
Higher-Order and Symbolic Computation, 11, 125–143 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Generalization of Jumps and Labels

PETER J. LANDIN peterl@dcs.qmw.ac.uk
qmw, University of London1

Abstract. This paper describes a new language feature that is a hybrid of labels and procedures. It is closely
related to jumping out of a functional subroutine, and includes conventional labels and jumping as a special, but
probably not most useful, case. It is independent of assignment, i.e., it can be added to a “purely-functional”
(“non-imperative”) system (such aslisp without pseudo-functions or program feature). Experiments in purely
functional programming suggest that its main use will be in success/failure situations, and failure actions. This
innovation is incorporated in the projected experimental system,iswim.

Keywords:

“Explaining to programmers the logical structure of programming languages is like
a cat explaining to a fish what it feels like to be wet”—Gorn.

Introduction

This paper provides constructive answers to three questions about the logical structure of
programming languages. Each arises from an observation about the roles of labels and
jumping in current languages.

First, there are languages that have neither assignment nor jumping; e.g., “purelisp”,
i.e.,lisp without pseudo-functions or program feature. (For evidence that such a language
may nevertheless be powerful, see [7], especially the Appendix, and [6].) Also, it is obvious
that a language may have assignment but not jumping; e.g.,Algol 60 deprived ofgoto,
labels,label, andswitch’s; or lisp with program feature but without labels andGOTO. Is
the converse true? That is to say, can a language have no assignment and yet have jumping,
or rather have some analogy to conventional jumping that yields conventional jumping as
a special case when assignment is added?

There is an elementary remark that may not be out of place here. It is impossible to
introduce assignment into purelisp merely by a definition. The proof of this is that no
mere definition can interfere with the interchangeability of “x” and “cons(car(x),cdr(x))”.
So there is a firm distinction between having and not having assignment.

Now for the second observation and the second question. Some operations can usefully
be present in a language even though there are no atomic symbols that are appropriate
operands for them. E.g., operations on truth-values, in particularAlgol 60’s conditional
expressions, and ‘∨’, etc. would be useful even without Boolean identifiers, or the symbols
‘ true’ and ‘false’. Is this true of jumping? i.e., is there some operation that is a component
of jumping but can meaningfully be used without any feature like user-coined labels; and
that yields conventional jumping when user-coined labels are added?

Third, there is an analogy between labels and the identifiers of parameterless, non-
functional procedures. InAlgol 60 this analogy is so close that the symbolgoto is

126 LANDIN

actually redundant; a processor could safely skip its occurrences. Can this analogy be re-
versed to provide things like labels, but bearing the same relation to “parameterful” and/or
functional procedures that labels bear to parameterless, non-functional ones?

An affirmative answer to each of these questions is provided by describing a new language
feature that is independent of assignment and of user-coined identifiers, and yields label-like
analogies to all kinds of procedures. It also provides an answer to the question: What does
a label denote? More precisely it conditionally gives meaning to phrases like “the value, or
denotation of a label”, and lays down limits to how far such talk can be pushed.

This new language feature generalizes jumps and labels as they occur in current languages.
It seems possible that the familiar special case is not the most useful one.

Programmers are usually wary of assertions about programming languages in general,
rather than about some particular language—justifiably since such assertions are usually
vague. They are with equal justification suspicious when an assertion about a specific
language is alleged to have wider linguistic significance. The present discussion avoids
both these strictures. It is precise without being special to a single language. It achieves
this by using the language model described in [3], one of whose purposes was to facilitate
precise statements about languages in general.

Thus the illustrative references above tolisp andAlgol 60 imply no special commit-
ment to those languages. They are included as a gesture to readers unfamiliar with the
ae/secd model. Such a reader might well turn first to the first section of the Appendix,
which describes the innovation informally, presenting it in the guise of an extension to
Algol 60.

An extension to applicative expressions

An earlier paper [3] described a formal system whose only structural rules are functional
application and functional abstraction, and showed how it mirrored many familiar features
of current programming languages. The expressions of this system were called “applicative
expressions” (aes). In the present paper and a companion [10] dealing with assignment, the
ae-system is developed so as to mirrorimperativefeatures of programming languages. For
example, the extended system can be considered as a generalization ofAlgol 60. It was
briefly described in a previous paper [4] which used it as a tool for formalizingAlgol 60’s
semantics.

When describingaes [3], their structure was given by means of a “structure definition”,
and their semantics by a definition of a functionval that produces the “value of”, or “thing
denoted by” anae. This was followed up by describing an abstract machine, the “secd-
machine” (stack, environment,control, dump), that interpretsaes “correctly”, i.e., it
produces the value of a givenae. The machine was itself characterized by the definition
of another functionTransform, its step-by-step transition rule. When we add jumping,
we find by contrast that the meaning of an expression is difficult to characterize without
resorting directly to thesecd-machine. So the revised semantics will be defined in terms
of the behavior of thesecd-machine, developed to allow for the new facility.

A GENERALIZATION OF JUMPS AND LABELS 127

We introduce a new kind of intermediate result, the “program-closure” that can be con-
sidered as the “value”, or “thing denoted by”, a label. A program-closure is characterized
by

its body-part, which is a function,
and itsdumppart, which is ansecd-state.

We now explain how program-closures are produced and how they are used.
There is an operationJ that transforms a functionf into the program-closure whose body

is f and whose dump is the current dump. Formally, this transformation is

λ(J:f :S,E, ap:C,D).
(consprogramclosure(f,D):S,E,C,D)

Each time a program-closureL comes to be applied, the first thing to happen is that it is
replaced byL’s body, and the current state (or more accurately that part of it which is about
to be dumped if the function is a closure) is replaced by thesecd-state that constitutesL’s
dump. Then the attempt to apply function to argument is recommenced. Formally, this
transformation is

λ(L:x:S,E, ap:C,D).
(bodyL:x:S′, E′, ap:C ′, D′)
where (S′, E′, C ′, D′) = dumpL

Unlike the functions in the originalsecd-system,J cannot be characterized in terms of
its effect on the abstract objects that are “denoted by”aes. It depends essentially on the
secd-mechanism. The proof of this is that it defies the standard substitution rules. For
example, compare these twoaes.

let f(x, y) =
let E = Jλ(u, v, w).(u− v)/w
let g(z) = . . . E(a2, b2, c2) . . .
. . . g(h2) . . .

. . . f(d2, e) . . .

let f(x, y) =
let g(z) =

let E = Jλ(u, v, w).(u− v)/w
. . . E(a2, b2, c2) . . .

. . . g(h2) . . .
. . . f(d2, e) . . .

Here we assume thatE is not called outsideg’s definition, and note thatE’s definition
has no free variables. So, but for theJ, their equivalence would follow by the standard
substitution rules.

As a corollary this counterexample also shows thatJ is a genuinely new facility in the
sense that it cannot be introduced into, say, purelisp by a definition.

TheJ operator was first introduced in a slightly less general form in [4] where it played
an important role in the logical analysis ofAlgol 60 (and also by implication of other
languages containing both labels and procedure structure). It was briefly related to another
innovation called there “program-point declarations”. This relation is developed in the
appendix.

TheJ operator was used in [6], where it played an important role in an experimental appli-
cation oflisp-like programming methods to a conventional lengthy numerical calculation
that included error tests and error actions. This use ofJ is discussed in the next section but
one.

128 LANDIN

An extension to the where-notation

Applicative expressions are abstract objects in the sense of being characterized indepen-
dently of specific written representations. For example,

(λu.u(u+ 1))(a+ b) u(u+ 1)
whereu = a+ b

are two ways of writing the sameae. Thewhere-notation can be considered as a more
palatable way of writing the expressions ofλ-calculi.

The where notation can be extended to cater legibly for the more useful occurrences
of J. We introduce the following additional piece of “syntactic sugar” for writingaes (It
is additional in the sense of being defined here in terms of other syntactic sugar, namely
“definitions”.):—

ppdefinition definee = J (definiens)
e.g.,

ppL = λx. . . . L = Jλx. . . .
Hence

let pp L = λx. . . . (λL. . . .)(Jλx. . . .)

The symbol pp may be read “program-point”.

Thus, corresponding to the sugared notation forλ-expressions:

f = λ(u, v).uv(u + v) f(u, v) = uv(u + v)

we use a sugared notation for pps:

f = Jλ(u, v).uv(u + v) pp f(u, v) = uv(u + v)

The pp-notation suffices for all occurrences ofJ as an operator. For,

. . . (JF) . . .

is equivalent to
(λL. . . . L . . .)(JF)

i.e., to
let ppL = F
. . . L . . .

It is worth stressing that we are not concerned here with this or any other specific notation
for program-points, but with the notion of program-pointsabstracted fromwritten repre-
sentations. That is to say we are presenting for consideration, a new feature for program
languages, but we are doing so in such a way that it can be discussed and judged without
regard to a particular way of writing it.

A GENERALIZATION OF JUMPS AND LABELS 129

We are also suggesting particular ways of writing it, partly to lend concreteness to our
proposal, but mainly to facilitate the presentation. Someone assessing the proposals might
well accept the abstract feature while rejecting our choice of concrete representations, just
as he might object to the term “program-point” without objecting to the concept. In either
case, he might go on to seek more acceptable alternatives This is the virtue of the technique
of “abstract structure” as an approach to language design.

Implementation

It is intended that the currently projectediswim system should includeJ, dressed up in the
guise of ‘pp’. However, in the absence of any experience the present section is no more
than a note on the general implications that the above specification ofJ has for the run-time
set-up.

In the appendix we show how program-points can be eliminated in terms of jumps and
labels, in particular in terms of jumps out of procedures. This correctly suggests that the
implementation ofJ involves a similar mechanism to that required for jumping out of an
Algol 60 procedure.

This is not compounded by the greater generality ofaes overAlgol 60. The function-
producing feature ofaes amounts roughly to the possibility of calling a procedure after
leaving the block in which it was declared. This makes alifo storage allocation scheme
inadequate unless supported by another non-lifo source of storage together with a rule for
choosing which to use. The situation for pps is the same as for functions. For example, as
a special case, given an entirely non-lifo system, such as that used bylisp, J presents no
storage allocation problems.

Such rules are outside the present topic. We may however, observe that, whenJ is added,
the function-producing feature amounts roughly to the possibility of jumping to a label after
leaving the block in which it was “introduced”. This situation is similar to that arising when
label assignments or procedure assignments are introduced intofortran or Algol 60.
There has recently been a lot of discussion of such facilities. Inpl/1 andeuler it is
possible to write a program that may lead to such apparent defiance of scopes, but no
meaning is attached to it.

The system ofaes leads naturally to a meaning for such a program, and experiments
suggest that this is an extremely useful programming tool. Among other things, it provides
a rather elegantown-like facility (see [5]).

Use

My experiments in non-procedural programming (partially reported in [6,7]) suggest that
its weak point lies in the success/failure situations and the diagnostic or remedial action
required on failure. It seems to be in this area that labels and jumping can be adequately
matched only by using program-points. It also seems to be this area that gains most from
the greater generality that program-points offer over conventional labels and jumping; and
that suffers least from their deficiency in being unapproachable in-line.

Thus in thenpl program (a lengthy thermodynamics calculation) that serves as a text
for [6], my transliteration into functional notation used functions whose arguments include

130 LANDIN

failure actions. The question whether a failure action is a function or a pp does not affect
the textual appearance of calls for it. Moreover, the transliterated program contains no
occurrence ofJ (nor of a pp-definition), since the failure actions are a parameter of the
entirenpl program.

Nevertheless, it is crucial to its correct operation that they are pps and not functions. (For
the benefit of a reader who refers to [6] it should be observed that the failure situations
are classified there into “hard errors” and “soft errors”. Only the hard errors prematurely
terminate the calculation that detects them; i.e., the soft errors do not involveJ.)

The originalnpl program allows for diagnostic action by virtue of the many “external”
variables that would be accessible to any failure routine that might be provided. It is
to be presumed that these are enough for any required discrimination among possible
causes of failure, or reporting of discredited results. One major feature of non-imperative
programming is the lack of any facility like resetting external variables. The entire outcome
of executing any routine is contained in its “result”. This statement holds even if the
execution discredits itself.

Thus, the use of pps with parameters and results (rather than merely the parameterless,
resultless sort) is vital if the new technique is to hold its own. On a subjective rating it
does better than that. The arguments for and against functional as opposed to procedural
programming are equally applicable in its support. Notably, the question whether a variable
contributes to the diagnostic or remedial action is no longer indicated by the sequence of
executing various steps, but by the program’s parenthetical structure (more accurately, by
what we call its “applicative structure”).

I now give a quite different application, to programs for scanning a text to recognize
phrase structure

Let us call a “recognizer” a function that operates on two arguments.

1. a failure action, which may be either a function or a program closure,

2. a source text

and produces, if successful, two things:

1. the result of successful recognition

2. a residual tail of the source text, derived from it by removing the recognized stem.

If unsuccessful, then the recognizer produces whatever results from applying the failure
action to the source text.

If f andg are two such recognizers, then we are interested in certain related recognizers,
corresponding to cartesian concatenation and to class union (these being the two operations
that are basic to BNF, and are indicated there by juxtaposition and ‘|’ respectively).

Each of the following functions operates on two recognizers and produces a recognizer:

concat′ (f, g)(E, s) = let E′ = JE
let b′, s′ = f(E′, s)
let b′′, s′′ = g(E′′, s′)

whereE′′(s′) = E′(s)
construct(b′, b′′), s′′

A GENERALIZATION OF JUMPS AND LABELS 131

union′ (f, g)(E, s) = f(E′, s)
where E′(s) = g(E, s)

The former definition uses a functionconstruct for combining the results of two successful
recognitions.

The technique used here is in contrast with both the following:

1. The conventional procedural method using exit jumps

2. The non-procedural method using functions that produce a success/failure indication
as part of their result (see e.g. Burge [1]).

The transition-rule of the extendedsecd-machine

We now present the step-by-step transition-rule for thesecd-machine extended to allow
for J. This is to be compared with the earlier definition ofTransform given in [3]. The
changes are precisely the additional arms for the cases “progclosure f ” and “f = J”.

Transform [S,E,C,D] =
null C → [hS:S′, E′, C ′, D′]

where [S′, E′, C ′, D′] = D
else→
letX = hC
identifierX → [(locationEX)E : S,E, t C,D]
λexpX → [consclosure((E, bvX), u(bodyX)) : S,E, t C,D]
X = ap→

let f :x:S′ = S
closure f →

let consclosure((E′, J), C ′) = f
[(), consenv(assoc(J, x), E′), C ′, [S′, E, t C,D]]

progclosure f →
let consprogclosure(f ′, D′) = f
[f ′:x:S′′, E′′, ap:C ′′, D′′]
whereS′′, E′′, C ′′, D′′ = D′

else→ [{f = J→ consprogclosure(x,D); f x} : S,E, t C,D]
else→ let combine(F, Z) = X

[S,E, Z:F :ap:t C,D]

Conclusion

The introduction of imperative features into a “purely functional” (or “denotative”, or
“referentially transparent”) system, has precedents, namely the “program feature” oflisp,
and an analogous feature of Gilmore’s abstract machine [2]. However, in these schemes,
labels differed from other identifiers in that no meaning was attached to any but the simplest

132 LANDIN

use of them, namely as the destination of jumps at scope level zero. This is a special case
of whatAlgol 60 allows. Theiae system includes identifiers that play the role of labels,
without structural restrictions on their use. For example, a meaning is given to functions
whose result is denoted by a label, and to label assignments. The labels ofAlgol 60, and
a fortiori of lisp and Gilmore are included as a special case.

We have separated certain features of programming languages that usually appear interde-
pendent. We have shown that jumping and labels are not essentially connected with strings
of imperatives and in particular, with assignment. Second, that jumping is not essentially
connected with labels. In performing this piece of logical analysis we have provided a
precisely limited sense in which the “value of a label” has meaning. Also, we have discov-
ered a new language feature, not present in current programming languages, that promises
to clarify and simplify a notoriously untidy area of programming—that concerned with
success/failure situations, and the actions needed on failure.

Thus,iaes offer a blending of labels into functional notation, in which all the machinery
of functional notation plays a natural part.

The result is a generalization of jumping, of which the familiar special case may prove to
be the least important for working programmers.

Appendix on the relation between labels and J

The following sections are a detailed discussion of the relationship betweenJ and conven-
tional jumping as manifest inAlgol 60. We first informally describe a possible extension
to Algol 60, namely “program-point declarations”. Then we relate these on the one hand
to existingAlgol 60 facilities and on the other hand toJ.

An Analysis ofAlgol 60’s labels 132

An extension toAlgol 60 135

Eliminating labels in terms of program-points 137

Eliminating program-points in terms of labels 139

Relation betweenJ and program-point declarations 140

Conclusion 142

(This appendix is a more detailed and slightly amended version of the subsection on
“Labels and Jumps” in [5]. That in turn added details to a similarly entitled subsection of
[4].)

An analysis ofAlgol 60’s labels

The following discussion of jumps springs from the observation that the symbol ‘goto’
in Algol 60 is redundant, and could be ignored by a processor. That is to say, there
is a considerable similarity between labels and the identifiers of parameterless non-type
procedures. It is possible to use the same “calling mechanism” for both, leaving any

A GENERALIZATION OF JUMPS AND LABELS 133

differences to be made by the thing that is “called”. Thus there is a natural meaning to be
given to a program that, at different times, substitutes labels and procedures for the same
formal, e.g.

procedureP ;
if q then gotoM ;
. . .

L: . . .
. . . f(P) . . . f(L) . . .

In view of this feature ofAlgol 60, it is to be expected that some people have sought
to “explain” labels as a sort of heterodoxly written declaration. That is to say it has been
shown how the work of labels can be performed instead by identifiers introduced in block-
heads, using either conventional procedure declarations or declarations of a new kind. Both
approaches bring out the similarity between labels and the identifiers of parameterless
non-type procedure.

The former approach is developed by van Wijngaarden [9], and requires that

• Exit from a procedure is always bygoto; i.e natural exiting is eliminated. That is to say
the device only yields a valid treatment of procedure exits at the cost of abandoning the
facility for closed subroutines that is embodied inAlgol 60’s procedure. This leads
to a blurring of the distinction between exiting and temporarily delegating control to
another procedure. It thus fails to reflect the possibility of information disposal, i.e., of
storage recovery.
If the purpose of the analysis is semantic specification, not cheap running, then this
device is not invalidated by the fact that it involves accumulating a pile of “resumption-
points”, one for every executed jump, that are never taken up. However, it is less
satisfactory if we are hoping for a model that illuminates run-time behavior as well as
language.

• Type-procedures are replaced by non-type ones. This involves eliminating nested calls
by decomposing them into strings of statements. It therefore presents something of
a challenge to anyone who is interested in using fewer, larger statements, rather than
more and smaller.

To appreciate how these complications arise, consider the following:

134 LANDIN

begin realx;
S;
S;

L: S;
S;

L: L: S;
S;

L: S;
S

end; L : . . .

begin realx;
procedureL;

beginS; S; L end;
procedureL; L;
procedureL;

beginS; S; L end;
procedureL;

beginS; S; L end;
S;
S;
L

end; L : . . .

whereL,L andL occur in theSi’s (as well as explicitly in the right-hand version).

The intuitive difference between calling a procedure and jumping to a label is that the
former makes provision for resumption of the sequence containing the call. So the execution
of the right-hand version will accumulate one such potential resumption-point for each jump
toLi in the left-hand version. However, its effect on all local and global quantities will be
the same as that of the left-hand version.

It is essential to this example that the block under treatment is a statement of a super-block,
and not, for example, a procedure body. For only then can procedureL have an unnatural
exit, i.e., an exit by ‘goto’ rather than by natural continuation. (The presence of the labelL
is not a serious restriction. If absent, a label could be concocted.) If the block in question
were a procedure body, the final segment would be exited naturally, and would be followed
incorrectly by a resumption of the sequence that textually follows the call forL.

There are two ways out of this difficulty. One is to complicate the transformation of the
original Algol 60 by insertingAlgol 60 statements that make entry and exit explicit,
i.e., abandoning the facility for closed sub-routines that is provided byalgol’s procedures.
This is the approach of van Wijngaarden referred to above. Of the two objections to it,
the second emerges when the analysis is extended to deal withfunctional (i.e., “type”)
procedures.

Accordingly, we are prompted to compromise in the matter of logical economy, and
introduce the new format called “program-point declarations” as a substitute for labelled
segments of program. The execution of a program-point is the same as for the corresponding
procedure,except thatin the event of natural exit, not only is the program-point body exited,
but also the block in whose head it is declared.

This section has given an informal and incomplete account of program-points by describ-
ing the original intention behind the concept. Their detailed relation toAlgol 60’s labels
will be taken up in the section after next. The next section elaborates the concept as an
extensionto Algol 60 rather than as an alternative to labels. In this form it gives the
readers familiar withAlgol 60 an introduction toJ.

A GENERALIZATION OF JUMPS AND LABELS 135

An extension toAlgol 60

The preceding section discussed the analogy between labels and parameterless non-type
procedures. Our present point of departure is the idea of developing this analogy in re-
verse, i.e., we seek things like labels that are analogous to type-procedures with param-
eters. Accordingly, consider adding toAlgol 60 a new kind of declaration, “program-
point declarations”, syntactically identical to procedure declarations except that the initial
symbol ‘programpoint ’ replaces ‘procedure’. Thus the usual variants are allowed, i.e.,
with/without parameters, type/non-type. Furthermore, program-point identifiers may be
used according to the same rules as procedure identifiers, giving rise to “program-point
statements”, “program-point designators”, and to parameters of typeprogrampoint .

We abbreviate the symbolprogrampoint to pp’, to avoid prejudging its relation to the
symbol pp introduced previously as a piece of syntactic sugar for certain occurrences of
‘J’. This relation is defined precisely in a later section, but meanwhile the imprecision will
be emphasized by using ‘pp’-declaration’, ‘pp’-statement’, etc.

Consider for example

begin real proceduref(x, y);
begin realpp’ Error (u, v, w);

. . .

. . .

. . .Error(a, b, c) . . .

. . .
end
. . .
. . . f(d, e) . . .
. . .

end

Executing the call forf may or may not give rise to executing the call forError. If it
does then it will be prematurely terminated on exit fromError, and the result ofError will
be delivered as the result off . This holds regardless of the context of the call forError,
e.g. even if it is within inner blocks and procedure declarations.

On exit from anAlgol 60 procedure, control is returned to a point determined by where
the call for the procedure is written. By contrast, on exit from a pp’ control is returned to
a point determined by where thedeclarationof the pp’ is written. To emphasize this fact
compare the following (which are closely analogous to a pair ofaes given in the earlier
section “An Extension to Applicative Expressions”):

136 LANDIN

begin
real proc f(x, y);
begin

real pp’ E(u, v, w);
E = (u− v)/w;

real proc g(z);
. . .
. . . E(a, b, c) . . .
. . .

. . .

. . . g(h) . . .

. . .
end
. . .
. . . f(d, e) . . .
. . .

end

begin
real proc f(x, y);

begin
real proc g(z);

begin
real pp’ E(u, v, w);
E = (u− v)/w;
. . .
. . . E(a, b, c) . . .
. . .

. . .

. . . g(h) . . .

. . .
end
. . .
. . . f(d, e) . . .
. . .

end

AssumeE is not called outsideg’s declaration, and note thatE’s declaration uses no non-
locals. HadE been a procedure these two properties would have been enough to ensure
the equivalence of the above pair.E could have been written either local tog, or less
local, without any effect on the outcome. But because it is a pp’, they are not equivalent.
The left-hand case is merely the previous example with more detail filled in. A call for
E prematurely terminatesf (and a fortiorig). In the right hand case, the position ofE’s
declaration makes it an emergency exit fromg only, not fromf .

More generally, compare the effect of executing a call for a pp’ (either a pp’-statement
or a pp’-designator) with that of the corresponding procedure call. They are identical up
until the exit. Thus except for certain implicit suggestions about what happens at exit,
section 4.7 ofAlgol 60 report, on “procedure statements” carries over intact. If the exit
is “unnatural” (i.e., by agoto-statement, or by a call for a program-point non-local to the
program-point being executed), then the fact of having called aprogrampoint rather than
aprocedure is totally without outcome.

If on the other hand the exit is “natural” (i.e., by running off the end of the body) then this
precipitates exit (of the unnatural kind) from the block in whose head the pp’ was declared;
and a fortiori it also precipitates unnatural exit from every block or procedure entered since.
Thus, in particular, if a pp’ is declared in the head of a procedure-body, then any call for it
precipitates an unnatural exit from the procedure, and so a natural exit from the procedure
itself. If the procedure happens to be atype-procedure, then its result is the result of the pp’
(which is therefore constrained to be a type-pp’ of compatible type).

The above account is incomplete. It leaves unsettled various points concerning procedure
bodies that are not blocks, pp’s declared withinfor -statements, nested activations of pro-
cedure, and others. Our purpose here is not to specify precisely an addition toAlgol 60,
but to trade on the readers’ familiarity withAlgol 60 as a means of explaining program-
points. In the following sections, the connection between labels, program-points, andaes

A GENERALIZATION OF JUMPS AND LABELS 137

is described more precisely. This provides an instance of howaes can be used in language
definition

Eliminating labels in terms of program-points

The discussion of the preceding section but one will now be resumed. Using program-point
declarations, the example given there can be satisfactorily rendered as follows:

begin realx;
S;
S;

L: S;
S;

L: L: S;
S;

L: S;
S

end

begin realx;
programpoint L;

beginS; S; L end;
programpoint L; L;
programpoint L;

beginS; S; L end;
programpoint L;

beginS; S end;
S;
S;
L

end

Strictly speaking, the use of ‘programpoint ’ rather than ‘procedure’ only affects the
outcome in the case ofL. However, the above treatment has the superficial merit of
uniformity, and two more important ones

• It caters also for natural exits from the middle of a procedure (e.g.Algol 58’s return ,
or pl/1’s RETURN)

• It does not jeopardize modelling the run-time difference between calling a closed rou-
tine and jumping, i.e., between making provision for resumption and making no such
provision.

The considerations that led to program-points were only the first of two difficulties that
arise in exploiting the similarity between labels and parameterless non-type procedures.
We now come to the other.

In the above examples, a block (or procedure body) is considered as a listing of labelled
and unlabelled items, but the treatment of labels inside such items is not explained. Thus,
the above example was crucially a block; had it been a compound statement, the program-
point declarations would have had a larger scope. For example, consider (only to reject)
the following:

138 LANDIN

begin realx;
S;
if p then gotoL

else beginS;
L:S;

S;
L:S;

S;
end;

S;
S

end

begin realx;
programpoint L;

beginS; S; L end;
programpoint L;

beginS; S end;
S;
if p thenL

else beginS; L end;
S;
S

end

Now supposeS contains a jump toL and supposeS, S contain no jumps. Then the
exit fromL will cause exit from the block; it willnot lead toS. This error can be avoided
by a preliminary transformation of theAlgol 60 that removes instances of the critical
situation, by adding a jump (possibly to a newly added label) at the end of every compound
statement. Thus the above example becomes:

begin realx;
S;
if p then gotoL

else beginS;
L:S;

S;
L:S;

S;
gotoM

end;
M :S;
S

end

begin realx;
programpoint L;

beginS; S; L end;
programpoint L;

beginS; S;M end;
programpoint M ;

beginS; S end;
S;
if p thenL

else beginS; L end;
M

end

As can be seen, the re-arrangement consists, roughly speaking, of ensuring that the labelled
statement and its successors are not inside a conditional statement, and hence that jumps
into the middle of a conditional statement do not occur.

A jump into the middle of a compound statement can be removed by an analogous re-
arrangement. (It is unlikely to occur except in the context of a jump into a conditional
statement, as in the example above.)

Since a jump into a block orfor -statement is notAlgol 60, these rearrangements suffice
to transform any block into one amenable to the treatment illustrated above. However,
it should be observed that the presence of labels inside conditional statements does not
mean that transcription into program-pointsnecessarilyinvolves this re-arrangement. This
precaution is obligatory only for any statement that can be entered unnaturally and exit
naturally, e.g. in its most primitive form:

A GENERALIZATION OF JUMPS AND LABELS 139

if p then gotoL
elseL: ;

if p then gotoL
else beginL: gotoM end;M :

There are various ways in which the criterion for applying this transformation can be
made coarser and easier to specify. For instance, the transformation can be applied toevery
compound or arm of a conditional that contains a label and does not end in a jump. Or to
every compound or arm. Or we can add jumps and labels to ensure that every non-jump is
followed by a jump.

Eliminating pps in terms of labels

This section reverses the discussion of the preceding one. It is clear that a parameterless
non-type pp’-declaration can easily be eliminated by introducing a label. The only possible
complication is not serious and arises fromAlgol 60’s lack of theAlgol 58 return
facility.

beginpp’ f(x);
begin
. . .
end

. . .

. . . f(a) . . .

. . .
end

begin procf(x);
begin
. . .
gotoL
end

. . .

. . . f(a) . . .

. . .
L: end

The elimination of functional pp’s is less direct, thus proving that they are a substantial
addition to the language.

In fact, they must first be replaced by non-functional pps, using rules precisely analogous
to those employed in [9] to eliminate functional procedures. (This involves decomposing
any statement containing a call for a functional pp.) This complication is of course closely
related to the runtime behavior needed when a functional procedure is exited unnaturally.

It follows from the above that any merits pps have above labels are likely to be more
pronounced in the functional case. This is confirmed by my experiments.

It will be observed that every label introduced by the above rule immediately precedes a
block-end; and everygoto-statement it introduces immediately preceeds a procedure-body-
end. These are very limited uses of labels andgoto. This suggests that a programmer who
attempts to use ppsinstead oflabels is likely to arrive at a very different structure for his
program. Some clue to the direction of their influence is provided by the above-observed
greater complication of eliminatingfunctionalpps. It suggests that pps are likely to be a
greater gift to a programmer with a bias towards using program-structure rather than explicit
sequencing, i.e., towards “functional” rather than “imperative” modes of expression.

It also suggests that there are situations in which pps make program-structure a more at-
tractive alternative to explicit sequencing than it would otherwise be. Hence, their influence
is in the same general direction as that advocated in my “Getting Rid of Labels” [7].

140 LANDIN

The most striking instance of this is that they lack the asymmetrical approach of labels—
i.e., the possibility of approaching a label both naturally (without naming it) and by jumping.
A pp, like a procedure, can only be approached by explicitly naming it (or more precisely
by an explicit expression that is equivalent to its name—e.g.,Algol 60’s “designational
expressions”).

The Relation between J and program-point declarations

This section establishes the precise correspondence between the “program-point declara-
tion” extension toAlgol 60, and theJ extension toaes. Thus, since the symbol pp was
merely a more palatable way of writing certain occurrences of ‘J’, the relation between pp
and pp’ is also established.

Hitherto, the “semantics” of program-point declarations have been described informally
following the custom of theAlgol 60 report. So this section, in fact, constitutes a formal
definition of this language feature, settling a number of small questions that have so far
been left unspecified.

Our point of departure is the straightforward relation between declarations and supporting
definitions inaes, e.g.,

begin
real a;
proc f(x);

φ;
φ

end

let a = .
let rec f(x) = φ
φ

i.e.,

(λa.(λf.φ)
(Yλfx.φ))

(.)

Also

begin
real a;
proc f(x);

φ;
proc g(x);

φ;
φ

end

let a = .
let rec (f(x) = φ
and recg(x) = φ)
φ

i.e.,

(λa.
(λ(f, g).φ)
(Yλ(f, g).

(λx.φ, λx.φ))
(.)

Analogously we might expect

begin
real a;
pp f(x);
φ

φ
end

let a = .
let rec pp f(x) = φ;
φ

i.e.,

(λa.(λf.φ)
(YλfJλx.φ))

(.)

A GENERALIZATION OF JUMPS AND LABELS 141

and (incorrectly)

begin
real a;
pp f(x);
φ;

pp g(x);
φ;

φ
end

let a = .
let rec

(pp f(x) = φ
and pp g(x) = φ)
φ

i.e.,

(λa.
(λ(f, g).φ)
(Yλ(f, g).

(Jλx.φ, Jλx.φ))
(.)

This last falls down on account of what seems an undesirable technical feature ofJ. A
recursive definition implies an extraλ-level, and the application ofJ must occur outside
this level not inside it. (The former case, when there is just one pp, squeaks through, as the
reader may prove by using the transition-rule forJ.)

Instead we must use

begin
real a;
pp f(x);
φ;

pp g(x);
φ;

φ
end

let a = .
let rec

(f(x) = φ
and g(x) = φ)
let f = Jf
and g = Jg
φ

i.e.,

(λa.
(λ(f, g).φ)
(Yλ(f, g).(Jf, Jg))
(Yλ(f, g).

(λx.φ, λx.φ))
(.)

Whether or not this is evidence of some defect inJ is a judgement that should await further
experiment.

Apart from this complication the relation between program-points and supporting defini-
tions is the same as the corresponding treatment of other sorts of declarations. In fact, the
procedures, switches, and pps of each block must be grouped in a single recursive definition.

None of the above examples include aparameterlessprocedure or pp. In rendering them
as applicative expressions, the call must be made explicit, e.g., by using a null argument-list.
So a ‘goto’ (like a call for a parameterless procedure, and formal parameter called by name)
gives rise to an empty bracket-pair, e.g.,

gotoL
goto if p thenL elseS 

L ()
if (p)(L, S())()

The general treatment can be relaxed in various special cases. E.g., if the first statement of
a block is labeled, then we have

142 LANDIN

begin
real a;
pp f(x);
φ;

pp g(x);
φ;

gotof
end

let a = .
let rec

(f(x) = φ
and g(x) = φ)
let f = Jf
and g = Jg
f

i.e.,

(λa.
1st
((λ(f, g).(Jf, Jg))
(Yλ(f, g).

(λx.φ, λx.φ)))
(.)

Again, if there are no backward jumps, then the recursion need not include the labels. So
a non-recursive, simultaneous definition suffices (and avoids the above mentioned compli-
cation concerning theλ-level of the application ofJ.)

Conclusion

There is a chain of relations between

1. Algol 60’s labels and jumps

2. The “program-point declaration” extension toAlgol 60

3. The “pp-definition” extension towhere-notation,

4. J

5. Thesecd-machine

This appendix has completed the chain by establishing the first two links. There are two
reasons for doing this. First, it provides an introduction toJ for someone unfamiliar with
theae/secd model. Second, it shows how the model can be used in specifying a language,
in this caseAlgol 60 and an extension of it.

Acknowledgments

This report could not have been written without many discussions with W. H. Burge.

Notes

1. This work was carried out while the author was at Univac Systems Programming Research and originally
appeared as a Univac technical report dated August 29, 1965.

A GENERALIZATION OF JUMPS AND LABELS 143

2. Another example ofJ’s defiance of the usual substitution rules is the non-equivalence of

L = JL
and M = JM
and N = JN

L,M,N = mapJ(L,M,N)
where recmap(f)X = null X → ()

f(hX) : mapf (tX)

The right hand version definesL,M , andN as pps that would, if called, lead back into the definiens ofmap.
This has no conceivable use. The equivalence is restored by writing:

L,M,N = map(B(JI))(L,M,N)

whereB is the functionB(f)(g)(x) = f(g(x))

References

1. Burge, W.H., “The Evaluation, Classification and Interpretation of expressions,” Proceedings of the 19th
National ACM Conference, 1964.

2. Gilmore, P.C., “An abstract computer with alisp-like machine language without a label operator,” In
Computer Programming and Formal Systems, ed. Braffort, P., and Hirschberg, D., North Holland Publishing
Co., Amsterdam, 1963.

3. Landin, P.J., “The Mechanical evaluation of expressions,” Comp. J.6, pp. 308–320.
4. Landin, P.J., “A Correspondence betweenAlgol 60 and Church’s Lambda-notation,” Comm. ACM8,

89–101, 158–165, 1965.
5. Landin, P.J., “A formal description ofAlgol 60.” Presented at IFIP Working Conf., Baden, Sept. 1964.
6. Landin, P.J., “Programming without lmperatives—an Example,” UNIVAC S.P. Research Report (March,

1965)
7. Landin, P.J., “Getting Rid of Labels,” UNIVAC S.P. Research Report (July, 1965)
8. McCarthy, J., “Towards a mathematical science of computation.” IFIP Munich Conference, 1962, North

Holland, Amsterdam, 1963.
9. Van Wijngaarden, A., “Recursive definition of syntax and semantics.” Presented at IFIP Working Conf.,

Baden, Sept. 1964.
10. Landin, P.J., “An Analysis of Assignment in Programming Languages,” UNIVAC S.P. Research Report

(September, 1965)

