preision. If a value exeeds l max real for the nextshorter preision, the value will be trunated leading to an erroneous result. The mantissa willalways be trunated.Dyadi operatorsIn this setion, onsistent substitution is used wherever the L shorthand appears. For operators withmixed operands, see setion 13.3.8.1. OP + = (L REAL a,L REAL b)L REAL:Floating-point addition: a + b. Floating-point overow will ause a trappable signal (see se-tion 13.6.1).2. OP - = (L REAL a,L REAL b)L REAL:Floating-point subtration: a� b. Floating-point overow will ause a signal whih an be trapped(see setion 13.6.1).3. OP * = (L REAL a,L REAl b)L REAL:Floating-point multipliation: a � b. Floating-point overow will ause a signal whih an betrapped (see setion 13.6.1).4. OP / = (L REAL a,L REAL b)L REAL:Floating-point divison: a=b. Floating-point overow and divide-by-zero will ause a trappablesignal (see setion 13.6.1). Where a result of mode L REAL needs to be output, but it annot beoutput due to the limitations built into the de�nition of the mode SIMPLOUT, the operators LENGor SHORTEN should be used.5. OP +* = (L REAL a,L REAL b)L COMPL:Converts two reals into a omplex number of the same preision (synonym I).6. OP < = (L REAL a,L REAL b)BOOL:Floating-point \less than": a < b (synonym LT).7. OP <= = (L REAL a,L REAL b)BOOL:Floating-point \less than or equals": a � b (synonym LE).8. OP >= = (L REAL a,L REAL b)BOOL:(synonym GE)Floating-point \greater than or equals": a � b.9. |OP > = (L REAL a,L REAL b)BOOL:Floating-point \greater than": a > b (synonym GT).10. OP = = (L REAL a,L REAL b)BOOL:Floating-point equality: a = b (synonym EQ).

170 CONTENTS11. OP /= = (L REAL a,L REAL b)BOOL:Floating-point inequality: a 6= b (synonym NE).13.3.7 Operators with COMPL operandsAlgol 68 is one of the few programming languages whih have a built-in mode for omplex numbers. Itis omplemented by a rih set of operators, some of whih are only available for values of mode COMPL.Again, onsistent substitution is appliable to all operators using the L shorthand.Monadi operators1. OP RE = (L COMPL a)L REAL:Yields the real omponent: re OF a.2. OP IM = (L COMPL a)L REAL:Yields the imaginary omponent: im OF a.3. OP ABS = (L COMPL a)L REAL:Yields pRE a2 + IM b2.4. OP ARG = (L COMPL a)L REAL:Yields the argument of the omplex number.5. OP CONJ = (L COMPL a)L COMPL:Yields the onjugate omplex number.6. OP + = (L COMPL a)L COMPL:Complex identity. Does nothing.7. OP - = (L COMPL a)L COMPL:Complex negation.8. OP LENG = (L COMPL a)LONG L COMPL:OP LENG = (SHORT L COMPL a)L COMPL:Converts its operand to the next longer preision. Note that you annot use both SHORT andLONG in the same mode. Unfortunately, although Ctrans will translate a program ontaining thisoperator apparently without errors, the resulting C �le will not ompile. The error produed willbe \onversion to non-salar type requested". You should use the following ode instead:(LENG RE z,LENG IM z)9. OP SHORTEN = (L COMPL a)SHORT L COMPL:OP SHORTEN = (LONG L COMPL a)L COMPL:Converts its operand to the next shorter preision. Note that you annot use both SHORT and LONGin the same mode. Unfortunately, the Ctrans translator will generate inorret ode (see the notefor the operator LENG). Use the following ode instead:(SHORTEN RE z,SHORTEN IM z)If either of the omponents of the omplex number exeeds l max real for the next shorter pre-ision, an erroneous result will ensue, but no error will be generated.Dyadi operatorsThe remarks in setion 13.3.6 onerning oating-point overow apply doubly here.1. OP + = (L COMPL a,L COMPL b)L COMPL:Floating-point addition for both omponents.2. OP - = (L COMPL a,L COMPL b)L COMPL:Floating-point subtration for both omponents.3. OP * = (L COMPL a,L COMPL b)L COMPL:Standard omplex multipliation with oating-point arithmeti.4. OP / = (L COMPL a,L COMPL b)L COMPL:Standard omplex division with oating-point arithmeti.

13.3. STANDARD OPERATORS 1715. OP = = (L COMPL a,L COMPL b)BOOL:Complex equality with oating-point arithmeti (synonym EQ).6. OP /= = (L COMPL a,L COMPL b)BOOL:Complex inequality with oating-point arithmeti (synonym NE).13.3.8 Operators with mixed operandsConsistent substitution is appliable to all operators using the L shorthand. Additional shorthands areused as follows:� The shorthand P stands for +, -, * or /.� The shorthand R stands for <, <=, =, /=, >=, >,or LT, LE, EQ, NE, GE, GT.� The shorthand E stands for = /=,or EQ or NE.
1. OP P = (L INT a,L REAL b)L REAL:2. OP P = (L INT a,L COMPL b)L COMPL:3. OP P = (L REAL a,L COMPL b)L COMPL:4. OP P = (L REAL a,L INT b)L REAL:5. OP P = (L COMPL a,L INT b)L COMPL:6. OP P = (L COMPL a,L REAL b)L COMPL:7. OP R = (L INT a,L REAL b)BOOL:8. OP R = (L REAL a,L INT b)BOOL:9. OP E = (L INT a,L COMPL b)BOOL:10. OP E = (L REAL a,L COMPL b)BOOL:11. OP E = (L COMPL a,L INT b)BOOL:12. OP E = (L COMPL a,L REAL b)BOOL:13. OP ** = (L REAL a,INT b)L REAL:OP ** = (L COMPL a,INT b)L COMPL:Exponentiation: ab (synonym UP).14. OP +* = (L INT a,L REAL b)L COMPL:OP +* = (L REAL a,L INT b)L COMPL:(synonym I)13.3.9 Operators with BITS operandsConsistent substitution applies to all operators using the L shorthand.Monadi operators1. OP BIN = (L INT a)L BITS:Mode onversion whih does not hange the internal value.2. OP ABS = (L BITS a)L INT:Mode onversion whih does not hange the internal value.3. OP NOT = (L BITS a)L BITS:Yields the bits obtained by inverting eah bit in the operand. That is, 0 goes to 1, 1 goes to 0.4. OP LENG = (L BITS a)LONG L BITS:OP LENG = (SHORT L BITS a)L BITS:Converts a bits value to the next longer preision by adding zero bits to the more signi�ant end.Note that you annot use both SHORT and LONG in the same mode.

172 CONTENTS5. OP SHORTEN = (L BITS a)SHORT L BITS:OP SHORTEN = (LONG L BITS a)L BITS:Trunates a bits value to a value of the next shorter preision. The more signi�ant bits are simplyignored.Dyadi operators1. OP & = (L BITS a,L BITS b)L BITS:(synonym AND)The logial \and" of eah pair of binary digits in a and b.2. OP OR = (L BITS a,L BITS b)L BITS:The logial \or" of eah pair of binary digits in a and b.3. OP SHL = (L BITS a,INT b)L BITS:The left operand shifted left by the number of bits spei�ed by the right operand. New bits shiftedin are all zero. If the right operand is negative, shifting is to the right (synonym UP).4. OP SHR = (L BITS a,INT b)L BITS:(synonym DOWN)5. OP ELEM = (INT a,L BITS b)BOOL:Yields TRUE if bit a is 1. Unfortunately, the Ctrans ompiler generates du� ode for any preisionother than BITS.6. OP = = (L BITS a,L BITS b)BOOL:Logial equality (synonym EQ).7. OP /= = (L BITS a,L BITS b)BOOL:Logial inequality (synonym NE).8. OP <= = (L BITS a,L BITS b)BOOL:Yields TRUE if eah bit in the left operand implies the orresponding bit in the right operand(synonym LE).9. OP >= = (L BITS a,L BITS b)BOOL:Yields TRUE if eah bit in the right operand implies the orresponding bit in the left operand(synonym GE).13.3.10 Operators with CHAR operandsThe shorthands in setion 13.3.8 apply here.1. OP ABS = (CHAR a)INT:The integer equivalent of a harater.2. OP REPR = (INT a)CHAR:The reverse of ABS. The operand should be in the range [0:max abs har℄.3. OP + = (CHAR a,CHAR b)STRING:The harater b is appended to the harater a (onatenation).4. OP E = (CHAR a,CHAR b)BOOL:Comparison of the arithmeti equivalents of a and b.13.3.11 Operators with STRING operands1. OP + = (STRING a,STRING b)STRING:String b is appended to string a (onatenation).2. OP + = (CHAR a,STRING b)STRING:String b is appended to harater a.3. OP + = (STRING a,CHAR b)STRING:Charater b is appended to string a.4. OP * = (INT a,STRING b)STRING:Yields a lots of string b onatenated.

13.3. STANDARD OPERATORS 1735. OP * = (STRING a,INT b)STRING:Yields b lots of string a onatenated.6. OP * = (INT a,CHAR b)STRING:Yields a lots of harater b onatenated.7. OP * = (CHAR a,INT b)STRING:Yields b lots of harater a onatenated.8. OP < = (STRING a,STRING b)BOOL:The absolute value of eah harater of a is ompared with the absolute value of the orrespondingharater in b (for the purpose of the omparison, the lower bounds of both strings are regardedas equal to 1). If the strings are equal upto the end of the shorter of the strings, then the longerstring is the greater (synonym LT).9. OP <= = (STRING a,STRING b)BOOL:(synonym LE)The text for the operator < in this setion applies.10. OP >= = (STRING a,STRING b)BOOL:(synonym GE)The text for the operator < in this setion applies.11. OP > = (STRING a,STRING b)BOOL:(synonym GT)The text for the operator < in this setion applies.12. OP = = (STRING a,STRING b)BOOL:If the strings di�er in length, they are unequal, else they are ompared as for the operator < in thissetion (synonym EQ).13. OP /= = (STRING a,STRING b)BOOL(synonym NE)If the strings di�er in length, they are unequal, else they are ompared as for the operator < in thissetion.14. OP E = (STRING a,CHAR b)BOOL:OP E = (CHAR a,STRING b)BOOL:The shorthand E as desribed in setion 13.3.8 applies for these ases.13.3.12 Assigning operatorsConsistent substitution applies to all operators ontaining the L shorthand.1. +:= (synonym PLUSAB)The operator is a shorthand for a:=a+b.Left operand Right operand YieldREF L INT L INT REF L INTREF L REAL L INT REF L REALREF L COMPL L INT REF L COMPLREF L REAL L REAL REF L REALREF L COMPL L REAL REF L COMPLREF L COMPL L COMPL REF L COMPLREF STRING CHAR REF STRINGREF STRING STRING REF STRING2. +=: (synonym PLUSTO)The operator is a shorthand for b:=a+b.Left operand Right operand YieldSTRING REF STRING REF STRINGCHAR REF STRING REF STRING

174 CONTENTS3. -:= (synonym MINUSAB)The operator is a shorthand for a:=a-b.Left operand Right operand YieldREF L INT L INT REF L INTREF L REAL L INT REF L REALREF L COMPL L INT REF L COMPLREF L REAL L REAL REF L REALREF L COMPL L REAL REF L COMPLREF L COMPL L COMPL REF L COMPL4. *:= (synonym TIMESAB)The operator is a shorthand for a:=a*b.Left operand Right operand YieldREF L INT L INT REF L INTREF L REAL L INT REF L REALREF L COMPL L INT REF L COMPLREF L REAL L REAL REF L REALREF L COMPL L REAL REF L COMPLREF L COMPL L COMPL REF L COMPLREF STRING INT REF L COMPL5. /:= (synonym DIVAB)The operator is a shorthand for a:=a/b.Left operand Right operand YieldREF L REAL L INT REF L REALREF L REAL L REAL REF L REALREF L COMPL L INT REF L COMPLREF L COMPL L REAL REF L COMPLREF L COMPL L COMPL REF L COMPL6. OP %:= = (REF L INT a,L INT b)REF L INT:(synonym OVERAB)The operator is a shorthand for a:=a%b.7. OP %*:= = (REF L INT a,L INT b)REF L INT:(synonym MODAB)The operator is a shorthand for a:=a%*b.13.3.13 Other operatorsThis setion ontains those operators whih appear neither in the Revised Report nor in the setiononerning Ctrans extensions (setion 13.5).1. OP &* = (REAL r,INT e)REAL:Multiply r by 2e. The routine does not use multipliation, but simply inrements the exponent ofr aordingly.2. OP ELEM = (INT a)BITS:The operator yields a value with all bits zero exept the bit spei�ed by the operand.3. OP MIN = (L INT a,L INT b)L INT:OP MIN = (L REAL a,L REAL b)L REAL:OP MIN = (L INT a,L REAL b)L REAL:OP MIN = (L REAL a,L INT b)L REAL:The lesser of the two operands.4. OP MAX = (L INT a,L INT b)L INT:OP MAX = (L REAL a,L REAL b)L REAL:OP MAX = (L INT a,L REAL b)L REAL:OP MAX = (L REAL a,L INT b)L REAL:The greater of the two operands.5. OP VALID = (REAL r)BOOL:Whether the real value r is a valid real in terms of the IEEE standard.

13.4. STANDARD PROCEDURES 17513.4 Standard proeduresThese mainly onsist of mathematial proedures. All the proedures assoiated with interfaing withalien proedures appear in the Ctrans setion and all the transput proedures appear in the transputsetion. Proedures assoiated with oating-point, proess and garbage-olletor ontrol appear in se-tion 13.6.
13.4.1 Mathematial proeduresStritly speaking, there are as many preisions of eah of the mathematial funtions as there are for realnumbers. However, in the standard prelude provided with the Ctrans ompiler, the only extra preisionimplemented is that for short real. The L shorthand is used to simplify the list of proedures. All theseproedures depend on the orresponding C library funtions, so onsult the manual pages for details.1. PROC l sqrt = (L REAL x)L REAL:Yields the square root of x provided that x � 0.2. PROC l exp = (L REAL x)L REAL:Yields ex if suh a value exists.3. PROC l ln = (L REAL x)L REAL:Yields the natural (or Napierian) logarithm of x provided that x > 0, otherwise the proedure failsand errno is set (see setion 13.6 for details).4. PROC l os = (L REAL x)L REAL:Yields the osine of x, where x is in radians.5. PROC l aros = (L REAL x)L REAL:Yields the inverse osine of x as a value between L 0 and 2 l pi inlusive. If ABS x > 1 then theproedure yields an erroneous result, but errno is set (see setion 13.6 for details).6. PROC l sin = (L REAL x)L REAL:Yields the sine of x, where x is in radians.7. PROC l arsin = (L REAL x)L REAL:Yields the inverse sine of x as a value between L 0 and 2 l pi inlusive. If ABS x > 1 then theproedure yields an erroneous result, but errno is set (see setion 13.6 for details).8. PROC l tan = (L REAL x)L REAL:Yields the tangent of x, where x is in radians.9. PROC l artan = (L REAL x)L REAL:Yields the inverse tangent of x as a value between L 0 and 2 l pi inlusive.10. PROC next random = (REF INT a)REAL:The next INT value after a in a pseudo-random sequene uniformly distributed in the range L 0 tomax int is assigned to a. The yield x is in the range 0 � x < 1 obtained by a uniform mapping ofa.11. INT last randomLONG INT long last randomNames initialised to �xed values and used by other random proedures as a seed.12. PROC random = REAL:A all of next random(last random).13. PROC short random = SHORT REAL:As for random with the yield shortened.14. PROC l random int = (L INT n)L INT:Yields a pseudo-random sequene of integers in the range 1 � x � n.

176 CONTENTS13.4.2 Other proeduresThe proedures whole, fixed and float are dealt with in the transput setion (13.7).1. PROC l bits pak = ([℄BOOL a)L BITS:Paks l bits width booleans into a value of mode L BITS.2. PROC har in string =(CHAR ,REF INT i,STRING s)BOOL:If the harater ours in the string s, the proedure yields TRUE and assigns the position of ins to i, otherwise it yields FALSE when no assignment to i takes plae.
13.5 Ctrans extensionsThe Ctrans manual desribes the language restritions of the translator. Chapter 3 ontains details ofthe FORALL onstrut. This setion is intended to doument those extensions used in the QAD standardprelude.13.5.1 Modes peuliar to CtransThe prinipal extensions to Algol 68 modes are the introdution of multiple modes whose housekeepingoverhead is less than the standard row modes.1. STRUCT n MODEThis mode is alled an \indexable struture". The n, a non-negative integer, is built into themode and must be an integer denotation. The base mode an be any mode. It is equivalent to aC language \array". Here is a list of modes used in the QAD standard prelude whih are eitherindexable strutures or referenes to suh:(a) CSTR=REF STRUCT 16000000 CHARThis is a referene mode and is equivalent to the C type har *. It is used in the ALIEN (seesetion 12.3.4) de�nitions of linux getenv, for example, to referene data.(b) CCHARPTRPTR=REF STRUCT 16000000 CSTRAgain, this is a referene mode and is equivalent to the C type har **. It is used to aessthe program's arguments.A onsiderable number of operators use indexable strutures for onverting values of one mode toanother using memory mapping (see setion 13.5.3. For example,OP(REAL)STRUCT 8 CHAR FLAT = BIOP 99;2. VECTOR[n℄MODEThe vetor mode has less overhead than a row mode beause its lower bound is always one. It isommonly used to provide strings to C proedures. The following modes are de�ned using VECTOR:(a) STR=VECTOR[0℄CHARDue to the way in whih C multiples are de�ned (without bounds), the mode STR an be usedfor any length VECTOR.(b) RVC=REF STRThis mode is used in a number of operators, suh asOP MAKERVC = ([℄CHAR s)RVC:It is also used to onstrut other modes suh as BOOK (see setion 13.7).3. Coerions provided by CtransA value of mode STRUCT n MODE an be oered diretly to a value of mode VECTOR[℄MODE. Likewise,a value of the latter mode an be oered to a value of mode [℄MODE. Therefore, preferably use themode [℄MODE for a parameter to a proedure.4. Other modes used by CtransSome modes are provided to make interfaing with C library proedures easier. Here are the onesprovided by the QAD standard prelude:

13.5. CTRANS EXTENSIONS 177(a) CPTR=REF BITSThis mode is equivalent to the C type void *.(b) CINTPTR=REF INTEquivalent to the C type int *.() CCHARPTR=REF CHAREquivalent to the C type har *.(d) GCPARAM=STRUCT(STR name,INT value)Used to aess parameters of the garbage-olletor (see setion 13.6.3 below).(e) PDESC=STRUCT(CPTR p,CSTR env)This represents the struture reated by Ctrans for every Algol 68 proedure. The �eld pontains the atual memory address of the proedure and the �eld env ontains data used bythe proedure.(f) VDESC=STRUCT(CCHARPTR data,BITS g,INT upb)This mode represents the housekeeping overhead of a VECTOR. The data �eld is the atualmemory address of the start of the data and the upb �eld is the upper bound of the vetor.The g �eld is used by the garbage-olletor (the heap manager).
13.5.2 Ctrans onstrutsThis setion desribes those onstruts whih are either peuliar to Ctrans or whih are in some waydi�erent from standard Algol 68.1. FORALLFORALL is desribed in setion 3.10.2. ALIEN and CODEBoth ALIEN and CODE are desribed in the Ctrans manual. ALIEN is also desribed in setion12.3.4. All ALIEN delarations used in the QAD standard prelude appear in the �le spaliens.a68whih you should onsult for further details. You should note that the ALIEN delarations wereestablished by trying various modes until a de�nition was found whih Ctrans translated to aompilable C soure �le. The delarations for get fpu w, set fpu w and the like, use the__asm__ onstrut of the GNU C ompiler: this provides a means of inorporating short sequenesof assembler instrutions into a C program. Consult the node Extended Asm in info �le g.infofor details.As desribed in the Ctrans manual, soure �les may ontain either a PROGRAM module or a DECSmodule. The latter may ontain delarations and CODE lauses only. See the �le transput.a68,lines 1185{92, for an example of how to exeute ode when a DECS module is being elaborated.3. USE listsThe USE list of a DECS or a PROGRAM module generates alls to the relevant initialiser PROCs (seethe generated C �le for standard.a68 for an example) in the reverse order of the given modules.Therefore, if the order matters, ensure that the USE lause mentions eah module in the properorder.4. The BY onstrut in a FOR loopUnfortunately, the BY onstrut in a FOR loop (see setion 3.7) generates an internal ompiler errorif it is followed by a formula whose value an be omputed at ompile-time. This is a de�nite bug.The remedy is to use a simple proedure or operator instead. For example, instead of writingFOR i BY 5 TO ...use the operatorOP B=(INT b)INT: b;and the phraseFOR i BY B 5 TO ...

178 CONTENTS5. The default ase in a CASE lauseIf in a CASE lause, whether a simple CASE or a onformity CASE lause (one whih determines themode of the value in its enquiry lause), the default lause an our, then you must inlude atleast OUT SKIP, otherwise you will get a run-time fault.6. BIOP 99In Algol 68, a UNION (see setion 8.1) is a well-de�ned mode omposed of onstituent modes. Avalue of one of the onstituent modes may be assigned to a name of the united mode and only thatvalue (with its original mode) an be extrated. In the C language, however, a \free union" orjust \union" is a piee of memory whih an have di�erent interpretations. The BIOP 99 onstrutenables the operand of an operator using it to be re-interpreted as a value of the mode given inthe yield. for example, the operator FLAT delared asOP(REAL)STRUCT 8 CHAR FLAT = BIOP 99;aepts a REAL parameter whih, as the yield, is regarded as an indexable struture of 8 haraterseah of whih an be aessed separately. See setion 13.5.3 for operators using this onstrut.13.5.3 OperatorsThese are largely operators using the BIOP 99 onstrut, but there are a number of other operators whihease the task of interfaing with C library proedures.Operators using BIOP 99Most of the operators used in the QAD standard prelude whih are de�ned using the BIOP 99 onstrutare for internal use only. In the following list, the full delarationOP(CPTR)CSTR TOCSTR = BIOP 99;is abbreviated toOP TOCSTR=(CPTR)CSTR:Here is a list of operators using the BIOP 99 onstrut whih are made available by the QAD standardprelude:1. OP TOCPTR=(INT)CPTR:2. OP TOCSTR=(CPTR)CSTR:3. OP TOVDESC=(STR)VDESC:4. OP TOPDESC=(PROC(INT,CPTR)VOID)PDESC:This operator provides a means of getting the address of a proedure and is used to provide theidenti�er of an Algol 68 proedure whih must be elaborated by an ALIEN proedure (suh asa C library routine). You an de�ne as many TOPDESC operators as you wish with operands ofproedures you will need. You will ertainly need more de�nitions of TOPDESC if you write wrapperproedures for X Window System proedures whih have proedural parameters. See the �letransput.a68 for details of how this operator is used.5. OP CCHARPTRTOCSTR=(CCHARPTR)CSTR: This operator is used to de�ne the on exit proedure.6. OP CSTRTOCCHARPTR=(CSTR)CCHARPTR:Other operatorsHere is a list of operators not using the BIOP 99 onstrut:1. OP CPTRTORVC=(CPTR)RVC:Used to ast the C type void * to the type har *.2. OP CSTRTORVC=(CSTR)RVC:Converts a C string to a value of mode RVC using the standard RS Algol 68 oerionREF STRUCT n CHAR => REF VECTOR[℄CHAR

13.6. CONTROL ROUTINES 179It is mainly used to aess C strings yielded by C library routines. The perameter must beterminated by a null harater.3. OP MAKERVC=(CHAR)RVC:OP MAKERVC=(STR)RVC:OP MAKERVC=([℄CHAR)RVC:4. OP VCTOCHARPTR=(STR)CCHARPTR:Yields the C pointer from a Ctrans desriptor. If a C string is expeted, a null harater mustbe appended to the data before the routine is alled. This need not be done for string denotations.This routine may be used to yield a C pointer from an RVC, as the C representation is the same.5. OP STRTOCSTR=(STR)CSTR:The operator ombines the ation of the operators CCHARPTRTOCSTR and VCTOCHARPTR.6. OP Z=(STR str)STR:Yields a null-terminated STR from a STR for use with the C library.
13.6 Control routinesThree groups of proedures and operators are provided to ontrol various aspets of the run-time envi-ronment. These are oating-point ontrol, proess termination ontrol and garbage-olletor ontrol.13.6.1 Floating-point unit ontrolThe Intel Pentium miroproessors all have a oating-point unit (FPU) as an integral part of the miro-proessor. The ation of the FPU is determined by the ontents of a 16-bit register alled the \ontrolword register". Details of the register an be found in the �le/usr/inlude/fpu_ontrol.hDetails of the working of the FPU, as ontrolled by the ontrol word register an be found in the threevolumes of the \Intel Arhiteture Software Developer's Manual". The ontrol word ontains bits whihontrol rounding, preision and whether oating-point errors should ause an exeption. The QADstandard prelude provides two proedures whih enable you to get and set the ontrol word register:1. PROC get fpu w = (REF SHORT BITS w)VOID:After alling get fpu w, the urrent value of the FPU ontrol word will be assigned to theparameter.2. PROC set fpu w = (SHORT BITS w)VOID:After alling set fpu w, the urrent value of the FPU ontrol word will have been set to thevalue of the parameter.The QAD standard prelude provides three values of mode SHORT BITS whih enable you to ontrol howrounding is performed. They are:1. fpu w ieeeThis value enables you to reset the FPU ontrol word to the standard value for the C library.2. fpu w algol68 roundThis value ensures that the FPU will perform rounding to the nearest number. A REAL valueending in 0 � 5 will be rounded to the nearest even number. This ensures that rounding errors inrandom values will not aumulate.3. fpu w algol68 entierThis value ensures that the FPU will trunate REAL numbers towards �1 when onverting to aninteger of the equivalent preision.These values are used as masks. Here, for example, is the soure ode for the operator ROUND:OP ROUND = (REAL r)INT:(INT n;SHORT BITS ow; get fpu w(ow);set fpu w(ow & fpu w algol68 round);

180 CONTENTSph round(r,n);set fpu w(ow);n)Notie how the FPU ontrol word is reset to its original value before the end of the operator.The FPU ontrol word is also used to ontrol whether overow should be detetable. The standardmode of operation is to ignore integer overow. The ontrol word masks mentioned above ensure thatinteger overow an be deteted using a signal. The proedure on signal is delared as follows:PROC on signal=(INT sig,PROC(INT)VOID handler)VOID:The example program testov.a68 shows how on signal an be used. The Algol 68 identi�ers for allthe Linux signals are the same as the Linux signal identi�ers, but in lower ase. For example, the signalused in FPU ontrol is sigfpu. The signal generated by keying Ctrl-C (sometimes depited as ^C) onprogram input is sigint. Here is a short program whih illustrates signal trapping:PROGRAM sig CONTEXT VOIDUSE standardBEGINon signal(sigint,(INT sig)VOID:(write(("sigint trapped",newline));exit(1)));write("Please key ^C: "); read(LOC CHAR);write(("No signal trapped",newline))ENDFINISHUsually, when you trap a signal suh as sigint, your program will lose down proessing in an orderlymanner: �les will be losed properly, a message to the user will be issued, and so on. You an do anythingyou want in the proedure provided as a parameter to on signal. You an also predelare the proedureand simply provide its identi�er in the on signal all.Normally, integer overow is ignored by the miroproessor. So the formula max int + 3 simply yieldsan inorret value. If you want integer overow to generate a trappable signal, use the integer operatorsPLUS, MINUS and TIMES whih have the priorities assoiated with +, � and � and have been delared forall the available distinguishable preisions of integers. Again, the example program testov.a68 showshow integer overow an be deteted.The proedure linux raise will ause any spei�ed signal to our. For example, the delaration forPLUS with SHORT INT operands isOP PLUS = (SHORT INT a,b)SHORT INT:IF INT res=LENG a+LENG b;ABS res > LENG short max intTHEN SHORTEN linux raise(sigfpe)ELSE SHORTEN resFI;Here is the mode of linux raise:PROC linux raise = (INT sig)INT:13.6.2 Terminating a proessAs well as raising and trapping signals, it is sometimes useful to speify proedures to be elaborated whenyour program has �nished, for whatever reason. Four proedures are provided for proess termination:1. PROC at exit=(PROC VOID p)INT:The proedure p is registered to be elaborated when the program terminates normally or when theproedure exit (see proedure 3) is alled. Registered proedures are elaborated in the reverseorder of being registered, so that the proedure registered last is elaborated �rst. The proedureat exit yields 0 for suess, �1 for an error.

13.6. CONTROL ROUTINES 1812. PROC on exit=(PROC(INT,CPTR)VOID p,[℄CHAR arg)INT:Unlike the proedure at exit (see above), on exit allows you to register a proedure whih takestwo parameters. The �rst is the integer parameter given to the exit proedure (or 0 for normaltermination) and the seond is a [℄CHAR whih the proedure p an use. on exit yields 0 forsuess and �1 for an error.3. PROC exit = (INT status)VOID:% This proedure terminates the program immediately. Any proedures registered using at exitor on exit will be elaborated in the reverse order of registration. Any open �les will be losed,but Algol 68 bu�ers will not be ushed. The value of status will be passed to the parent proessof the program.4. PROC stop = VOID:This is a synonym for exit(0).The example program testexit.a68 shows one way in whih at exit and on exit may be used.13.6.3 Garbage-olletor ontrolThe garbage-olletor manages the run-time heap. The term \garbage" is used to designate memory onthe heap whih is no longer referened. The garbage-olletor an be alled expliitly by an Algol 68program using the proedurePROC garbage_ollet = VOID:but usually the garbage-olletor is alled whenever spae on the heap is required and no spae is available.The heap is grown if garbage-olletion does not yield suÆient memory. Whether the heap is grown orwhether garbage-olletion takes plae depends on the urrent poliy whih is usually spei�ed by theenvironment string A68_GC_POLICY. However, this an be overridden by alling the proeduresPROC disable_garbage_olletor = VOID:PROC enable_garbage_olletor = VOID:Finer ontrol over the garbage-olletor depends on a number of parameters whih an be determinedusing the proedurePROC get_g_param = (VECTOR[℄CHAR name)INT:or set using the proedurePROC set_g_params =(VECTOR[℄GCPARAM gpar)VOID:The available names are1. MAX HEAP SIZE The maximum size of the heap in bytes.2. MIN HEAP SIZE The minimum size of the heap in bytes.3. MAX SEGMENT SIZE The maximum size of a memory segment aquired for the heap.4. MIN SEGMENT SIZE The minimum size of a memory segment aquired for the heap.5. HEAP INCREMENT The number of bytes by whih the heap should be inreased in size whenever theheap is grown.6. POLICY The heap poliy. Three values are provided for setting the heap poliy:(a) INT always olletThe garbage-olletor will always be alled if spae is required.(b) INT always grow heapThe garbage-olletor will never be alled even if spae is required.() INT default poliyThe garbage-olletor will be alled if there is insuÆient spae in the heap for the memoryrequired.7. COLLECTION THRESHOLD The number of bytes in use before the next garbage olletion is allowed.For further details about the garbage-olletor, onsult the ode in the library diretory in the Ctranssoure tree.

182 CONTENTS13.7 TransputIf you are unlear about the working of Algol 68 transput, onsult hapter 9. The funtion of this setionis to doument all the transput delarations so that you an use it as a referene manual.The delarations will be overed in the following order:1. Modes2. Standard hannels3. Standard �les4. Opening �les5. Closing �les6. Transput routines7. Interrogating �les8. File properties9. Event routines10. Conversion routines11. Layout routinesIn the sequel, transput errors are mentioned using identi�ers whose values appear in the following table:physial file end not mended 255logial file end not mended 254stand in redireted 253environment string unset 252environment string estab err 251estab invalid parameters 250open invalid parameters 249no program args 248value error not mended 247Identi�ers for transput errors13.7.1 Transput modesOnly �ve modes are available:FILE A struture ontaining details of a a book aessed by the program.CHANNEL A struture ontaining proedures for aessing books.SIMPLIN A union of names of all plain modes, rows of plain modes, strutures of plain modes and theirombinations.SIMPLOUT A union of all plain modes, rows of plain modes, strutures of plain modes and their ombi-nations.BUFFER A synonym for RVC. It is used as the yield of the proedure file buffer (see setion 13.7.7).The mode NUMBER is used as a parameter of the proedures whole, fixed and float, but beause it isthe union of all number modes, it is unneessary to speify it and so has not been made available forgeneral use.13.7.2 Standard hannelsFor eah hannel in this setion, the general properties are �rst given, followed by a table giving theproperties of books opened on the hannel and then a list of spei� properties for the following proedureswhere appliable:

13.7. TRANSPUT 183establishopenreateloseloksrathsetlogial endreidf1. CHANNEL stand in hannelCHANNEL stand out hannelCHANNEL stand bak hannelThese three hannels have similar properties beause they use the same aess proedures. Thestandard bu�ered input hannel is stand in hannel. Books on this hannel have the followingproperties: stand in hannelbin possible TRUEput possible FALSEget possible TRUEset possible TRUEreidf possible FALSEThe stand out hannel is the standard bu�ered output hannel. Books on this hannel have thefollowing properties: stand out hannelbin possible TRUEput possible TRUEget possible FALSEset possible TRUEreidf possible FALSEThe stand bak hannel is the standard bu�ered input/output hannel. Books on this hannelhave the following properties: stand bak hannelbin possible TRUEput possible TRUEget possible TRUEset possible TRUEreidf possible TRUEThe hannels have the following properties:establish You must have write aess to the �le. If it already exists, it will be trunated to zerolength. The default mode is 8r644. If the �le annot be established, the routine will returnthe value errno (the system error name) refers to.open the �le will be opened with a default mode of 8r444. If the �le annot be opened, the routinewill return the value errno refers to.reate A zero length �le with a unique identi�ation will be reated using the default mode of8r644.lose The �le will be losed. For the stand out hannel and the stand bak hannel, thebu�er will be ushed.lok The �le will be losed and then all permissions will be removed from the �le provided youhave write aess to the diretory ontaining the �le.srath The �le will be losed and then unlinked.

184 CONTENTSset The urrent position will be set to any legal position in the book (non-negative positions only).If the position is set beyond the urrent logial end, a sparse �le will be reated.logial end The position will be set to just beyond the last byte in the �le.reidf For the stand bak hannel only. When the �le is losed, it will be renamed. If therename fails (an already existing �le with that name, for example), an error message will beoutput on the stand err �le giving a desription of the error and identifying the �le.2. CHANNEL arg hannelThis hannel gives aess to the program arguments inluding the atual all of the program whihpreedes the program arguments. Arguments are separated by a single spae. A name of modeREF FILE opened with this hannel has blank as the string terminator. The arguments, as a book,have the following properties: arg hannelbin possible FALSEput possible FALSEget possible TRUEset possible TRUEreidf possible FALSEThe hannel has the following properties:establish Same as open.open The program arguments will be made available. If the arguments are unavailable, the routinewill return no program args.reate Same as open.lose No ation.lok No ation.srath No ation.set Provided that the required position lies between the beginning and the end of the arguments,the position will be set aordingly.logial end The position will be set to just beyond the last harater of the last argument.reidf Inappliable.The proedure make term an be used to set the string delimiter to any required value to failitatesearhing for quote-delimited or otherwise delimited arguments.3. CHANNEL env hannelThis hannel gives read-only aess to environment strings (referred to in Linux doumentation as\environment variables"). The environment string, as a book, has the following properties:env hannelbin possible FALSEput possible FALSEget possible TRUEset possible TRUEreidf possible FALSEThe hannel has the following properties:establish Yields an error of valueenvironment string estab err.open If the environment string is the null string or is unset, open yields an error of valueenvironment string unset. Otherwise, the string is available as a book.reate Yields an error of valueenvironment string estab err.lose No ation.

13.7. TRANSPUT 185lok The routine will attempt to remove all permissions from a �le of the same identi�ation asthe environment string identi�ation.srath The routine will attempt to unlink a �le of the given identi�ation.set Provided that the required position lies between the beginning and the end of the string, theposition will be set aordingly.logial end The position will be set to just beyond the last harater.reidf Inappliable.The default string terminator is nul h. You should set the string terminator using make term.4. CHANNEL kbd hannelThis hannel provides aess to unehoed keystrokes (also referred to as \non-anonial input").Be warned that if a �le opened with this hannel is not losed and the program ends prematurely,none of your keystrokes will be ehoed! You an reset to anonial input using the ommandstty saneThe keyboard is made available as a book having the following properties:kbd hannelbin possible TRUEput possible FALSEget possible TRUEset possible FALSEreidf possible FALSEThe hannel is usually used to aess the haraters input by ontrol and funtion keys as well asnormal keystrokes, so it is advisable to use get bin rather than get. The hannel has the followingproperties:establish Same as open.open You should use the null string "" for the identi�ation. The routine heks to see whetherstand in has been redireted and yields the error stand in redireted if so. Otherwise,the harateristis of stand in are hanged to wait for a single harater with no minimumwaiting time and with no eho of the input.reate Same as open.lose The routine resets stand in to the ondition it was in previously.lok Same as lose.srath Same as lose.set Inappliable.logial end Inappliable.reidf Inappliable.5. CHANNEL mem hannelThis hannel provides a memory bu�er with aess to all transput failities. It is similar to thestandard Algol 68 assoiate exept that binary transput is also allowed. The bu�er behaves as abook with the following properties: mem hannelbin possible TRUEput possible TRUEget possible TRUEset possible TRUEreidf possible FALSEThe hannel has the following properties:

186 CONTENTSestablish If the values of p and l are both 1 and the value of is a positive integer then istaken to be the size of the bu�er. Otherwise, the routine yields estab invalid parametersas error value. The identi�ation should be "".open The routine should be alled with an identi�ation of mode RVC (see setion 2b). Theidenti�ation will be used as the memory bu�er.reate The value estab invalid parameters will be returned.lose No ation.lok Inappliable.srath Inappliable.set Provided the position lies in or just beyond the end of the bu�er, the position will be set.logial end The position will be set to just beyond the end of the bu�er.reidf Inappliable.The hannel an be used to aess individual haraters of integers and reals. make term an alsobe used.6. CHANNEL lient soket hannelCHANNEL server soket hannelThese two hannels provide UNIX- or Internet-type sokets in the form of standard Algol 68 �les.An extra proedure (aept) is provided whih mirrors the Linux C library routine. Sokets behaveas books with the following properties:lient/server soket hannelbin possible TRUEput possible TRUEget possible TRUEset possible FALSEreidf possible FALSEThe hannels have the following properties:establish The p should be the family of soket (either af unix or af inet). If the latter, the lshould be the port. If p is neither af unix nor af inet, the routine returns estab invalidparameters as error value. The server soket should be established before the lient soket.open Yields an error of open invalid parameters for both hannels.reate Inappliable.lose The bu�er is ushed and the soket losed.lok The bu�er is ushed, the soket losed and then all aess permissions removed (providedthat write aess is available to the diretory ontaining the soket).srath The bu�er is ushed, the soket losed and then unlinked.set Inappliable.logial end Inappliable.reidf Inappliable.The proedure aept has the following headerPROC aept = (REF FILE soket)REF FILE:and is used in the server to aept a lient soket, thereby yielding a REF FILE name whih an beused to ommuniate with the lient.The example programs lient1, server1, lient2 and server2 (whose soure an be found inthe examples diretory) demonstrate simple use of sokets.

13.7. TRANSPUT 18713.7.3 Standard �lesFour standard �les are provided:1. REF FILE stand inThis �le orresponds to the C stdin. Books onneted via stand in di�er from those onnetedvia the hannel stand in hannel: set possible returns FALSE. Thus this �le must be regardedas a simple stream of bytes. When the kbd hannel is being used, stand in is unavailable.2. REF FILE stand outThis �le orresponds to the C stdout. Books onneted via stand out di�er from those onnetedvia the hannel stand out hannel: set possible returns FALSE. Thus this �le must be regardedas a simple stream of bytes.3. REF FILE stand errThis �le orresponds to the C stderr and behaves like the �le stand out.4. REF FILE stand bakThis �le aesses a workbook whih is deleted on termination of the program. All kinds of transputare allowed on this �le.13.7.4 Opening �lesThree proedures are available for opening �les:1. PROC establish=(REF FILE f,STRING idf,CHANNEL hann,INT p,l,)INT:In standard Algol 68, this proedure reates a new �le with p pages, eah page ontaining l lines,eah line ontaining haraters. In the QAD standard prelude, only the mem hannel (see setion5) takes notie of p, l and and both p and l must be 1. For other hannels, p, l and are ignoredother than the soket hannels (see setion 6). The proedure yields zero on suess, otherwise aninteger denoting an error (see setion 13.7.2).2. PROC open=(REF FILE f,UNION(CHAR,STRING,RVC) idf,CHANNEL hann)INTIn standard Algol 68, the seond parameter of this proedure has mode STRING. The above unionensures that an RVC parameter an be used to open an existing memory bu�er with the memoryhannel. This is partiularly useful for performing transput on bu�ers obtained from C libraryroutines. The proedure yields zero on suess, otherwise an integer denoting an error (see setion13.7.2).3. PROC reate=(REF FILE f,CHANNEL hann)INT:Creates a work �le with a unique identi�ation in the diretory /tmp using the given hannel.
13.7.5 Closing �lesThree proedures are provided:1. PROC lose=(REF FILE f)VOID:This is the standard proedure for losing a �le. It is standard pratie to lose every opened �le.The proedure heks to see whether the �le is open. If the reidf proedure has been alled, afterlosing the �le, the proedure renames the �le to the identi�ation given in the reidf �eld.2. PROC lok=(REF FILE f)VOID:The Algol 68 Revised Report requires that the �le be losed in suh a manner that some systemation is required before it an be reopened. In this ase, the �le is losed and then all aesspermissions removed. Before the �le an be reopened, the user will have to use hmod.3. PROC srath=(REF FILE f)VOID:The �le is losed and then unlinked.13.7.6 Transput routinesThe proedures in this setion are responsible for the transput of atual values. Firstly, formatlesstransput is overed and then binary transput. The Ctrans ompiler does not support formatted transput.In eah setion, the shorthand L is used for the various preisions of numbers and bits values.

188 CONTENTSStraighteningThe term straightening is used in Algol 68 to mean the proess whereby a omplex mode is separatedinto its onstituent modes. For example, the modeMODE X=STRUCT(INT a,CHAR b,UNION(REAL,VOID) u)would be straightened into values of the following modes:� INT� CHAR� UNION(REAL,VOID)The mode REF[℄X would be straightened into a number of values eah having the mode REF X, and theneah suh value would be further straightened into values having the modes� REF INT� REF CHAR� REF UNION(REAL,VOID)However, a value of mode COMPL is not straightened into two values both of mode REAL. Instead, the realpart is transput, then an "I" read or written followed by the imaginary part.Formatless transputFormatless transput onverts internal values into strings of haraters or strings of haraters into internalvalues.1. PROC write=([℄UNION(SIMPLOUT,PROC(REF FILE)VOID) x)VOID:This is equivalent to put(stand out,x) (synonym print).2. PROC put=(REF FILE f,[℄UNION(SIMPLOUT,PROC(REF FILE)VOID) x)VOID:The parameter x is straightened and the resulting values are output. Eah plain mode is outputas follows:CHAR Output a harater to the next logial position in the �le. For [℄CHAR, output all theharaters on the urrent line.BOOL Output flip or flop for TRUE or FALSE respetively. For [℄BOOL, output flip or flop foreah BOOL.L BITS Output flip for eah bit equal to one and flop for eah bit equal to zero. l bits widthharaters are output in all. No newline or newpage is output. For [℄L BITS, eah BITSvalue is output as above with no intervening spaes.L INT Output a spae harater if the logial position is not at the start of a line. Then outputthe integer using the allwhole(i,1+l int width)whih will right-justify the integer in1+l int widthpositions with a preeding sign. For [℄L INT, eah integer is output as desribed above,preeded by a spae if it is not at the beginning of the line. No newlines or newpages areoutput.L REAL A spae is output if the logial position is not at the start of a line and then the numberis output spae-�lled right-justi�ed inl real width+l exp width+3

13.7. TRANSPUT 189positions in oating-point format and preeded by a sign. For a value of mode [℄L REAL,eah REAL value is output as desribed above.L COMPL The omplex value is output as two real numbers in oating-point format separated by i . For [℄L COMPL, eah omplex value is output as desribed above.PROC(REF FILE)VOID: An lf harater is output if the routine is newline and an ff harater ifthe routine is newpage. User-de�ned routines with this mode an be used.3. PROC read=([℄UNION(SIMPLIN,PROC(REF FILE)VOID) x)VOID:This is equivalent to get(stand in,: : :).4. PROC get=(REF FILE f,[℄UNION(SIMPLIN,PROC(REF FILE)VOID x)VOID:This proedure onverts strings of haraters into internal values. Inputting data is overed foreah plain mode and REF STRING. In eah ase, if the end of the �le is deteted while readingharaters, the logial �le end proedure is alled:REF CHARAny haraters where < blank are skipped and the next harater is assigned to thename.If a REF[℄CHAR is given, then the above ation ours for eah of the required haraters ofthe multiple.REF STRINGAll haraters, inluding any ontrol haraters, are assigned to the name until any haraterin the harater set spei�ed by the string term �eld of f is read. The �le is then bakspaedso that the string terminator will be available for the next get.REF BOOLThe next non-spae harater is read and, if it is neither flip nor flop, the har errorproedure is alled with flop as the suggestion. For REF[℄BOOL, eah \texttt{REF BOOL}name is assigned a value as desribed above.REF L BITSThe ation for REF BOOL is repeated for eah bit in the name. For REF[℄L BITS, eah REF LBITS name is assigned a value as desribed above.REF L INTIf the next non-ontrol harater (ie, a harater whih is neither a spae, a tab harater, anewline or newpage harater or other ontrol harater) is not a deimal digit, then the harerror proedure is alled with "0" as the suggestion. Reading of deimal digits ontinues untila harater whih is not a deimal digit is enountered when the �le is bakspaed. If duringthe reading of deimal digits, the value of l max int would be exeeded, reading ontinues,but the input value is not inreased. For REF[℄L INT, eah integer is read as desribed above.REF L REALA real number onsists of 3 parts:� an optional sign possibly followed by spaes� an optional integral part� a "." followed by any number of ontrol haraters (suh as newline or tab haraters)and the frational part� an optional exponent preeded by a harater in the set "Ee\". The exponent may havea sign. Absene of a sign is taken to mean a positive exponentThe number may be preeded by any number of ontrol haraters or spaes. For REF[℄L REAL,eah REAL value is read as desribed above.REF L COMPLTwo real numbers separated by "i" are read from the �le. Newlines or newpages or otherontrol haraters an preede eah real. The �rst number is regarded as the real part andthe seond the imaginary part. For REF[℄L COMPL, eah REF L COMPL is read as desribedabove.

190 CONTENTSBinary transputBinary transput performs no onversion on internal values, thus providing a means of storing internalvalues in a ompat form in books or reading suh values into a program.1. PROC write bin=([℄SIMPLOUT x)VOID:This is equivalent to put bin(stand bak,x).2. PROC put bin=(REF FILE f,[℄SIMPLOUT x)VOID:This proedure outputs internal values in a ompat form. Then external size is the same as theinternal size.3. PROC read bin=([℄SIMPLIN x)VOID:This proedure is equivalent toget bin(stand bak,x)4. PROC get bin=(REF FILE f,[℄SIMPLIN x)VOID:This proedure transfers external values in a ompat form diretly into internal values.In all the above proedures, the transput is diret with no ode onversion. It should also be notedthat the proedure make term, although usually used with formatless transput, an also be used withbinary transput in the QAD standard prelude for inputting a STRING terminated by any of a number ofharaters.
13.7.7 Interrogating �lesA number of proedures are available for interrogating the properties of �les:1. Properties of the book:(a) PROC bin possible=(REF FILE f)BOOL:Yields TRUE if binary transput is possible.(b) PROC put possible=(REF FILE f)BOOL:Yields TRUE if data an be sent to the book.() PROC get possible=(REF FILE f)BOOL:Yields TRUE if data an be got from the book.(d) PROC set possible=(REF FILE f)BOOL:Yields TRUE if the book an be browsed: that is, if the position in the book for further transputan be set.(e) PROC reidf possible=(REF FILE f)BOOL:Yields TRUE if the identi�ation of the book an be hanged.2. PROC urrent pos=(REF FILE f)INT:The standard Algol 68 proedure yields a triple giving the page, line and harater number. How-ever, the QAD standard prelude does not use pages, lines and haraters, so this proedure yieldsthe urrent harater position within the book for the next transput operation.3. PROC file buffer=(REF FILE f)BUFFER:Yields the memory bu�er assoiated with the �le f.4. PROC idf=(REF FILE f)RVC:Yields the urrent identi�ation of the book.5. PROC logial end=(REF FILE f)INT:The urrent length of the book onneted to f.

13.7. TRANSPUT 19113.7.8 File propertiesThree proedures are provided for altering the properties of �les:1. PROC make term=(REF FILE f,STRING term)VOID:Makes term the urrent string terminator.2. PROC reidf=(REF FILE f,STRING new idf)VOID:Changes the reidf �eld of f to the given value so that when the �le is losed, the book will berenamed.3. PROC set flush after put=(REF FILE f)VOID:Ensures that the bu�er of a �le is ushed whenever data is written to the �le.13.7.9 Event routinesFour event routines are provided. For eah routine, the default behaviour will be desribed. In eahase, if the user routine yields FALSE, the default ation will be elaborated. If it yields TRUE, the ationdepends on the event.1. PROC on har error=(REF FILE f,PROC(REF FILE,REF CHAR)BOOL p)VOID:This proedure assigns the proedure p, whih may be an identi�er or an anonymous proedure,to the har error mended �eld of f. The ations on harater error are:Default ation Use the default harater for the situation partiular situation.User ation A harater may be assigned to the REF CHAR parameter and will be used if it is inthe partiular harater set involved.The relevant situations are:(a) When reading an integer of any preision, �rst harater, possibly following an optional signwith following spaes, is not a digit. Any deimal digit an be substituted. The default is"0".(b) When reading a real of any preision, the �rst non-spae harater, optionally preeded by adeimal point ".", is not a digit. Any deimal digit an be substituted. The default is "0".() When reading a real of any preision, an exponent is present (the harater "e" or "E" or"\" has been read), and the �rst non-spae harater is not a digit. Any deimal digit anbe substituted. The default is "0".(d) When reading a omplex number, the �rst non-spae harater following the �rst real is notin the set iI. The default is "i".2. PROC on logial file end=(REF FILE f,PROC(REF FILE)BOOL p)VOID:This proedure assigns the proedure p, whih may be an identi�er or an anonymous proedure,to the logial file mended �eld of f. The ations on logial �le end are:Default ation On any hannel, if the end of the �le has been reahed or, in unformatted hara-ter transput, an eof har is read then the error message logial file end not mended willbe issued and the program terminated with the exit value logial file end not mended.User ation Any ation as spei�ed. Care should be taken if transput is performed on the �le inquestion as an in�nite loop ould our.3. PROC on physial file end=(REF FILE f,PROC(REF FILE)BOOL p)VOID:This proedure assigns the proedure p, whether an identi�er or an anonymous proedure, to thephysial file mended�eld of f. The ations on physial �le end are:

192 CONTENTSDefault ation On any hannel, if there is no more room on the physial medium, the programissues the error messagephysial file end not mendedand then terminates the program with the exit value physial file end not mended.User ation Any ation as spei�ed. Care should be taken if transput is performed on the �le inquestion as an in�nite loop ould our.4. PROC on value error=(REF FILE f,PROC(REF FILE)BOOL p)VOID:This proedure assigns proedure p to the value error mended �eld of f. The ations taken on avalue error are:Default ation The program issues the error message value error not mended and then ter-minates with the same exit value.User ation Transput ontinues.The error ours in the following situations:(a) When an integer on input exeeds max int for the preision onerned.(b) The size of the exponent of a real number exeeds max int.() An input real number is �1 or greater than max real or is less than min real for thepreision onerned.13.7.10 Conversion routinesThe onversion routines onsist of three proedures onversion of numbers to strings of haraters, oneoperator and the proedure har in string. All the proedures whole, fixed and float will return astring of error har if the number to be onverted is too large for the given width, or, if the number isa real, if it is in�nite or otherwise invalid.1. PROC har in string=(CHAR ,REF INT p,STRING s)BOOL:If the harater ours in the string s, its index is assigned to p and the proedure yields TRUE,otherwise no value is assigned to p and the proedure yields FALSE.2. PROC whole=(NUMBER v,INT width)STRING:The proedure onverts integer values. Leading zeros are replaed by spaes and a sign is inludedif width>0. If width is zero, the shortest possible string is yielded. If a real number is supplied forthe parameter v, then the all fixed(v, width, 0) is elaborated.3. PROC fixed=(NUMBER v,INT width,after)STRING:The proedure onverts real numbers to �xed point form, that is, without an exponent. The totalnumber of haraters in the onverted value is given by the parameter width whose sign ontrols thepresene of a sign in the onverted value as for whole. The parameter after spei�es the numberof required digits after the deimal point. From the values of width and after, the number ofdigits in front of the deimal point an be alulated. If the spae left in front of the deimal pointis insuÆient to ontain the integral part of the value being onverted, digits after the deimalpoint are sari�ed.4. PROC float=(NUMBER v,INT width,after,exp)STRING:The proedure onverts reals to oating-point form (\sienti� notation"). The total number ofharaters in the onverted value is given by the parameter width whose sign ontrols the preseneof a sign in the onverted value as for whole. Likewise, the sign of exp ontrols the presene ofa preeding sign for the exponent. If exp is zero, then the exponent is expressed in a string ofminimum length. In this ase, the value of width must not be zero. Note that float always leavesa position for the sign. If there is no sign, a blank is produed instead. The values of width, afterand exp determine how many digits are available before the deimal point and, therefore, the valueof the exponent. The latter value has to �t into the width spei�ed by exp and so, if it annot�t, deimal plaes are sari�ed one by one until either it �ts or there are no more deimal plaes

13.8. SUMMARY 193(and no deimal point). If it still doesn't �t, digits before the deimal plae are also sari�ed. Ifno spae for digits remains, the whole string is �lled with error har.5. OP HEX=(L BITS v)[℄CHAR:The operator onverts a value of mode L BITS into a row of hexadeimal digits. The total numberof digits equals l bits width / 4. For example, HEX 4r3 yields 00000003.13.7.11 Layout routinesThese routines provide formatting apability on both input and output.1. PROC spae=(REF FILE f)VOID:The proedure advanes the position in �le f by 1 byte. It does not read or write a blank.2. PROC bakspae=(REF FILE f)VOID:The proedure advanes the position in �le f by -1 bytes. It does not read or write a bakspae.Note that not every hannel permits bakspaing more than one onseutively.3. PROC newline=(REF FILE f)VOID:On input, skips any remaining haraters on the urrent line and positions the �le at the beginningof the next line. This means that all haraters on input are skipped until a linefeed harater lfis read. On output, emits a linefeed harater. This is non-standard behaviour.4. PROC newpage=(REF FILE f)VOID:On input, skips any remaining haraters on the urrent page and positions the �le at the beginningof the next page. This means that all haraters on input are skipped until a formfeed harater ffis read. Note that if the harater following a number is a formfeed harater, then that haraterwill have been read during the read of the number. Hene, the skip to formfeed harater will skipthe whole of the following page. On output, a formfeed harater is emitted immediately.5. PROC skip terminators=(REF FILE f)VOID:Any STRING terminators are skipped on input and the �le positioned at the next non-terminatingharater. The proedure is usually alled after a STRING has been read.
13.8 SummaryThe whole of the standard prelude has been desribed in the above setions. Apart from the built-inoperators implemented by the Ctrans ompiler, the whole of the standard prelude is implemented byAlgol 68 soure ode. It an be found in the trans-1.0.0/stanprel/a diretory.

194 CONTENTS

Appendix A
Answers
A.1 Chapter 1Ex 1.1(a) Yes, it ontains lower-ase letters.(b) Yes, it starts with a digit.() No.(d) Yes, a spae is inluded.(e) Yes, a full stop is inluded.Ex 1.2 It starts with a apital letter and ontinues with apital letters, digits or undersores with nointervening spaes, tab haraters or newline haraters.Ex 1.3 33Ex 1.4(a) It ontains ommas.(b) It ontains a deimal point.() It is not a denotation: it is a formula (see hapter 2).Ex 1.5(a) It is not an identi�er: it is a mode-indiant.(b) Nothing|it's all right.() It ontains a minus symbol.(d) It ontains upper-ase letters.Ex 1.6(a) The > symbol should be =.(b) The integer denotation is larger than the largest integer that the ompiler an handle.Ex 1.7 INT max int = 2 147 483 647Ex 1.8 "." "," "8"Ex 1.9 CHAR question mark = "?"Ex 1.10 The 5. should be 5.0. Either the semiolon should be replaed by a omma, or z should bepreeded by REAL or INT.Ex 1.11 REAL light year = 9.454 26 e15(assuming 365 days per year). 195

196 CONTENTSEx 1.12 The print phrase has one opening parenthesis and two losing ones and there is no CONTEXTVOID USE standard preeding the BEGIN.Ex 1.13 The �rst displays 20 at the start of the line. The seond displays 20 48930767 on one line.Ex 1.14 It should display your name without quote symbols on the sreen. Here is an example program:PROGRAM ex1 9 1 CONTEXT VOIDUSE standardBEGINCHAR s="S", i="i", a="a", n="n";CO Letters of my first name COprint(s); print(i);print(a); print(n)ENDFINISHwhih will display Sian on the sreen.Ex 1.15(a) 1996(b) "e"() 0.142857Ex 1.16(a) Yes, it ontains spaes.(b) Yes, it ontains a deimal point.() No.(d) Yes, it starts with a digit.Ex 1.17(a) INT fifty five = 55(b) REAL three times two point seven = 8.1() CHAR olon=":"Ex 1.18 Yes, you annot guarantee that the delaration for x will be elaborated before the delarationof y. The delarations should be writtenREAL x = 1.234;REAL y = xEx 1.19 0 denotes an integer with mode INT, 0.0 denotes a real number with mode REAL.Ex 1.20 PROGRAM ex1 11 6 CONTEXT VOIDUSE standardBEGINprint(0.5); print(blank);print("G"); print(1);print(blank);print(":");print(34 000 000)ENDFINISH

A.2. CHAPTER 2 197A.2 Chapter 2Ex 2.1 INT minus thirty five = -35Ex 2.2(a) 1(b) 1.0() 5.0(d) 0(e) 5Ex 2.3(a) 6(b) -6() 13.5(d) 4.5Ex 2.4(a) 5(b) -45.0() -61Ex 2.5(a) 20 INT(b) 1 INT() 1.25 REAL(d) 1 INT(e) 17.0 REALEx 2.6 Your answer should be something like this:PROGRAM ex2 4 2 CONTEXT VOIDUSE standardBEGINprint(-7 MOD 3);print(7 MOD -3);print(-7 MOD -3)ENDFINISHThis will display +2 +1 +2on your sreen.Ex 2.7 REAL two pi = 2 * piEx 2.8(a) 4 INT(b) 3.25 REAL() 12 INTEx 2.9

198 CONTENTS(a) -3 INT(b) -9 REAL() 2.0 REALEx 2.10 1.5Ex 2.11(a) 5(b) 2() 345(d) 32(e) "1"(f) 8(g) 0.0Ex 2.12 The �rst print phrase displays0.0000000000000000(16 zeros) and the seond displays +infinity.Ex 2.13 The ompiler detets the error and rejets it.Ex 2.14(a) The brakets should be replaed with parentheses.(b) There are more opening than losing parentheses. The �rst opening parenthesis should bedeleted.() The operator ROUND has not been delared to use an operand with mode CHAR.(d) The operator ENTIER has not been delared for use with an operand with mode INT.
A.3 Chapter 3Ex 3.1(a) Stritly speaking, the de�nition of Algol 68 allows parentheses wherever brakets ([and ℄)are allowed. Fortunately or unfortunately, the Ctrans ompiler ags this as an error.(b) The apostrophes should be replaed by quote symbols.() The value 2.0 in the row-display annot be oered to a value of mode INT in a strong ontext(or any ontext, for that matter).Ex 3.2 [℄INT first 4 odd numbers = (1,3,5,7)Ex 3.3(a) 8(b) 1() 3Ex 3.4(a) 1 LWB a, 1 UPB a, 2 LWB a, 2 UPB a, 3 LWB a,3 UPB a(b) LWB b, UPB bEx 3.5

A.3. CHAPTER 3 199(a) 6(b) (9,10,11,12)() (4,8,12,16)Ex 3.6(a) r[3,2℄(b) r[2,℄() r[,3℄Ex 3.7 [℄[℄CHAR months=("January","February","Marh","April","May","June","July","August","September","Otober","November","Deember")Ex 3.8(a) 30(b) (0.0,-5.4)() 11.4(d) (6,7,8)(e) "pqrst"Ex 3.9 This exerise is self-marking, but here is a program to print the answer to the �rst exerise:PROGRAM ex3 2 1 CONTEXT VOIDUSE standardBEGIN[,℄INT m = ((1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16));print(("m[2,2℄=",m[2,2℄,newline,"m[3,℄=",m[3,℄,newline,"m[,2 UPB m℄=",m[,2 UPB m℄,newline))ENDFINISHEx 3.10(a) Man bites dog(b) bbbiiEx 3.11 PROGRAM ex3 7 1 CONTEXT VOIDUSE standardBEGINFOR num TO 25DO print((num^3,newline))ODENDFINISHEx 3.12

200 CONTENTSPROGRAM ex3 7 2 CONTEXT VOIDUSE standardBEGINFOR FROM ABS "Z" BY -1 TO ABS "A"DO print(REPR)ODENDFINISHEx 3.13 The main diÆulty lies in omputing the letter to print. The �rst solution uses numbers andREPR:PROGRAM ex3 8 1a CONTEXT VOIDUSE standardBEGINFOR row TO 5DO FOR letter TO 4DO print((REPR((row-1)*5+letter+ABS"�"),",")OD;print((REPR(row*5 + ABS "�"),newline))ODENDFINISHThe seond solution uses an atual alphabet and a modi�ed inner loop. Note that the formul� inthe FROM and TO onstruts are elaborated one only: before the inner loop is elaborated for the�rst time in eah elaboration of the outer loop:PROGRAM ex3 8 1b CONTEXT VOIDUSE standardBEGIN[℄CHAR alphabet ="ABCDEFGHIJKLMNOPQRSTUVWXYZ"[�1℄;FOR row TO 5DO INT row5 = row*5;FOR letter FROM row5-4 TO row5-1DO print((alphabet[letter℄,","))OD;print((alphabet[row5℄,newline))ODENDFINISHEx 3.14 The most diÆult part is in delaring the multiple. print will quite happily take the 3-dimensional multiple as its parameter:PROGRAM ex3 8 2 CONTEXT VOIDUSE standardBEGIN[,,℄REAL m=(((1e-7,1e-6),

A.4. CHAPTER 4 201(1e-5,1e-4)),((1e-3,1e-2),(1e-1,1.0)));print(m)ENDFINISHEx 3.15(a) The brakets for the row-display should be replaed by parentheses.(b) The number of integers in eah row should be the same.() Nothing. The denotation of an apostrophe is not doubled.Ex 3.16(a) [1:2,1:3℄(b) [1:3℄() [1:2℄Ex 3.17(a) (6,5,4) [℄INT(b) (8,5,2) [℄INT() (7,4) [℄INT(d) ((6,5),(3,2)) [,℄INTEx 3.18 "abababdefg"Ex 3.19 Notie the means of avoiding the use of BY:PROGRAM ex3 10 5 CONTEXT VOIDUSE standardBEGIN[℄CHAR alphabet ="abdefghijklmnopqrstuvwxyz";[℄INT by = (1,6,11,16,21,26);FOR TO UPB byDO print(alphabet[by[℄℄)ODENDFINISH
A.4 Chapter 4Ex 4.1(a) 0(b) 4.4() FALSE(d) TRUE(e) TRUEEx 4.2(a) TRUE(b) TRUE

202 CONTENTS() FALSE (the UPB t[2:℄ is 5Ex 4.3(a) TRUE(b) TRUE() TRUE(d) TRUE. It is inadvisable to reated ompuound onditions with this sort of omplexity simplybeause the ondition is so diÆult to understand. You should partiularly avoid ompoundonditions with NOT in front of the various parts.(e) FALSEEx 4.4(a) TRUE(b) 4 <= 2() a <= b OR b <= (d) x /= y AND x /= zEx 4.5 IF x < pi!THEN print("Yes")ELSE print("No")FIEx 4.6 FOR i TO 96DO print(i*3);IF i MOD 16 = 0THEN print(newline)FIODEx 4.7 The seond operand of OREL is only elaborated if the �rst yields FALSE.PROGRAM p CONTEXT VOIDUSE standardBEGININT a = 3, b = 5, = 4;IF IF a > bTHEN TRUEELSE b > FITHEN print("Ok")ELSE print("Wrong")FIENDFINISHEx 4.8 The right-hand side of the identity delaration is learly an abbreviated ase lause, so p mustyield INT, not BOOL.Ex 4.9

A.5. CHAPTER 5 203PROGRAM ex4 6 2 CONTEXT VOIDUSE standardCASE SIGN x + 2IN print("x < 0.0"),print("x = 0.0"),print("x > 0.0")ESACFINISHEx 4.10 TRUE and FALSEEx 4.11(a) TRUE(b) TRUE() TRUE(d) FALSE(e) FALSE(f) FALSEEx 4.12 You annot mix full and abbreviated onditional lauses. Replae the vertial bar with THEN.Also replae the ESAC with FI.Ex 4.13 TFTFTFTFTFEx 4.14 IF m < 10THEN print("Units")ELIF m < 100THEN print("Tens")ELIF m < 1000THEN print("Hundreds")ELSE print("Too big")FIEx 4.15 print((ard|"Ae","two","three","four","five","six","seven","eight","nine","ten","Jak","Queen","King"))
A.5 Chapter 5Ex 5.1 REF INTEx 5.2 REALEx 5.3 The right-hand side of the identity delaration should yield a value of mode INT. Insert ENTIERor ROUND before the r.Ex 5.4 No value has been assigned to x when the seond assignment is elaborated.Ex 5.5(a) A name with mode REF REAL.(b) The real number denoted by 2.5 with mode REAL.Ex 5.6 1.166666: : :

204 CONTENTSEx 5.7 A name with mode REF[,℄REAL.Ex 5.8(a) The bounds of the slie on the left-hand side of the assignment are [-2:0℄, but the bounds ofn are [1:3℄. The assignment will ause a run-time error.(b) You ould write m[5,℄:=m[,-1℄, but it is unlikely that you would get what you wanted beausethe seond olumn overlaps the third row. Here is a solution guaranteed to work:[℄INT temp = m[,-1℄;m[5,℄:=temp[�-2℄Ex 5.9 There is no known formula whih will tell you how big the sieve must be to �nd the 365th prime;you just have to guess. A sieve with size equal to 5000 suÆes. You need a ounter for the primes.The omplete program is:PROGRAM sieve CONTEXT VOIDUSE standardBEGININT size=5000;REF[℄BOOL flags = LOC[2:size℄BOOL;FOR i FROM LWB flags TO UPB flagsDO flags[i℄:=TRUEOD;FOR i FROM LWB flags TO UPB flagsDO IF flags[i℄THENFOR k FROM i*2 BY i TO UPB flagsDO flags[k℄:=FALSECO Remove multiples of i COODFIOD;REF INT ount = LOC INT:=0;FOR i FROM LWB flags TO UPB flagsDO IF flags[i℄ ANDTH (ount+:=1)=365THEN print(i)FIODENDFINISHEx 5.10(a) A name of mode REF FLEX[℄CHAR.(b) 1 and 5.Ex 5.11 PROGRAM ex5 7 11 CONTEXT VOIDUSE standardBEGINREF STRING ss = LOC STRING;

A.5. CHAPTER 5 205FOR FROM ABS "a" TO ABS "z"DO ss:="a"-REPR ; print((ss,newline))ODENDFINISHEx 5.12 REF FLEX[,℄REAL f=LOC FLEX[1:0,1:0℄REAL;f:=(5.0,10.0,15.0,20.0);print((1 LWB f,1 UPB f,2 LWB f,2 UPB f))Ex 5.13 PROGRAM ex5 8 1 CONTEXT VOIDUSE standardBEGINREF REAL a = LOC REAL,b = LOC REAL;print(Enter two real numbers->");read((a,b,newline));print(("Their sum is",a+b,newline,"Their produt is",a*b))ENDFINISHEx 5.14 PROGRAM ex5 8 2 CONTEXT VOIDUSE standardBEGINREF STRING line = LOC STRING;DOread((line,newline));IF UPB line = 0THEN stop #terminate the program#ELSEFOR iFROM UPB line BY -1 TO LWB lineDOprint(line[i℄)OD;print(newline)FIODENDFINISHEx 5.15REF[℄REAL r=LOC[(REF INT s=LOC INT; read(s); s)℄REALEx 5.16 PROGRAM ex5 9 2 CONTEXT VOIDUSE standard

206 CONTENTSBEGINREF INT number=LOC INT;read(number);REF[℄INT multiple=LOC[number℄INT;read(multiple);REF INT sum=LOC INT:=0;FOR i TO numberDOsum+:=multiple[i℄OD;print(sum)ENDFINISHEx 5.17 PROGRAM ex5 10 1 CONTEXT VOIDUSE standardBEGINREF INT neg = LOC INT:=0,pos = LOC INT:=0;WHILEREF INT i=LOC INT;read((i.newline));i /= 0DO (i < 0|neg|pos) +:= iOD;print(("Sum of negative integers =",neg,newline,"Sum of positive integers =",pos,newline))ENDFINISHEx 5.18 PROGRAM ex5 10 2 CONTEXT VOIDUSE standardBEGINREF STRING line = LOC STRING;WHILEread((line,newline));UPB line /= 0DOREF INT v=LOC INT:=0;FOR i TO UPB lineDOv+:=ABS line[i℄*iOD;print((line,v,newline))ODENDFINISH

A.5. CHAPTER 5 207Ex 5.19(a) [100℄CHAR r(b) FLEX[1:0℄INT fi() BOOL b:=TRUEEx 5.20(a) REF INT a=LOC INT, b=LOC INT, =LOC INT(b) REF REAL x=LOC REAL;REF[℄CHAR y=LOC[5℄CHAR;REF[,℄REAL z=LOC[3,3℄REAL() REF FLEX[℄CHAR s=LOC FLEX[1:0℄CHAREx 5.21 REF[℄INT m=LOC[1000℄INT; [1000℄INT mEx 5.22 PROGRAM ex5 12 2 CONTEXT VOIDUSE standardBEGINREAL sum:=0.0, salary, INT num:=0;WHILE read(salary); salary /= -1.00DOsum+:=salary; num+:=1OD;print(("Average salary=",sum/num))ENDFINISHEx 5.23 When writing a program as involved as this, do not expet to get it right �rst time. In pratie,a programmer adds �ne details to a program after she has designed the main struture.PROGRAM ex5 12 3 CONTEXT VOIDUSE standardBEGINBOOL in word:=FALSE,STRING line;INT line start, line finish;INT word start, word finish;read((line,newline));line start:=LWB line;line finish:=UPB line;WHILE line[line start℄=blank&line start<=UPB lineDOline start+:=1OD;WHILE line[line finish℄=blank&line finish>=line startDOline finish-:=1OD;

208 CONTENTS
line:=line[line start:line finish℄+blank;FOR FROM LWB lineWHILE <= UPB lineDOCHAR l = line[℄;IF l /= blank & NOT in wordTHEN word start:=; in word:=TRUEELIF l = blank & NOT in wordTHEN SKIPELIF l /= blank & in wordTHEN SKIPELSE #l = blank & in word#word finish:=-1;in word:=FALSE;print((line[word start:word finish℄,newline))FIODENDFINISHNotie that both word start and word finish are made to refer to new values before being used.This is a good hek that you are writing the program properly. Notie also that the four possiblestates of the ompound ondition on line 26 are arefully spelled out on lines 28, 30 and 32.

A.6 Chapter 6Ex 6.1 An identity delaration is<formal-mode-param> = <atual-mode-param>Ex 6.2 Beause it is an identi�er with a mode, but no assoiated value.Ex 6.3(a) REAL(b) INT() Strong(d) -5Ex 6.4 Using a loop:([℄INT i)[℄CHAR:([LWB i:UPB i℄CHAR s;FOR n FROM LWB i TO UPB iDOs[n℄:=REPR iiOD;s)Ex 6.5 (REF REAL id)REAL:Ex 6.6 (REF CHAR a,b)REF CHAR:

A.6. CHAPTER 6 209Ex 6.7 (STRING s)[℄STRING:BEGINFLEX[1:0℄STRING r:="";#rowing oerion#BOOL in word:=FALSE;INT st:=LWB s,fn:=UPB s;WHILE s[st℄=blank & st<=UPB lineDOst+:=1OD;WHILE s[fn℄=blank & fn>=stDOfn-:=1OD;STRING ss:=s[st:fn℄+blank;FOR FROM LWB ss UNTIL > UPB ssDO CHAR ss=ss[℄;IF ss/=blank & NOT in wordTHEN st:=; in word:=TRUEELIF ss=blank & NOT in wordTHEN SKIPELIF ss/=blank & in wordTHEN SKIPELSE #ss=blank & in word#fn:=-1; in word:=FALSE;[UPB r+1℄STRING rr;rr[:UPB r℄:=r;rr[UPB rr℄:=ss[st:fn℄;r:=rr#The word has been added to r#FIOD;r[2:℄ #Omit the null string#ENDEx 6.8 REAL:Ex 6.9 VOID: print("Hi, there")Ex 6.10 This table summaries the ourrenes: OurrenesLine Applied De�ning5 T p 25 T 38 T 4 28 T q 710 T REPR 2 312 T 312 T q 2Ex 6.11

210 CONTENTS(a) A name of mode REF INT.(b) The integer denoted by 16 of mode INT.() The integer nine of mode INT.(d) The integer four of mode INT.Ex 6.12 The two delarations are �rmly related beause, in a �rm ontext, a name of mode REF[℄INTan be dereferened to a multiple of mode [℄INT.Ex 6.13(a) 1.(b) 1.() 2.(d) 2.Ex 6.14 These reasons are the most important:1. Beause their ations are not lear from the program ode.2. They an ause indeterminate states to our.Ex 6.15(a) You annot mix letters and symbols.(b) The symbol should start with + whih has already been delared as a monadi operator.() This symbol is used for the identity relation (see setion 11.6) and is not an operator.Ex 6.16 OP PP = (REF INT a)REF INT: a+:=1Ex 6.17 PROC p = VOID: a:=3Ex 6.18 PROC p = INT:BEGIN[(INT i; read((i,newline)); i)℄INT a;read(a);INT sum:=0;FOR i TO UPB a DO sum+:=a[i℄ OD;sumENDEx 6.19 PROC p = REF[,℄CHAR:(HEAP[3,20℄CHAR n;read((n,newline));n)Ex 6.20 PROC p=(REF REAL r)REF REAL:r:=r/pi*180Ex 6.21

A.6. CHAPTER 6 211PROC p = (STRING s,INT i)VOID:(INT ii = IF i < 0THEN print(newline); ABS iELSE iFI;TO ii DO print(s) OD)Ex 6.22 PROC num in multiple=(INT i,[℄INT m,REF INT p)BOOL:(INT pos:=LWB m - 1;FOR j FROM LWB m TO UPB mWHILE pos < LWB mDO (i=m[j℄|pos:=j)OD;IF pos < LWB mTHEN FALSEELSE p:=pos; TRUEFI)Ex 6.23(a) 10.0(b) 0.3() 0.0.Ex 6.24 PROC reverse = ([℄CHAR s)[℄CHAR:(SIZE s=1|s|s[UPB s℄+reverse(s[:UPB s-1℄))Ex 6.25 PROC(INT)INT ube;PROC square=(INT p)INT:(ODD p|ube(p)|p^2);ube:=(INT p)INT: (ODD p|p^3|square(p))Ex 6.26 They form the two sides of an identity delaration.Ex 6.27 OP LARGEST = ([,℄REAL a)REAL:(REAL largest:=a[1 LWB a,2 LWB a℄;FOR i FROM 1 LWB a TO 1 UPB aDO FOR j FROM 2 LWB a TO 2 UPB aDO largest:=largest MAX a[i,j℄OD

212 CONTENTSOD;largest)Ex 6.28 PROC pr = (INT n)REF[℄INT: HEAP[n℄INTEx 6.29 PROC leng = INT:(STRING s;read((s,newline));UPB s)
A.7 Chapter 7Ex 7.1 STRUCT(INT i,j,k) s1 = (1,2,3)Ex 7.2 STRUCT(INT i,REAL r,BOOL b)s2Ex 7.3(a) REF STRUCT(CHAR a,INT b)(b) REF CHAR() REF CHAR(d) INT, provided that a proedure had been assigned to p OF st.(e) INT(f) REF STRUCT(CHAR a,INT b)Ex 7.4 PROC p1=(STRUCT(CHAR a,INT b)s)INT:ABS a OF s * b OF sEx 7.5 MODE EX_7_3_1=STRUCT(REAL r,PROC(REAL)REAL p)Ex 7.6 MODE EX_7_3_2=STRUCT(EX_7_3_1 e,PROC(EX_7_3_1)VOID p,CHAR)Ex 7.7 One of the BMODE and AMODE strutures is insuÆiently shielded. You will get an error for BMODEsaying it is not a legal mode and another error for the delaration of a REF AMODE saying that themode AMODE has not been delared.Ex 7.8(a) (2.0,3.0)(b) -12.0() Write a short program to get3.6055512754639891(d) 0.982 793 723 247 329 1Ex 7.9 The value denoted by (12.0,-10.0).

A.8. CHAPTER 8 213Ex 7.10(a) REF REAL, a name.(b) REAL -3.0() REAL 3.0(d) REAL 3.0Ex 7.11(a) REF[℄STRING(b) REF REAL() REF REAL(d) REF[℄REALEx 7.12 [1:3℄.Ex 7.13(a) REF CHAR(b) REF[℄STRING() REF STRING(d) REF[℄REAL(e) REF[℄REALEx 7.14 MODE TEAM=STRUCT([11℄STRING name,STRING team,INT played, won, drawn,for, against)Ex 7.15 Sliing binds more tightly than seleting, so the seletion must be enlosed in parentheses (seesetion 10.6 for the full explanation).Ex 7.16 The sliing takes plae before the seletion so no parentheses are needed.Ex 7.17(a) REF PROC S2(b) REF PROC(S1)S2() REF[℄CHAR
A.8 Chapter 8Ex 8.1 MODE BINT = UNION(BOOL,INT)Ex 8.2 BINT b = TRUEEx 8.3 One of the onstituent modes of the union is �rmly-related to the united mode. In other words,in a �rm ontext, REF UB an be dereferened to UB.Ex 8.4 UNION(INT,[℄INT,[,℄INT) mintEx 8.5 The �rst parameter is deproedured to mode CHAR before being united. The seond is deref-erened to mode [℄CHAR and then united. The two values of the united mode are regarded as arow-display and the proedure is then alled. The seond parameter is an example of an anonymousname|no identi�er is attahed.Ex 8.6

214 CONTENTSPROC uis=(CHAR h,[℄CHAR s)UNION(INT,VOID):IF INT p = h FIND s; p >= LWB sTHEN pELSE EMPTYFIEx 8.7 PROC p = (MIRC m)IRC:CASE m IN([℄INT i): (INT sum:=0;FOR j FROM LWB i TO UPB iDO sum+:=i[j℄ OD;sum),([℄REAL r):(REAL sum:=0;FOR j FROM LWB r TO UPB rDO sum+:=r[j℄ OD;sum),([℄COMPL):(COMPL sum:=0;FOR j FROM LWB TO UPB DO sum+:=[j℄ OD;sum)ESACEx 8.8 OP * = (IRC a,b)IRC:CASE a IN(INT i): CASE b IN(INT j): i*j,(REAL j): i*j,(COMPL j): i*jESAC,(REAL i): CASE b IN(INT j): i*j,(REAL j): i*j,(COMPL j): i*jESAC,(COMPL i):CASE b IN(INT j): i*j,(REAL j): i*j,(COMPL j): i*jESACESACEx 8.9 MODE CRIB = UNION(CHAR,REAL,INT,BOOL)Ex 8.10 OP UABS = (CRIB)UNION(INT,REAL):CASE IN(CHAR a): ABS a,(REAL a): ABS a,(INT a): ABS a,(BOOL a): ABS aESACEx 8.11 UABS ""; UABS -4.0; UABS -3; UABS TRUE

A.9. CHAPTER 9 215A.9 Chapter 9Ex 9.1 PROGRAM list CONTEXT VOIDUSE standardBEGINFILE f;IF open(f,"textbook",stand in hannel)/=0THENprint("Cannot open textbook");exit(1)FI;STRING s;WHILE get(f,(s,newline)); UPB s /= 0DO print((s,newline))OD;lose(f)ENDFINISHEx 9.2 PROGRAM ex9 2 2 CONTEXT VOIDUSE standardBEGINFILE f;IF open(f,"textbook",stand in hannel)/=0THENprint("Cannot open textbook");exit(1)FI;REAL r, sum:=0, INT n; get(f,n);TO n DO get(f,r); sum+:=r OD;print(sum); lose(f)ENDFINISHEx 9.3 PROGRAM ex9 3 1 CONTEXT VOIDUSE standardBEGINFILE inf,outf;IF open(inf,"textbook",stand in hannel)/=0THENprint("annot open textbook");exit(1)

216 CONTENTSELIF establish(outf,"result",stand out hannel,0,0,0)/=0THENprint("Cannot reate result");exit(2)FI;REAL sum:=0, r, INT n;get(inf,n);TO nDO get(inf,r); sum+:=rOD;put(outf,sum);lose(inf); lose(outf)ENDFINISHEx 9.4 Note that in this answer, you will have to �nd some means of obviating the Ctrans bug for theBY onstrut.PROGRAM ex9 3 2 CONTEXT VOIDUSE standardBEGININT size = 10 000;[2:size℄BOOL flags;FOR iFROM LWB flags TO UPB flagsDO flags[i℄:=TRUE OD;FOR iFROM LWB flags TO UPB flagsDO IF flags[i℄THENFOR kFROM i+i BY i TO UPB flagsDO flags[k℄:=FALSEODFIOD;#Now the file is needed#FILE f;IF establish(f,"primes",stand out hannel,0,0,0)/=0THENprint("Cannot reate primes");exit(1)FI;FOR i FROM LWB flags TO UPB flagsDO

A.9. CHAPTER 9 217IF flags[i℄THEN put(f,(i,newline))FIOD;lose(f)ENDFINISHEx 9.5 Notie that the proessing of a line is done entirely within the WHILE lause.PROGRAM ex9 4 1 CONTEXT VOIDUSE standardBEGINFILE inf, outf;IF open(inf,"inbook",stand in hannel)/=0THENprint("Cannot open inbook");exit(1)ELIF establish(outf,"outbook",stand out hannel,0,0,0)/=0THENprint("Cannot reate outbook");exit(2)FI;STRING line;WHILEget(inf,(line,newline));put(outf,(line,newline));IF UPB line = 0THEN FALSEELSE line /= UPB line * blankFIDO SKIP OD;lose(inf); lose(outf)ENDFINISHEx 9.6 PROGRAM ex9 4 2 CONTEXT VOIDUSE transputBEGINFILE inf, outf;IF open(inf,"lines",stand in hannel)/=0THENprint("Cannot open book lines");exit(1)ELIF establish(outf,"words",

218 CONTENTSstand out hannel,0,0,0)/=0THENprint("Cannot reate book words");exit(2)FI;[℄CHAR terminators=" *"+r+lf;make term(inf,terminators);STRING word, CHAR h:=blank;WHILEget(inf,word);IF h/=blankTHEN h PLUSTO wordFI;WHILEget(inf,h);CO String terminator,but r/lf ignored COh = blankDO SKIP OD; #Skip spaes#put(outf,(word,newline));h /= "*"DO SKIP OD;lose(inf); lose(outf)ENDFINISHEx 9.7 If the on logial file end proedure yieldsFALSE, the standard prelude auses an error message to be displayed and the program itself exitswith an equivalent error number. Here is the ode for the program:PROGRAM tt CONTEXT VOIDUSE standardIF FILE inf;STRING line; INT n,sum:=0;open(inf,"inbook",stand in hannel)/=0THENprint(("Cannot open inbook",newline));exit(1)ELSEon logial file end(inf,(REF FILE f)BOOL:IF FILE ouf;establish(ouf,"outbook",stand out hannel,0,0,0)/=0THENprint(("Cannot establish ","outbook",newline));exit(2); SKIPELSE

A.9. CHAPTER 9 219put(ouf,(sum/n,newline));lose(ouf); FALSEFI);FOR iDO get(inf,(line,newline));n:=i; sum+:=UPB lineODFIFINISHEx 9.8 In the following solution, note how skip terminators is alled immediately after reading the�rst argument (the full path of the program):PROGRAM ex9 6 1 CONTEXT VOIDUSE standardIF FILE arg, inf, ouf;STRING line, infn, oufn;INT n,sum:=0;open(arg,"",arg hannel)/=0THENput(stand err,("Cannot aess the ","program arguments",newline));exit(1)ELIFon logial file end(arg,(REF FILE f)BOOL:(put(stand err,("Insuffiient arguments",newline));stop; SKIP));get(arg,(LOC STRING,skip terminators,infn,skip terminators,oufn));open(inf,infn,stand in hannel)/=0THENprint(("Cannot open ",infn,newline));exit(2)ELSEon logial file end(inf,(REF FILE f)BOOL:IF establish(ouf,oufn,stand out hannel,0,0,0)/=0THENprint(("Cannot establish ",oufn,newline));exit(3); SKIPELSEput(ouf,("Average=",sum/n,newline));lose(ouf);FALSEFI);

220 CONTENTS
FOR iDO get(inf,(line,newline));n:=i; sum+:=UPB lineODFIFINISHEx 9.9 Notie that the physial �le end of the output �le has also been overed:PROGRAM ex9 6 2 CONTEXT VOIDUSE standardIF FILE arg, inf, ouf;STRING line, infn, oufn;open(arg,"",arg hannel)/=0THENput(stand err,("Cannot aess the arguments",newline));exit(1)ELIFon logial file end(arg,(REF FILE f)BOOL:(put(stand err,("Insuffiient arguments",newline)); stop; SKIP));get(arg,(LOC STRING,skip terminators,infn,skip terminators,oufn));open(inf,infn,stand in hannel)/=0THENprint(("Cannot open ",infn,newline));exit(2)ELIFestablish(ouf,oufn,stand out hannel,0,0,0)/=0THENprint(("Cannot establish ",oufn,newline));exit(3)ELSEon logial file end(inf,(REF FILE f)BOOL:(lose(ouf); lose(inf);stop; SKIP));on physial file end(ouf,(REF FILE f)BOOL:(put(stand err,("Write error on ",idf(ouf),newline));exit(4); SKIP));DO get(inf,(line,newline));FOR i FROM LWB line TO UPB lineDO REF CHAR li=line[i℄;IF li=blank THEN li:="*" FI

A.9. CHAPTER 9 221OD;put(ouf,(line,newline))ODFIFINISHEx 9.10 PROGRAM ex9 7 1 CONTEXT VOIDUSE standardIF FILE env;open(env,"PATH",env hannel)=0THENon logial file end(env,(REF FILE e)BOOL: (stop; SKIP));make term(env,":"+nul h);STRING s;DO get(env,s);IF UPB s >= LWB sTHEN print((s,newline))FI;skip delimiters(env)OD;lose(env)FIFINISHEx 9.11 PROGRAM ex9 7 2 CONTEXT VOIDUSE standardIF FILE arg;open(arg,"",arg hannel)/=0THENput(stand err,("Cannot aess arguments",newline));exit(1)ELSEon logial file end(arg,(REF FILE a)BOOL: (stop; SKIP));get(arg,(LOC STRING,LOC CHAR,skip terminators));DO make term(arg,"/");STRING env name;CHAR terminator:=nul h;get(arg,(env name,skip terminators,terminator));IF FILE env;open(env,env name,env hannel)/=0THENprint((env name," undefined",newline))ELSE

222 CONTENTSmake term(env,terminator+nul h);STRING s;on logial file end(env,(REF FILE f)BOOL:(GOTO ontinue; SKIP));DO get(env,s);IF UPB s >= LWB sTHEN print((s,newline))FI;skip terminators(env)OD;ontinue:lose(env)FI;make term(arg,blank);skip terminators(arg)ODFIFINISHNotie the addition of nul h to ater for the lak of a spei� terminator in the environmentstring.Ex 9.12 PROGRAM ex9 7 3 CONTEXT VOIDUSE standardIF FILE ab;open(ab,"ABC",env hannel)/=0THENprint(("Environment string ABC","is undefined",newline));stopELSEINT sum:=0, n;on logial file end(ab,(REF FILE f)BOOL:(lose(f);print(("Total=",sum,newline));stop; SKIP));DO get(ab,n);sum+:=nODFIFINISHEx 9.13 Notie how the size of the month denotation is used to ensure that the rainfall is alignedappropriately.PROGRAM ex9 8 1 CONTEXT VOIDUSE standardBEGIN[℄STRING months=("January","February","Marh","April","May","June","July","August","September",

A.9. CHAPTER 9 223"Otober","November","Deember");[℄REAL rainfall=(6.54, 12.3, 10.1, 13.83,5.04, 9.15, 14.34, 16.38,13.84, 10.45, 8.49, 7.57);FOR m TO UPB monthsDO STRING mm=months[m℄;print((mm,(12-UPB mm)*blank,fixed(rainfall[m℄,-5,2),newline))ODENDFINISHEx 9.14 The diÆult part is alulating whih number to print at eah position.PROGRAM ex9 8 2 CONTEXT VOIDUSE standardBEGINprint(("Table of square roots ","1 to 100",newline,newline));FOR i TO 25DO FOR j TO 4DO INT number = (j-1)*25+i;print((whole(number,-6),fixed(sqrt(number),-8,4)))OD;print(newline)ODENDFINISHEx 9.15 PROGRAM ex9 8 3 CONTEXT VOIDUSE standardBEGINREAL pi power:=1;print(("Table of powers of pi"," 1 to 10",newline,newline));FOR i TO 10DOpi power*:=pi;print((whole(i,-3)," ",float(pi power,12,6,2),newline))ODENDFINISH

224 CONTENTSEx 9.16 To write this program, you need to know how many bytes Algol 68 uses to store an integer in abinary book. In the program below, that number is presumed to be identi�ed by int bin bytes.You will need to write a short program to output a ouple of integers to a binary book and thensee how long it is (and you might �nd its ontents of interest).PROGRAM ex9 9 1 CONTEXT VOIDUSE standardBEGINFILE work;IF establish(work,"ex9 9 1.tmp",stand bak hannel,0,0,0)/=0THENprint("Cannot reate workbook");exit(1)FI;FOR i TO 1000 DO put bin(work,i) OD;INT int bin bytes=?;CO Your value replaes ? COPROC by=(INT n)INT: n;FOR i FROM 17 BY by(17) TO 1000DO set(work,0,0,(i-1)*int bin bytes);INT n; get bin(work,n);print((n,newline))OD;lose(work)ENDFINISHEx 9.17 Reading the words should not present any problems to you. The only new bit is the output.However, for the sake of ompleteness, here is the whole program.PROGRAM ex9 9 2 CONTEXT VOIDUSE standardBEGINFILE inf, out1, out2;IF open(inf,"inbook",stand in hannel)/=0THENprint("Cannot open inbook");exit(1)ELIF establish(out1,"outbook1",stand out hannel,0,0,0)/=0THENprint("Cannot reate outbook1");exit(2)ELIF establish(out2,"outbook2",

A.9. CHAPTER 9 225stand out hannel,0,0,0)/=0THENprint("Cannot reate outbook2");exit(3)FI;make term(inf, blank+r+lf);STRING word; CHAR h:=blank;on logial file end(inf,(REF FILE f)BOOL:(lose(out1);lose(out2);lose(f);stop; SKIP));DO get(inf,(word,skip terminators));IF UPB word > 0THENput bin(out2,(urrent pos(out1),UPB word));put bin(out1,word)FIODENDFINISHEx 9.18 A useful wrinkle is to end your report with the words END OF REPORT so that your readerknows that there are no pages of the report whih ould have been lost. In a professionally writtenprogram, you would put a page number and the date of the report, but we have not yet overedhow that an be done (see hapter 12).PROGRAM ex9 11 1 CONTEXT VOIDUSE standardIF [℄STRINGmonths =("January","February","Marh","April","May","June","July","August","September","Otober","November","Deember");[℄REALrainfall =(6.54, 12.30, 10.10, 13,83,5.04, 9.15, 14.34, 16.38,13.84, 10.45, 8.49, 7.57);FILE prn;establish(prn,"rainfall.out",stand out hannel,0,0,0)/=0THENput(stand err,("Cannot establish rainfall.out",newline)); stop

226 CONTENTSELSEput(prn,("Rainfall figures in 1995",newline,newline,"Month",7*blank,"Rainfall in mm",newline));FOR m TO UPB monthsDOSTRING mm = months[m℄;put(prn,(mm,(12-UPB mm)*blank,fixed(rainfall[m℄,-5,2),newline))OD;put(prn,(newline,"END OF REPORT",newline));lose(prn)ENDFINISHEx 9.19 You will need to get the identi�ation of the �le from the argument line.PROGRAM ex9 11 2 CONTEXT VOIDUSE standardIF STRING in idf; FILE arg, inf, prn;open(arg,"",arg hannel)/=0THENput(stand err,("Cannot aess arguments",newline));exit(1)ELIFon logial file end(arg,(REF FILE f)BOOL:(put(stand err,("Usage: tt idf",newline));stop; SKIP));get(arg,(LOC STRING,skip terminators,in idf));lose(arg);open(inf,in idf,stand in hannel)/=0THENput(stand err,("Cannot open ",in idf,newline));exit(2)ELIFestablish(prn,"tt.out",stand out hannel,0,0,0)/=0THENput(stand err,("Cannot establish tt.out",newline));exit(3)

A.9. CHAPTER 9 227ELSESTRING line;on logial file end(inf,(REF FILE f)BOOL:(lose(f); lose(prn);stop; SKIP));FOR iDO get(inf,(line,newline));put(prn,(whole(i,-6),": "));IF UPB line > 0THEN put(prn,line)FI;newline(prn)ODFIFINISHEx 9.20 PROGRAM ex9 12 1 CONTEXT VOIDUSE standardBEGINREAL r;WHILE read(r); r/=0.0DO print((float(r,-12,3,-2),newline))ODENDFINISHEx 9.21 This program is not all that diÆult. Take it slowly, step by step. Although reading anemployee reord only appears one in the program, it is better to write it as a proedure so as notto obsure the main logi. Likewise, printing eah line of the report is also delared as a proedure.Notie how the given solution heks for errors.PROGRAM ex9 12 2 CONTEXT VOIDUSE standardBEGINFILE arg, emp, prn;STRING emp idf;INT week:=0;IF open(arg,"",arg hannel)/=0THENput(stand err,("Cannot aess the arguments",newline));exit(1)ELIFon logial file end(arg,(REF FILE f)BOOL:(put(stand err,("Usage: tt emp-book week-no",newline));exit(2); SKIP));get(arg,(LOC STRING,LOC CHAR,emp idf,week));

228 CONTENTSweek < 1 OR week > 53THENput(stand err,("Invalid week number",newline));exit(3)ELIF open(emp,emp idf,stand in hannel)/=0THENput(stand err,("Cannot open ",emp idf,newline));exit(4)ELIFestablish(prn,"report",stand out hannel,0,0,0)/=0THENput(stand err,("Cannot establish report",newline));exit(5)FI;MODEEMPLOYEE=STRUCT(STRING name,[2℄STRING address,STRING dept,ni ode,tax ode,REAL basi,overtime,[52℄REALnet pay,tax);PROC get emp=(REF FILE f,REF EMPLOYEE e)VOID:BEGIN[80℄CHAR s;PROC get str=[℄CHAR:(INT len; get bin(f,len);[len℄CHAR s;get bin(f,s);s); \#get str\#IF (name OF e:=get str) /= ""THENFOR i TO UPB address OF eDO(address OF e)[i℄:=get strOD;dept OF e:=get str;ni ode OF e:=get str;tax ode OF e:=get str;

A.9. CHAPTER 9 229get bin(f,(basi OF e,overtime OF e,net pay OF e,tax OF e))FIEND #get emp#;PROC put emp=(REF FILE f,REF EMPLOYEE e)VOID:put(f,(name OF e,(40-UPB name OF e)*blank,fixed((net pay OF e)[week℄,-8,2),newline));INT line:=60, page:=0;PROC heading = (REF FILE f)VOID:IF line = 60THEN line:=0; #reset the line ount#put(f,(newpage,"Report of net pay for week ",whole(week,0),40*blank,"Page ",whole(page+:=1,0),newline,newline,"Employee name",28*blank,"Net pay",newline,newline))FI #heading#;EMPLOYEE employee;REAL total pay:=0; INT n:=0;on logial file end(emp,(REF FILE f)BOOL:(put(prn,("Total net pay for ",whole(n,0)," employees =",fixed(total pay,-11,2),newline,newline,"End of report",newline));lose(f); lose(prn); stop;SKIP));DO heading(prn);get emp(emp,employee);IF name OF employee /= ""THENtotal pay+:=(net pay OF employee)[week℄;n+:=1;#ount of total employees#put emp(prn,employee);

230 CONTENTSline+:=1FIODENDFINISH
A.10 Chapter 10Ex 10.1 Deproeduring and dereferening (not weakly-dereferening).Ex 10.2 None.Ex 10.3(a) Yes.(b) No (annot widen).() No (annot dereferene).(d) No (annot row).(e) No (annot dereferene).(f) No (annot unite after rowing).Ex 10.4(a) Row-display, struture-display, ollateral lause.(b) Parallel lause.() Case lause.(d) Conformity lause.(e) Conditional lause.(f) Closed lause or enlosed lause.Ex 10.5(a) Weak.(b) Meek.Ex 10.6(a) 6 (4 denotations, 1 applied-identi�er, 1 losed lause).(b) 5 (1 denotation, 3 applied-identi�ers, 1 all).() 5 (1 denotation, 3 applied-identi�ers, 1 slie).(d) (1 denotation, 1 losed lause, 1 ast, 1 applied-identi�er).Ex 10.7 The identi�er of a struture or a name referring to a struture.Ex 10.8 A seletion.Ex 10.9(a) 2.(b) 3.() 3.(d) 4.Ex 10.10(a) A primary.(b) A primary.

A.10. CHAPTER 10 231() A seondary.(d) A primary.(e) A primary.(f) Tertiary.(g) Enlosed lause.(h) A quaternary.(i) It is not a unit.(j) A quaternary.Ex 10.11(a) 2 denotations + 2 applied-identi�ers = 4 primaries. 1 losed lause. 3 formul� = 3 tertiaries.(b) 1 denotation + 3 applied-identi�ers = 4 primaries. 3 formul� = 3 tertiaries.() 2 applied-identi�ers + 1 all = 3 primaries.(d) 3 denotations + 1 applied-identi�er + 1 slie = 5 primaries.(e) 2 denotations + 3 applied-identi�ers = 5 primaries; 1 onditional lause = 1 enlosed lause,2 formul� = 2 tertiaries, 1 assignment = 1 quaternary.(f) 2 denotations + 5 applied-identi�ers = 7 primaries, 1 formula = 1 tertiary, 1 assignation = 1quaternary, 1 ase lause + 1 onditional lause = 2 enlosed lauses.(g) 2 denotations + 2 applied-identi�ers = 4 primaries, 2 assignments = 2 quaternaries, 1 parallellause = 1 enlosed lause.Ex 10.12(a) The onditional lause an yield a value of mode REF INT or REF REAL. In a �rm ontext,these an be oered to INT and REAL. Thus the INT is widened to REAL and the balanedlause yields a value of mode REAL.(b) The onditional lause in a soft ontext will yield REF INT or REF REAL. Neither an be oeredto the other in a strong ontext, so the lause annot be balaned. The error message from theompiler arises from the oerions applied in a strong ontext for the attempted balaning.() The onformity lause yields INT or REAL. In a strong ontext, INT an be widened to REAL.Thus the balaned lause will yield REAL.(d) The onditional lause yields INT or whatever. In a strong ontext, SKIP will yield INT. Thusthe balaned lause yields INT. However, the result will be unde�ned if the SKIP is used inthe assignment.Ex 10.13(a) Yes.(b) Yes.() No.(d) No.(e) Yes.(f) Yes.(g) Yes.(h) No.(i) Yes! It's an example in the \Revised Report".

232 CONTENTSA.11 Chapter 11Ex 11.1 PROGRAM ex11 1 1 CONTEXT VOIDUSE standardBEGIN[℄CHAR digits ="0123456789abdef"[�0℄;PROC itostr = (INT n,r#adix#)STRING:IF n<rTHEN digits[n℄ELSE itostr(n%r,r)+digits[n%*r℄FI;print(("Table of numbers 0--15",newline,newline,"De. Hex. Binary",newline));FOR i FROM 0 TO 15DO STRING bin = itostr(i,2),de = itostr(i,10),hex = digits[i℄;#only one digit#print(((4-UPB de)*blank,de,3*blank,hex,4*blank,(4-UPB bin)*"0",bin,newline))ODENDFINISHEx 11.2(a) 9410 = 5� 161 + 14� 160= 5e16(b) 1310 = 1� 23 + 1� 22 + 0� 21 + 1� 20= 11012() 1111 10012 = f916(d) 3e116 = 3� 162 + e� 161 + 1� 160= 3� 256 + 14� 16 + 1= 768 + 224 + 1= 99310(e) 216 = 0010 11002.(f) 101012 = 1� 24 + 1� 22 + 1� 20= 16 + 4 + 1= 2110

A.11. CHAPTER 11 233Ex 11.3(a) 10112(b) e316() 568Ex 11.4(a) 16r 0101 0101(b) 16r 99bb ddff() 16r 6745 2301(d) FALSEEx 11.5(a) 16r 558(b) 16r 17Ex 11.6 PROC transpose=(REF[,℄INT m)VOID:IF 1 UPB m - 1 LWB m=2 UPB m - 2 LWB mTHEN #m is square#REF[,℄INT mm=m[�1,�1℄; #a preaution#FOR i TO 1 UPB mm - 1DO REF[℄INT mr=mm[i,i+1:℄,m=mm[i+1:,i℄;[℄INT temp=mr;mr:=m; m:=tempODFIEx 11.7 Use a ast: REF REAL(xx):=120.5Ex 11.8 REF REF[℄CHAR rrq;[℄CHAR m = "ABCDEFGHIJ";rrq:=LOC REF[℄CHAR:=LOC[10℄CHAR:=m[�1℄;Ex 11.9
REF FLEX[℄INT rfi;rfi:=FLEX[1:0℄INT:=(3,-2,4)Ex 11.10 f has the mode REF STRING and ss has the mode REF REF STRING.Ex 11.11 The multiple of mode STRING whose value is "Joan of Ar".Ex 11.12 f[3:4℄=s[7:8℄. The modes are both STRING.Ex 11.13 Here are three possible answers:REF STRING(ff) IS ssff IS REF STRING(ss)REF STRING(ff) IS REF STRING(ss)You ould also use ISNT, :=: or :/=:.Ex 11.14

234 CONTENTS(a) A name of mode REF REF FILE.(b) TRUE BOOL.() A name of mode REF FILE.(d) FALSE BOOL.Ex 11.15(a) REF FILE(b) REF REF FILEEx 11.16 REF REF QUEUE(tail):=LOC QUEUE:=(("Barbara",3),nilq)Ex 11.17 tail:=next OF tailEx 11.18 No.Ex 11.19PROC add fan=(REF REF REF QUEUEhead,tail,REF FAN fan)VOID:tail:=next OF (REF REF QUEUE(head IS nilq|head|tail):=HEAP QUEUE:=(fan,nilq))Ex 11.20PROGRAM ex11 9 2 CONTEXT VOIDUSE standardBEGINMODE FAN = STRUCT(STRING name,INT tiket),QUEUE = STRUCT(FAN fan,REF QUEUE next);REF QUEUE nilq = NIL;PROC add fan=(REF REF REF QUEUEhead,tail,REF FAN fan)VOID:tail:=next OF(REF REF QUEUE(head IS nilq|head|tail):=HEAP QUEUE:=(fan,nilq);REF REF QUEUE head,tail;head:=tail:=LOC REF QUEUE:=nilq;FOR q TO 1000DO add fan(head,tail,LOC FAN:=(IF ODD qTHEN "Iain"ELSE "Fiona"FI,q))ODENDFINISH

A.11. CHAPTER 11 235The generator LOC FAN is used beause add fan requires a parameter of mode REF FAN. The sopeof the generated name is from the delarations of head and tail to the end of the program beausethere are no identity delarations in the FOR loop lause (therefore it is not a range).Ex 11.21 Beause marker has mode REF REF QUEUE, it is made to refer to eah REF QUEUE name in thelinked-list. The onditionnext OF marker ISNT nilqensures that marker is not urrently referring to the last REF QUEUE in the list. The loop willterminate when marker refers to the last REF QUEUE in the list or the number of the tiket of thefan to be inserted in the queue does not exeed the number of the tiket of the fan referred to bymarker. If the operator AND had been used, both operands would have been elaborated before theoperator; in whih ase, if the left operand had yielded FALSE, elaboration of the right operandwould have aused the run-time error "Seletion from NIL".Ex 11.22 This an best be done by writing a program. Here is a possible solution:PROGRAM ex11 10 2 CONTEXT VOIDUSE standardBEGINMODE FAN = STRUCT(STRING name,INT tiket),QUEUE = STRUCT(FAN fan,REF QUEUE next);REF QUEUE nilq = NIL;PROC insert fan =PROC print queue =REF REF QUEUE head,tail;head:=tail:=LOC REF QUEUE:=nilq;INT max tiket = 1000;INT tikets issued:=0;[max tiket℄BOOL tiket issued;FOR iFROM LWB tiket issuedTO UPB tiket issuedDO FALSE OD;WHILE tikets issued < max tiketDO INT i=random int(max tiket);IF REF BOOL ti=tiket issued[i℄;NOT tiTHENti:=TRUE;insert fan(head,tail,HEAP FAN:=((ODD i|"Iain"|"Fiona"),i));tikets issued+:=1FIOD #fans added to the queue#;print queue(head)END FINISH

236 CONTENTSInstead of sending the output to stand out, it would be better to diret it to an output book sothat the results ould be examined at leisure. Alternatively, ommand line rediretion ould beused. The use of tiket issued ensures that unique tiket numbers are added to the queue sineinsert fan does not ater expliitly for dupliate tiket numbers.Ex 11.23 The proedure has to �nd the fan onerned and must keep trak of the referene to that fan.PROC delete fan=(REF REF QUEUE q,INT t#iket#)UNION(REF FAN,BOOL):IF q IS nilqTHEN FALSE #empty queue#ELIF next OF q IS nilqTHEN #last fan in the queue#IF tiket OF q = tTHEN REF FAN rf = q;q:=nilq; #delete last fan#rfELSE FALSEFIELIF tiket OF next OF q < tTHEN delete fan(next OF q,t)ELIF tiket OF next OF q > tTHEN #not found# FALSEELSE REF FAN rf = next OF q;next OF q:=next OF next OF q;rfFI #delete fan#;In the assignment, the mode of next OF q is REF REF QUEUE, so the mode of next OF next OF qmust be REF QUEUE. Look at the required dereferening to see what is assigned to next OF q.Ex 11.24
PROGRAM ex11 11 1 CONTEXT VOIDUSE standardBEGINMODELETTER=STRUCT(CHAR ,INT o),TREE=STRUCT(REF LETTER l,REF TREE left,right);REF TREE leaf=NIL;REF TREE root:=leaf;PROC get letter=(REF FILE f)REF LETTER:IF CHAR h; get(f,h);h>="A" & h<="Z"ORh>="a" & h<="z"THEN HEAP LETTER:=(h,1)ELSE get letter(f) #skip non-letters#FI #get letter#;PROC add letter=(REF REF TREE root,REF LETTER let)VOID:IF root IS leafTHEN root:=HEAP TREE:=(let,leaf,leaf)

A.11. CHAPTER 11 237ELIF OF l OF root > OF letTHEN add letter(left OF root,let)ELIF OF l OF root < OF letTHEN add letter(right OF root,let)ELSE o OF l OF root+:=1FI #add letter#;FILE inf, arg;STRING in bk;INT max row=13;[max row,81℄CHAR out page;INT row:=max row, ol:=0;FOR i TO max rowDO out page[i,:80℄:=80*blank;out page[i,81℄:=lfOD #initialise out page#;INT num letters:=0;PROC put letter=(REF LETTER let)VOID:BEGINIF row=max rowTHEN ol+:=1; row:=1ELSE row+:=1FI;FILE f;establish(f,"",mem hannel,1,1,20);put(f,(OF let,fixed(o OF let/num letters*100,-7,2),blank*12));out page[row,(ol-1)*20+1:ol*20℄:=file buffer(f);lose(f)END #put letter#;PROC print tree=(REF REF TREE root)VOID:IF root ISNT leafTHENprint tree(left OF root);IF o OF l OF root > 0THEN put letter(l OF root)FI;print tree(right OF root)FI #print tree#;IF open(arg,"",arg hannel)/=0THENput(stand err,("Cannot aess arguments",newline));stop

238 CONTENTSELIFon logial file end(arg,(REF FILE f)BOOL:(put(stand err,("Usage: tt in-book",newline)); stop; SKIP));get(arg,(LOC STRING,LOC CHAR,in bk));open(inf,in bk,stand in hannel)/=0THENput(stand err,("Cannot open book ",in bk,newline));stopELSEon logial file end(inf,(REF FILE f)BOOL:(print tree(root);print(("Frequeny of ourrene ","of letters in the book ",idf(f),newline,newline,out page,newline,"Total letters read: ",whole(num letters,0),newline));stop; SKIP))FI;FOR i TO 26 #letters in the alphabet#DO add letter(root,HEAP LETTER:=(REPR(ABS("A")-1+i),0));add letter(root,HEAP LETTER:=(REPR(ABS("a")-1+i),0))OD #all letters are now in the tree#;DO add letter(root,get letter(inf));num letters+:=1ODENDFINISH

Bibliography
For a thorough treatment of the language from a more old-fashioned point of view, I an reommend thisbook:� Lindsey, C. H. and van der Meulen, S. G., Informal Introdution to Algol 68, North-Holland (1977).The original report is not for the faint-hearted, but it is the �nal arbiter of what onstitutes Algol 68.Do not make the mistake of the many detrators of Algol 68 who onfused the method of desription (atwo-level grammar) with the language itself. If you have read as far as here, you will know that Algol 68is easier to learn than to desribe:� van Wijngaarden, A., Mailloux, B. J., Pek, J. E. L., Koster, C. H. A., Sintzo�, S., Lindsey, C. H.,Meertens, L. G. L. T. and Fisker, R. G. (eds), Revised Report on the Algorithmi Language Algol68, Springer-Verlag (1976).This little book ontains muh wisdom about solving problems. It is geared towards mathematialproblems, but you should not �nd it too diÆult to apply to a whole range of other problems. It used tobe the set book for the Foundation Course in Mathematis at the Open University:� P�olya, G., How to Solve It, 2nd ed., Penguin Books (1985).Jakson's original book is well worth reading if you are onsidering taking up programming seriously oreven if you are already a professional programmer:� Jakson, M. A., Priniples of Program Design, Aademi Press (1975).Details of the oating-point proessor within the Intel Pentium miroproessor were taken from thefollowing books:� Intel Arhiteture Software Developer's Manual, Volume I, Basi Arhiteture, Intel Corporation,1999.� Intel Arhiteture Software Developer's Manual, Volume II, Instrution Set Referene, Intel Cor-poration, 1999.

239

Index
", 19%, see OVER%*, see MOD%*:=, see MODAB%:=, see OVERAB&, see AND&*, 174(, 15, 35), 15, 35*, 13, 16, 25, 166, 168, 169, 170STRING, 172**, 15, 80, 166, 168, 171*:=, see TIMESAB+, 16, 25, 51, 80, 166dyadi, 12, 167, 169, 170, 171CHAR, 172monadi, 11, 167, 168, 170STRING, 172+*, 168, 169, 171+*, see I+:=, see PLUSAB+=:, see PLUSTO,, see omma-, 80, 166dyadi, 12, 167, 169, 170monadi, 11, 167, 168, 170-:=, see MINUSAB/, 14, 166, 168, 169, 170/:=, see DIVAB/=, 32, 80, 166, 167, 168, 170, 171, 172CHAR, 172STRING, 173:, 24, 101, 101:/=:, 118, 134:=:, 118, 134;, 4, 5, 7, 7, 26, 77, 112, 131<, 32, 166, 168, 169, 171CHAR, 172STRING, 173, 173<=, 32, 166, 168, 169, 171, 172CHAR, 172STRING, 173, 173=, 4, 32, 80, 166, 167, 168, 169, 171, 172CHAR, 172STRING, 173>, 32, 166, 168, 169, 171CHAR, 172STRING, 173, 173>=, 32, 166, 168, 169, 171, 172CHAR, 172

STRING, 173, 173�, see AT|, see hoie lause, abbreviated|:, 362's-omplement binary, 41ABS, 11, 16, 31, 81, 128, 128, 167, 168, 170, 171CHAR, 172atual-delarer, 45, 50, 54, 82, 83ALIEN, 177alternative representation, 14AND, 31, 36, 128, 166, 167, 172anonymous, 71anonymous name, 115, 134applied identi�er, 117aros, 72, 175arsin, 72, 175artan, 72, 175ARG, 81, 170argument, 100, 155arithmetimixed, 15ASCII, 5, 16assigning operators, 117assignment, 42, 48, 113, 117, 119, 133initial, 107assignment operators, 44assignment token, 42, 117AT, 24, 47at exit, 180B-trees, 143bakspae, 193balaned trees, 143balaning, 35, 114, 118, 118, 119, 135, 136base mode, see modeBEGIN, 15, 20, 34, 38, 58, 113, 117BIN, 128, 171bin possible, 190binary, 93, 126, 128, 150binary transput, 104BIOP 99, 178bit-wise operator, 128BITS, 127, 128, 150, 162bits lengths, 150, 163bits pak, 176bits shorths, 150, 163bits width, 127, 164blank, 5, 100, 165blank lines, 149BODMAS, 13240

INDEX 241book, 93binary, 103internal, 105read-only, 93write-only, 93BOOL, 31, 162Boole, George, 31Boolean, 31boolean serial lause, see lause, booleanboundlower, 22upper, 22boundary onditions, 151bounds, 29, 45, 47, 49, 50, 59interrogation, 22bounds interrogation, 59browsing, 93, 104bugs, 147bus, 22BY, 27, 177BYTES, 162bytes, 125bytes lengths, 163bytes shorths, 163bytes width, 164C maro, 158all, see proedure, allanonial input mode, 154CASE, 38ase lause, see lause, aseCASE default, 178ast, 109, 114, 117, 135CCHARPTR, 177CCHARPTRPTR, 176CCHARPTRTOCSTR, 178CHANNEL, 93CHAR, 5, 162har in string, 192harater set, 5haraters, 5hoie lause, see lause, hoieCINTPTR, 177lauseboolean, 34ase, 38, 114, 119, 136losed, 26, 113, 117, 119ollateral, 114onditional, 34, 35, 45, 48, 59, 62, 74, 114,119nested, 35short form, 35onformity, 89, 90, 114enlosed, 20, 28, 34, 38, 45, 57, 58, 59, 90,113enquiry, 34, 35, 36, 38, 53GOTO, 131loop, 26, 27, 28, 46, 53, 58, 114, 116parallel, 114

serial, 34, 38, 58, 131lose, 95, 96losed lause, see lause, losedCODE, 177odeindentation, 148mahine, 7objet, 7soure, 7, 7ode optimisation, see optimisationoerion, 6, 13, 43, 122deproeduring, 67, 89, 109, 109, 113, 117dereferening, 43, 44, 46, 51, 52, 58, 62, 73,89, 109, 110, 113, 133, 133, 141rowing, 20, 32, 49, 109, 111uniting, 88, 90, 109voiding, 59, 68, 109, 112weakly-dereferening, 109, 111, 115, 118, 139widening, 6, 13, 14, 16, 20, 32, 35, 43, 51,76, 77, 80, 109ollateralelaboration, 58ollateral lause, see lauseollateral elaboration, see elaborationolumns, 21omma, 4, 6, 23, 29, 38dimensions, 21ommand line, 1ommand prompt, 100omment, 7ompiler, 4COMPL, 80, 81, 150, 162ompleter, 131omplex numbers, 80ompound expression, 37onatenation, 25, 51onditional lause, see lause, onditionalonformity ase lause, 90onformity lause, see lause, onformityCONJ, 81, 170onseutive operators, 14onstant, 43onstituent mode, see mode, onstituentonstituent unit, see unit, onstituentontext, 6, 122�rm, 13, 20, 44, 44, 51, 62, 63, 88, 89, 108,111meek, 24, 26, 27, 52, 53, 108, 114, 115, 115,119soft, 45, 67, 67, 108, 117, 118, 119, 133, 135strong, 6, 13, 13, 20, 20, 35, 43, 43, 58, 68,70, 74, 75, 80, 97, 108, 111, 112, 115,117, 118, 135exeption, 64weak, 108, 111, 115, 139onverse ondition, 33os, 72, 175CPTR, 177CPTRTORVC, 178

242 INDEXr, 165CSTR, 176CSTRTOCCHARPTR, 178CSTRTORVC, 178Ctrans, 44, 105, 129, 147, 187, 198ALIEN, 157balaning, 119bits width, 127BY, 27, 62, 216BYTES, 163harset, 165ollateral lauses, 114omments, 8debugger, 152delarations, 5, 6, 155dimensions, 21, 25diretives, 6division by zero, 168ELSE SKIP, 35establish, 96events, 97FORALL, 29FSTAT, 158identi�er range, 113ignoring bounds, 83int lengths, 150int shorths, 150integer overow, 153LENG, 170lok, 105mm, 152mode delaration, 121NIL, 136OP error, 110parallel lauses, 114preisions, 163reursive modes, 79requirements, 1sope heking, 60, 74seletions, 84, 84, 116set, 104SHORTEN, 170standard prelude, 161test program, 153unassigned names, 118UNION, 87VECTOR, 158voiding error, 110urrent pos, 104, 190data, 93knowledge, 147struture, 147debug, 152debugging, 151, 152ploys, 152deimal, 125delaration, 4, 107abbreviated, 53, 88grouping, 149

identity, 3, 6, 11, 13, 20, 21, 45, 112[℄CHAR, 19, 20CASE, 90FLEX, 49formal de�nition, 57LOC, 41optimisation, 27REF, 50routine, 61routine all, 65STRUCT, 75mode, 80, 83, 87, 120priority, 64struture, 78, 82stub, 79, 121DECS, 177denotation, 2, 7, 9, 11, 60, 108, 114[℄CHAR, 19BITS, 127harater, 5integer, 2real, 5routine, 57, 59, 61, 71, 107, 117, 119deproeduring, see oeriondereferening, see oeriondesriptor, 122dimensions, 20displaying values, see value, displayingDIVAB, 44, 80, 166, 174divisionreal, 14DO, see lause, loopdoumentation, 153DOWN, see SHRdry-running, 152, 157dyadi, see operator, dyadidynami names, see name, dynamielaboration, 113, 120ollateral, 4, 29, 44, 65, 77order of, 11, 13, 64sequene of, 4sequential, 4ELEM, 128, 166, 172BITS, 174elements, 19ELIF, 36ELSE, 34ELSE IF, 36EMPTY, 59enlosed lause, see lause, enlosedenlosing range, 72END, 15, 20, 34, 38, 58, 113, 117end-of-line, 97enquiry lause, see lause, enquiryENTIER, 16, 169env hannel, 101environment enquiry, 127, 150, 150environment string, 101

INDEX 243eof har, 165EQ, see =Eratosthenes' Sieve, 46errorompilation, 152run-time, 46, 50, 151error har, 102, 165ESAC, 38es, 165establish, 95event-driven programming, 93exeution, see elaborationEXIT, 131exit, 181exp, 72, 175exp width, 150, 164exponent, 149external values, see value, externalFALSE, 31, 162FAN, 137ff, 165FI, 34�eld, 102�eld seletion, 76, 139�eld seletor, 75, 76, 115�elds, 75FILE, 93file buffer, 190�le rediretion, 17�les, 93�rm ontext, see ontext, �rm�rmly oerible, 62�rmly related, 62, 63, 64, 88fixed, 102, 103, 192at multiple, see multiple, atFLEX, 49, 49, 50, 59exibility, 122exible, 49exible name, see name, exible 70, 134flip, 165float, 102, 103, 192oating-point standard, 150flop, 165FOR loop, see lause, loopFORALL loop, 29formal mode, see mode, formalformal parameter, see parameterformal-delarer, 45, 48, 50, 57, 67, 82, 83formal-mode-delarer, 57formula, 3, 20, 117, 118fpu w algol68 entier, 179fpu w algol68 round, 179fpu w ieee, 179frational part, 16free format, 7FROM, 27garbage olletor, 145GCPARAM, 177

GE, see >=generator, 41, 114, 115, 138anonymous, 158global, 41, 60loal, 41, 60, 88, 112get, 94, 95, 95, 100, 101, 103, 189get bin, 103get fpu w, 179get possible, 190globalgenerator, see generatorglobal names, 149go-on, 42go-on symbol, see ;grouping of delarations, see delaration, group-ingGT, see >header, 57HEAP, 60, 68Heuristis, 147hexadeimal, 126arithmeti, 126notation, 126I, 81, 166, 168, 169identi�ation, 93identi�er, 3, 26, 27, 57, 65, 90applied, 115, 116global, 61identitydelarationformal-delarer, 82relation, 107, 108, 108, 114, 117, 118, 119,134, 135, 136, 141relator, 118identity delaration, see delarationidf, 105, 190IM, 81, 170IN, 29, 38indentation, see odeindeterminate result, 65indexable struture, 176initial assignment, 43, 58instane, 42, 133INT, 2, 3, 11, 12, 27, 150, 162int lengths, 150, 163int shorths, 150, 163int width, 164integer, 2largest negative, 2largest positive, 2integer denotation, see denotationinteger division, 14internal representation, 51internal value, see value, internalIS, 134ISNT, 134itostr, 126

244 INDEXJakson methodology, 148keyboard, 93label, 101, 131last random, 175LE, see <=leading zero, 3learning by doing, 147LENG, 150, 167, 169, 170, 171lf, 165linked-list, 140, 142, 143, 143linker, 7ln, 72, 175LOC, 41, 60loalgenerator, see generatorname, 41lok, 105log2, 164logi level, 149logial end, 104, 190logial �le end, 97LONG, 150LONG BITS, 162long bits width, 164LONG INT, 162long int width, 164long last random, 175long max int, 150, 163loop lause, see lause, looplower bound, see bound, lower 48LT, see <LWB, 22, 27, 166dyadi, 166monadi, 166mahine ode, see ode, mahine 4mahine word, 127maro, see C maromain proessing logi, 155make term, 97, 100, 101, 191MAKERVC, 179mantissa, 149MAX, 16, 166, 174max abs har, 16, 165max exp, 164max exp real, 150max int, 4, 9, 19, 163max real, 6, 9, 150, 163meek ontext, see ontext, meekmemory, 125memory ontrol, 145MIN, 16, 166, 174min exp, 164min real, 150, 163MINUS, 166MINUSAB, 44, 80, 166, 174mixed modes, 32MOD, 14, 37, 166, 168

MODAB, 44, 166, 174mode, 2, 3, 19, 122base, 19, 21, 111onstituent, 75, 90, 91formal, 71indiant, 4, 7, 11, 19, 50, 61, 78, 114, 121de�nition, 2INT, 11reursion, 120routine, 57seletor, 90shielding, 120united, 87well-formed, 120mode delaration, 78mode delarations, 148, 156mode indiant, see mode, indiantmonadi, see operator, monadimonetary values, 149monitors, 152multiple, 19, 45at, 20, 49retangular, 21square, 21multipliation, 13mutual reursion, 72, 79name, 41, 42, 60, 112, 117, 133, 138anonymous, 141dynami, 52exible, 51, 137global, 149NE, 32NE, see /=nested, 29nesting, 15newline, 17, 52, 94, 96, 193newpage, 17, 52, 94, 96, 193next random, 175nibble, 129NIL, 107, 135, 138, 138nodes, 144NOT, 31, 128, 167, 171nul h, 165null harater, 165null string, 100objet ode, see odeourreneapplied, 63de�ning, 63ODD, 31, 167OF, 76on har error, 191on exit, 181on logial file end, 191on physial file end, 191on value error, 192OP, 61open, 93, 101

INDEX 245operand, 11, 12, 35, 61operating-system, 93operator, 11ombining, 11dyadi, 11, 15, 22, 31, 61, 64identi�ation, 64exponentiation, see **mixed modes, 15mode, 61modulo, 14monadi, 11, 15, 22, 61priority, 61, 64symbol, 61, 64, 66value, 61yield, 61optimisation, 27, 48, 141ode, 151OR, 31, 33, 37, 128, 166, 167, 172order of elaboration, see elaboration, order of 15order of modes, 87ordering operators, 33OREL, 37orthogonality, 1, 122OUSE, 39OUT, 38OUT CASE, 39OUT lause, 38OVER, 14, 166, 168OVERAB, 44, 166, 174overowarithmeti, 153integer, 12overlapping multiples, see multiplesoverloading, 62, 66parallellause, see lauseproessing, 4parameter, 17, 51, 57atual, 57, 59, 65, 69formal, 57, 59, 60, 64, 65, 70list, 69proedure, 71parentheses, 15, 20, 34, 38, 69, 77, 116, 117, 135nesting of, 15PDESC, 177phrase, 4, 5, 7, 26, 28, 34, 59, 107, 122physial �le end, 97pi, 6, 164plain value, see value, plainPLUS, 166PLUSAB, 44, 51, 80, 166, 173PLUSTO, 51, 166, 173P�olya, George, 147primary, 116, 117primitive onepts, 122priniple of value integrity, 44print, 7, 17, 24, 25, 31, 49, 51, 87, 89, 91, 96,188

PRIO, 64, 166priority, 13, 14, 15, 24, 25, 31, 32, 33, 44problem analysis, 147problem solving, 147PROC, 66proedure, 66, 148, 149all, 67, 69, 115identi�er, 71interfae, 149mode, 66multiple, 73name, 73nesting, 73, 74parameterless, 68parameters, 69reursive, 143yield, 68PROGRAM, 26, 177program, 6design, 147doumentation, 153layout, 148maintenane, 147running, 7struture, 4, 6programming, 147pseudo-operator, 36put, 96, 103, 188put bin, 103put possible, 190quaternary, 135QUEUE, 138queue proedures, 141queues, 137, 143quote, see

