
LISP AND SYMBOLIC COMPUTATION: An International Journal, 6, 233{247, 1993c
 1993 Kluwer Academic Publishers { Manufactured in The NetherlandsThe Discoveries of ContinuationsJOHN C. REYNOLDS (John.Reynolds@cs.cmu.edu)School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213-3890Keywords: Semantics, Continuation, Continuation-Passing StyleAbstract. We give a brief account of the discoveries of continuations and related con-cepts by A. van Wijngaarden, A. W. Mazurkiewicz, F. L. Morris, C. P. Wadsworth,J. H. Morris, M. J. Fischer, and S. K. Abdali.In the early history of continuations, basic concepts were independentlydiscovered an extraordinary number of times. This was due less to poorcommunication among computer scientists than to the rich variety of set-tings in which continuations were found useful: They underlie a methodof program transformation (into continuation-passing style), a style of def-initional interpreter (de�ning one language by an interpreter written inanother language), and a style of denotational semantics (in the sense ofScott and Strachey). In each of these settings, by representing \the mean-ing of the rest of the program" as a function or procedure, continuationsprovide an elegant description of a variety of language constructs, includingcall by value and goto statements.1. The BackgroundIn the early 1960's, the appearance of Algol 60 [32, 33] inspired a fermentof research on the implementation and formal de�nition of programminglanguages. Several aspects of this research were critical precursors of thediscovery of continuations.The ability in Algol 60 to jump out of blocks, or even procedure bod-ies, forced implementors to realize that the representation of a label mustinclude a reference to an environment. According to Peter Naur:: : : in order to specify a transfer of control we must in generalsupply both the static description of the destination : : : anda dynamic description of its environment, the stack reference.This set : : : together de�ne what we call a program point. [31]

6-234 JOHN C. REYNOLDSIn retrospect, a program point was the representation of a continuation.A more subtle realization was that return addresses could be treatedon the same footing as procedure parameters. With a prescient choice ofwords, E. W. Dijkstra remarked:We use the name \parameters" for all the information that ispresented to the subroutine when it is called in by the mainprogram; function arguments, if any, are therefore parameters.The data grouped under the term \link" are also consideredas parameters; the link comprises all the data necessary for thecontinuation of the main program when the subroutine has beencompleted. [9]Indeed, in the GIER Algol Compiler designed by Naur and J�rn Jensen [31],return addresses and label parameters, both regarded as program points,were treated in essentially the same way.Another precursor of continuations occurred in Peter Landin's SECDmachine [14], a state-transition interpreter for a language of applicativeexpressions that was syntactically similar to the untyped lambda calculusbut used a call-by-value order of evaluation. As captured by the acronymSECD, the state of the interpreter consisted of four components: a stack,an environment, a control, and a dump. The dump encoded the remainingcomputation to be executed after the control was exhausted; in retrospectit was another representation of a continuation.To be able to translate Algol 60 into applicative expressions, Landinlater extended these expressions and their interpreter with an assignmentoperation, and also a control operator J used to express the translation ofgoto's and labels [15, 16]. In the extended SECD machine, the result ofapplying J was a value containing a dump. Thus, in modern terminology,the J operator provided a means of embedding continuations in values |and was an ancestor of operations such as Reynolds's escape [36], andcatch [44] and call/cc [8] in Scheme.2. A. van WijngaardenApparently, the earliest description of a use of continuations was givenby Adriaan van Wijngaarden (Director of the Mathematisch Centrum inAmsterdam) in September 1964, at an IFIP Working Conference on For-mal Language Description Languages held in Baden bei Wien, Austria. Awritten version of this talk, along with a transcript of the discussion thatfollowed, appears in the conference proceedings [45].

THE DISCOVERIES OF CONTINUATIONS 6-235Van Wijngaarden's goal was to formulate a preprocessor that wouldtranslate Algol 60 into a more restricted sublanguage. The �nal stageof the preprocessing was (what we would now call) a transformation ofproper procedures into continuation-passing style (CPS) [41], with an at-tendant elimination of labels and goto statements. (An earlier stage of thepreprocessing replaced function procedures by proper procedures.)As van Wijngaarden described the transformation:Provide each procedure declaration with an extra formal param-eter | speci�ed label | and insert at the end of its body agoto statement leading to that formal parameter. Correspond-ingly, label the statement following a procedure statement, ifnot labeled already, and provide that label as the correspond-ing extra actual parameter. [45]Next, by inserting labels and goto statements, each block was transformedinto an equivalent block with the formbegin L1:S1; : : : ;Ln:Sn endwhere every path of execution through a statement Si ends in a goto state-ment. Actually, unless I have misunderstood his rather opaque prose, vanWijngaarden's description of this transformation is erroneous: When theabove block is a statement of a larger block, there is no provision for in-serting jumps from within the inner block to the statement following theinner block. This defect is easily remedied, however, by replacing such innerblocks by calls of corresponding parameterless procedures (as in the workof J. H. Morris [28]) before applying van Wijngaarden's transformation.Finally, according to van Wijngaarden [45]:It is now completely harmless to insert at the end of each blockan unlabeled goto statement leading to the �rst statement ofthat block, since this statement will never be executed. So far,we have only increased the number of labels and goto state-ments. But now we can perform the following operations:1. Write before each label procedure.2. Replace the colon following it by a semicolon.3. Strike each goto.The following exchange during the ensuing discussion shows that vanWijngaarden understood clearly that the transformation into continuation-passing style is more than just a method for eliminating labels and goto's:

6-236 JOHN C. REYNOLDSMCILROY: : : : I'm afraid you went a bit too far in the elimi-nation of the goto, because this actually changes the temporalexistence of values. If every goto is replaced by a procedurecall, then this means that the entire history of the computationmust be maintained. I'm a bit concerned about this limitation.VAN WIJNGAARDEN: I suppose you have a certain imple-mentation of a procedure call in mind when you say that. Butthis implementation is only so di�cult because you have to takecare of the goto statement. However, if you do this trick I de-vised, then you will �nd that the actual execution of the pro-gram is equivalent to a set of statements; no procedure everreturns because it always calls for another one before it ends,and all of the ends of all of the procedures will be at the end ofthe program: one million or two million ends. If one proceduregets to the end, that is the end of all; therefore, you can stop.That means you can make the procedure implementation sothat it does not bother to enable the procedure to return. Thatis the whole di�culty with procedure implementation. That'swhy this is so simple; it's exactly the same as a goto, only calledin other words. [45]In retrospect, it may seem surprising that van Wijngaarden's presenta-tion did not make continuations and continuation-passing style into stan-dard concepts of computer science. Participants in the discussion of hispresentation included Dijkstra, Hoare, McCarthy, McIlroy, and Strachey,and other conference attendees included B�ohm, Elgot, Landin and Nivat.But the idea didn't take hold. In particular, although Landin referred tovan Wijngaarden's transformation in his own treatment of Algol 60 [15], hemade no mention of the work when he heard F. L. Morris's colloquium in1970. (See Section 4.) Moreover, Christopher Strachey never connected thework with Wadsworth's continuations, and did not cite van Wijngaardenin his own descriptions of the latter [42, 43]. (See Section 5.)The discussion following the presentation reveals deep philosophical dif-ferences between van Wijngaarden and other researchers, particularly vanWijngaarden's abhorrence of abstract syntax and his belief that properprocedures were more basic than functions. A stronger barrier to com-munication was probably his failure to motivate the CPS transformation.According to M. D. McIlroy:I remember the talk well as an insightful tour de force of reduc-tionism. : : : Van Wijngaarden's argument shone clearly andunforgettably. : : : [But] an idea can be understood without all

THE DISCOVERIES OF CONTINUATIONS 6-237its rami�cations being seen, even by its originator. Since vanWijngaarden o�ered no practical examples of continuation pass-ing, nor any theoretical application, save as a trick for provingone isolated and already known result, the value of continua-tions per se did not come through. [22]Moreover, van Wijngaarden's discovery was actually the CPS transfor-mation rather than continuations themselves | nowhere does he de�ne orotherwise emphasize the actual concept of a continuation. This surely madeit di�cult to recognize any connection with the appearance of continuationsin other settings.It also appears that van Wijngaarden himself never used continuationsagain.A �nal sidelight on the talk is remembered by McIlroy [22]:The talk actually had one direct and important consequencefor computing. Under the inspiration of the notion of the un-necessity of goto's, Dijkstra spent that evening constructingrealistic examples of programs without goto's, which he scrib-bled on napkins at co�ee break the next day. In that exercise,he posited a \quit" statement (the break of CPL and C) : : : .That co�ee-break palaver ripened into the most celebrated let-ter to the editor in the history of computing [10]. So while vanWijngaarden said that goto's were unnecessary : : : , Dijkstrastretched the point to say that goto's were inconvenient. Thelatter lesson stuck.3. A. W. MazurkiewiczIn December 1969, Antoni W. Mazurkiewicz (then at the Instytut MaszynMatematycznych in Warsaw) circulated a working paper entitled \ProvingAlgorithms by Tail Functions" to the membership of IFIP Working Group2.2 (which included Strachey). A publication version was submitted toInformation and Control in April 1970, revised in November, and publishedin April 1971 [18].In this paper, Mazurkiewicz dealt with an automaton-like concept of analgorithm, consisting of a set E of labels, a subset T � E of terminal labels,a set R of states, and a partial transition function
 from (E � T)� R toE � R. He proposed that the semantics of such an algorithm, which hecalled a tail function, should be the least partial function ' from E �R toR satisfying '(e; x) = � '(
(e; x)) if e =2 Tx if e 2 T :

6-238 JOHN C. REYNOLDSWhen curried, the tail function is an environment mapping labels intocommand continuations, just as in the continuation semantics of an imper-ative language with labels and goto commands. Mazurkiewicz's concept ofalgorithm, however, is such a limited programming language | one with-out any hierarchical structure | that his work does not reveal much of thegeneral nature of continuations. For example, there is no syntactic entitywhose meaning must be a function accepting continuations. Also, if oneregards an algorithm as the while commandwhile e =2 T do (e; x) :=
(e; x) ;where the variables e and x range over labels and states, then the tailfunction is just the direct semantics of this command.Thus it is hard to say whether Mazurkiewicz's work was a discovery ofcontinuations or a precursor. What is clear is that it inspired the later workof Wadsworth. (See Section 5.)In 1972, Mazurkiewicz published two further papers [19, 20] concernedwith the technique of tail functions.4. F. L. MorrisIn November 1970, F. Lockwood Morris (then a graduate student at Stan-ford University who was teaching at the University of Essex while workingon his dissertation) gave a colloquium at Queen Mary College, London, en-titled \The Next 700 Formal Language Descriptions" (an allusion to \TheNext 700 Programming Languages" [17], by Peter Landin, who had invitedMorris to give the colloquium). In the talk, Morris gave a variety of de�ni-tional interpreters for a call-by-value functional language, with extensionsto include assignments and labels.The notes distributed at the talk are published in the present issue of thisjournal [26]. In the �nal interpreter in these notes, continuations are usedto treat labels and jumps of the kind found in Gedanken [35]. Speci�cally,what Morris calls dumps (since they are abstractions of Landin's dumps)are expression continuations, and what he calls label values are commandcontinuations.Like the SECD machine, but unlike the \circular" interpreters that Mor-ris calls eval 0, eval 00, and eval 000, the interpreter using continuations de�nesa call-by-value language regardless of whether the language it is written inuses call by value or call by name.

THE DISCOVERIES OF CONTINUATIONS 6-239Looking back on his work, Morris comments:I think my main inspiration for programming with continua-tions was three functions described in the Lisp 1.5 Program-mer's Manual [21]: prop, sassoc, and search : : : . I can'tremember seeing McCarthy or anyone else do the same sort ofthing in programming examples, but it may have happened. [25]He believes he was inspired to a lesser extent by the failure mechanisms inSnobol [11] and Cogent [34]. Before discovering continuations, he had beenworking on a de�nition of Snobol that: : : was as I recall just a working out of the idea that every func-tion needed two continuation arguments, one in case of successand one in case of failure. I think the choice of two continuationswas easier to recognize than just one. [25]The present author had the good fortune to attend Morris's talk. It wasmy �rst exposure to the use of continuations, and to the fact that there aremany styles of de�nitional interpreters, varying in abstractness and degreeof circularity. These ideas were the genesis of my own work on de�nitionalinterpreters [36], which eventually did much to popularize continuations.5. C. P. WadsworthThe next bit of our story is most simply told in the �rst person: Whilevisiting Edinburgh University in December 1970, I had a conversation withRod Burstall and Chris Wadsworth (then a graduate student at OxfordUniversity) in which I summarized Lockwood Morris's colloquium at QueenMary. As soon as he grasped the nature of Morris's ideas, Wadsworthexclaimed \That's what I've been working on".In fact, Wadsworth had discovered the use of continuations to describethe behavior of labels and goto's, and had soon realized that the methodalso su�ced to describe call by value and other constructs that constrain theorder of evaluation. But instead of working with de�nitional interpreters,he was working with denotational de�nitions in Dana Scott's then-newlattice-theoretic semantics [39, 40]. In his words:Through 1969{70 I had been working on trying to get a gooddenotational semantics (mathematical semantics as it was thencalled) [for jumps], under Christopher Strachey's supervision.We devised various \elaborate" schemes, none of which struckus as being at all satisfactory.

6-240 JOHN C. REYNOLDSThen I came across a paper by A. Mazurkiewicz [18] : : :which gave me the spark we needed. I coined the term \contin-uation" for the concept/approach that resulted. [47]Also: The other spark was the struggles over earlier months (1969{70)which had got me into \thinking backward" without then see-ing how to express it denotationally. Reading Mazurkiewicz'spaper gave me the key insight that turned something di�cultand messy into something so simple! That sudden insight was:introduce a concept for \the meaning of the rest of the pro-gram". [48]and on the word \continuations":Often getting the right word is the catalyst, and so it was for me.Once I'd coined the word it all clicked and the rest (semanticdomains, semantic equations, etc.) followed in a matter of a fewdays. Having the word made it easy and natural to write anddiscuss, and disseminate (though I thought several times that Iwould have liked a shorter word!). [48]Wadsworth delayed publishing his work on continuations, while pursuinghis dissertation topics [46] of denotational models of the lambda calculusand graph reduction.Apart from the usual reasons things get delayed : : : , Stracheyfelt that it was often good to live with, and try out, a promisingidea for a while before publishing | not the dominant practicenowadays (or then?)! He felt, I think, that an idea's originatorshould allow himself some time to check it out and get it rea-sonably polished before bothering the world with results thatmay be of transient value. [48]Eventually, Strachey described the ideas in a seminar at the Institut deRecherche d'Informatique et d'Automatique in May 1973; a written versionwas published by IRIA [42], and a revised and slightly expanded version ap-peared as a report of the Oxford Programming Research Group [43]. Specif-ically, these reports gave a continuation-style denotational de�nition of animperative language with labels and jumps, including jumps out of blocksembedded within expressions. The texts were mostly written by Strachey,but the underlying \method of continuations" was due to Wadsworth. (Al-though the illustrative language did not include procedures, it appears thatWadsworth understood the treatment of function procedures).

THE DISCOVERIES OF CONTINUATIONS 6-2416. J. H. MorrisIn the �rst half of 1971, James H. Morris, Jr. (then at the University ofCalifornia at Berkeley | and a distant cousin of F. L. Morris) submitteda paper to the Communications of the ACM in which he described a CPStransformation for programs in an Algol-like language (speci�cally a sub-stantial subset of Algol 60) [28]. The transformation was similar to that ofvan Wijngaarden, except that it was described in more detail, it avoided theerroneous treatment of nested blocks, and it treated function and properprocedures on the same footing rather than converting function proceduresto proper procedures in a preliminary step.Morris also pointed out that, in addition to eliminating labels and goto's,the transformation would eliminate occurrences of procedures that returnedcomplex results such as arrays, procedures, or labels (assuming it wereapplied to a richer language that permitted such procedures).A referee recognized that the basic idea of the paper had been anticipatedby van Wijngaarden, and as a consequence the paper was rejected. In itsplace Morris published a brief letter to the editor [29] that did not describethe program transformation in detail, but demonstrated that it could beused to eliminate procedures returning complex values. (The letter alsonoted that a conventional stack-based implementation of the transformedprogram would quickly exhaust its stack.)In retrospect, Morris comments:I simply can't remember the detailed process by which I �rstdiscovered the continuation method. However, I originally con-ceived it as a pure lambda-calculus technique, undoubtedly af-ter several years of living with Peter Landin's J-operator (whichmust have set the stage for other discoverers, too). I laboriouslytranslated the idea into Algol 60 so as to make the idea moreaccessible to readers. [30]7. M. J. FischerAt the ACM Conference on Proving Assertions about Programs, in LasCruces, NewMexico in January 1972, Michael J. Fischer (then at MIT) gavea paper entitled \Lambda Calculus Schemata" [12]. (A �nal, more completeversion appears in the present issue of this journal [13].) In this paper, heextended the call-by-value lambda calculus with conditional expressions,and uninterpreted constants and primitive functions; and he described atransformation of this functional language into continuation-passing style.

6-242 JOHN C. REYNOLDSFischer's purpose was to show that an arbitrary program can be trans-formed (by the CPS transformation) into a form that can be implementedby a stack, i.e. where the storage allocated during the execution of a pro-cedure can be deleted when the procedure exits. Of course, the price (asnoted by J. H. Morris [29]) is that the stack never pops until the end ofprogram execution.Fischer's paper is notable for the �rst proof about the semantics of con-tinuations, i.e. that the CPS transformation preserves meaning in an appro-priate sense. This result was in a setting where lambda expressions denoteclosures. (Results about the meaning of continuations in a denotational-semantics setting, where lambda expressions denote continuous functions,still lay several years in the future [23, 37, 24, 38].)8. S. K. AbdaliWith the appearance of papers by Fischer [12] in January, and J. H. Mor-ris [29] and Reynolds [36] in August, continuations became widely knownby the end of 1972. Nevertheless, there was at least one later discovery.In February 1973, S. Kamal Abdali (then a graduate student at the Uni-versity of Wisconsin, teaching at New York University while working on hisdissertation) presented a short paper at the �rst Computer Science Con-ference, held in Columbus, Ohio. In this presentation, Abdali described anovel form of language de�nition, in which Algol 60 programs were trans-lated into the untyped lambda calculus. This work was then submitted tothe �rst ACM Symposium on Principles of Programming Languages, butwas rejected because the extended abstract did not describe any treatmentof procedures. Later that summer the work (including a treatment of pro-cedures) was published as a preliminary report [1]. Abdali then moved toRensselaer Polytechnic Institute, in Troy, New York, where he completedhis Wisconsin dissertation [2] in 1974.According to Abdali, J. Barkley Rosser and his followers (including hisstudent George Petznick, who was Abdali's Ph.D. advisor): : : felt that the extensions to the lambda calculus, to whichLandin had resorted [15] in establishing a correspondence be-tween Algol 60 and that calculus, made it di�cult to use thecorrespondence for deriving properties of programs. My task,therefore, was to translate programming constructs into the\pure" lambda calclulus. Assignment, for example, was to bemodeled by substitution, avoiding the notion of memory, ad-dress, and fetch and store operations. [5]

THE DISCOVERIES OF CONTINUATIONS 6-243To treat the imperative aspects of Algol 60, Abdali devised a translationmuch like the CPS transformation. He says that the idea of a continuation(which he called \program remainder"): : : was inspired by J. H. Morris's thesis [27], in particular, byattempting to get the outline on pp. 38{39 actually to work.Continuations then opened the path to deal with block struc-ture, as well as jumps and labels. The power and signi�canceof continuations was con�rmed in overcoming the di�culties ofcall-by-name; that construct was explicated with immediate andremote continuations to denote calling and called contexts. [5]Abdali �rst connected his program remainders with earlier discoveries ofcontinuations (by F. L. Morris and Wadsworth) in the published papersarising from his dissertation [3, 4]. He later used his approach to model-ing Algol-like languages in joint work with Franz Winkler [6] and DavidS. Wise [7].9. ConclusionIn summary, to the best of this author's knowledge, continuations or closelyrelated concepts were �rst discovered in 1964 by van Wijngaarden, repeat-edly rediscovered in a wide variety of settings | both intellectual andgeographical | during 1970 and 1971, and occasionally rediscovered there-after.The main mystery is why van Wijngaarden's early work failed to becomewidely understood. One can speculate, but it is unlikely ever to be knownwith certainty, particularly since the deaths of Strachey (May 18, 1975)and van Wijngaarden (February 7, 1987).Nevertheless, the early history of continuations is a sharp reminder thatoriginal ideas are rarely born in full generality, and that their communica-tion is not always a simple or straightforward task.AcknowledgementsFor comments and reminiscences that have vastly improved this paper,the author wishes to thank Kamal Abdali, Jaco de Bakker, Olivier Danvy,Edsger Dijkstra, Matthias Felleisen, Andrzej Filinski, Michael Fischer, DanFriedman, Peter Landin, Antoni Mazurkiewicz, John McCarthy, DouglasMcIlroy, Lockwood Morris, James Morris, Peter Naur, Dana Scott, TomSteel, Guy Steele, Carolyn Talcott, Mads Tofte, and Chris Wadsworth.

6-244 JOHN C. REYNOLDSReferences1. Abdali, S. Kamal. A Simple Lambda-Calculus Model of ProgrammingLanguages. AEC R & D Report C00{3077{28, New York University(1973).2. Abdali, S. Kamal. A Combinatory Logic Model of Programming Lan-guages. PhD thesis, University of Wisconsin (1974).3. Abdali, S. Kamal. A lambda-calculus model of programming languages| I. simple constructs. Journal of Computer Languages, 1 (1976) 287{301.4. Abdali, S. Kamal. A lambda-calculus model of programming languages| II. jumps and procedures. Journal of Computer Languages, 1 (1976)303{320.5. Abdali, S. Kamal. Electronic mail to J. C. Reynolds. (July 21, 1993).6. Abdali, S. Kamal and Winkler, Franz. A Lambda-Calculus Model forGenerating Veri�cation Conditions. Technical Report CS{8104, Rens-selaer Polytechnic Institute (June 1981).7. Abdali, S. Kamal and Wise, David S. Standard, storeless semantics forALGOL-style block structure and call-by-name. In Melton, Austin, ed-itor, Mathematical Foundations of Programming Semantics, Springer-Verlag, Berlin (1986) 1{19.8. Clinger, William, Friedman, Daniel P., and Wand, Mitchell. A schemefor a higher-level semantic algebra. In Nivat, Maurice and Reynolds,John C., editors, Algebraic Methods in Semantics, Cambridge Univer-sity Press, Cambridge, England (1985) 237{250.9. Dijkstra, Edsger W. Recursive programming. Numerische Mathe-matik, 2 (1960) 312{318.10. Dijkstra, Edsger W. Go To statement considered harmful. Communi-cations of the ACM, 11, 3 (March 1968) 147{148. Letter to the editor.11. Farber, David J., Griswold, Ralph E., and Polonsky, Ivan P. SNOBOL,a string manipulation language. Journal of the ACM, 11, 1 (January1964) 21{30.12. Fischer, Michael J. Lambda calculus schemata. In Proceedings of anACM Conference on Proving Assertions about Programs (1972) 104{109.

THE DISCOVERIES OF CONTINUATIONS 6-24513. Fischer, Michael J. Lambda-calculus schemata. Lisp and SymbolicComputation, 6, 3/4 (1993) 257{286. Appears in this issue.14. Landin, Peter J. The mechanical evaluation of expressions. The Com-puter Journal, 6, 4 (January 1964) 308{320.15. Landin, Peter J. A correspondence between ALGOL 60 and Church'slambda-notation. Communications of the ACM, 8, 2{3 (February{March 1965) 89{101 and 158{165.16. Landin, Peter J. A Generalization of Jumps and Labels. Report, UNI-VAC Systems Programming Research (August 29, 1965).17. Landin, Peter J. The next 700 programming languages. Communica-tions of the ACM, 9, 3 (March 1966) 157{166.18. Mazurkiewicz, Antoni W. Proving algorithms by tail functions. Infor-mation and Control, 18, 3 (April 1971) 220{226.19. Mazurkiewicz, Antoni W. Iteratively computable relations. Bulletin del'Acad�emie Polonaise des Sciences S�erie des Sciences Math�ematiques,Astronomiques et Physiques, 20, 9 (1972) 793{798.20. Mazurkiewicz, Antoni W. Recursive algorithms and formal lan-guages. Bulletin de l'Acad�emie Polonaise des Sciences S�erie des Sci-ences Math�ematiques, Astronomiques et Physiques, 20, 9 (1972) 799{803.21. McCarthy, John et al. LISP 1.5 Programmer's Manual. MIT Press,Cambridge, Massachusetts (1962).22. McIlroy, M. Douglas. Electronic mail to J. C. Reynolds. (July 14,1993).23. Milne, Robert. The Formal Semantics of Computer Languages andtheir Implementations. PhD thesis, Oxford University (1974). ReportPRG{13 and Technical Micro�che TCF{2.24. Milne, Robert and Strachey, Christopher. A Theory of ProgrammingLanguage Semantics. Chapman and Hall, London (1976). In two vol-umes. Also published by John Wiley, New York.25. Morris, F. Lockwood. Electronic mail to J. C. Reynolds. (July 13,1993).

6-246 JOHN C. REYNOLDS26. Morris, F. Lockwood. The next 700 formal language descriptions. Lispand Symbolic Computation, 6, 3/4 (1993) 249{256. Appears in thisissue. Original manuscript dated November 1970.27. Morris, Jr., James H. Lambda-Calculus Models of Programming Lan-guages. PhD thesis, MIT (December 1968). Report No. MAC{TR{57.28. Morris, Jr., James H. Eliminating non-local transfers from ALGOL-likelanguages. (1971). Unpublished.29. Morris, Jr., James H. A bonus from van Wijngaarden's device. Com-munications of the ACM, 15, 8 (August 1972) page 773.30. Morris, Jr., James H. Electronic mail to J. C. Reynolds. (July 22,1993).31. Naur, Peter. The design of the GIER ALGOL compiler, part I. BIT,3 (1963) 124{140. Reprinted in Goodman, Richard, editor, AnnualReview in Automatic Programming, Vol. 4, Pergamon Press, Oxford(1964) 49{85.32. Naur, Peter et al. Report on the algorithmic language ALGOL 60.Communications of the ACM, 3, 5 (May 1960) 299{314.33. Naur, Peter et al. Revised report on the algorithmic language ALGOL60. Communications of the ACM, 6, 1 (January 1963) 1{17.34. Reynolds, John C. An introduction to the COGENT programmingsystem. In Association for Computing Machinery Proceedings of the20th National Conference (1965) 422{436.35. Reynolds, John C. GEDANKEN { a simple typeless language basedon the principle of completeness and the reference concept. Communi-cations of the ACM, 13, 5 (May 1970) 308{319.36. Reynolds, John C. De�nitional interpreters for higher-order program-ming languages. In Proceedings of the ACM Annual Conference (1972)717{740.37. Reynolds, John C. On the relation between direct and continuationsemantics. In Loeckx, Jacques, editor, Automata, Languages and Pro-gramming, Springer-Verlag, Berlin (1974) 141{156.38. Reynolds, John C. Semantics of the domain of
ow diagrams. Journalof the ACM, 24, 3 (July 1977) 484{503.

THE DISCOVERIES OF CONTINUATIONS 6-24739. Scott, Dana S. Outline of a mathematical theory of computation. InProceedings of the Fourth Annual Princeton Conference on InformationSciences and Systems (1970) 169{176.40. Scott, Dana S. Outline of a Mathematical Theory of Computation.Technical Monograph PRG{2, Oxford University Computing Labora-tory (November 1970).41. Steele Jr., Guy Lewis and Sussman, Gerald Jay. LAMBDA: The Ulti-mate Imperative. AI Memo 353, Massachusetts Institute of Technology(March 10, 1976).42. Strachey, Christopher. A mathematical semantics which can deal withfull jumps. In Th�eorie des Algorithmes, des Langages et de la Pro-grammation, IRIA (INRIA), Rocquencourt, France (1973) 175{191.43. Strachey, Christopher and Wadsworth, Christopher P. Continuations,A Mathematical Semantics for Handling Full Jumps. Technical Mono-graph PRG{11, Oxford University Computing Laboratory (January1974).44. Sussman, Gerald Jay and Steele Jr., Guy Lewis. SCHEME: An Inter-preter for Extended Lambda Calculus. AI Memo 349, MassachusettsInstitute of Technology (December 1975).45. van Wijngaarden, Adriaan. Recursive de�nition of syntax and seman-tics. In Steel, Jr., T. B., editor, Formal Language Description Lan-guages for Computer Programming, North-Holland, Amsterdam (1966)13{24.46. Wadsworth, Christopher P. Semantics and Pragmatics of the Lambda-Calculus. PhD thesis, Oxford University (September 1971).47. Wadsworth, Christopher P. Electronic mail to Amr A. Sabry. (Decem-ber 24, 1992).48. Wadsworth, Christopher P. Electronic mail to J. C. Reynolds. (July22, 1993).

