A History of Erlang

Joe Armstrong

Ericsson AB
joe.armstrong@ericsson.com

Abstract

Erlang was designed for writing concurrent programs that “run
forever.” Erlang uses concurrent processes to structure the program.
These processes have no shared memory and communicate by
asynchronous message passing. Erlang processes are lightweight
and belong to the language, not the operating system. Erlang has
mechanisms to allow programs to change code “on the fly” so that
programs can evolve and change as they run. These mechanisms
simplify the construction of software for implementing non-stop
systems.

This paper describes the history of Erlang. Material for the pa-
per comes from a number of different sources. These include per-
sonal recollections, discussions with colleagues, old newspaper ar-
ticles and scanned copies of Erlang manuals, photos and computer
listings and articles posted to Usenet mailing lists.

1. A History of Erlang
1.1 Introduction

Erlang was designed for writing concurrent programs that “run
forever.” Erlang uses concurrent processes to structure the program.
These processes have no shared memory and communicate by
asynchronous message passing. Erlang processes are lightweight
and belong to the language and not the operating system. Erlang has
mechanisms to allow programs to change code “on the fly” so that
programs can evolve and change as they run. These mechanisms
simplify the construction of software for implementing non-stop
systems.

The initial development of Erlang took place in 1986 at the Eric-
sson Computer Science Laboratory (the Lab). Erlang was designed
with a specific objective in mind: “to provide a better way of pro-
gramming telephony applications.” At the time telephony applica-
tions were atypical of the kind of problems that conventional pro-
gramming languages were designed to solve. Telephony applica-
tions are by their nature highly concurrent: a single switch must
handle tens or hundreds of thousands of simultaneous transactions.
Such transactions are intrinsically distributed and the software is
expected to be highly fault-tolerant. When the software that con-
trols telephones fails, newspapers write about it, something which
does not happen when a typical desktop application fails. Tele-
phony software must also be changed “on the fly,” that is, with-
out loss of service occurring in the application as code upgrade
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operations occur. Telephony software must also operate in the “soft
real-time” domain, with stringent timing requirements for some op-
erations, but with a more relaxed view of timing for other classes
of operation.

When Erlang started in 1986, requirements for virtually zero
down-time and for in-service upgrade were limited to rather small
and obscure problem domains. The rise in popularity of the Inter-
net and the need for non-interrupted availability of services has ex-
tended the class of problems that Erlang can solve. For example,
building a non-stop web server, with dynamic code upgrade, han-
dling millions of requests per day is very similar to building the
software to control a telephone exchange. So similar, that Erlang
and its environment provide a very attractive set of tools and li-
braries for building non-stop interactive distributed services.

From the start, Erlang was designed as a practical tool for
getting the job done—this job being to program basic telephony
services on a small telephone exchange in the Lab. Programming
this exchange drove the development of the language. Often new
features were introduced specifically to solve a particular problem
that I encountered when programming the exchange. Language
features that were not used were removed. This was such a rapid
process that many of the additions and removals from the language
were never recorded. Appendix A gives some idea of the rate at
which changes were made to the language. Today, things are much
more difficult to change; even the smallest of changes must be
discussed for months and millions of lines of code re-tested after
each change is made to the system.

This history is pieced together from a number of different
sources. Much of the broad details of the history are well doc-
umented in the thesis Concurrent Functional Programming for
Telecommunications: A Case Study for Technology Introduction
[12], written by the head of the Computer Science Lab, Bjarne
Dicker. This thesis describes the developments at the lab from
1984 to 2000, and I have taken several lengthy quotes from the
thesis. In 1994, Bjarne also wrote a more light-hearted paper [11]
to celebrate the tenth anniversary of the lab. Both these papers have
much useful information on dates, times and places that otherwise
would have been forgotten.

Many of the original documents describing Erlang were lost
years ago, but fortunately some have survived and parts of them
are reproduced here. Many things we take for granted today were
not self-evident to us twenty years ago, so I have tried to expose the
flow of ideas in the order they occurred and from the perspective of
the time at which they occurred. For comparison, I will also give
a modern interpretation or explanation of the language feature or
concept involved.

This history spans a twenty-year period during which a large
number of people have contributed to the Erlang system. I have
done my best to record accurately who did what and when. This is
not an easy task since often the people concerned didn’t write any
comments in their programs or otherwise record what they were
doing, so I hope I haven’t missed anybody out.



2. Part1: Pre-1985. Conception
2.1 Setting the scene

Erlang started in the Computer Science Laboratory at Ericsson
Telecom AB in 1986. In 1988, the Lab moved to a different com-
pany called Ellemtel in a south-west suburb of Stockholm. Ellemtel
was jointly owned by LM Ericsson and Televerket, the Swedish
PTT, and was the primary centre for the development of new
switching systems.

Ellemtel was also the place where Ericsson and Televerket
had jointly developed the AXE telephone exchange. The AXE,
which was first produced in 1974 and programmed in PLEX, was
a second-generation SPC' exchange which by the mid-1980s gen-
erated a large proportion of Ericsson’s profits.

Developing a new telephone exchange is a complex process
which involves the efforts of hundreds, even thousands of engi-
neers. Ellemtel was a huge melting pot of ideas that was supposed
to come up with new brilliant products that would repeat the suc-
cess of the AXE and generate profits for Ericsson and Televerket in
the years to come.

Initially, when the computer science lab moved to Ellemtel in
1988 it was to become part of a exciting new project to make a new
switch called AXE-N. For various reasons, this plan never really
worked out, so the Lab worked on a number of projects that were
not directly related to AXE-N. Throughout our time at Ellemtel,
there was a feeling of competition between the various projects
as they vied with each other on different technical solutions to
what was essentially the same problem. The competition between
the two groups almost certainly stimulated the development of
Erlang, but it also led to a number of technical “wars”—and the
consequences of these wars was probably to slow the acceptance of
Erlang in other parts of the company.

The earliest motivation for Erlang was “to make something like
PLEX, to run on ordinary hardware, only better.”

Erlang was heavily influenced by PLEX and the AXE design.
The AXE in turn was influenced by the earlier AKE exchange.
PLEX is a programming language developed by Géran Hemdahl at
Ericsson that was used to program AXE exchanges. The PLEX lan-
guage was intimately related to the AXE hardware, and cannot be
sensibly used for applications that do not run on AXE exchanges.
PLEX had a number of language features that corrected shortcom-
ings in the earlier AKE exchange.

In particular, some of the properties of the AXE/PLEX system
were viewed as mandatory. Firstly, it should be possible to change
code “on the fly;” in other words, code change operations should be
possible without stopping the system. The AKE was plagued with
“pointer” problems. The AKE system manipulated large numbers
of telephone calls in parallel. The memory requirements for each
call were variable and memory was allocated using linked lists and
pointer manipulation. This led to many errors. The design of the
AXE and PLEX used a mixture of hardware protection and data
copying that eliminated the use of pointers and corrected many of
the errors in the AKE. This in its turn was the inspiration of the
process and garbage-collected memory strategy used in Erlang.

At this stage it might be helpful to describe some of the charac-
teristics of the concurrency problems encountered in programming
a modern switching system. A switching system is made from a
number of individual switches. Individual switches typically handle
tens to hundreds of thousands of simultaneous calls. The switch-
ing system must be capable of handling millions of calls and must
tolerate the failure of individual switches, providing uninterrupted
services to the user. Usually the hardware and software is divided
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into two planes called the control and media planes. The control
plane is responsible for controlling the calls, the media plane is re-
sponsible for data transmission. When we talk in loose terms about
“telephony software” we mean the control-plane software.

Typically, the software for call control is modeled using finite
state machines that undergo state transitions in response to protocol
messages. From the software point of view, the system behaves
as a very large collection of parallel processes. At any point in
time, most of the processes are waiting for an event caused by the
reception of a message or the triggering of a timer. When an event
occurs, the process does a small amount of computation, changes
state, possibly sends messages to other processes and then waits for
the next event. The amount of computation involved is very small.

Any switching system must therefore handle hundreds of thou-
sands of very lightweight processes where each process performs
very little computation. In addition, software errors in one pro-
cess should not be able to crash the system or damage any other
processes in the system. One problem to be solved in any sys-
tem having very large numbers of processes is how to protect the
processes from memory corruption problems. In a language with
pointers, processes are protected from each other using memory-
management hardware and the granularity of the page tables sets a
lower limit to the memory size of a process. Erlang has no point-
ers and uses a garbage collectible memory, which means that it is
impossible for any process to corrupt the memory of another pro-
cess. It also means that the memory requirements for an individual
process can be very small and that all memory for all processes can
be in the same address space without needing memory protection
hardware.

It is important to note that in the AXE/PLEX system and in
Erlang, explicit processes are part of the programming language
itself and not part of the underlying operating system. There is a
sense in which both Erlang and PLEX do not need most of the
services of the underlying operating system since the language
itself provides both memory management and protection between
parallel processes. Other operating system services, like resource
allocation and device drivers needed to access the hardware, can
easily be written in C and dynamically linked into the Erlang run-
time system.

At the time Erlang was first implemented, the view that pro-
cesses were part of the language rather than the operating system
was not widely held (even today, it is a minority view). The only
languages having this view of the world that we were aware of at
that time were Ada (with tasks), EriPascal (an Ericsson dialect of
Pascal with concurrent processes), Chill (with processes), PLEX
(with its own special form of processes implemented in hardware)
and Euclid. When I first started working at Ericsson, I was intro-
duced to the Ericsson software culture by Mike Williams, who also
worked in the Lab. Mike had worked with concurrent systems for
many years, mostly in PL163, and it was he who hammered into my
brain the notion that three properties of a programming language
were central to the efficient operation of a concurrent language or
operating system. These were: 1) the time to create a process. 2) the
time to perform a context switch between two different processes
and 3) the time to copy a message between two processes. The per-
formance of any highly-concurrent system is dominated by these
three times.

The final key idea inherited from the AXE/PLEX culture was
that the failure of a process or of hardware should only influence the
immediate transaction involved and that all other operations in the
machine should progress as if no failures had occurred. An imme-
diate consequence of this on the Erlang design was to forbid dan-
gling pointers between different processes. Message passing had to
be implemented by copying message buffers between the memory
spaces of the different processes involved and not by passing point-



Handling a very large number of concurrent activities
Actions to be performed at a certain point of time or within
a certain time

Systems distributed over several computers

Interaction with hardware

Very large software systems

Complex functionality such as feature interaction
Continuous operation over several years

Software maintenance (reconfiguration, etc.) without
stopping the system

Stringent quality and reliability requirements

Fault tolerance both to hardware failures and software errors
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Table 1. Requirements of a programming language for telecom-
munication switching systems (from [12]).

ers to a common memory pool. At an early stage we rejected any
ideas of sharing resources between processes because of the diffi-
culties of error handling. In many circumstances, error recovery is
impossible if part of the data needed to perform the error recov-
ery is located on a remote machine and if that remote machine has
crashed. To avoid this situation and to simplify the process, we de-
cided that all processes must always have enough local information
to carry on running if something fails in another part of the sys-
tem. Programming with mutexes and shared resources was just too
difficult to get right in a distributed system when errors occurred.

In cases where consistency is required in distributed systems,
we do not encourage the programmer to use the low-level Erlang
language primitives but rather the library modules written in Er-
lang. The Erlang libraries provide components for building dis-
tributed systems. Such components include mnesia, which is a dis-
tributed real-time transaction database, and various libraries for
things like leadership election and transaction memories. Our ap-
proach was always not to hard-wire mechanisms into the language,
but rather to provide language primitives with which one could con-
struct the desired mechanisms. An example is the remote procedure
call. There is no remote procedure call primitive in Erlang, but a re-
mote procedure call can be easily made from the Erlang send and
receive primitives.

We rapidly adopted a philosophy of message passing by copy-
ing and no sharing of data resources. Again, this was counter to
the mood of the time, where threads and shared resources protected
by semaphores were the dominant way of programming concurrent
systems. Robert Virding and I always argued strongly against this
method of programming. I clearly remember attending several con-
ferences on distributed programming techniques where Robert and
I would take turns at asking the question “What happens if one of
the nodes crashes?”” The usual answer was that “the system won’t
work” or “our model assumes that there are no failures.” Since we
were interested in building highly reliable distributed systems that
should never stop, these were not very good answers.

In order to make systems reliable, we have to accept the extra
cost of copying data between processes and always making sure
that the processes have enough data to continue by themselves if
other processes crash.

2.2 Requirements, requirements, requirements ...

The AXE/PLEX heritage provided a set of requirements that any
new programming language for programming telecommunications
applications must have, as shown in Table 1.

These requirements were pretty typical. Existing systems solved
these problems in a number of ways, sometimes in the program-
ming language, sometimes in the operating systems and sometimes
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in application libraries. The goal of the Lab was to find better ways
of programming telecoms systems subject to such requirements.

Our method of solving these problems was to program POTS?
over and over again in a large number of different programming
languages and compare the results. This was done in a project
called SPOTS, (SPOTS stood for SPC for POTS). Later the project
changed name to DOTS (Distributed SPOTS) and then to LOTS,
“Lots of DOTS.” The results of the SPOTS project were published
in [10].

2.3 SPOTS, DOTS, LOTS

In 1985, when I joined the Lab, SPOTS had finished and DOTS
was starting. [ asked my boss Bjarne Dicker what I should do. He
just said “solve Ericsson’s software problem.” This seemed to me
at the time a quite reasonable request—though I now realise that it
was far more difficult than I had imagined. My first job was to join
the ongoing DOTS experiment.

Our lab was fortunate in possessing a telephone exchange (an
Ericsson MD110 PABX) that Per Hedeland had modified so that
it could be controlled from a VAX11/750. We were also lucky in
being the first group of people in the company to get our hands
on a UNIX operating system, which we ran on the VAX. What we
were supposed to do was “to find better ways of programming tele-
phony” (a laudable aim for the members of the computer science
lab of a telecommunications company). This we interpreted rather
liberally as “program basic telephony in every language that will
run on our Unix system and compare the results.” This gave us am-
ple opportunities to a) learn new programming languages, b) play
with Unix and c¢) make the phones ring.

In our experiments, we programmed POTS in a number of
different languages, the only requirement being that the language
had to run on 4.2 BSD UNIX on the Vax 11/750. The languages
tried in the SPOTS project were Ada, Concurrent Euclid, PFL,
LPLO, Frames and CLU.

Much of what took place in the POTS project set the scene for
what would become Erlang, so it is interesting to recall some of the
conclusions from the SPOTS paper. This paper did not come down
heavily in favour of any particular style of programming, though it
did have certain preferences:

e “small languages” were thought desirable:
“Large languages present many problems (in implementation,
training etc) and if a small language can describe the application
succinctly it will be preferable.”

Functional programming was liked, but with the comment:

“The absence of variables which are updated means that the ex-
change database has to be passed around as function arguments
which is a bit awkward.”

Logic programming was best in terms of elegance:

“Logic programming and the rule-based system gave the most
unusual new approach to the problem with elegant solutions to
some aspects of the problem.”

Concurrency was viewed as essential for this type of problem,
but:

“Adding concurrency to declarative languages, rule-based sys-
tems and the object based system is an open field for research.”

At this time, our experience with declarative languages was lim-
ited to PFL and LPLO, both developed in Sweden. PFL [17] came
from the Programming Methodology Group at Chalmers Technical
University in Gothenburg and was a version of ML extended with

2 Plain Ordinary Telephone Service.



primitives borrowed from CCS. LPLO [28] came from the Swedish
Institute of Computer Science and was a logic language based on
Haridi’s natural deduction [15].

Looking back at the SPOTS paper, it is interesting to note
what we weren’t interested in—there is no mention in the paper
of dealing with failure or providing fault-tolerance, there is no
mention of changing the system as it is running or of how to make
systems that scale dynamically. My own contribution to LOTS was
to program POTS. This I did first in Smalltalk and then in Prolog.
This was fairly sensible at the time, since I liberally interpreted
Bjarne’s directive to “solve all of Ericsson’s software problems” as
“program POTS in Smalltalk.”

3. Part II: 1985 — 1988. The birth of Erlang
3.1 Early experiments

My first attempts to make the phones ring was programmed in
Smalltalk. I made a model with phone objects and an exchange
object. If I sent a ring message to a phone it was supposed to ring.
If the phone A went off-hook it was supposed to send an (offHook,
A) message to the exchange. If the user of phone A dialled some
digit D, then a (digit, A, D) message would be sent to the exchange.

Alongside the Smalltalk implementation, I developed a simple
graphic notation that could be used to describe basic telephony.
The notation describing telephony was then hand-translated into
Smalltalk. By now the lab had acquired a SUN workstation with
Smalltalk on it. But the Smalltalk was very slow—so slow that
I used to take a coffee break while it was garbage collecting. To
speed things up, in 1986 we ordered a Tektronix Smalltalk machine,
but it had a long delivery time. While waiting for it to be delivered, I
continued fiddling with my telephony notation. One day I happened
to show Roger Skagervall my algebra—his response was “but that’s
a Prolog program.” I didn’t know what he meant, but he sat me
down in front of his Prolog system and rapidly turned my little
system of equations into a running Prolog program. I was amazed.
This was, although I didn’t know it at the time, the first step towards
Erlang.

My graphic notation could now be expressed in Prolog syntax
and I wrote a report [1] about it. The algebra had predicates:

idle(N)
on(N)

means the subscriber N is idle
means subscribed N in on hook

And operators:
+t (A, dial_tone) means add a dial tone to A
Finally rules:

:— on(A), idle(A), +t(A,dial-tone),
+d(A, [1), -idle(A), +of(A)

process (A, f)

This had the following declarative reading:

process(A, f) To process an off hook signal from

a subscriber A

e then

on(A) If subscriber A is on-hook
s and

idle(A) If subscriber A is idle

s and

+t (A, dial_tone) send a dial tone to A

s and

+d(a, [1) set the set of dialled digits to []
s and

-idle(A) retract the idle state

s and

+of (A) assert that we are off hook

Using this notation, POTS could be described using fifteen
rules. There was just one major problem: the notation only de-
scribed how one telephone call should proceed. How could we do
this for thousands of simultaneous calls?

3.2 Erlang conceived

Time passed and my Smalltalk machine was delivered, but by the
time it arrived I was no longer interested in Smalltalk. I had dis-
covered Prolog and had found out how to write a meta-interpreter
in Prolog. This meta-interpreter was easy to change so I soon fig-
ured out how to add parallel processes to Prolog. Then I could run
several versions of my little telephony algebra in parallel.

The standard way of describing Prolog in itself is to use a simple
meta-interpreter:

solve((A,B))
solve(A)
solve(A,B)

:- solve(A), solve(B).
:— builtin(A), call(Ad).
:- rule(A, B), solve(B).

The problem with this meta-interpreter is that the set of remaining
goals that is not yet solved is not available for program manipula-
tion. What we would like is a way to explicitly manage the set of
remaining goals so that we could suspend or resume the computa-
tion at any time.

To see how this works, we can imagine a set of equations like
this:

x -> a,b,c
a -> p,{q},r
r -> g,h

p —> 1z}

This notation means that the symbol x is to be replaced by the
sequence of symbols a, b and c. That a is to be replaced by p, {q}
and r. Symbols enclosed in curly brackets are considered primitives
that cannot be further reduced.

To compute the value of the symbol x we first create a stack of
symbols. Our reduction machine works by successively replacing
the top of the stack by its definition, or if it is a primitive by
evaluating the primitive.

To reduce the initial goal x we proceed as follows:

X replace x by its definition
a,b,c replace a by its definition
p,{q},r,b,c replace p by its definition
{z},{q},r,b,c  evaluate z

{q},r,b,c evaluate q

r,b,c replace r by its definition
g,h,b,c

The point of the reduction cycle is that at any time we can
suspend the computation. So, for example, after three iterations,
the state of the computation is represented by a stack containing:

{z},{q},r,b,c

If we want several parallel reduction engines, we arrange to
save and store the states of each reduction engine after some fixed
number of reductions. If we now express our equations as Prolog
terms:

eqn(x, [a,b,c]).
eqn(a, [p,{q},r]).
eqn(r, [g,hl).
eqn(p, [{z}]1).



Then we can describe our reduction engine with a predicate reduce
as follows:

reduce([]).
reduce ([{H}IT]) :-
call(H),!,
reduce(T) .
reduce([Lhs|More]) :-
eqn(Lhs, Rhs),
append (Rhs,More,Morel), !,
reduce (Morel) .

With a few more clauses, we can arrange to count the number of
reduction steps we have made and to save the list of pending goals
for later evaluation. This is exactly how the first Erlang interpreter
worked. The interested reader can consult [4] for more details.

Time passed and my small interpreter grew more and more fea-
tures, the choice of which was driven by a number of forces. First, I
was using the emerging language to program a small telephone ex-
change, so problems naturally arose when I found that interacting
with the exchange was clumsy or even impossible. Second, changes
suggested themselves as we thought up more beautiful ways of do-
ing things. Many of the language changes were motivated by purely
aesthetic concerns of simplicity and generality.

I wanted to support not only simple concurrent processes, but
also mechanisms for sending message between processes, and
mechanism for handling errors, etc. My interpreter grew and some
of the other lab members became interested in what I was doing.
What started as an experiment in “adding concurrency to Prolog”
became more of a language in its own right and this language ac-
quired a name “Erlang,” which was probably coined by Bjarne
Dicker. What did the name Erlang mean? Some said it meant “Er-
icsson Language,” while others claimed it was named after Agner
Krarup Erlang (1878 — 1929), while we deliberately encouraged
this ambiguity.

While I had been fiddling with my meta-interpreter, Robert
Virding had been implementing variants of parallel logic program-
ming languages. One day Robert came to me and said he’d been
looking at my interpreter and was thinking about making a few
small minor changes, did I mind? Now Robert is incapable of mak-
ing small changes to anything, so pretty soon we had two different
Erlang implementations, both in Prolog. We would take turns in
rewriting each other’s code and improving the efficiency of the im-
plementation.

As we developed the language, we also developed a philosophy
around the language, ways of thinking about the world and ways
of explaining to our colleagues what we were doing. Today we call
this philosophy Concurrency-Oriented Programming. At the time
our philosophy had no particular name, but was more just a set of
rules explaining how we did things.

One of the earliest ways of explaining what Erlang was all about
was to present it as a kind of hybrid language between concurrent
languages and functional languages. We made a poster showing this
which was reproduced in [12] and shown here in Figure 1.

3.3 Bollmora, ACS/Dunder

By 1987, Erlang was regarded as a new programming language
that we had prototyped in Prolog. Although it was implemented in
Prolog, Erlang’s error-handling and concurrency semantics differed
significantly from Prolog. There were now two people (Robert
Virding and I) working on the implementation and it was ready to
be tried out on external users. By the end of the year, Mike Williams
managed to find a group of users willing to try the language on a
real problem, a group at Ericsson Business Communications AB,
which was based in Bollmora. The group was headed by Kerstin
Odling and the other members of the team were Ake Rosberg,
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Concurrent functional
programming language
Erlang

Concurrent system
programming languages like
Ada, Modula or Chill

Functional programming
language like ML or
Miranda

Figure 1. Relation of Erlang to existing languages.

Hékan Karlsson and Hékan Larsson. These were the first ever
Erlang users.

The team wanted to prototype a new software architecture called
ACS?® designed for programming telephony services on the Erics-
son MD110 PABX* and were looking for a suitable language for
the project, which is how they got to hear about Erlang. A project
called ACS/Dunder was started to build the prototype.

The fact that somebody was actually interested in what we were
doing came as a great stimulus to the development and we entered
a period of rapid development where we could actually try out our
language ideas on real users.

3.4 Frenzied activity

Erlang began to change rapidly. We now had two people working
on the implementation (Robert and myself) and a large user com-
munity (three people). We would add features to the language and
then try them out on our users. If the users or implementors liked
the changes, they stayed in. If the users disliked the changes or if the
implementation was ugly, the changes were removed. Amazingly,
the fact that the language was changing under their feet almost ev-
ery day didn’t particularly bother our users. We met our Bollmora
users once or twice a week for about six months. We taught them
programming, they taught us telephony and both sides learned a lot.

Hardly anything remains from this period—most of the day-
to-day changes to the language were not recorded and there is no
lasting evidence of what those changes were. But fortunately, a
few documents do remain: Figure 2 shows the entire Erlang 1.05
manual and Appendix A contains the comments at the start of
the file erlang.pro (which was the main program for the Prolog
interpreter). This is a change log documenting the changes made
to the language in the nine-month period from 24 March 1988 to
14 December 1988. Like a child, Erlang took about nine months
to develop. By the end of 1988, most of the ideas in Erlang had
stabilized. While Robert and I implemented the system, the ideas
behind the mechanism that we implemented often came from our
users, or from the other members of the Lab. I always considered
the morning coffee break to be the key forum where the brilliant
ideas you had on the way to work were trashed and where all the
real work was done. It was in these daily brainstormings that many
a good idea was created. It’s also why nobody can quite remember
who thought of what, since everybody involved in the discussions
seems to remember that it was they who had the key idea.

It was during this period that most of the main ideas in Erlang
emerged. In the following sections I will describe Erlang as it was
in 1988. Appendix B has a set of examples illustrating the language
as it is today.

3 Audio Communication System.

4 Private Automatic Branch Exchange.



erlang vsn 1.05

help
reset all queues
kill all erlang definitions

h
(Preset

reset_erlang

load(F) load erlang file <F>.erlang

load load the same file as before
load(?) what is the current load file
what_erlang list all loaded erlang files

g0 reduce the main queue to zero
send(A,B,C) perform a send to the main queue
send(A,B) perform a send to the main queue
cq see queue - print main queue
wait_queue(N) print wait_queue(N)

cf see frozen - print all frozen states
eqns see all equations

eqn(N) see equation(N)
start(Mod,Goal)  starts Goal in Mod

top top loop run system

q quit top loop

open_dots(Node) opens Node

talk(N) N=1 verbose, =0 silent

peep(M) set peeping point on M
no_peep(M) unset peeping point on M
vsn(X) erlang vsn number is X

Figure 2. The Erlang 1.05 manual.

3.5 Buffered message reception

One of the earliest design decisions in Erlang was to use a form
of buffering selective receive. The syntax for message reception in
modern Erlang follows a basic pattern:

receive
Patternl ->
Actionsi;
Pattern2 ->
Actions2;

end

This means wait for a message. If the message matches Patterni
then evaluate the code Actions1. If the message matches Pattern2
then evaluate the code Actions2, etc.

But what happens if some other message that matches neither
Patternl or Pattern? arrives at the processes? Answer—ignore
the message and queue it for later. The message is put in a “save
queue” and processed later and the receive statement carries on
waiting for the messages it is interested in.

The motivation for automatically buffering out-of-order mes-
sages came from two observations. Firstly we observed that in the
CCITT Specification and Description Language® (SDL), one of the
most commonly used specification idioms involved queuing and
later replaying out-of-order messages. Secondly we observed that
handling out-of-order messages in a finite state machine led to an
explosion in the state space of the finite state machine. This hap-
pens more often than you think, in particular when processing re-
mote procedure calls. Most of the telecommunications programs
we write deal with message-oriented protocols. In implementing
the protocols we have to handle the messages contained in the pro-
tocol itself together with a large number of messages that are not

5 SDL is widely used in the telecoms industry to specify communications
protocols.

part of the protocol but come from remote procedure calls made
internally in the system. Our queuing strategy allows us to make
an internal remote procedure call within the system and block un-
til that call has returned. Any messages arriving during the remote
procedure call are merely queued and served after the remote pro-
cedure call has completed. The alternative would be to allow the
possibility of handling protocol messages in the middle of a remote
procedure call, something which greatly increases the complexity
of the code.

This was a great improvement over PLEX, where every message
must be handled when it arrives. If a messages arrives “too early”
the program has to save it for later. Later, when it expects the
message, it has to check to see if the message has already arrived.

This mechanism is also extremely useful for programming sets
of parallel processes when you don’t know in which order the
message between the processes will arrive. Suppose you want to
send three messages M1, M2 and M3 to three different processes
and receive replies R1, R2 and R3 from these three processes. The
problem is that the reply messages can arrive in any order. Using
our receive statement, we could write:

A ! M1,
B ! M2,
C ! M3,
receive
A 7?7 R1 —>
receive
B 7?7 R2 ->
receive
C ? R3 —>

. now R1 R2 and R3
have been received ...

Here A!'M means send the message M to the process A and A7X means
receive the message X from the process A.

It doesn’t matter now in which order the messages are received.
The code is written as if A replies first—but if the message from B
replies first, the message will be queued and the system will carry
on waiting for a message from A. Without using a buffer, there are
six different orderings of the message to be accounted for.

3.6 Error handling

Error handling in Erlang is very different from error handling in
conventional programming languages. The key observation here
is to note that the error-handling mechanisms were designed for
building fault-tolerant systems, and not merely for protecting from
program exceptions. You cannot build a fault-tolerant system if you
only have one computer. The minimal configuration for a fault-
tolerant system has two computers. These must be configured so
that both observe each other. If one of the computers crashes, then
the other computer must take over whatever the first computer was
doing.

This means that the model for error handling is based on the
idea of two computers that observe each other. Error detection
and recovery is performed on the remote computer and not on
the local computer. This is because in the worst possible case, the
computer where the error has occurred has crashed and thus no
further computations can be performed on the crashed computer.

In designing Erlang, we wanted to abstract all hardware as re-
active objects. Objects should have “process semantics;” in other
words, as far as the software was concerned, the only way to inter-
act with hardware was through message passing. When you send
a message to a process, there should be no way of knowing if the
process was really some hardware device or just another software
process. The reason for this was that in order to simplify our pro-
gramming model, we wanted to model everything as processes and



we wanted to communicate with all processes in a uniform manner.
From this point of view we wanted software errors to be handled
in exactly the same manner as hardware errors. So, for example, if
a process died because of a divide by zero it would propagate an
{’EXIT’,Pid,divideByZero} signal to all the processes in its
link set. If it died because of a hardware error it might propagate an
{’EXIT’,Pid,machineFailure} signal to its neighbors. From a
programmer’s point of view, there would no difference in how these
signals were handled.

3.7 Links

Links in Erlang are provided to control error propagation paths for
errors between processes. An Erlang process will die if it evaluates
illegal code, so, for example, if a process tries to divide by zero it
will die. The basic model of error handling is to assume that some
other process in the system will observe the death of the process
and take appropriate corrective actions. But which process in the
system should do this? If there are several thousand processes in
the system then how do we know which process to inform when an
error occurs? The answer is the linked process. If some process A
evaluates the primitive 1ink (B) then it becomes linked to A . If A
dies then B is informed. If B dies then A is informed.

Using links, we can create sets of processes that are linked
together. If these are normal® processes, they will die immediately
if they are linked to a process that dies with an error. The idea here
is to create sets of processes such that if any process in the set
dies, then they will all die. This mechanism provides the invariant
that either all the processes in the set are alive or none of them
are. This is very useful for programming error-recovery strategies
in complex situations. As far as I know, no other programming
language has anything remotely like this.

The idea of links and of the mechanism by which all processes
in a set die was due to Mike Williams. Mike’s idea was inspired
by the design of the release mechanism used in old analogue tele-
phones and exchanges. In the analogue telephones and in the early
electromechanical exchanges, three wires called A, B and C were
connected to the phones. The C wire went back to the exchange
and through all the electromechanical relays involved in setting up
a call. If anything went wrong, or if either partner terminated the
call, then the C wire was grounded. Grounding the C wire caused a
knock-on effect in the exchange that freed all resources connected
to the C line.

3.8 Buffers

Buffers and the receive statement fit together in a rather non-
obvious way. Messages sent between Erlang processes are always
delivered as soon as possible. Each process has a “mailbox” where
all incoming messages are stored. When a message arrives it is put
in the mailbox and the process is scheduled for execution. When the
process is next scheduled it tries to pattern match the message. If
the match succeeds, message reception occurs and the message is
removed from the mailbox and the data from the message works
its way into the program. Otherwise the message is put into a
“save” queue. When any message matches, the entire save queue
is merged back into the mailbox. All buffering that takes place is
then performed implicitly in either the mailbox or the save queue.
In about 1988, this mechanism was the subject of intense debate.
I remember something like a four-day meeting being devoted to
the single topic of how interprocess communication should actually
work.

The outcome of this meeting was that we all thought that pro-
cesses should communicate through pipes and that the pipes should

6 Process are either normal or system processes. System process can trap
and process non-normal exit signals. Normal process just die.
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be first-class objects. They should have infinite’ buffering capacity,
they should be named and it should be possible to connect and dis-
connect them to and from processes. It should be possible to bend
them and split them and join them, and I even created an algebra of
pipes.

Then I tried to implement the pipe algebra but this turned out
to be very difficult. In particular, pipe joining and coalescing®
operations were terribly difficult to program. The implementation
needed two types of message in the pipes: regular messages and
small tracer messages that had to be sent up and down the pipes to
check that they were empty. Sometimes the pipes had to be locked
for short periods of time and what would happen if the processes
at the end of the pipes failed was extremely difficult to work
out. The problems all stem from the fact that the pipes introduce
dependencies between the end points so that the processes at either
end are no longer independent—which makes life difficult.

After two weeks of programming, I declared that the pipe mech-
anism now worked. The next day I threw it all away—the complex-
ity of the implementation convinced me that the mechanism was
wrong. I then implemented a point-to-point communication mech-
anism with mailboxes; this took a couple of hours to implement
and suffered from none of the kind of problems that plagued the
pipes implementation. This seems to be a rather common pattern:
first I spend a week implementing something, then, when is is com-
plete I throw everything away and reimplement something slightly
different in a very short time.

At this point, pipes were rejected and mailboxes accepted.

3.9 Compilation to Strand

While the Prolog implementations of Erlang were being used to
develop the language and experiment with new features, another
avenue of research opened, work aimed at creating an efficient im-
plementation of Erlang. Robert had not only implemented Erlang in
Prolog but had also been experimenting with a Parlog compiler of
his own invention. Since Erlang was a concurrent language based
on Prolog it seemed natural to study how a number of concurrent
logical programming languages had been implemented. We started
looking at languages like Parlog, KL/1 and Strand for possible in-
spiration. This actually turned out to be a mistake. The problem
here has to do with the nature of the concurrency. In the concur-
rent logic programming languages, concurrency is implicit and ex-
tremely fine-grained. By comparison Erlang has explicit concur-
rency (via processes) and the processes are coarse-grained. The
study of Strand and Parlog led to an informal collaboration with
Keith Clarke and Ian Foster at Imperial College London.
Eventually, in 1988, we decided to experiment with cross com-
pilation of Erlang to Strand. Here we made a major error—we con-
fidently told everybody the results of the experiment before we
had done it. Cross compilation to Strand would speed up Erlang
by some embarrassingly large factor. The results were lacklustre;
the system was about five times faster but very unstable and large
programs with large numbers of processes just would not run. The
problem turned out to be that Strand was just too parallel and cre-
ated far too many parallel processes. Even though we might only
have had a few hundred Erlang processes, several tens of millions
of parallel operations were scheduled within the Strand system.
Strand also had a completely different model of error handling
and message passing. The Erlang-to-Strand compiler turned an Er-
lang function of arity N to a Strand process definition of arity N+8.
The eight additional arguments were needed to implement Erlang’s

7In theory.

8 For example, if pipe X has endpoints A and B, and pipe Y has end-
points C and D, then coalescing X and Y was performed with an operation
muff_pipes(B, C).



error-handling and message-passing semantics. More details of this
can be found in chapter 13 of [14]. The problem with the imple-
mentation boiled down to the semantic mismatch between the con-
currency models used in Strand and Erlang, which are completely
different.

4. Part II1: 1989 — 1997. Erlang grows

The eight years from 1989 to 1997 were the main period during
which Erlang underwent a period of organic growth. At the start of
the period, Erlang was a two-man project, by the end hundreds of
people were involved.

The development that occurred during this period was a mixture
of frantic activity and long periods where nothing appeared to hap-
pen. Sometimes ideas and changes to the language came quickly
and there were bursts of frenetic activity. At other times, things
seem to stagnate and there was no visible progress for months or
even years. The focus of interest shifted in an unpredictable man-
ner from technology to projects, to training, to starting companies.
The dates of particular events relating to the organization, like, for
example, the start of a particular project or the formation of Erlang
Systems AB, are wellknown. But when a particular idea or feature
was introduced into the language is not so wellknown. This has to
do with the nature of software development. Often a new software
feature starts as a vague idea in the back of implementors’ minds,
and the exact date when they had the idea is undocumented. They
might work on the idea for a while, then run into a problem and
stop working on it. The idea can live in the back of their brain for
several years and then suddenly pop out with all the details worked
out.

The remainder of this section documents in roughly chronolog-
ical order the events and projects that shaped the Erlang develop-
ment.

4.1 The ACS/Dunder results

In December 1989, the ACS/Dunder project produced its final re-
port. For commercial reasons, this report was never made pub-
lic. The report was authored by the members of the prototyping
team who had made the ACS/Dunder prototype, in which about 25
telephony features were implemented. These features represented
about one tenth of the total functionality of the MD 110. They
were chosen to be representative of the kind of features found in
the MD110, so they included both hard and extremely simple func-
tions. The report compared the effort (in man hours) of developing
these features in Erlang with the predicted effort of developing the
same features in PLEX. The ACS/Dunder report found that the time
to implement the feature in Erlang divided by the time to implement
the feature in PLEX (measured in man hours) was a factor of 3 to
25, depending upon the feature concerned. The average increase in
productivity was a factor of 8.

This factor and the conclusion of the report were highly con-
troversial and many theories were advanced to explain away the
results. It seemed at the time that people disliked the idea that the
effect could be due to having a better programming language, pre-
ferring to believe that it was due to some “smart programmer ef-
fect.” Eventually we downgraded the factor to a mere 3 because is
sounded more credible than 8. The factor 3 was totally arbitrary,
chosen to be sufficiently high to be impressive and sufficiently low
to be believable. In any case, it was significantly greater than one,
no matter how you measured and no matter how you explained the
facts away.

The report had another conclusion, namely that Erlang was far
too slow for product development. In order to use Erlang to make
a real product, it would need to be at least 40 times faster. The
fact that it was too slow came from a comparison of the execution
times of the Erlang and PLEX programs. At this stage, CPU per-
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formance represented the only significant problem. Memory per-
formance was not a problem. The run-time memory requirements
were modest and the total size of the compiled code did not pose
any problems.

After a lot of arguing, this report eventually led the way to the
next stage of development, though the start of the project was to be
delayed for a couple of years. Ericsson decided to build a product
called the Mobility Server based on the ACS/Dunder architecture,
and we to started work on a more efficient implementation of
Erlang.

4.2 The word starts spreading

1989 also provided us with one of our first opportunities to present
Erlang to the world outside Ericsson. This was when we presented
a paper at the SETSS conference in Bournemouth. This conference
was interesting not so much for the paper but for the discussions
we had in the meetings and for the contacts we made with people
from Bellcore. It was during this conference that we realised that
the work we were doing on Erlang was very different from a
lot of mainstream work in telecommunications programming. Our
major concern at the time was with detecting and recovering from
errors. I remember Mike, Robert and I having great fun asking the
same question over and over again: “what happens if it fails?”
the answer we got was almost always a variant on “our model
assumes no failures.” We seemed to be the only people in the world
designing a system that could recover from software failures.

It was about this time that we realized very clearly that shared
data structures in a distributed system have terrible properties in
the presence of failures. If a data structure is shared by two phys-
ical nodes and if one node fails, then failure recovery is often im-
possible. The reason why Erlang shares no data structures and uses
pure copying message passing is to sidestep all the nasty problems
of figuring out what to replicate and how to cope with failures in a
distributed system. At the Bournemouth conference everybody told
us we were wrong and that data must be shared for efficiency—but
we left the conference feeling happy that the rest of the world was
wrong and that we were right. After all, better a slow system that
can recover from errors than a fast system that cannot handle fail-
ures. Where people were concerned with failure, it was to protect
themselves from hardware failures, which they could do by repli-
cating the hardware. In our world, we were worried by software
failures where replication does not help.

In Bournemouth, we met a group of researchers headed by Gary
Herman from Bellcore who were interested in what we were doing.
Later in the year, in December 1989, this resulted in Bjarne, Mike,
Robert and me visiting Bellcore, where we gave our first ever
external Erlang lecture. Erlang was well received by the researchers
at Bellcore, and we were soon involved in discussing how they
could get a copy of the Erlang system. When we got back from
Bellcore, we started planning how to release Erlang. This took a
while since company lawyers were involved, but by the middle of
1990 we delivered a copy of Erlang to Bellcore. So now we had our
first external user, John Unger from Bellcore.

4.3 Efficiency needed — the JAM

Following the ACS/Dunder report in December 1989, we started
work on an efficient version of Erlang. Our goal was to make a ver-
sion of Erlang that was at least 40 times faster than the prototype.
At this point we were stuck. We knew what we wanted to do
but not how to do it. Our experiments with Strand and Parlog had
led to a deadend. Since we were familiar with Prolog, the next
step appeared to follow the design of an efficient Prolog machine.
Something like the WAM [29] seemed the natural way to proceed.
There were two problems with this. First, the WAM didn’t support
concurrency and the kind of error handling that we were interested



in, and second, we couldn’t understand how the WAM worked. We
read all the papers but the explanations seemed to be written only
for people who already understood how the thing worked.

The breakthrough came in early 1990. Robert Virding had col-
lected a large number of the descriptions of abstract machines for
implementing parallel logic machines. One weekend I borrowed his
file and took all the papers home. I started reading them, which was
pretty quick since I didn’t really understand them, then suddenly af-
ter I'd read through them all I began to see the similarities. A clue
here, and hint there, yes they were all the same. Different on the sur-
face, but very similar underneath. I understood—then I read them
again, this time slowly. What nobody had bothered to mention, pre-
sumably because it was self-evident, was that each of the instruc-
tions in one of these abstract machines simultaneously manipulated
several registers and pointers. The papers often didn’t mention the
stack and heap pointers and all the things that got changed when an
instruction was evaluated because this was obvious.

Then I came across a book by David Maier and David Scott
Warren [19] that confirmed this; now I could understand how the
WAM worked. Having understood this, it was time to design my
own machine, the JAM.” Several details were missing from the
Warren paper and from other papers describing various abstract
machines. How was the code represented? How was the compiler
written? Once you understood them, the papers seems to describe
the easy parts; the details of the implementation appeared more to
be “trade secrets” and were not described.

Several additional sources influenced the final design. These
included the following:

e A portable Prolog Compiler [9], that described how virtual
machine instructions were evaluated.

e A Lisp machine with very compact programs [13], that de-
scribed a Lisp machine with an extremely compact represen-
tation.

e BrouHaHa — A portable Smalltalk interpreter [22], that de-
scribed some smart tricks for speeding up the dispatching in-
structions in a threaded interpreter.

When I designed the JAM, 1 was worried about the expected
size of the resulting object for the programs. Telephony control
programs were huge, numbering tens of millions of lines of source
code. The object code must therefore be highly compact, otherwise
the entire program would never fit into memory. When I designed
the JAM, I sat down with my notepad, invented different instruc-
tion sets, then wrote down how some simple functions could be
compiled into these instruction sets. I worked out how the instruc-
tions would be represented in a byte-coded machine and then how
many instructions would be evaluated in a top-level evaluation of
the function. Then I changed the instruction set and tried again. My
benchmark was always for the “append” function and I remember
the winning instruction set compiled append into 19 bytes of mem-
ory. Once I had decided on an instruction set, compilation to the
JAM was pretty easy and an early version of the JAM is described
in [5]. Figure 3 shows how the factorial function was compiled to
JAM code.

Being able to design our own virtual machines resulted in highly
compact code for the things we cared most about. We wanted
message passing to be efficient, which was easy. The JAM was a
stack-based machine so to compile A ! B, the compiler emitted
code to compile A , then code to compile B, then a single byte send
instruction. To compile spawn (Function), the compiler emitted
code to build a function closure on the stack, followed by a single
byte spawn instruction.

9 Modesty prevents me from revealing what this stands for.
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fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}
{try_me_else, labell}
{arg, 0}

{getInt, O}
{pushInt, 1}

ret
try_me_else_fail
{arg, 0}

dup

{pushInt, 1}
minus

{calllocal, fac, 1}
times

ret

labell:

Figure 3. Compilation of sequential Erlang to JAM code.

File Lines Purpose

sys_sys.erl 18  dummy

sys_parse.erl 783  erlang parser
sys-ari_parser.erl 147  parse arithmetic expressions
sys_build.erl 272 build function call arguments
sys-match.erl 253  match function head arguments
sys_compile.erl 708  compiler main program
sys_lists.erl 85  list handling
sys_dictionary.erl 82  dictionary handler
sys-utils.erl 71  utilities

sys_asm.erl 419  assembler

sys-_tokenise.erl 413  tokeniser

sys_parser_tools.erl 96  parser utilities

sys-load.erl 326 loader

sys_opcodes.erl 128  opcode definitions

sys_pp.erl 418  pretty printer

sys_scan.erl 252 scanner

sys_boot.erl 59  bootstrap

sys_kernel.erl 9  kernel calls

18 files 4544

Table 2. Statistics from an early Erlang compiler.

The compiler was, of course, written in Erlang and run through
the Prolog Erlang emulator. To test the abstract machine I wrote
an emulator, this time in Prolog so I could now test the compiler
by getting it to compile itself. It was not fast—it ran at about 4
Erlang reductions'® per second, but it was fast enough to test itself.
Compiling the compiler took a long time and could only be done
twice a day, either at lunch or overnight.

The compiler itself was a rather small and simple program. It
was small because most of the primitives in Erlang could be com-
piled into a single opcode in the virtual machine. So all the compiler
had to do was to generate code for efficient pattern matching and
for building and reconstructing terms. Most of the complexity is in
the run-time system, which implements the opcodes of the virtual
machine. The earliest compiler I have that has survived is the erl§9
compiler, which had 18 modules containing 2544 lines of code. The
modules in the compiler were as in Table 2.

It was now time to implement the JAM virtual machine emula-
tor, this time not in Prolog but in C. This is where Mike Williams

10 One reduction corresponds to a single function call.



came in. I started writing the emulator myself in C but soon Mike
interfered and started making rude comments about my code. I
hadn’t written much C before and my idea of writing C was to close
my eyes and pretend it was FORTRAN. Mike soon took over the
emulator, threw away all my code and started again. Now the Er-
lang implementor group had expanded to three, Mike, Robert and
myself. Mike wrote the inner loop of the emulator very carefully,
since he cared about the efficiency of the critical opcodes used for
concurrent operations. He would compile the emulator, then stare at
the generated assembler code, then change the code compile again,
and stare at the code until he was happy. I remember him work-
ing for several days to get message sending just right. When the
generated code got down to six instructions he gave up.

Mike’s emulator soon worked. We measured how fast it was.
After some initial tweaking, it ran 70 times faster than the original
Prolog emulator. We we delighted—we had passed our goal of 40
by a clear margin. Now we could make some real products.

Meanwhile, the news from the Bollmora group was not good:
“We miscalculated, our factor of 40 was wrong, it needs to be 280
times faster.”

One of the reviewers of this paper asked whether memory effi-
ciency was ever a problem. At this stage the answer was no. CPU
efficiency was always a problem, but never memory efficiency.

4.4 Language changes

Now that we have come to 1990 and have a reasonably fast Erlang,
our attention turned to other areas. Efficiency was still a problem,
but spurred by our first success we weren’t particularly worried
about this. One of the things that happened when writing Erlang in
Erlang was that we had to write our own parser. Before we had just
used infix operators in Prolog. At this point the language acquired
its own syntax and this in its turn caused the language to change. In
particular, receive was changed.

Having its own syntax marked a significant change in the lan-
guage. The new version of Erlang behaved pretty much like the old
Prolog interpreter, but somehow it felt different. Also our under-
standing of the system deepened as we grappled with tricky im-
plementation issues that Prolog had shielded us from. In the Pro-
log system, for example, we did not have to bother about garbage
collection, but in our new Erlang engine we had to implement a
garbage collector from scratch.

Since our applications ran in the so-called soft real-time do-
main, the performance of the garbage collector was crucial, so
we had to design and implement garbage-collection strategies that
would not pause the system for too long. We wanted frequent small
garbage collections rather than infrequent garbage collections that
take a long time.

The final strategy we adopted after experimenting with many
different strategies was to use per-process stop-and-copy GC. The
idea was that if we have many thousands of small processes then the
time taken to garbage collect any individual process will be small.
This strategy also encouraged copying all the data involved in mes-
sage passing between processes, so as to leave no dangling point-
ers between processes that would complicate garbage collection.
An additional benefit of this, which we didn’t realise at the time,
was that copying data between processes increases process isola-
tion, increases concurrency and simplifies the construction of dis-
tributed systems. It wasn’t until we ran Erlang on multicore CPUs
that the full benefit of non-shared memory became apparent. On a
multicore CPU, message passing is extremely quick and the lack of
locking between CPUs allows each CPU to run without waiting for
the other CPUs.

Our approach to GC seemed a little bit reckless: would this
method work in practice? We were concerned about a number of
problems. Would large numbers of processes decide to garbage col-

# wait_first_digit(A) ->
receive 10 {

A 7 digit(D) =>
stop_tone(4),
received_digit (4, [1,D);

A ? on_hook =>
stop_tone(A),
idle(4);

timeout =>
stop_tone(4),
wait_clear(A);

Other =>
wait_first_digit(A)

T.

Erlang in 1988

wait_first_digit(4) ->
receive
{A, {digit, D}} —>
stop_tone(4),
received_digit (4, []1,D);
{A, on_hook} —>
stop_tone(A),
idle(A);
Other ->
wait_first_digit(A)
after 10 ->
stop_tone(4),
wait_clear(A)
end.

Erlang today

Figure 4. Erlang in 1988 and today.

lect all at the same time? Would programmers be able to structure
their applications using many small processes, or would they use
one large process? If they did use one large process, what would
happen when it performed a garbage collection? Would the system
stop? In practice our fears were unfounded. Process garbage col-
lections seem to occur at random and programmers very rarely use
a single large process to do everything. Current systems run with
tens to hundreds of thousands of processes and it seems that when
you have such large numbers of processes, the effects of GC in an
individual process are insignificant.

4.5 How receive changed and why

The early syntax of Erlang came straight from Prolog. Erlang was
implemented directly in Prolog using a careful choice of infix
operators. Figure 4 adapted from [2] shows a section of a telephony
program from 1988 and the corresponding program as it would be
written today. Notice there are two main changes:

First, in the 1988 example, patterns were represented by Prolog
terms, thus digit (D) represents a pattern. In modern Erlang, the
same syntax represents a function call and the pattern is written
{digit,D}.

The second change has to do with how message reception pat-
terns were written. The syntax:

Proc ! Message
means send a message, while:

receive {
Procl 7 Messl =>
Actionsi;
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rpc(Pid, Query) ->
Pid ! {self(), Query},

receive

{Pid, Reply} ->
Reply

end.

Client code

server (Data) ->
receive
{From, Query} ->
{Reply,Datal} = F(Query,Data),
From ! {self(), Reply},
server (Datal)
end.

Server Code

Figure 5. Client and server code for a remote procedure call.

Proc2 7 Mess2 =>
Actions?2;

}

means try to receive a message Mess1 from Proc1, in which case
perform Actions1; otherwise try to receive Mess2 from Proc2,
etc. The syntax Proc?Message seemed at first the obvious choice
to denote message reception and was mainly chosen for reasons of
symmetry. After all if A!B means send a message then surely A7B
should mean receive a message.

The problem with this is that there is no way to hide the identity
of the sender of a message. If a process A sends a message to B, then
receiving the message with a pattern of the form P?M where P and
M are unbound variables always results in the identity of A being
bound to P. Later we decided that this was a bad idea and that the
sender should be able to choose whether or not it reveals its identity
to the process that it sends a message to. Thus if A wants to send
a message M to a process B and reveal its identity, we could write
the code which sends a message as B! {self () ,M} or, if it did not
wish to reveal its identity, we could write simply B!M. The choice
is not automatic but is decided by the programmer.

This leads to the common programming idiom for writing a
remote procedure call whereby the sender must alway include its
own Pid!! (the Pid to reply to) in the message sent to a server. The
way we do this today is shown in Figure 9.

Note that we can also use the fact that processes do not reveal
their identity to write secure code and to fake the identity of a
process. If a message is sent to a process and that message contains
no information about the sender, then there is no way the receiver
of the message can know from whom the message was sent. This
can be used as the basis for writing secure code in Erlang.

Finally, faked message Pids can be used for delegation of re-
sponsibilities. For example, much of the code in the IO subsystem
is written with {Request,ReplyTo,ReplyAs} messages, where
Request is a term requesting some kind of IO service. ReplyTo
and ReplyAs are Pids. When the final process to perform the
operation has finished its job, it sends a message by evaluating
ReplyTo!{ReplyAs,Result}. If this is then used in code in the
RPC programming idiom in Figure 5, the code essentially fakes the
Pid of the responding process.

Now the point of all this argument, which might seem rather
obscure, is that a seemingly insignificant change to the surface

'process Identifier.

syntax, i.e. breaking the symmetry between A!B and A7B, has
profound consequences on security and how we program. And it
also explains the hour-long discussions over the exact placement of
commas and more importantly what they mean.'?

4.6 Years pass ...

The next change was the addition of distribution to the language.
Distribution was always planned but never implemented. It seemed
to us that adding distribution to the language would be easy since
all we had to do was add message passing to remote processes and
then everything should work as before.

At this time, we were only interested in connecting conventional
sequential computers with no shared memory. Our idea was to
connect stock hardware through TCP/IP sockets and run a cluster
of machines behind a corporate firewall. We were not interested in
security since we imagined all our computers running on a private
network with no external access. This architecture led to a form of
all-or-nothing security that makes distributed Erlang suitable for
programming cluster applications running on a private network,
but unsuitable for running distributed applications where various
degrees of trust are involved.

1990

In 1990 Claes (Klacke) Wikstrom joined the Lab—XKIlacke had been
working in another group at Ellemtel and once he became curious
about what we were doing we couldn’t keep him away. Klacke
joined and the Erlang group expanded to four.

1SS°90

One of the high points of 1990 was ISS’90 (International Switching
Symposium), held in Stockholm. ISS’90 was the first occasion
where we actively tried to market Erlang. We produced a load of
brochures and hired a stall at the trade fair and ran round-the clock
demonstrations of the Erlang system. Marketing material from this
period is shown in Figures 6 and 7.

At this time, our goal was to try and spread Erlang to a number
of companies in the telecoms sector. This was viewed as strate-
gically important—management had the view that if we worked
together with our competitors on research problems of mutual in-
terest, this would lead to successful commercial alliances. Ericsson
never really had the goal of making large amounts of money by
selling Erlang and did not have an organisation to support this goal,
but it was interested in maintaining a high technical profile and in-
teracting with like-minded engineers in other companies.

1991

In 1991, Klacke started work on adding distribution to Erlang,
something that had been waiting to be done for a long time. By
now, Erlang had spread to 30 sites. The mechanisms for this spread
are unclear, but mostly it seems to have been by word-of-mouth.
Often we would get letters requesting information about the system
and had no idea where they had heard about it. One likely mech-
anism was through the usenet mailing lists where we often posted
to comp.lang.functional. Once we had established a precedent of
releasing the system to Bellcore, getting the system to subsequent
users was much easier. We just repeated what we’d done for Bell-
core. Eventually after we had released the system to a dozen or so
users, our managers and lawyers got fed up with our pestering and
let us release the system to whomever we felt like, provided they
signed a non-disclosure agreement.

12 All language designers are doubtless familiar with the phenomenon that
users will happily discuss syntax for hours but mysteriously disappear when
the language designer wants to talk about what the new syntax actually
means.
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Figure 6. Early internal marketing — the relationship between Er-
lang and PLEX.

Figure 7. Erlang marketing — the relation of Erlang to other lan-
guages.

Also, Ericsson Business Communications ported Erlang to the
FORCE computer and real-time OS VxWorks; these were our first
steps towards an embedded system. This port was driven by product
requirements since the mobility server at the time ran on VxWorks.
We also ported Erlang to virtually all operating systems we had
access to. The purpose of these ports was to make the language
accessible to a large set of users and also to improve the quality
of the Erlang system itself. Every time we ported the system to a
new OS we found new bugs that emerged in mysterious ways, so
porting to a large number of different OSs significantly improved
the quality of the run-time system itself.

1992

In 1992, we got permission to publish a book and it was decided
to commercialize Erlang. A contract was signed with Prentice Hall
and the first Erlang book appeared in the bookshops in May 1993.

Even this decision required no small measure of management
persuasion—this was definitely not how Ericsson had done things
in the past; earlier languages like PLEX had been clothed in se-

crecy. Management’s first reaction at the time was “if we’ve done
something good, we should keep quiet about it”, quite the opposite
to today’s reaction to the open-source movement.

The decision to publish a book about Erlang marked a change in
attitude inside Ericsson. The last language developed by Ericsson
for programming switches was PLEX. PLEX was proprietary: very
few people outside Ericsson knew anything about PLEX and there
were no PLEX courses in the universities and no external market
for PLEX programs or programmers. This situation had advantages
and disadvantages. The major advantage was that PLEX gave Eric-
sson a commercial advantage over its competitors, who were pre-
sumed to have inferior technologies. The disadvantages had to do
with isolation. Because nobody else used PLEX, Ericsson had to
maintain everything to do with PLEX: write the compilers, hold
courses, everything.

AT&T, however, had taken a different approach with C and
C++. Here, the burden of supporting these languages was shared
by an entire community and isolation was avoided. The decision to
publish an Erlang book and to be fairly open about what we did
was therefore to avoid isolation and follow the AT&T/C path rather
than the Ericsson/PLEX path. Also in 1992 we ported Erlang to
MS-DOS windows, the Mac, QNX and VxWorks.

The Mobility Server project, which was based upon the suc-
cessful ACS/Dunder study, was started about two years after the
ACS/Dunder project finished. Exactly why the mobility server
project lost momentum is unclear. But this is often the way it hap-
pens: periods of rapid growth are followed by unexplained periods
when nothing much seems to happen. I suspect that these are the
consolidation periods. During rapid growth, corners get cut and
things are not done properly. In the periods between the growth,
the system gets polished. The bad bits of code are removed and
reworked. On the surface not much is happening, but under the
surface the system is being re-engineered.

1993
In May, the Erlang book was published.

4.7 Turbo Erlang

In 1993, the Turbo Erlang system started working. Turbo Erlang
was the creation of Bogumil (Bogdan) Hausman who joined the
Lab from SICS."? For bizarre legal reasons the name Turbo Erlang
was changed to BEAM.'* The BEAM compiler compiled Erlang
programs to BEAM instructions.

The BEAM instructions could either be macro expanded into C
and subsequently compiled or transformed into instructions for a
32-bit threaded code interpreter. BEAM programs compiled to C
ran about ten times faster than JAM interpreted programs, and the
BEAM interpreted code ran more than three times faster than the
JAM programs.

Unfortunately, BEAM-to-C compiled programs increased code
volumes, so it was not possible to completely compile large appli-
cations into C code. For a while we resolved this by recommending
a hybrid approach. A small number of performance-critical mod-
ules would be compiled to C code while others would be inter-
preted.

The BEAM instruction set used fixed-length 32-bit instructions
and a threaded interpreter, as compared to the JAM, which had
variable length instructions and was a byte-coded interpreter. The
threaded BEAM code interpreter was much more efficient than the
JAM interpreter and did not suffer from the code expansion that
compilation to C involved. Eventually the BEAM instruction set
and threaded interpreter was adopted and the JAM phased out.

13 Swedish Institute of Computer Science.
14 Bogdan’s Erlang Abstract Machine.

6-12



I should say a little more about code size here. One of the main
problems in many products was the sheer volume of object code.
Telephone switches have millions of lines of code. The current
software for the AXD301, for example, has a couple of millions
lines of Erlang and large amounts of sourced C code. In the mid-
’90s when these products were developed, on-board memory sizes
were around 256 Mbytes. Today we have Gbyte memories so the
problem of object code volume has virtually disappeared, but it was
a significant concern in the mid-"90s. Concerns about object-code
memory size lay behind many of the decisions made in the JAM
and BEAM instruction sets and compilers.

4.8 Distributed Erlang

The other major technical event in 1993 involved Distributed Er-
lang. Distribution has always been planned but we never had time to
implement it. At the time all our products ran on single processors
and so there was no pressing need to implement distribution. Dis-
tribution was added as part of our series of ongoing experiments,
and wasn’t until 1995 and the AXD301 that distribution was used
in a product.

In adding distribution, Klacke hit upon several novel imple-
mentation tricks. One particularly worthy of mention was the atom
communication cache described in [30], which worked as follows:

Imagine we have a distributed system where nodes on different
hosts wish to send Erlang atoms to each other. Ideally we could
imagine some global hash table, and instead of sending the textual
representation of the atom, we would just send the atom’s hashed
value. Unfortunately, keeping such a hash table consistent is a hard
problem. Instead, we maintain two synchronised hash tables, each
containing 256 entries. To send an atom we hashed the atom to a
single byte and then looked this up in the local hash table. If the
value was in the hash table, then all we needed to do was to send to
the remote machine a single byte hash index, so sending an atom
between machines involved sending a single byte. If the value was
not in the hash table, we invalidated the value in the cache and sent
the textual representation of the atom.

Using this strategy, Klacke found that 45% of all objects sent
between nodes in a distributed Erlang system were atoms and
that the hit rate in the atom cache was around 95%. This simple
trick makes Erlang remote procedure calls run somewhat faster
for complex data structures than, for example, the SunOS RPC
mechanism.

In building distributed Erlang, we now had to consider prob-
lems like dropped messages and remote failures. Erlang does not
guarantee that messages are delivered but it does provide weaker
guarantees on message ordering and on failure notification.

The Erlang view of the world is that message passing is un-
reliable, so sending a message provides no guarantee that it will
be received. Even if the message were to be received, there is no
guarantee that the message will be acted upon as you intended. We
therefore take the view that if you want confirmation that a message
has been received, then the receiver must send a reply message and
you will have to wait for this message. If you don’t get this reply
message, you won’t know what happened. In addition to this there
is a link mechanism, which allows one process to link to another.
The purpose of the link is to provide an error monitoring mecha-
nism. If a process that you are linked to dies, you will be sent an
error signal that can be converted to an error message.

If you are linked to a process and send a stream of messages
to that process, it is valid to assume that no messages will be
dropped, that the messages are not corrupted and that the messages
will arrive at that process in the order they were sent or that an
error has occurred and you will be sent an error signal. All of
this presumes that TCP/IP is itself reliable, so if you believe that

Figure 8. Robert Virding hard at work in the lab (1993).

TCP/IP is reliable then message passing between linked processes
is reliable.

4.9 Spreading Erlang

In April 1993, a new company called Erlang Systems AB was
formed, which was owned by Ericsson Programatic. The goal was
to market and sell Erlang to external companies. In addition, Erlang
Systems was to take over responsibility for training and consulting
and the production of high-quality documentation.

Erlang Systems also provided the main source of employment
for the “Uppsala boys”. These were former computer science stu-
dents from the University of Uppsala who had completed their
Master’s thesis studies with an Erlang project. Many of these stu-
dents started their careers in Erlang Systems and were subsequently
hired out to Ericsson projects as internal consultants. This proved a
valuable way of “kick-starting” a project with young and enthusi-
astic graduate students who were skilled in Erlang.

Another memorable event of 1993 was the Erlang display at the
trade fair held in October in Stockholm. The main demonstrator at
the display was a program which simultaneously controlled a small
telephone exchange' and a model train. Figure 8 shows Robert
Virding hard at work in the Lab programming the model train.
To the immediate right of the computer behind the train set is the
MD100 LIM. Following the trade fair, for several years, we used
the train set for programming exercises in Erlang courses, until the
points wore out through excessive use. While the control software
was fault-tolerant, the hardware was far less reliable and we were
plagued with small mechanical problems.

4.10 The collapse of AXE-N

In December 1995, a large project at Ellemtel, called AXE-N, col-
lapsed. This was the single most important event in the history of
Erlang. Without the collapse of AXE-N, Erlang would have still re-
mained a Lab experiment and the effort to turn it into a commercial-
quality product would not have happened. The difference is the
many thousands of hours of work that must be done to produce
high-quality documentation and to produce and test extensive li-
braries. AXE-N was a project aimed at developing a new generation
of switching products ultimately to replace the AXE10 system. The
AXE-N project had developed a new hardware platform and system
software that was developed in C++.

Following a series of crisis meetings the project was reorgan-
ised and re-started. This time the programming language would be

15MD110 LIM (Line Interface Module).
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Erlang and hardware from the AXE-N project was salvaged to start
the production of a new ATM'® switch, to be called the AXD. This
new project was to be the largest-ever Erlang project so far, with
over 60 Erlang programmers. At the start of the AXD project, the
entire Erlang system was the responsibility of half a dozen peo-
ple in the Lab. This number was viewed as inadequate to support
the needs of a large development project and so plans were im-
mediately enacted to build a product unit, called OTP, to officially
support the Erlang system. At this time all external marketing of Er-
lang was stopped, since all available “resources” should now focus
on internal product development.

OTP stands for the “Open Telecom Platform” and is both the
name of the Erlang software distribution and the name of an Erics-
son product unit, which can be somewhat confusing. The OTP unit
started in the Lab but in 1997 was formed as a new product unit
outside the Lab. Since 1997, the OTP unit has been responsible for
the distribution of Erlang.

4.11 BOS - OTP and behaviors

Alongside the Erlang language development, the question of li-
braries and middleware has always been important. Erlang is just
a programming language, and to build a complete system some-
thing more than just a programming language is needed. To build
any significant body of software you need not only a programming
language but a significant set of libraries and some kind of oper-
ating system to run everything on. You also need a philosophy of
programming—since you cannot build a large body of software in
an ad-hoc manner without some guiding principles.

The collective name for Erlang, all the Erlang libraries, the
Erlang run-time system and descriptions of the Erlang way of doing
things is the OTP system. The OTP system contains:

e Libraries of Erlang code.

e Design patterns for building common applications.
¢ Documentation.

¢ Courses.

e How to’s.

The libraries are organised and described in a conventional man-
ner. They also have pretty conventional semantics. One reviewer of
this paper asked how we integrated side effects with our language,
for example what happens if a open file handle is sent in a mes-
sage to two different processes. The answer is that side effects like
this are allowed. Erlang is not a strict side-effect-free functional
language but a concurrent language where what happens inside a
process is described by a simple functional language. If two differ-
ent processes receive a Pid representing a file, both are free to send
messages to the file process in any way they like. It is up to the
logic of the application to prevent this from happening.

Some processes are programmed so that they only accept mes-
sages from a particular process (which we call the owning process).
In this case problems due to sharing a reference can be avoided, but
code libraries do not necessarily have to follow such a convention.

In practice this type of problem rarely presents problems. Most
programmers are aware of the problems that would arise from
shared access to a resource and therefore use mnesia transactions
or functions in the OTP libraries if they need shared access to a
resource.

What is more interesting is the set of design patterns included
in the OTP system. These design patterns (called behaviors) are
the result of many years’ experience in building fault-tolerant sys-
tems. They are typically used to build things like client-server mod-

16 Asynchronous Transfer Mode.

-module (server) .
-export([start/2, call/2, change_code/2]).

start (Fun, Data) ->
spawn(fun() -> server(Fun, Data) end).

call(Server, Args) ->
rpc(Server, {query, Args}}

change_code(Server, NewFunction) ->
rpc(Server, {new_code, NewFunction}).

rpc(Server, Query) ->
Server ! {self(), Query},
receive
{Server, Reply} -> Reply
end.

server (Fun, Data) —>
receive
{From, {query, Query}} ->
{Reply, NewData} = Fun(Query, Data),
From ! {self(), Replyl,
server (Fun, NewData);
{from, {swap_code, NewFunction} ->
From ! {self(), ack},
server (Data, NewFunction)
end.

Figure 9. A generic client-server model with hot-code replace-
ment.

els, event-handling systems etc. Behaviors in Erlang can be thought
of as parameterizable higher-order parallel processes. They repre-
sent an extension of conventional higher-order functions (like map
,fold etc) into a concurrent domain.

The design of the OTP behaviors was heavily influenced by
two earlier efforts. The first was a system called BOS.!” BOS
was an application operating system written at Bollmora in Erlang
specifically for the Mobility Server project. The BOS had solved a
number of problems in a generic manner, in particular how to build
a generic server and how to build a generic kind of error supervisor.
Most of this had been done by Peter Hogfeldt. The second source
of inspiration was a generic server implemented by Klacke.

When the OTP project started, I was responsible for the overall
technology in the project and for developing a new set of behav-
iors that could be used for building fault-tolerant systems. This in
turn led to the development of a dozen or so behaviors, all of which
simplify the process of building a fault-tolerant system. The behav-
iors abstract out things like failure so that client-server models can
be written using simple functional code in such a manner that the
programmer need only be concerned with the functionality of the
server and not what will happen in the event of failure or distribu-
tion. This part of the problem is handled by the generic component
of the behavior.

The other two people who were heavily involved in the develop-
ment of the behaviors were Martin Bjorklund and Magnus Froberg.
Unfortunately space limitations preclude a more extensive treat-
ment of behaviors. Figure 9 has a greatly simplified sketch of a
client-server behavior. Note that this model provides the normal
functionality of a client-server and the ability to hot-swap the code.
The rationale behind behaviors and a complete set of examples can
be found in [7].

17 Basic Operating System.
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4.12 More language changes

During the period 1989 to 1998, i.e. from the existence of a stable
JAM-based system and up to the release of Open Source Erlang,
a number of changes crept into the language. These can be cate-
gorised as major or minor changes. In this context, minor means
that the change could be categorised as a simple incremental im-
provement to the language. Minor changes suggest themselves all
the time and are gradually added to the language without much dis-
cussion. Minor changes make the programmer’s life a lot easier, but
do not affect how we think about the programming process itself.
They are often derived from ideas in conventional programming
languages that are assimilated into Erlang.
The minor changes which were added included:

e Records.
e Macros.
e Include files.

e Infix notation for list append and subtract ("++” and ”-").
The major changes are covered in the following sections.

4.13 Influence from functional programming

By now the influence of functional programming on Erlang was
clear. What started as the addition of concurrency to a logic lan-
guage ended with us removing virtually all traces of Prolog from
the language and adding many well-known features from functional
languages.

Higher-order functions and list comprehensions were added to
the language. The only remaining signs of the Prolog heritage lie in
the syntax for atoms and variables, the scoping rules for variables
and the dynamic type system.

4.14 Binaries and the bit syntax

A binary is a chunk of untyped data, a simple memory buffer with
no internal structure. Binaries are essential for storing untyped data
such as the contents of a file or of a data packet in a data commu-
nication protocol. Typical operations on a binary often include di-
viding it into two, according to some criteria, or combining several
small binaries to form a larger binary. Often binaries are passed un-
modified between processes and are used to carry input/output data.
Handling binary data efficiently is an extremely difficult problem
and one which Klacke and Tony Rogvall spent several years imple-
menting.

Internally binaries are represented in several different ways, de-
pending upon how and when they were created and what has hap-
pened to them since their creation. Sending messages containing
binaries between two processes in the same node does not involve
any copying of the binaries, since binaries are kept in a separate
reference-counted storage area that is not part of the stack and heap
memory which each process has.

The bit syntax [27] is one of those unplanned things that was
added in response to a common programming problem. Klacke and
Tony had spent a long time implementing various low-level com-
munication protocols in Erlang. In so doing, the problem of pack-
ing and unpacking bit fields in binary data occurred over and over
again. To unpack or pack such a data structure, Tony and Klacke
invented the bit syntax and enhanced Erlang pattern matching to
express patterns over bit fields.

As an example, suppose we have a sixteen-bit data structure
representing a ten-bit counter, three one-bit flags and a three-bit
status indicator. The Erlang code to unpack such a structure is:

<<N:10,Flagl:1,Flag2:1,Flag3:1,Status:3>> = B

This is one of those simple ideas which after you have seen it
makes you wonder how any language could be without it. Using

the bit syntax yields highly optimised code that is extremely easy
to write and fits beautifully with the way most low-level protocols
are specified.

4.15 Mnesia ETS tables and databases

In developing large-scale telecommunications applications it soon
became apparent that the “pure” approach of storing data could not
cope with the demands of a large project and that some kind of
real-time database was needed. This realization resulted in a DBMS
called Mnesia'® [24, 25, 21]. This work was started by Klacke but
soon involved Hans Nilsson, Torbjorn Tornkvist, Hikan Matsson
and Tony Rogvall. Mnesia had both high- and low-level compo-
nents. At the highest level of abstract was a new query language
called Mnemosyne (developed by Hans Nilsson) and at the lowest
level were a set of primitives in Erlang with which Mnesia could be
written. Mnesia satisfied the following requirements (from [21]):

1. Fast Key/Value lookup.

[\S}

. Complicated non real-time queries, mainly for operation and
maintenance.

. Distributed data due to distributed applications.
. High fault tolerance.

. Dynamic reconfiguration.

[©) N B SN OS]

. Complex objects.

In order to implement Mnesia in Erlang, one additional Erlang
module had to be developed. This was the Erlang module ets ,
short for Erlang term storage. Ets provided low-level destructive
term storage based on extensible hash tables. Although ets looks
as if it had been implemented in Erlang (i.e. it is an Erlang mod-
ule), most of its implementation is contained in the Erlang virtual
machine implementation.

4.16 High-performance Erlang

The HiPE (High-Performance Erlang) project is a research project
at the Department of Information Technology at the University of
Uppsala. The HiPE team have concentrated on efficient implemen-
tation of Erlang and type checking systems for Erlang. This project
runs in close collaboration with members of the OTP group. Since
2001, the HiPE native code compiler has been an integral part of
the Open Source Erlang distribution.

4.17 Type inference of Erlang programs

Erlang started life as a Prolog interpreter and has always had a
dynamic type system, and for a long time various heroic attempts
have been made to add a type system to Erlang. Adding a type
system to Erlang seems at first a moderately difficult endeavour,
which on reflection becomes impossibly difficult.

The first attempt at a type system was due to an initiative taken
by Phil Wadler. One day Phil phoned me up and announced that a)
Erlang needed a type system, b) he had written a small prototype of
atype system and c) he had a one year’s sabbatical and was going to
write a type system for Erlang and “were we interested?”” Answer
—“Yes.”

Phil Wadler and Simon Marlow worked on a type system for
over a year and the results were published in [20]. The results of
the project were somewhat disappointing. To start with, only a sub-
set of the language was type-checkable, the major omission being
the lack of process types and of type checking inter-process mes-
sages. Although their type system was never put into production,

18 The original name was Amnesia until a senior Ericsson manager noticed
the name. “It can’t possible be called Amnesia,” he said, “the name must be
changed” — and so we dropped the “a.”
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it did result in a notation for types which is still in use today for
informally annotating types.

Several other projects to type check Erlang also failed to pro-
duce results that could be put into production. It was not until the
advent of the Dialyzer'® [18] that realistic type analysis of Erlang
programs became possible. The Dialyzer came about as a side-
effect of the HiPE project mentioned earlier. In order to efficiently
compile Erlang, a type analysis of Erlang programs is performed.
If one has precise information about the type of a function, spe-
cialised code can be emitted to compile that function, otherwise
generic code is produced. The HiPE team took the view that com-
plete information about all the types of all the variables in all the
statements of an Erlang program was unnecessary and that any def-
inite statements about types, even of a very small subsection of a
program, provided useful information that could guide the compiler
into generating more efficient code.

The Dialyzer does not attempt to infer all types in a program, but
any types it does infer are guaranteed to be correct, and in particular
any type errors it finds are guaranteed to be errors. The Dialyzer is
now regularly used to check large amounts of production code.

5. PartIV: 1998 — 2001. Puberty problems — the
turbulent years

1998 was an exciting year in which the following events occurred:

e The first demo of GPRS® developed in Erlang was demon-
strated at the GSM World Congress in February and at CeBIT
in March.

e In February, Erlang was banned inside Ericsson Radio Systems.

e In March, the AXD301 was announced. This was possibly the
largest ever program in a functional language.

¢ In December, Open Source Erlang was released.

e In December, most of the group that created Erlang resigned
from Ericsson and started a new company called Bluetail AB.

5.1 Projects Succeed

In 1998, the first prototype of a GPRS system was demonstrated
and the Ericsson AXD301 was announced. Both these systems
were written in a mixture of languages, but the main language for
control in both systems was Erlang.

The largest ever system built in Erlang was the AXD301. At the
time of writing, this system has 2.6 millions lines of Erlang code.
The success of this project demonstrates that Erlang is suitable
for large-scale industrial software projects. Not only is the system
large in terms of code volume, it is also highly reliable and runs in
realtime. Code changes in the system have to be performed without
stopping the system. In the space available it is difficult to describe
this system adequately so I shall only give a brief description of
some of the characteristics.

The AXD301 is written using distributed Erlang. It runs on a
cluster using pairs of processors and is scalable up to 16 pairs
of processors. Each pair is “self contained,” which means that if
one processor in the pair fails, the other takes over. The take-
over mechanisms and call control are all programmed in Erlang.
Configuration data and call control data are stored in a Mnesia
database that can be accessed from any node and is replicated
on several nodes. Individual nodes can be taken out of service
for repair, and additional nodes can be added without interrupting
services.

19 DlIscrepancy AnalYZer of ERlang programs.

20 General Packet Radio Service.

The software for the system is programmed using the behaviors
from the OTP libraries. At the highest level of abstraction are a
number of so-called “supervision trees”—the job of a node in the
supervision tree is to monitor its children and restart them in the
event of failure. The nodes in a decision tree are either supervision
trees or primitive OTP behaviors. The primitive behaviors are used
to model client-servers, event-loggers and finite-state machines.
In the analysis of the AXD reported in [7], the AXD used 20
supervision trees, 122 client-server models, 36 event loggers and
10 finite-state machines.

All of this was programmed by a team of 60 programmers. The
vast majority of these programmers had an industrial background
and no prior knowledge of functional or concurrent programming
languages. Most of them were taught Erlang by the author and his
colleagues. During this project the OTP group actively supported
the project and provided tool support where necessary. Many in-
house tools were developed to support the project. Examples in-
clude an ASN.1 compiler and in-built support for SNMP in Mne-
sia.

The OTP behaviors themselves were designed to be used by
large groups of programmers. The idea was that there should be
one way to program a client-server and that all programmers who
needed to implement a client server would write plug-in code
that slotted into a generic client-server framework. The generic
server framework provided code for all the tricky parts of a client-
server, taking care of things like code change, name registration,
debugging, etc. When you write a client-server using the OTP
behaviors you need only write simple sequential functions: all the
concurrency is hidden inside the behavior.

The intention in the AXD was to write the code in as clear a
manner as possible and to mirror the specifications exactly. This
turned out to be impossible for the call control since we ran into
memory problems. Each call needed six processes and processing
hundreds of thousands of calls proved impossible. The solution
to this was to use six processes per call only when creating and
destroying a call. Once a call had been established, all the processes
responsible for the call were killed and data describing the call was
inserted into the real-time database. If anything happened to the
call, the database entry was retrieved and the call control processes
recreated.

The AXD301 [8] was a spectacular success. As of 2001, it
had 1.13 million lines of Erlang code contained in 2248 modules
[7]. If we conservatively estimate that one line of Erlang would
correspond to say five lines of C, this corresponds to a C system
with over six million lines of code.

As regards reliability, the AXD301 has an observed nine-nines
reliability [7]—and a four-fold increase in productivity was ob-
served for the development process [31].

5.2 Erlang is banned

Just when we thought everything was going well, in 1998, Erlang
was banned within Ericsson Radio AB (ERA) for new product
development. This ban was the second most significant event in
the history of Erlang: It led indirectly to Open Source Erlang and
was the main reason why Erlang started spreading outside Ericsson.
The reason given for the ban was as follows:

The selection of an implementation language implies a more
long-term commitment than the selection of a processor and
OS, due to the longer life cycle of implemented products.
Use of a proprietary language implies a continued effort to
maintain and further develop the support and the develop-
ment environment. It further implies that we cannot easily
benefit from, and find synergy with, the evolution following
the large scale deployment of globally used languages. [26]
quoted in [12].
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In addition, projects that were already using Erlang were al-
lowed to continue but had to make a plan as to how dependence
upon Erlang could be eliminated. Although the ban was only within
ERA, the damage was done. The ban was supported by the Erics-
son technical directorate and flying the Erlang flag was thereafter
not favored by middle management.

5.3 Open Source Erlang

Following the Erlang ban, interest shifted to the use of Erlang
outside Ericsson.

For some time, we had been distributing Erlang to interested
parties outside Ericsson, although in the form of a free evaluation
system subject to a non-disclosure agreement. By 1998, about 40
evaluation systems had been distributed to external users and by
now the idea of releasing Erlang subject to an open source license
was formed. Recall that at the start of the Erlang era, in 1986,
“open source” was unheard of, so in 1986 everything we did was
secret. By the end of the era, a significant proportion of the software
industry was freely distributing what they would have tried to sell
ten years earlier—as was the case with Erlang.

In 1998, Jane Walerud started working with us. Jane had the job
of marketing Erlang to external users but soon came to the conclu-
sion that this was not possible. There was by now so much free
software available that nobody was interested in buying Erlang.
We agreed with Jane that selling Erlang was not viable and that
we would try to get approval to release Erlang subject to an open
source license. Jane started lobbying the management committee
that was responsible for Erlang development to persuade it to ap-
prove an open source release. The principal objection to releasing
Erlang as Open Source was concerned with patents, but eventually
approval was obtained to release the system subject to a patent re-
view. On 2 December 1998, Open Source Erlang was announced.

5.4 Bluetail formed

Shortly after the open source release, the majority of the original
Erlang development team resigned from Ericsson and started a new
company called Bluetail AB with Jane as the chief executive. In
retrospect the Erlang ban had the opposite effect and stimulated the
long-term growth of Erlang. The ban led indirectly to Open Source
Erlang and to the formation of Bluetail. Bluetail led in its turn to the
introduction of Erlang into Nortel Networks and to the formation
of a small number of Erlang companies in the Stockholm region.

When we formed Bluetail, our first decision was to use Erlang
as a language for product development. We were not interested
in further developing the language nor in selling any services re-
lated to the language. Erlang gave us a commercial advantage and
we reasoned that by using Erlang we could develop products far
faster than companies using conventional techniques. This intuition
proved to be correct. Since we had spent the last ten years designing
and building fault-tolerant telecoms devices, we turned our atten-
tion to Internet devices, and our first product was a fault-tolerant
e-mail server called the mail robustifier.

Architecturally this device has all the characteristics of a switch-
ing system: large numbers of connections, fault-tolerant service,
ability to remove and add nodes with no loss of service. Given that
the Bluetail system was programmed by most of the people who
had designed and implemented the Erlang and OTP systems, the
project was rapidly completed and had sold its first system within
six months of the formation of the company. This was one of the
first products built using the OTP technology for a non-telecoms
application.

5.5 The IT boom - the collapse and beyond

From 1998 to 2000 there were few significant changes to Erlang.
The language was stable and any changes that did occur were

under the surface and not visible to external users. The HiPE team
produced faster and faster native code compilers and the Erlang
run-time system was subject to continual improvement and revision
in the capable hands of the OTP group.

Things went well for Bluetail and in 2000, the company was
acquired by Alteon Web systems and six days later Alteon was
acquired by Nortel Networks. Jane Walerud was voted Swedish
IT person of the year. Thus is was that Erlang came to Nortel
Networks. The euphoric period following the Bluetail acquisition
was short-lived. About six months after the purchase, the IT crash
came and Nortel Networks fired about half of the original Bluetail
gang. The remainder continued with product development within
Nortel.

6. Part V: 2002 — 2005. Coming of age

By 2002, the IT boom was over and things had begun to calm down
again. I had moved to SICS?! and had started thinking about Erlang
again. In 2002, I was fortunate in being asked to hold the opening
session at the second Lightweight Languages Symposium (held at
MIT).

6.1 Concurrency oriented programming and the future

In preparing my talk for LL2 I tried to think of a way of explaining
what we had been doing with Erlang for the last 15 years. In so
doing, I coined the phrase “concurrency oriented programming”
—at the time I was thinking of a analogy with object oriented
programming. As regards OO programming I held the view that:

¢ An OO language is characterised by a vague set of rules.
e Nobody agrees as to what these rules are.

e Everybody knows an OO language when they see one.

Despite the fact that exactly what constitutes an OO language
varies from language to language, there is a broad understanding of
the principles of OO programming and software development. OO
software development is based first upon the identification of a set
of objects and thereafter by the sets of functions that manipulate
these objects.

The central notion in concurrency oriented programming (COP)
is to base the design on the concurrency patterns inherent in the
problem. For modelling and programming real-world objects this
approach has many advantages—to start with, things in the real
world happen concurrently. Trying to model real-world activities
without concurrency is extremely difficult.

The main ideas in COP are:

e Systems are built from processes.

e Process share nothing.

e Processes interact by asynchronous message passing.
e Processes are isolated.

By these criteria both PLEX and Erlang can be described as
concurrency oriented languages.

This is then what we have been doing all along. The original
languages started as a sequential language to which I added pro-
cesses, but the goal of this was to produce lightweight concurrency
with fast message passing.

The explanations of what Erlang was have changed with time:

1. 1986 — Erlang is a declarative language with added concurrency.

2. 1995 — Erlang is a functional language with added concurrency.

21 Swedish Institute of Computer Science.
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3. 2005 — Erlang is a concurrent language consisting of communi-
cating components where the components are written in a func-
tional language. Interestingly, this mirrors earlier work in Eri-
Pascal where components were written in Pascal.

Now 3) is a much better match to reality than ever 1) or 2) was.
Although the functional community was always happy to point
to Erlang as a good example of a functional language, the status
of Erlang as a fully fledged member of the functional family is
dubious. Erlang programs are not referentially transparent and there
is no system for static type analysis of Erlang programs. Nor is it a
relational language. Sequential Erlang has a pure functional subset,
but nobody can force the programmer to use this subset; indeed,
there are often good reasons for not using it.

Today we emphasize the concurrency. An Erlang system can be
thought of as a communicating network of black boxes. If two black
boxes obey the principle of observational equivalence, then for all
practical purposes they are equivalent. From this point of view, the
language used inside the black box is totally irrelevant. It might
be a functional language or a relational language or an imperative
language—in understanding the system this is an irrelevant detail.

In the Erlang case, the language inside the black box just hap-
pens to be a small and rather easy to use functional language, which
is more or less a historical accident caused by the implementation
techniques used.

If the language inside the black boxes is of secondary impor-
tance, then what is of primary importance? I suspect that the impor-
tant factor is the interconnection paths between the black boxes and
the protocols observed on the channels between the black boxes.

As for the future development of Erlang, I can only speculate.
A fruitful area of research must be to formalise the interprocess
protocols that are used and observed. This can be done using syn-
chronous calculi, such as CSP, but I am more attracted to the idea
of protocol checking, subject to an agreed contract. A system such
as UBF [6] allows components to exchange messages according to
an agreed contract. The contract is checked dynamically, though I
suspect that an approach similar to that used in the Dialyzer could
be used to remove some of the checks.

I also hope that the Erlang concurrency model and some of the
implementation tricks®* will find their way into other programming
languages. I also suspect that the advent of true parallel CPU
cores will make programming parallel systems using conventional
mutexes and shared data structures almost impossibly difficult, and
that the pure message-passing systems will become the dominant
way to program parallel systems.

I find that I am not alone in this belief. Paul Morrison [23] wrote
a book in 1992 suggesting that flow-based programming was the
ideal way to construct software systems. In his system, which in
many ways is very similar to Erlang, interprocess pipes between
processes are first-class objects with infinite storage capacity. The
pipes can be turned on and off and the ends connected to different
processes. This view of the world concentrates on the flow of data
between processes and is much more reminiscent of programming
in the process control industry than of conventional algorithmic
programming. The stress is on data and how it flows through the
system.

6.2 Erlang in recent times

In the aftermath of the IT boom, several small companies formed
during the boom have survived, and Erlang has successfully re-
rooted itself outside Ericsson. The ban at Ericsson has not suc-
ceeded in completely killing the language, but it has limited its
growth into new product areas.

22 Like the bit pattern matching syntax.

The plans within Ericsson to wean existing projects off Erlang
did not materialise and Erlang is slowly winning ground due to a
form of software Darwinism. Erlang projects are being delivered on
time and within budget, and the managers of the Erlang projects are
reluctant to make any changes to functioning and tested software.

The usual survival strategy within Ericsson during this time
period was to call Erlang something else. Erlang had been banned
but OTP hadn’t. So for a while no new projects using Erlang were
started, but it was OK to use OTP. Then questions about OTP
were asked: “Isn’t OTP just a load of Erlang libraries?”—and so
it became “Engine,” and so on.

After 2002 some of the surviving Bluetail members who moved
to Nortel left and started a number of 2nd-generation companies,
including Tail-F, Kreditor and Synapse. All are based in the Stock-
holm region and are thriving.

Outside Sweden the spread of Erlang has been equally excit-
ing. In the UK, an ex-student of mine started Erlang Consulting,
which hires out Erlang consultants to industry. In France, Process-
one makes web stress-testing equipment and instant-messaging so-
lutions. In South Africa, Erlang Financial Systems makes banking
software. All these external developments were spontaneous. Inter-
ested users had discovered Erlang, installed the open-source release
and started programming. Most of this community is held together
by the Erlang mailing list, which has thousands of members and
is very active. There is a yearly conference in Stockholm that is
always well attended.

Recently, Erlang servers have begun to find their way into high-
volume Internet applications. Jabber.org has adopted the ejabberd
instant messaging server, which is written in Erlang and supported
by Process-one.

Perhaps the most exciting modern development is Erlang for
multicore CPUs. In August 2006 the OTP group released Erlang for
an SMP. In most other programming communities, the challenge of
the multicore CPU is to answer the question, “How can I parallelize
my program?” Erlang programmers do not ask such questions; their
programs are already parallel. They ask other questions, like “How
can I increase the parallelism in an already parallel program?” or
“How can I find the bottlenecks in my parallel program?” but the
problem of parallelization has already been solved.

The “share nothing pure message passing” decisions we took
in the 1980s produce code which runs beautifully on a multicore
CPU. Most of our programs just go faster when we run them on a
multicore CPU. In an attempt to further increase parallelism in an
already parallel program, I recently wrote a parallel version of map
(pmap) that maps a function over a list in parallel. Running this on
a Sun Fire T2000 Server, an eight core CPU with four threads per
core, made my program go 18 times faster.

6.3 Mistakes made and lessons learnt

If we are not to make the same mistakes over and over again then
we must learn from history. Since this is the history of Erlang, we
can ask, “What are the lessons learnt? the mistakes made? what
was good? what was bad?” Here I will discuss some of what I
believe are the generic lessons to be learned from our experience
in developing Erlang, then I will talk about some of the specific
mistakes.

First the generic lessons:

The Erlang development was driven by the prototype

Erlang started as a prototype and during the early years the de-
velopment was driven by the prototype; the language grew slowly
in response to what we and the users wanted. This is how we
worked.

First we wrote the code, then we wrote the documentation.
Often the users would point out that the code did not do what
the documentation said. At this phase in the development we told
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them, “If the code and the documentation disagree then the code is
correct and the documentation wrong.” We added new things to the
language and improved the code and when things had stabilized,
we updated the documentation to agree with the code.

After a couple of years of this way of working, we had a pretty
good user’s manual [3]. At this point we changed our way of work-
ing and said that from now on the manuals would only describe
what the language was supposed to do and if the implementation
did something else then it was a bug and should be reported to us.
Once again, situations would be found when the code and the doc-
umentation did not agree, but now it was the code that was wrong
and not the documentation.

In retrospect this seems to be the right way of going about
things. In the early days it would have been totally impossible to
write a sensible specification of the language. If we had sat down
and carefully thought out what we had wanted to do before doing
it, we would have got most of the details wrong and would have
had to throw our specifications away.

In the early days of a project, it is extremely difficult to write a
specification of what the code is supposed to do. The idea that you
can specify something without having the knowledge to implement
it is a dangerous approximation to the truth. Language specifica-
tions performed without knowledge of how the implementation is
to be performed are often disastrously bad. The way we worked
here appears to be optimal. In the beginning we let our experiments
guide our progress, Then, when we knew what we were doing, we
could attempt to write a specification.

Concurrent processes are easy to compose

Although Erlang started as a language for programming switches,
we soon realized that it was ideal for programming many general-
purpose applications, in particular, any application that interacted
with the real world. The pure message-passing paradigm makes
connecting Erlang processes together extremely easy, as is inter-
facing with external applications. Erlang views the world as com-
municating black boxes, exchanging streams of message that obey
defined protocols. This make it easy to isolate and compose com-
ponents. Connecting Erlang processes together is rather like Unix
shell programming. In the Unix shell we merely pipe the output
of one program into the input of another. This is exactly how we
connect Erlang processes together: we connect the output of one
process to the input of another. In a sense this is even easier than
connecting Unix processes with a pipe, as in the Erlang case the
messages are Erlang terms that can contain arbitrary complex data
structures requiring no parsing. In distributed Erlang the output of
one program can be sent to the input of another process on another
machine, just as easily as if it had been on the same machine. This
greatly simplifies the code.

Programmers were heavily biased by what the language does
and not by what it should do

Erlang programmers often seem to be unduly influenced by the
properties of the current implementation. Throughout the develop-
ment of Erlang we have found that programming styles reflected
the characteristics of the implementation. So, for example, when
the implementation limited the maximum number of processes to a
few tens of thousands of processes, programmers were overly con-
servative in their use of processes. Another example can be found
in how programmers use atoms. The current Erlang implementa-
tion places restrictions on the maximum number of atoms allowed
in the system. This is a hard limit defined when the system is built.
The atom table is also not subject to garbage collection. This has re-
sulted in lengthy discussion on the Erlang mailing lists and a reluc-
tance to use dynamically recreated atoms in application programs.
From the implementor’s point of view, it would be better to encour-
age programmers to use atoms when appropriate and then fix the
implementation when it was not appropriate.

In extreme cases, programmers have carefully measured the
most efficient way to write a particular piece of code and then
adopted this programming style for writing large volumes of code.
A better approach would be to try to write the code as beautifully
and clearly as possible and then, if the code is not fast enough, ask
for the implementor’s help in speeding up the implementation.

People are not convinced by theory, only by practice

We have often said that things could be done (that they were
theoretically possible) but did not actually do them. Often our es-
timates of how quickly we could do something were a lot shorter
than was generally believed possible. This created a kind of cred-
itability gap where we did not implement something because we
thought it was really easy, and the management thought we did not
know what we were talking about because we had not actually im-
plemented something. In fact, both parties were probably incorrect;
we often underestimated the difficulty of an implementation and the
management overestimated the difficulty.

The language was not planned for change from the beginning

We never really imagined that the language itself would evolve
and spread outside the Lab. So there are no provisions for evolving
the syntax of the language itself. There are no introspection facil-
ities so that code can describe itself in terms of its interfaces and
versions, etc.

The language has fixed limits and boundaries

Just about every decision to use a fixed size data structure
was wrong. Originally Pids (process identifiers) were 32-bit stack
objects—this was done for “efficiency reasons.” Eventually we
couldn’t fit everything we wanted to describe a process into 32 bits,
so we moved to larger heap objects and pointers. References were
supposed to be globally unique but we knew they were not. There
was a very small possibility that two identical references might be
generated, which, of course, happened.

Now for the specific lessons:

There are still a number of areas where Erlang should be im-
proved. Here is a brief list:

We should have atom GC Erlang does not garbage collect atoms.
This means that some programs that should be written using
atoms are forced to use lists or binaries (because the atom table
might overflow).

We should have better ways interfacing foreign code Interfacing
non-Erlang code to Erlang code is difficult, because the foreign
code is not linked to the Erlang code for safety reasons. A better
way of doing this would be to run the foreign code in distributed
Erlang nodes, and allow foreign language code to be linked into
these “unsafe” nodes.

We should improve the isolation between processes Process iso-
lation is not perfect. One process can essentially perform a “de-
nial of service attack” on another process by flooding it with
messages or by going into an infinite loop to steal CPU cy-
cles from the other processes. We need safety mechanisms to
prevent this from happening.

Safe Erlang Security in distributed Erlang is “all or nothing,”
meaning that, once authenticated, a distributed Erlang node
can perform any operation on any other node in the system. We
need a security module that allows distributed nodes to process
remote code with varying degrees of trust.

We need notations to specify protocols and systems Protocols
themselves are not entities in Erlang, they are not named and
they can be inferred only by reading the code in a program. We
need more formal ways of specifying protocols and run-time
methods for ensuring that the agents involved in implementing
a protocol actually obey that protocol.
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Code should be first class Functions in Erlang are first-class, but
the modules themselves are not first-class Erlang objects. Mod-
ules should also be first-class objects: we should allow multiple
versions of module code® and use the garbage collector to re-
move old code that can no longer be evaluated.

6.4 Finally

It is perhaps interesting to note that the two most significant factors
that led to the spread of Erlang were:

e The collapse of the AXE-N project.
e The Erlang ban.

Both of these factors were outside our control and were un-
planned. These factors were far more significant than all the things
we did plan for and were within our control. We were fortuitously
able to take advantage of the collapse of the AXE-N project by
rushing in when the project failed. That we were able to do so was
more a matter of luck than planning. Had the collapse occurred at
a different site then this would not have happened. We were able
to step in only because the collapse of the project happened in the
building where we worked so we knew all about it.

Eventually Ericsson did the right thing (using the right tech-
nology for the job) for the wrong reasons (competing technologies
failed). One day I hope they will do the right things for the right
reasons.

23 Erlang allows two versions of the same module to exist at any one time,
this is to allow dynamic code-upgrade operations.
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A. Change log of erlang.pro
24 March 1988 to 14 December 1988

~
*

$HOME/erlang.pro
Copyright (c) 1988 Ericsson Telecom
Author: Joe Armstrong
Creation Date: 1988-03-24
Purpose:
main reduction engine

Revision History:

88-03-24 Started work on multi processor version of erlang

88-03-28 First version completed (Without timeouts)

88-03-29 Correct small errors

88-03-29 Changed ’receive’ to make it return the pair
msg(From,Mess)

88-03-29 Generate error message when out of goals
i.e. program doesn’t end with terminate

88-03-29 added trace(on), trace(off) facilities

88-03-29 Removed Var :_ {....} , this can be achieved
with {..}

88-05-27 Changed name of file to erlang.pro

First major revision started - main changes
Complete change from process to channel
based communication here we (virtually) throw away all the
old stuff and make a bloody great data base
88-05-31 The above statements were incorrect much better
to go back to the PROPER way of doing things
long live difference lists
88-06-02 Reds on run([et5]) = 245
Changing the representation to separate the
environment and the process - should improve things
It did .... reds = 283 - and the program is nicer!
88-06-08 A1l pipe stuff working (pipes.pro)
added code so that undefined functions can return
values
88-06-10 moved all stuff to /dunder/sys3

mussy semantics - difficult to implement
This version now 3.01
Changes case, and reduce Rhs’s after =>
to allow single elements not in list brackets
88-06-13 added link(Proc), unlink(Proc) to control
error recovery.
a processes that executes error-exit will send
a kill signal to all currently linked processes
the receiving processes will be killed and will
send kill’s to all their linked processes etc.
88-06-14 corrected small error in kill processing
changed name of spy communications(onloff)
to trace comms(onloff)
88-06-16 added load(File) as an erlang command
added function new_ref - retruns
a unique reference
88-06-22 added structure parameter io_env
to hold the io_environment for LIM communication
changes required to add communication with lim ...
no change to send or receive the hw will just appear
as a process name (eg send(tsu(16),...)
note have to do link(...) before doing a send
change to top scheduler (msg(From,To,...))
such that message is sent to Hw if To represents Hw
following prims have been added to prims.tel
link _hw(Hw,Proc) - send all msgs from Hw to Proc

¥R K K K X X K K K K X X K K K X X X K K K X X K K K K X X K K K X X X K K K X K X K K K X K K K K X X ¥ K X X X ¥ ¥ * ¥
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88-06-27

88-07-04

88-07-07

88-07-08

88-09-14

88-10-18

88-10-18

88-10-18
88-10-19

88-10-19

88-10-19

88-10-19

88-10-24
88-10-25

88-10-27

88-11-03
88-11-03

88-11-08
88-11-08

unlink _hw(Hw) - stop it
unlink _all hw -- used when initialising
added new primitive
init hw causes lim to be initialised
load-magic ... links the c stuff
simulate(onloff) -- really send to HW
Bug is bind _var ..
foo(A,B) := zap,...
failed when zap returned foo(aa,bb)
port to quintus --- chage $$ varaibles
change the internal form of erlang clauses
i.e. remove clause(...)
changed order in receive so that first entry is
in queu is pulled out if at all possible
exit(X) X <> normal causes trace printout
ported to SICSTUS -
changed load to eload to avoid name clash with
SICSTUS
changed the return variable strategy.
don’t have to say void := Func to throw away the
return value of a function
If we hit a variable on the top of the reduction
stack, then the last called function did not return
a value, we bind the variable to undefined
(this means that write,nl,... etc) now all return
undefined unless explicitly overridden
<<< does case etc return values correctly 7>
[[[ I hope so 11]
send just sends doesn’t check for a link
reworked the code for link and unlink
multiple link or unlink doesn’t bugger things
make link by-directional. This is done by linking
locally and sending an link/unlink messages to
the other side
add command trap exit(Arg) .. Arg = yes I no
Implies extra parameter in facts/4
Changed the semantics of exit as follows:
error_exit is removed
exit(Why) has the following semantics
when exit(Anything) is encountered an exit(Why)
message is sent to all linked processes the action
taken at ther receiving end is as follows:
1) if trap exit(no) & exit(normal)
message is scrapped
2) if trap exit(no) & exit(X) & X <> normal
exit(continue) is send to all linked processes
EXCEPT the originating process
3) if trap_exit(yes) then the exit message
is queued for reception with a
receive ([

exit (From,Why) =>

statement

send_sys(Term) implemented .. used for faking
up a internal message
can now do run(Mod:Goal)
fixed spawn(Mod:Goal,Pri) to build function name
at run time
A1l flags changes to yes I no
i.e. no more on,off true, false etc.
help command moved to top.pl
changed top scheduler to carry on
reducing until an empty queu is reached and then stop
changed 1111 to ’sys$$call
added lots of primitives (read the code!)
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88-11-08

88-11-17
88-11-17

88-11-17
88-11-17
88-12-14

removed simulate(on) ... etc.

must be done from the top loop

added 1link/2, unlink/2

added structure manipulating primitives
atom_2_list(Atom),list_2_atom(List),
struct_name(Struct), struct_args(AStruct),
struct_arity(Struct), make struct(Name,Args)
get arg(Argno,Struct), set arg(Argno,Struct,Value)
run out of goals simulates exit(normal)

and timeout messages

added two extra parameters to facts
Save-messages (yeslno) and alias
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B. Erlang examples
B.1 Sequential Erlang examples
Factorial

All code is contained in modules. Only exported functions can be
called from outside the modules.
Function clauses are selected by pattern matching.

-module (math) .
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

We can run this in the Erlang shell.**
> math:fac(25).
15511210043330985984000000

Binary Trees

Searching in a binary tree. Nodes in the tree are either nil or
{Key,Val,S,B} where S is a tree of all nodes less than Key and G
is a tree of all nodes greater than Key.

Variables in Erlang start with an uppercase letter. Atoms start
with a lowercase letter.

lookup(Key, {Key, Val, _, _}) ->
{ok, Vall};
lookup(Key,{Key1l,Val,S,G}) when Key < Keyl ->
lookup(Key, S);
lookup(Key, {Keyl,Val,S,G}) ->
lookup(Key, G);
lookup(Key, nil) ->
not_found.

Append
Lists are written [H|T]? where H is any Erlang term and T is a list.
[X1,X2,..,Xn] is shorthand for [X1| [X2]|...|[Xnl[1]1]1].

append([H|T], L) -> [H|append(T, L)1;
append([], L) -> L.

Sort

This makes use of list comprehensions:

sort ([Pivot|T]) ->
sort ([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort ([X||X <- T, X >= Pivot]);
sort([1) —> [1.

[X || X <= T, X < Pivot] means the list of X where X is taken
from T and X is less than Pivot.

Adder

Higher order functions can be written as follows:

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun

> G = Adder(10).

#Fun

> G(5).

15

24 The Erlang shell is an infinite read-eval-print loop.
25 Similar to a LISP cons cell.

B.2 Primitives for concurrency
Spawn
Pid = spawn(fun() -> loop(0) end).

Send and receive

Pid ! Message,

receive
Messagel —>
Actionsi;
Message2 —>
Actions2;

after Time ->
TimeOutActions
end

B.3 Concurrent Erlang examples
“Area” server

-module(area) .
-export ([loop/1]).

loop(Tot) ->
receive
{Pid, {square, X}} ->
Pid ! XxX,
loop(Tot + X*X);
{Pid, {rectangle, [X,Y]}} ->
Pid ! XxY,
loop(Tot + X*Y);
{Pid, areas} —>
Pid ! Tot,
loop(Tot)
end.

“Area” client
Pid = spawn(fun() -> area:loop(0) end),
Pid ! {self(), {square, 10}},
receive
Area ->
end

Global server

We can register a Pid so that we can refer to the process by a name:
Pid = spawn(Fun),

register(bank, Pid),

bank !

B.4 Distributed Erlang

We can spawn a process on a remote node as follows:

Pid = spawn(Fun@Node)
alive(Node)

not_alive(Node)
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B.5 Fault tolerant Erlang
catch

> X = 1/0.

*x* exited: {badarith, divide_by_zerol} *x*
> X = (catch 1/0).

{’EXIT’ ,{badarith, divide_by_zero}}

> b().

X = {’EXIT’,{badarith, divide_by_zerol}}

Catch and throw

case catch f(X) ->
{exceptionl, Why} ->
Actions;
NormalReturn ->
Actions;
end,

£(X) >

Normal_return_value;
£(X) ->

throw({exceptionl, ...}).

Links and trapping exits

process_flag(trap_exits, true),
P = spawn_link(Node, Mod, Func, Args),
receive
{’EXIT’, P, Why} ->
Actions;

end

B.6 Hot code replacement

Here’s the inner loop of a server:

loop(Data, F) ->
receive
{request, Pid, Q} ->
{Reply, Datal} = F(Q, Data),
Pid ! Reply,
loop(Datal, F);
{change_code, F1} ->
loop(Data, F1)
end

To do a code replacement operation do something like:

Server ! {change_code, fun(I, J) ->
do_something(...)
end}

B.7 Generic client-server

The module cs is a simple generic client-server:

-module(cs) .
-export([start/3, rpc/2]).

start (Name, Data, Fun) ->
register(Name,
spawn(fun() ->
loop(Data, Fun)
end)).

rpc(Name, Q) ->
Tag = make_ref(),
Name ! {request, self(), Tag, Q},
receive
{Tag, Reply} -> Reply
end.

loop(Data, F) ->
receive
{request, Pid, Tag, Q} >
{Reply, Datal} = F(Q, Data),
Pid ! {Tag, Reply},
loop(Datal, F)
end.

Parameterizing the server

We can parameterize the server like this:

-module(test) .
-export([start/0, add/2, lookup/1]).

start() -> cs:start(keydb, [], fun handler/2).

add(Key, Val) -> cs:rpc(keydb, {add, Key, Vall).
lookup(Key)  -> cs:rpc(keydb, {lookup, Keyl}).

handler({add, Key, Vall}, Data) ->
{ok, add(Key,Val,Data)l};

handler ({lookup, Key}, Data) ->
{find(Key, Data), Datal}.

add(Key,Val, [{Key, _}IT]) -> [{Key,Val}IT];

add(Key,Val, [H|T]) -> [H|add(Key,Val,T)];
add (Key,Val, [1) -> [{Key,Vall}].
find(Key, [{Key,Val}|_1) -> {found, Val};
find(Key, [HIT]) -> find(Key, T);
find(Key, [1) -> error.

Here’s a test run:

> test:start().
true

> test:add(xx, 1).
ok

> test:add(yy, 2).
ok

> test:lookup(xx).
{found, 1}

> test:lookup(zz).
error

The client code (in test.erl) is purely sequential. Every-
thing to do with concurrency (spawn, send, receive) is contained
within cs.erl.

cs.erl is a simple behavior that hides the concurrency from
the application program. In a similar manner we can encapsulate
(and hide) error detection and recovery, code upgrades, etc. This is
the basis of the OTP libraries.
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