
The main features of CPL

By D. W. Barron, J. N. Buxton, D. F. Hartley, E. Nixon and C. Strachey

The paper provides an informal account of CPL, a new programming language currently being
implemented for the Titan at Cambridge and the Atlas at London University. CPL is based on,
and contains the concepts of, ALGOL 60. In addition there are extended data descriptions,
command and expression structures, provision for manipulating non-numerical objects, and
comprehensive input-output facilities. However, CPL is not just another proposal for the
extension of ALGOL 60, but has been designed from first principles and has a logically coherent
structure.

1. Introduction
This paper provides an informal description of the main
features of CPL, a programming language developed
jointly by members of the University Mathematical
Laboratory, Cambridge, and the University of London
Computer Unit. (CPL is mnemonic for Combined
Programming Language.) The object in developing
CPL was to produce a language which could be used for
all types of problem, numerical and non-numerical, and
would allow programmers to exploit all the facilities
of a large and powerful computer without having to
"escape" into machine code.

CPL is to a large extent based on ALGOL 60 (a
knowledge of which is assumed), and we readily acknow-
ledge our debt to the authors of the ALGOL Report
(Naur, 1963). The publication of this report marked a
turning point in the development of programming lan-
guages, since it concentrated attention on, and to a large
extent solved, the problems of unambiguously denning
a computational process or algorithm. Unfortunately,
in the present state of development of computers, a
precise definition of an algorithm is not equivalent to a
computer program for the performing of that process.
An example of this difference is in the precision of
arithmetic operations; an algorithm assumes that all
operations are carried out to a sufficient precision,
whereas the actual computer program must specify for
each operation whether it is to be done single length,
double length, etc. For this reason ALGOL 60 is not
entirely satisfactory as a programming language, and in
CPL we have endeavoured to produce a language which
allows the programmer to retain contact, where it is
necessary, with the realities of an actual computer; we
have also extended the forms of data description to
allow manipulation of a variety of non-numerical objects.
The result is a language which is machine-independent,
but is oriented towards actual computers. There are
some points in the language at which account must be
taken of the actual object machine on which programs
will run, and here we have had in mind the machines on
which CPL will first be implemented, the Atlas at
London, and the Titan at Cambridge. In those features
which affect the language (e.g. word length and arith-
metic facilities) these two machines are identical, and

we shall therefore refer subsequently to the Atlas imple-
mentations, without distinguishing the two. During the
development of CPL various general principles have
evolved, and as these have been recognized the language
has been refined to conform to them, with the result
that it forms (we hope) a logically coherent and unified
structure, with a minimum of ad hoc rules. One
important principle that has guided us is the essential
unimportance of syntax. By this we mean that although
the syntax of the language is of great importance to the
user and to those who construct compilers, it is of little
importance whilst the content of the language is being
determined. To put it less formally, one should decide
what one wants to say before deciding how to say it.
Following this principle, the present paper is devoted to
a semantic account of the main features of CPL; it does
not pretend to be complete, nor should the examples be
regarded as precise definitions of the syntax. A definitive
description of the language, with formal syntax, is in
preparation and will be published later.

2. Structure of a CPL program
A CPL program is made up of definitions and com-

mands. The definitions may be regarded as instructions
to associate certain names with data items, data
structures, functions, or process descriptions. The
commands may be regarded as instructions to perform
some evaluation and/or some rearrangement of the
information held in the computer. Programs are divided
into subsections called blocks; in the simplest case a
block consists of a series of definitions which are
activated simultaneously, followed by a series of com-
mands which are executed in sequence (unless a command
specifies a change of sequence). Blocks may be nested
within other blocks. This type of block will be familiar
from ALGOL; the greater power and flexibility of the
CPL block is described in Section 20.

Definitions and commands are made up of expressions.
Much of the power of CPL comes from the number of
different kinds of expression, and the ways in which
they can be combined; in this the language exemplifies
the trend towards more complicated expressions
embodied in a very few basic command forms.

134

Main features of CPL

3. Items and types
The CPL programming language is concerned with

the handling of basic items of information of various
types. The items most often encountered are numbers:
these may be of the types real, integer, and complex.
An item of the type real is a real number held to the
precision and within the range permitted by any parti-
cular implementation of the language, an item of tync
integer is an integer within the permitted range, and a
complex item is an ordered pair of real items. These
numerical items may be held to double the standard
precision.

Type integer is a machine-dependent facility. In the
Atlas implementations the type integer will be held in
the same internal representation as real, and arithmetic
expressions involving integers will be evaluated as though
they were real, an appropriate rounding function being
invoked on assignment to an integer. An index variable
is an integer within the range that can be handled in the
B-registers (index registers) of the object machine: it is
introduced to speed up some indexing operations.
Double-precision working and complex arithmetic may
not be implemented in the first compilers.

The non-numerical types include Boolean, logical, long
logical, string and label. A Boolean item is a truth-
value, a logical item is a binary pattern of the size per-
mitted by the implementation (24 bits on Atlas), and a
long logical item is a similar binary pattern to be used
where relevant to the implementation (i.e. 48 bits on
Atlas). A string item is a sequence of symbols from the
CPL alphabet, and a label item is a command label as
defined below in Section 13.

There is also a type general which designates an item
whose type is not fixed and may, therefore, vary at run
time. Further types may be introduced in later versions
of CPL.

4. Names
The items of information which a CPL program

handles are identified by names, which all obey the same
rules. There are two kinds of name, large and small,
and either kind may be used for any purpose.

A small name is a single lower-case letter, possibly
followed by one or more primes, x, y', y" are small
names.

A large name is an upper-case letter, possibly followed
by a string of letters and digits, possibly followed by
one or more primes. A, Ab3C, ABC are large names.
A large name which is not ended by one or more primes
must be followed by

(i) any printed character other than a letter or digit

or (ii) a space or newline

or (iii) an underlined letter or digit.

As in ALGOL, underlined words* are basic symbols

* For typographical reasons bold type is used in printed docu-
ments and is synonymous with underlined words in handwritten
or typewritten documents.

of the language, and underlined letters and digits only
occur in this context (except in strings): no distinction
is made between upper and lower-case letters in under-
lined words.

5. Constants
In addition to variables known by names, constants

may appear in the language. Numerical constants may
be written in any of the usual forms, using the decimal
notation. 59, +8-76, —O-351O—15 are numerical
constants.

Logical constants are bit patterns expressed in binary
or octal form as indicated by a preceding 2 or 8. The
pattern is assumed to be right justified; however, it may
be shown to be justified from the left or right by the
presence of a bar on the left or right of the constant.
Examples of logical constants are:

8 777 8155 2 111000

Boolean constants are the basic symbols true and false.
A string constant is represented by a sequence of symbols
enclosed in string quotes: ' and '. The symbols are
those that can be contained in a single print position
on the paper including spaces, with a special notation
for specifying Newline, Tab, etc.

6. Expressions
There are two possible modes of evaluation of an

expression in CPL, known as the left-hand (LH) and
right-hand (RH) modes. All expressions can be evaluated
in RH mode, but only certain kinds of expression are
meaningful in LH mode. When evaluated in RH mode
an expression is regarded as being a rule for the com-
putation of a value (the RH value). When evaluated
in LH mode an expression effectively gives an address
(the LH value): the significance of this is discussed further
in Section 8.

7. Numerical expressions
A numerical expression yields a rule for the computa-

tion of a numerical value. It is constructed from con-
stants and variables which may be of mixed numerical
types, joined by the customary arithmetic operators.
Multiplication may be expressed implicitly and paren-
theses are used in the normal way. Note that a large
name must be terminated by at least one space if followed
by another name or constant, and the two are not
separated by an operator.

The following precedence rules apply. The operators
x , /, -r- and f are of equal precedence and associate
from right to left. Hence the expression

is equivalent to
able f de

The infixed operators + and — are the less binding and
associate from left to right.

135

Main features of CPL

When + and — are prefixed (i.e. monadic) they are
treated as if replaced by (+1) and (—1) respectively
(hence they have the precedence of a multiplication and
associate to the right). Prefixed + and — are all those
which do not occur immediately after a name, constant
or closing bracket.

Thus the expression

a/bc -d+efl-g^ -h
is equivalent to

or

(a/(bc) -d) + (e(f/(-(g f (-*)))))

ef
be 7

—g

This system of precedence rules and association rules
has been adopted because it seems to lead to close
correspondence, in most cases, between the meaning of
an expression as interpreted by the CPL rules and its
interpretation by a mathematician when read on the
paper. This is most easily seen in the case of terms such
as a/bc.

The following are examples of numerical expressions:

b t 2 - Aac
Second \ 2-0 — 4 First Third
Par I x Par! — Par I X Par3

Variables of different numerical types may be mixed
freely in numerical expressions, and the apparent type
of any constant introduced does not affect the type of
arithmetic carried out. The arithmetic in which an
expression is evaluated is a function of the types and
precisions of the terms in the expression. The meaning
of each operator is dependent on the operands which it
relates. The precision is the highest precision of the
operands", and the type is the highest type as given by
the following hierarchy:

complex
real
integer

• index

Suitable transfer functions are inserted automatically
as required by these rules.

Occasionally one may wish to circumvent these rules,
for example when multiplying two single-precision
numbers to obtain a double-length result. In these cir-
cumstances the special operators plus, minus and mult
may be used; their effect is to produce a result whose
precision is greater than the precision of the operands.

8. Left-hand expressions and assignment commands
An expression which is evaluable in LH mode produces

as part of the result of evaluation an address (or a refer-
ence to some member of a data structure). The simplest
possible expression evaluable in LH mode is, therefore,
a variable name-

An assignment command is an instruction to the
computing system to assign, to the "address" specified
by the LH value of the left-hand side, the value obtained
from evaluating the RH value of the right-hand side.
A simple example is

x := yx

Any expression which can be evaluated in LH mode
is meaningful on the left-hand side of an assignment
command.

9. Boolean and logical expressions and assignment
commands
Expressions may be built up from Boolean variables,

parentheses, constants and the following operators (in
descending order of binding power).

~
A
V

imp

(not)
(and)
(or)

(implies)

The infixed operators associate from left to right.
A Boolean expression yields a rule for obtaining a

Boolean value. A Boolean assignment command is an
instruction to the computing system to assign to the
(Boolean) variable specified by the left-hand side expres-
sion the (Boolean) value specified by the right-hand side
expression.

An arithmetic relation is a pair of arithmetic
expressions separated by one of the relational operators
< < = 7̂ > > . It is in fact a Boolean expression
having the value true or false and may occur as a term
in Boolean expressions.

An extended arithmetic relation is introduced; for
example, a relation such as

a< b < c

is interpreted as (a < b) f\ (b < c)

Logical expressions and assignment commands have
the same appearance as their Boolean counterparts and
in fact have identical syntax, with the exception that
arithmetic relations cannot be introduced. Their
meaning, however, is concerned with manipulation of the
bit-patterns which are the logical values. For example,
if a, b, c are logical variables, the command

a := b A c

means: assign to the variable a the bit-pattern which
has 1-bits wherever the corresponding positions of b and c
both have 1-bits, and which has O-bits in all other
positions.

10. Conditional expressions
Any type of expression described above may be

conditional. The form adopted for such expressions is

136

Main features of CPL

where B denotes a Boolean expression, and E{ and £2
are expressions which may themselves be conditional.
If B is true, the value of the expression is the value of
£,; if B is false then it is the value of E2. Conditional
expressions of a more elaborate form are possible:

B, E2, • • • Bn -*• En, En + 1
In this case the Boolean components aie evaluated from
left to right until a true one is found, and the following
expression is taken as the value of the whole expression.
The value of En+l is taken if none of the Boolean
components is true.

Normally the types of the expression components will
be the same, but this is not mandatory. A conditional
expression may be written as part of a larger expression
by enclosing it in round brackets.

11. Compound commands, blocks and simple definitions
A sequence of commands may be grouped, by enclos-

ing them within the section brackets § and §, to form a
compound command, the whole then being equivalent to,
and a syntactically valid replacement for, a single
command.

A block consists of one or more definitions followed
by one or more commands, the whole being enclosed
within section brackets. Its principal purpose is to
introduce a new level of nomenclature as in ALGOL.
Blocks may be nested in the ALGOL manner.

The most elementary form of definition which exists
in the language is the definition of simple variables. This
takes the form of type followed by a list of names. Thus,
the definitions

real a, b, c; index JC; logical Mask

at the start of a block will define real variables a, b and c,
index variable x and a logical variable Mask, the scope
of these being the body of the block.

A pair of matching section brackets may be identified
by adding a sequence of letters, digits and decimal points,
e.g.

§1.2.1 . . .§1.2.1

If compound commands are nested, then a closing
section bracket of this form automatically terminates
any compound commands opened between it and its
matching opening section bracket. Section brackets
are also used in other contexts (see Section 20 below),
and the above method of identification is useful for
distinguishing one set from another.

12. Initialized definitions
The concept of an initialized definition is introduced

in CPL. One of the three possible forms which this
may take is 'initialization by value'; by this means,
when a variable is defined, it may be assigned an initial
value obtained by evaluating an expression (names
occurring in this expression are global to the definition).

For example

realz= \5A - 37-2
index x = 128; logical Mask = 8 77707

Note that in these definitions A is a global variable
which must have had a value assigned to it prior to this
definition.

In ALGOL 60 a block may only be entered at its head.
In CPL a block may be labelled, and then a transfer
may be made to any labelled command in the block
(the way in which this is expressed is given in the next
Section); the effect is that the definitions and declarations
(see Section 20) at the heads of any blocks entered are
activated before the transfer into the body of an inner
block becomes effective.

13. Labels, designational expressions, and transfer
commands

Any command or block may be labelled by a name.
A designational expression is a rule for finding such a
label; a simple expression may consist of a label or of a
variable of type label, whose value is a label. Such an
expression may occur on the right-hand side of an
assignment command whose left-hand side specifies a
label variable, or in a transfer command.

The main uses for label variables are in the setting of
links and switches. For example, a switch could be set
up by the initialized definition

label Switch = x < 0 -» Li, L2

Then, the transfer command

go to Switch

will cause a transfer of control to one of the commands
labelled LI or LI dependent on the value of x when the
switch was defined.

The value of a label variable is a label, together with
the name of the block in which the label is defined.
Normally, a label is only used in this scope, but if it is
desired to refer to a label outside its scope, as for example
when jumping into the middle of a block, the label of
the block must be prefixed to the label, thus: B at L.
When control is transferred into the middle of a block
from outside, the definitions and declarations at the
head of the block are activated before any commands
in the block are executed.

14. Conditional commands
There are three forms of conditional command:

if <Boolean expression) then do <command> *
unless < Boolean expression) then do <command>

test <Boolean expression) then do <command>
or do <command>

* It is assumed that the reader is familiar with this notation for
expressing syntactic forms, which is used in the ALGOL Report.

137

Main features of CPL

The if command is similar to the ALGOL form, while
the unless command is equivalent to if not . . . The test
command gives the facilities of the ALGOL i f . . . then
. . . else, but it avoids ambiguity when the then do is
followed by a conditional command, since the or do
followed by a command is mandatory. Thus there is
no restriction on the form of the commands following
the symbols then do and or do: either may be conditional.

15. Cycles
The purpose of a cycle command is to organize the

repetition of a command (usually compound) called the
body, a certain number of times. The repetition may be
for an indefinite number of times, controlled "by a
Boolean expression:

while <Boolean expression) do (command)
until (Boolean expression) do (command)

These commands will cause repetition of the body for
as many times as the Boolean expression remains true
or false respectively. If on entry the value is otherwise,
no activation of the controlled command occurs. The
forms

(command) repeat while (Boolean expression)
(command) repeat until (Boolean expression)

cause at least one activation of the controlled command,
which is the shortest command that can be found
scanning backwards from the repeat.

The third type of cycle command is the for command,
in which a precise specification is given of the number
of repetitions and the values of a controlled variable.
The controlled variable values may be given as an explicit
list:

for v — 1,3, 6, 10 do (command)

or by any list expression (see Section 23) which defines
a group of values. The specification of the controlled
variable and the list of values are similar to an initialized
definition, so that in the above example, v is a variable
whose scope is the body of the for command. A parti-
cularly useful list expression is

step Ei, E2, E3

where Eu E2, E3 are numerical expressions. Thus

for v = step Eu E2, E3

is similar to the ALGOL

for v : = Et step E2 until E3

The for list may be made up by concatenation, e.g.

for v = step 0, 1, 10 then step 40, 2, 60

During execution of the for body, the controlled
variable may be altered by assignments to it. Regardless
of such changes, on entry to the next repetition the
controlled variable will be set to the next value in the
correct repetition sequence.

Values in the for list are given by expressions of a type
corresponding to the controlled variable. Any such
expressions are notionally evaluated on entry to the for
command.

The body of a for command may be regarded as
resembling the body of a block, with the repetition
definition playing the same role as the initialized defini-
tions at the head of a block. Transfers into the body are
therefore allowed in the same way as transfers into a
block; all expressions in the repetition description are
evaluated, and the controlled vaiiable is set to the first
value of the repetition list before the transfer becomes
effective.

16. Other forms of initialization
We have already introduced one form of initialization

for variable definitions. This is characterized by the
' = ' sign and denotes initialization by value. There are
two other forms: 'by reference' (denoted by ~) and 'by
substitution' (denoted by =).

When a variable is initialized by reference its LH
value is set to be the LH value of the right-hand expres-
sion. For example, if A is a one-dimensional array
(see Section 22),. the definition

real x ~ A [i]

makes x equivalent to the variable A[i'] where /' is the
value of / at the moment of definition. Thus, the value
of x is the value of A[i'] and an assignment to x is an
assignment to A[i']. Clearly, the right-hand side
expression must yield an LH value.

Initialization by substitution denotes that a variable
is equivalent to the right-hand side expression, which
must be evaluated afresh each time the variable is used.
Thus

real x = a + b

essentially means that (a + b) must be substituted for
each occurrence of x. Also

real y = A[i]

makes the value of y the same as the value of A[i], and
thus, as / changes during the program, then so does the
LH value of y.

17. Function definitions and calls
Functions are used in CPL to specify, in complicated

ways, the computation of a value. Examples of a
function definition are

function F [x, y] = ax f 2 + 2bxy + cy \2
index function G [index /, j] = /(/ — l)+j'(j — 1)

The left-hand side of the definition gives the name of the
function and a list of formal parameters, and the right-
hand side is an expression. The type of the result of
the function may also be written on the left-hand side,
otherwise this takes the type of the right-hand side
expression. The formal parameters may have type

138

Main features of CPL

specifiers: in their absence, a parameter has the type of
the previous one. If the first parameter in the list is
unspecified then it is understood to be real. Parameters
of type routine in general are not allowed, since functions
cannot have side effects (routines are discussed in
Section 19 below).

r . function call consists of the function name followed
by a Lst of actual parameters enclosed in square brackets.
If these do not correspond in type to the corresponding
formal parameters in the definition of the function,
suitable transfer functions are inserted if this is possible.
All actual parameters may be expressions; all actual
parameters are evaluated at the moment of call.

A function call is a call for the computation of a ^alue,
the rules of computation being defined by the expression
on the right-hand side of the definition. As such it
may be useo. as a primary in expressions of suitable type,
thus:

3p f 2 +f[p, q] - 3f[q, (3/71 2-4 - g)]

The treatment of non-formal parameters occurring in
the definition is controlled by the sign which separates
the left- and right-hand sides of the definition. If this is
= as in the above examples, the values of non-formals
are taken at the time of declaration; if the sign is = ,
they are evaluated at the time of call. In effect, the
connecting sign specifies the initialization method to be
applied to the non-formal parameters, and a function
definition may be regarded as another kind of
initialization procedure.

In addition to single values, the results of functions
may be lists, arrays (see later) and functions themselves,
but not routines.

18. "Result of" expressions
These provide a means of forming an expression from

a compound command or block. The body must
contain an assignment to the special variable result, and
the value assigned is the value of the whole expression.
Other local variables may be defined, and the body may
not contain operations, such as assignments to non-local
variables, which would cause side effects.

The form of a result of expression is shown in the
example below.

x : = result of §real/?;p :=yy — z; result := Sin[p] — pp§

A frequent use of result of expressions is in the right-
hand sides of function definitions. This notation was
first suggested by P. J. Landin; it is described in Strachey
and Wilkes (1961).

19. Routine definitions and calls
A routine is a way of defining for frequent use a

complicated piece of program which may produce many
results. An example of a routine definition is

routine Work [real a, b, c, index d, label e]
value a, e; ref c; subst b, d

{command)

The formal parameter list and specifications take the
same form as in function definitions, except that para-
meters of type routine may be included. In addition to
the types of the formal parameters, it is also necessary
to specify the way in which each parameter is to be called.
Three modes of parameter call are possible: call by
value (which is equivalent to the ALGOL call by value),
call by substitution (equivalent to ALGOL call by name),
and call by reference. In the latter case, the LH value
of the actual parameter is handed over: this corresponds
to the "call by simple name" suggested by Strachey and
Wilkes (1961). Note the correspondence to the three
kinds of initialization.

As the definition takes the form of a command (which
may be compound), a routine call is a command
consisting of the routine name and an actual parameter
list:

Work [p, q, r, s, t]

20. Scopes, definitions, and declarations
In the ALGOL block, the declarations at the head of

the block are regarded as being performed simultaneously
on entry to the block, and the scope of the declared items
is the body of the block. A more sophisticated system
has been introduced in CPL to cope with initialized
definitions and with complicated recursive definitions.

A series of definitions may be grouped into a declaration
by enclosing them within section brackets thus:

dec § real x, y; index p = 4; logical L = 8 174 §

The definitions thus grouped are regarded as being
activated simultaneously. A block head may contain
several such declaration paragraphs, in which case the
paragraphs are activated sequentially. Isolated defini-
tions which are not grouped are treated as if contained
within brackets; that is, as a declaration.

The scope of the items defined in a declaration is the
body of the block as in ALGOL, but in addition it
includes all subsequent declarations in the block head.
If a definition or compound definition is preceded by
the symbol rec, this scope is further extended to include
any right-hand sides and routine bodies of the definition.

21. The "where" clause
The where clause provides a means of adding local

definitions to commands and expressions, for example

p : = ax f 2 + bx + cjx where x = la f 2 + b

A where clause following a command qualifies the
largest immediately preceding command, and its body is
obeyed before the command is obeyed. Otherwise a
where clause qualifies the largest preceding expression,
and is obeyed before this expression is evaluated.

By its use actual parameters for a function or routine
call may be declared local to a call; e.g.

Quad [a, b, F] where F[x] = G[x, y]

139

Main features of CPL
Where clauses may themselves be modified by other

where clauses, and more than one definition may be made
using the construction

w h e r e § . . . ; . . . §

The where clause essentially gives the facilities of the
Lambda calculus (Church, 1941) and has been derived
from the Auxiliary Equations feature of the GENIE
language (Iliffe, 1961).

22. Arrays
An array in CPL is basically similar to an array in

ALGOL: a multidimensional array of items of the same
type. Individual members are addressed by the array
name followed by a subscript list enclosed in square
brackets, and can be used throughout the language in
the same way as simple variables.

However, to permit the handling of non-rectangular
arrays, the method of defining and forming arrays is
new. The essential feature is in the way storage for
arrays is created, which is in the form of a function
rather than as part of a declaration. Array variables
are defined in a similar way to simple variables, the
definition giving the dimensionality and type of element,
but not the bounds; for example

real 2 array A

defines a matrix of real elements. Storage for this
matrix may be created by a built-in function in the
following manner

Array [real, (1,10), (1,12)]

Thus, the result of this function, which is an array
expression, may be assigned to an array variable, either
by an assignment command or by an initialized
definition. In the latter case, the notation can be
shortened so that an array definition might be

A = Array [real, (1, 10), (1, 12)]

The symbols vector and matrix are synonyms for
1 array and 2 array respectively. At present the only
forms of array expression are array variables, or func-
tions whose results are arrays; later, it is hoped to
introduce more complicated forms, e.g. direct matrix
operations.

23. Lists
A list is a data structure consisting of an ordered

group of members, similar in many respects to those
of the LISP system (McCarthy, 1960). The group is
dynamically variable in length and consists of items
each of which is a single LH value. A list variable has a
single LH value, and hence any element of a list may
itself be a list. A list variable may be defined (and
initialized) as follows

list L = a,b,c

This defines a list L with three elements; these elements

are the LH values of copies of the RH values of a, b and c.
The right-hand side of this definition is an explicit list,
a form which occurs at many places in the CPL language.
An explicit list is written as a sequence of expressions
(including list expressions) separated by commas, and
brackets may be used to convert an explicit list into a
list expression. For example

a, b,c,(d, e,f),g, h

is an explicit list of six members, of which one (the
fourth) is a list of three members. An explicit list may
always be written in place of a list expression unless this
occurs as part of a larger list expression.

The symbol then is an infixed list-forming operator
whose arguments are lists. It is more binding than a
comma (which is also an infixed list-forming operator),
and it concatenates the arguments. List structures may
be assigned to list variables by assignment commands.

In order to specify the members of a list individually,
a transfer function is provided which converts a list
expression into an explicit list:

Members [<list expression)]

24. Simultaneous assignment commands
The general form of an assignment command can now

be given. Normally this is an expression yielding an
LH value, followed by :=, followed by an expression
yielding an RH value. However, if an explicit list is
written on the left-hand side then the right-hand side is
either an explicit list, or a list expression; in the latter
case the transfer function Members is automatically
invoked. In this form the two explicit lists must contain
the same number of members, and the command denotes
a simultaneous assignment of each right-hand member
to the corresponding left-hand member. Thus, if L is a
list variable and a, b, c are real variables,

L :— a, b, c

is an assignment to the list variable, while
a, b, c :— L

a, b := b,a

are simultaneous assignments.
When an assignment is made to an item of type

general, the type of the right-hand expression is assigned,
as well as the value. A special form of assignment
command permits either an explicit list or an array
variable on the left-hand side, and a single-valued
expression on the right. In this case, the command
must start with the symbol all to show that the value
of the right-hand side expression is to be assigned to
each member of the explicit list or to each element of
the array. For example

real a, b, c; real vector A
all a, b,c := 0
A := Array [real, (0, n — 1)]
all A := 0

140

Main features of CPL

25. Input and output
Input and output depend to some extent on the object

machine and, in the case of the Atlas implementations,
on the operating system. The following is only an
outline of the facilities provided.

There are in CPL two complementary input-output
schemes; one based on routines for reading and writing
data items in a conventional manner, the other based
on the reading and writing of files. The former scheme
provides the facilities normally found in a "scientific"
language, whereas the latter scheme resembles the input-
output mechanism of a "commercial" language such as
COBOL. The file input-out scheme is described in
Section 27; the remainder of the present Section is
devoted to the simpler scheme, which is adequate for
any problem, which does not involve a large amount of
input or output.

25.1 Input and output streams
A program is regarded as processing data arriving in

one or more input streams, and producing results in
one or more output streams. In principle there can be
any number of streams, though in practice there will be
a limitation imposed by the object machine. The
streams are identified by numbers, and the current
stream is selected by the built-in routines Input and
Output; thus the command

Input [3]

selects stream 3 for subsequent input operations, and
this selection is maintained until another stream-
selecting command is obeyed. Two functions, Source
and Destination, provide a means for the program to
discover which input or output stream is currently
selected. (In the Atlas implementations the operating
system sets up the correspondence between stream
numbers and actual input or output devices.)

25.2 Routines for input
The basic routine for input of numbers is called Read.

It has as its formal parameter an explicit list; thus

Read [a, b, c, A[i]]

will read the next four items from the currently selected
stream and assign them to the variables named.
Appropriate transfer functions are invoked if the
command calls for the input of an index or integer
variable. Logical constants may be read, either by
preceding them on the input medium by the basic
symbols 2 or 8, or by using variants of the Read routine
called Read 2 and Read 8. Obviously the corresponding
items in the parameter list must be logical or long logical
variables. By using an explicit list as the formal para-
meter we obtain a routine with an apparently variable
number of actual parameters, thus avoiding the diffi-
culties of the KDF9 ALGOL Input-Output scheme
(Duncan, 1963).

In the simplest form of the Read routine, numbers

are assumed to appear in the input medium in a standard
format, terminated by end-of-line or multiple space,
and there is an error print if any characters are
encountered which are out of context for the data type
being read. However, if it is desired to read numbers
punched in a non-standard format, traps can be specified
in the Read loutine parameter list; these send control
to specified labels when particular characters are
encountered.

Besides reading numbers it is necessary to be able to
read single characters from paper tape, or single columns
from a punched card. This is accomplished by the
routine Readsymbol, which has an explicit list as its
formal parameter. The variables making up the actual
parameter list may be index, logical or long logical
variables. (It is natural to read a symbol as an index
if it is to be translated by table look-up.) Symbols
read by this routine are removed from the input stream;
thus it is analagous to "read tape and advance the
reader." When permitted by the facilities available on
the object machine, there are two useful variants of
Readsymbol. These are the functions Nextsymbol and
Lastsymbol. Nextsymbol produces as its value the next
symbol in the stream, without removing it from the
stream (which would be a side effect). Lastsymbol has as
its value the symbol which has just been read from the
stream; it is particularly useful in conjunction with the
trap facility in the number reading routine.

25.3 Routines for output
The structure of the output system parallels very

closely that for input: the routines provided are Write,
Write!, WriteS, and Writesymbol. Like the input
routines, these each have an explicit list as a formal
parameter. The Write routine includes in its parameter
list a format descriptor, and it is also possible to put out
text by writing a string constant in place of a variable
name in the parameter list.

The layout of results on the printed page can be
controlled by the routine

Layout [s, r, c]

which arranges the output of stream s in blocks of r
rows and c columns, or by use of the routines Space,
Tab and Newline.

26. Strings
String variables and constants have been mentioned

in previous Sections: their main purpose is to facilitate
the handling of textual information, mainly by the input
and output routines. However, string is a data type
and so it is permitted to have string arrays, string
functions, string parameters, and assignments to string
data items. A string expression can be made up from
string variables, constants, and function calls; there is one
infixed operator, then, which concatenates two strings.

The RH value of a string expression is a sequence of
symbols. Built-in functions are provided for more

141

Main features of CPL

complex operations on these symbols, including con-
version to other data types.

27. Files

A file is a data structure which exists in the peripheral
environment of the computing system; it may be stored
on paper or magnetic tape, printed paper, or any other
input-output or long-term storage medium.

The formal properties of a file resemble those of a
list, in that its structure may be nested to many levels
and it may contain items of many types. However, the
structure of a file is fixed at definition time and may
not thereafter be changed. The types of data items in a
file are more numerous and complex than in the rest of
the language, since, for example, provision must be
made for holding numerical items with different numbers
of decimal characters.

Transfer of information to and from files is performed
by reading and writing routines which relate the next
group of items on the file to an explicit list of internal
data items, inserting the relevant transfer functions.
Precise specifications of these routines are currently
being formulated.

28. Conclusions
The arguments in favour of an ALGOL-like language

are overwhelming, and we have designed CPL in the
spirit of ALGOL. A programmer trained in CPL
should have no difficulty in learning ALGOL, and vice-
versa. However, having decided to develop a new
language there seemed little point in keeping to ALGOL
in small details unless there was nothing to choose
between CPL and ALGOL. In almost all cases where
CPL differs from ALGOL we believe that for the average
programmer there is some advantage in the CPL
approach. Clearly there is a good case for adhering to
a familiar concept in a programming language unless
its replacement by a new concept brings about a notice-
able improvement in consistency, clarity or expediency.
We have introduced changes from the "traditional
patterns only when, in our opinion, such an improvement
has resulted.

29. Examples
The following are examples of CPL function defini-

tions. Exp produces the exponential of a real number
by summing a power series, Fact 1 is a recursive function

for computing a factorial, while Fact! produces the
same result in a more conventional and efficient manner.
The function Euler comes from the ALGOL Report
(Naur, 1963).

function Exp\x] = result of

s, t, r :— s + t, tx/r, r + 1
repeat until / < 110 — 8
result : = s §

rec function Fact\[x] = (x = 0) -> 1, xFact\[x — 1]

function Fact2[x] = result of
§ r e a l / = 1

until x = 0 do
y; x : = xf, x —

result : = / §

function Euler [function Fct, real Eps; integer Tim]= result of
§1 dec §1.1 real Mn, Ds, Sum

integer /, t
index n=0
m = Array [real, (0, 15)] §1.1

i, /, m[0] := 0, 0, Fct[0]
Sum := m[0]/2
§1.2/ := «+ 1

Mn := Fct[i]
for k = step 0, 1, n do

m[k], Mn := Mn, (Mn + m[k])/2
ttstMod[Mn] < Mod[m[n]] A « < 15

then do Ds, n, m[n+l] := MM/2, n+1, Mn
or do Ds := Mn

Sum := Sum + Ds
t := (Mod[Ds] < Eps) -> t + 1, 0 §1.1

repeat while t < Tim
result := Sum §1.

142

Main features of CPL

References

CHURCH, A. (1941). The Calculi of Lambda-Conversion, Princeton University Press, Princeton, N.J.
DUNCAN, F. G. (1963). "Input and output for ALGOL 60 on KDF 9," The Computer Journal, Vol. 5, p. 341.
ILIFFE, J. K. (1961). "The use of the GENIE System in numerical calculation," Annual Review in Automatic Programming, Vol. 2,

Pergamon Press.
MCCARTHY, J. (1960). "Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I," Comm. A.C.M.,

Vol. 3, p. 184.
NAUR, P. (Ed.) (1963). "Revised Report on the Algorithmic Language ALGOL 60," The Computer Journal, Vol. 5, p. 349.
STRACHEY, C , and WILKES, M. V. (1961). "Some Proposals for Improving the Efficiency of ALGOL 60," Comm. A.C.M., Vol. 4,

p. 448.

Book Reviews

A Guide to ALGOL Programming, by DANIEL D. MCCRACKEN,
1962; 106 pages. (New York: John Wiley and Sons Inc.
London: John Wiley and Sons Ltd., 30s.)

This book is highly recommended for the person who wants
to get a rapid grasp of the use of a computer in the solution
of problems in science and engineering.

The first chapter is devoted to a general description of the
fields in which computers may be used, and the necessary
steps to be followed in solving a problem on a computer.
The notation of flow charts is introduced, and finally an
account of the origin and purpose of ALGOL 60 is given,
together with a brief explanation of the necessity for trans-
lation of ALGOL programs into machine code. The chapter
forms an excellent introduction to the subject of computing;
there remains only the minor criticism that the use of flow
charts is perhaps unnecessary in view of the elegance of the
conditional statements and for statements of ALGOL. In
fact, the later explanation of the relationship between flow
charts and ALGOL conditionals tends to obscure the greater
simplicity of the latter.

The' description of the ALGOL language given in subse-
quent chapters is exceptionally clear and thorough; but the
book offers far more than an account of the language. As
each new facility is introduced, its purpose is explained, and
practical advice is given on its proper use. This advice covers
points of program efficiency and the validity of the numerical
methods used. For example, the chapter on for statements
mentions the danger of testing for absolute convergence, and
suggests the proper method of testing for relative convergence;
it also encourages the removal of unnecessary calculations
from inner loops. Occasionally a warning is given that certain
translators may not accept the notation described, but insuffi-
cient notice is given in cases where facilities have been widely
rejected by implementors. In particular, the use of integer
labels should have been discouraged from the start.

An excellent feature of the book is the large number of
worked examples, each of which traces through all the stages
in the construction of a well-designed program. These
examples discuss and solve questions of problem analysis,
design of input and output, and the use of computer storage.
The exercises and their answers give further examples of the
reasoning needed in the construction of good programs, not
merely programs that work. After a study of this book,
many scientists and engineers should be competent to use a
computer for their own problems, with little or no assistance
from an experienced programmer.

C. A. R. HOARE.

Input Language for Automatic Programming Systems, by
A. P. YERSHOV, G. I. KOZHUKHIN, U. M. VOLOSHIN,
1963; 70 pages. (London: Academic Press, 35s.)

The spectre of ALGOL, which has haunted Europe since
1958, at last shows signs of being laid to rest. The third
volume of the A.P.I.C. Studies in Data Processing contains
a description of a source language designed in the Soviet
Union for mathematical procedure description. Though
ALGOL-like in some respects it departs sufficiently from the
spirit of the original to be counted as a new venture in auto-
matic programming.

The departure is away from pure sequential procedure
description towards mathematically convenient forms. In
an excellent introduction to the English edition, R. W.
Hockney summarizes the most significant of these, which I
will comment on here. First let it be said, however, that
what might be called the body of the book, consisting of a
sentence-by-sentence revision of the ALGOL 60 report, is
only "readable" in the sense of a work of reference to the
fine structure of the Input Language, so one could hardly
call this a work of value for anyone but- a specialist steeped
in ALGOL lore.

The first modification is in the use and definition of arrays.
Conventional matrix operations are permitted in expressions,
and a meaning is given to the less conventional forms which
can arise (though I think better use could have been made of
these varieties). Multi-dimensional arrays can be declared
in the usual way, but in addition the elements of an array
can themselves be declared to have an array form. New
arrays, moreover, can be formed by adding old ones "in
parallel" (increasing the dimensionality) or "in series"
(increasing the length in one dimension). Elaborate notations
are developed for referring to elements or sub-arrays. All
this seems very attractive for mathematical work, but there
is one unaccountable drawback, that an array must at all
times keep the shape of a hyper-rectangle. My experience
in using a scheme of this type is that its greatest use is in
representing a complete system of programs and data in an
array form, which is certainly much less regular than that
demanded by the Input Language. Using codeword tech-
niques (Iliffe and Jodeit, The Computer Journal Vol. 5,
p. 200) this facility is easily gained, and it has obvious appli-
cations in both mathematical and data-processing work.

One other significant departure is towards what might be
called initialized declarations, in which a value may be
assigned to a variable at the same time as it is declared. A
special case, a function-expression declaration, is included

[Continued on p. 168

143

