
The Next 700 Programming Languages
P. J. Landin

Univac Division of Sperry Rand Corp., New York, New York

" . . . t oday . . . 1,700 special programming languages used to 'com-
municate' in over 700 application areas."--Computer Software Issues,
an American Mathematical Association Prospectus, July 1965.

A family of unimplemented computing languages is de-
scribed that is intended to span differences of application area
by a unified framework. This framework dictates the rules
ckout the uses of user-coined names, and the conventions
about characterizing functional relationships. Within 'lhis frame-
work 'lhe design of a specific language splits into two inde-
pendent parts. One is 'lhe choice of written appearances of
programs (or more generally, their physical representation).
The o:her is the choice of the abstract entities (such as numbers,
character-strings, lists of them, functional relations among
them) that can be referred to in the language.

The system is biased towards "expressions" rather than
"statements." It includes a nonprocedural (purely functional)
subsystem fhat aims to expand the class of users' needs that
can be met by a single print-instruction, without sacrificing the
important properties that make conventional right-hand-side
expressions easy to construct and understand.

1. I n t r o d u c t i o n

Most programming languages are partly a way of
expressing things in terms of other things and partly a
basic set of given things. The Isw~M (If you See What I
Mean) system is a byproduct of an at tempt to disentangle
these two aspects in some current languages.

This at tempt has led the author to think that many
linguistic idiosyneracies are concerned with the former
rather than the latter, whereas aptitude for a particular
class of tasks is essentially determined by the latter rather
than the former. The conclusion follows that many
language characteristics are irrelevant to the alleged
problem orientation.

IswI~ is an attempt at a general purpose system for
describing things in terms of other things, that can be
problem-oriented by appropriate choice of "primitives."
So it is not a language so much as a family of languages,
of which each member is the result of choosing a set of
primitives. The possibilities concerning this set and what
is needed to specify such a set are discussed below.

Isw~M is not alone in being a family, even after mere
syntactic variations have been discounted (see Section 4).
In practice, this is true of most languages that achieve
more than one implementation, and if the dialects are well
disciplined, they might with luck be characterized as

Presented at an ACM Programming Languages and Pragmatics
Conference, San Dimes, California, August 1965.

1 Throe is no more use or mentiol~ of X in this paper--eognoseenti
will nevertheless sense an undercurrent. A not inappropriate title
would have been "Church without lambda,"

differences in the set of things provided by the library or
operating system. Perhaps had ALGOL 60 been launched
as a family instead of proclaimed as a language, it would
have fielded some of the less relevant criticisms of its
deficiencies.

At first sight the facilities provided in IswI~,~ will appear
comparatively meager. This appearance will be especially
misleading to someone who has not appreciated how much
of current manuals are devoted to the explanation of
common (i.e., problem-orientation independent) logical
structure rather than problem-oriented specialties. For
example, in almost every language a user can coin names,
obeying certain rules about the contexts in which the
name is used and their relation to the textual segments
that introduce, define, declare, or otherwise constrain its
use. These rules vary considerably from one language to
another, and frequently even within a single language
there may be different conventions for different classes of
names, with near-analogies that come irritatingly close to
being exact. (Note that restrictions on what names can
be coined also vary, but these are trivial differences. When
they have any logical significance it is likely to be perni-
cious, by leading to puns such as ALaOL'S integer labels.)

So rules about user-coined names is an area in which
we might expect to see the history of computer applica-
tions give ground to their logic. Another such area is in
specifying functional relations. In fact these two areas are
closely related since any use of a user-coined name im-
plicitly involves a functional relation; e.g., compare

x(x-ka) f (b+2c)
w h e r e x = b -4- 2c w h e r e f(x) = x(x+a)

ISW~M is thus part. programming language and part pro-
gram for research. A possible first step in the research
program is 1700 doctoral theses called " A Correspondence
between x and Church's X-notation. ''~

2 . T h e w h e r e - N o t a t i o n

In ordinary mathematical communication, these uses
of ' w h e r e ' require no explanation. Nor do the following:

f(b-l-2c) ---I- f (2b--c)
w h e r e f (x) = x(x-t-a)

f(bA--2c) -- f (2 b - c)
w h e r e f (x) = x (x+a)
a n d b = u / (u + l)
a n d c = v/(v-t-1)
g (f w h e r e f (x) = ax 2 -]- bx -I- c,

u / (u-4-1) ,
v / (v + l))

w h e r e g (f , p, q) = f (p - k 2 q , 2 p - - q)

Volume 9 / Number 3 / March, 1966 C o m m u n i c a t i o n s o f t h e ACM 157

A phrase of the form 'where definition' will be called a
"where-clause." An expression of the form 'expression
where-clause' is a "where-expression." Its two principal
components are called, respectively, its "main clause"
and its "supporting definition." To put 'where ' into a
programming language the following questions need
answers.

Linguistic Structure. What structures of expression
can appropriately be qualified by a where-clause, e.g.,
conditional expressions, operand-listings, statements,
declarations, where-expressions?

Likewise, what structures of expression can appro-
priately be written as the right-hand side (rhs) of a
supporting definition? What contexts are appropriate for a
where-expression, e.g., as an arm of a conditional ex-
pression, an operator, the main-clause of a where-ex-
pression, the left-hand side (lhs) of a supporting definition,
the rhs of a supporting definition?

Syntax. Having answered the above questions, what
are the rules for writing the acceptable configurations
unambiguously? E.g., where are brackets optional or
obligatory? or other punctuation? or line breaks? or in-
dentation? Note the separation of decisions about struc-
ture from decisions about syntax. (This is not a denial
that language designers might iterate, like hardware
designers who distinguish levels of hardware design.)

Semantic Constraints on Linguistic Structure. In the
above examples each main clause was a numerical ex-
pression; i.e., given appropriate meanings for the various
identifiers in it, it denoted a number. What other kinds of
meaning are appropriate for a mainclause, e.g., arrays,
functions, structure descriptions, print-formats?

Likewise what kinds of meaning are appropriate for
rhs's of supporting definitions? Notice there is not a third
question analogous to the third question above under
linguistic structure. This is because a where-expression
must mean the same kind of thing as its main clause and
hence raises no new question concerning what contexts
are meaningful. Notice also that the questions about
meaning are almost entirely independent of those about
structure. They depend on classifying expressions in two
ways that run across each other.

Outcome. What is the outcome of the more recondite
structural configurations among those deemed admissible,
e.g. mixed nests of where-expressions, function definitions,
conditional expressions, etc.?

Experimental programming has led the author to think
that there is no configuration, however unpromising it
might seem when judged cold, that will not turn up quite
naturally. Furthermore, some configurations of 'where '
that might first appear to reflect somewhat pedantic dis-
tinctions, in fact provide close matches for current lan-
guage features such as n a m e / v a l u e and o w n (see [2, 3]).

All these questions are not answered in this paper. The
techniques for answering them are outlined in Section 4.

One other issue arises when 'where ' is added to a
programming language--types and specifications. A

method of expressing these functionally is explained in
[2]. I t amounts to using named transfer-functions instead
of class names like in teger , i.e., writing

where n = round(n)

instead of the specification

integer n

Thus the use of functional notation does not jeopardize
the determination of type from textual evidence.

3. P h y s i c a l I S W I M a n d :Logical I S W I M

Like ALGOL 60, ISWIM has no prescribed physical
appearance. ALGOL C0'S designers sought to avoid commit-
ment to any particular sets of characters or type faces.
Accordingly they distinguish between "publication hm-
guage," "reference language" and "hardware languages."
Of these the reference language was the standard and was
used in the report itself whenever pieces of ALGOL 60
occurred. Publication and hardware languages are trans-
literations of the reference language, varying according to
the individual taste, needs and physical constraints on
available type faces and characters.

Such variations are different physical representations
of a single abstraction, whose most faithful physical
representation is the reference language. In describing
IswI~ we distinguish an abstract language called "logical
ISWIM," whose texts are made up of "textual elements,"
characterized without commitment to a particular physical
representation. There is a physical representation suitable
for the medium of this report, and used for presenting
each piece of IswI~1 that occurs in this report. So this
physical representation corresponds to "reference ALGOL
60," and is called "reference ISWIM," or the "IswI~i
reference representation," or the "IswI~,r reference hm-
guage."

To avoid imprecision one should never speak just of
"ISWIM," but always of "logical IswxM" or of "such-
and-such physical ISWlM." However, in loose speech,
where the precise intention is clear or unimportant, we
refer to "ISWlM" without quMifieation. We aim at a more
formal relation between physical and logical languages
than was the case in the ALGOL C0. This is necessary since
we wish to systematize and mechanize the use of different
physical representations.

4. F o u r L e v e l s o f A b s t r a c t i o n

The "physical~logical" terminology is often used to
distinguish features that are a fortuitous consequence of
physical conditions from features that are in some sense
more essential. This idea is carried further by making a
similar distinction among the "more essential" features.
In fact ISWlM is presented here as a four-level concept
comprising the following:

(1) physical IswlM'S, of which one is the reference
language and others are various publication and hardware
languages (not described here).

158 Communicat ions of the ACM Volt, me 9 / Number 3 / March, 1966

(2) logical ISWlM, which is uncommitted as to char-
acter sets and type faces, but committed as to the sequence
of textual elements, and the grammatical rules for group-
ing them, e.g., by parentheses, indentation and precedence
relations.

(3) abstract Iswls,,, which is uncommitted as to the
grammatical rules of sequence and grouping, but com-
mitted as to the grammatical categories and their nesting
structure. Thus abstract Iswis,~ is a "tree language" of
which logical IswlM is one linearization.

(4) applicative expressions (AEs), which constitute
another tree language, structurally more austere than
abstract ISWlM, and providing certain basic grammatical
categories in terms of which all of Isw1~'s more numerous
categories can be expressed.

The set of acceptable texts of :t physical ISWlM is
specified by the relations between 1 and 2, and between
2 and 3. The outcome of each text is specified by these
relations, together with a "frame of reference," i.e., a rule
that associates a meaning with each of a chosen set of
identifiers.

These are the things that vary from one member of our
language family to the next. The specification of the family
is completed by the relation between abstract IswI~ and
AEs, together with an abstract machine that interpret
AEs. These elements are the same for all members of the
family and are not discussed in this paper (see [1, 2, 4]).

The relationship between physical ISWlM and logical
ISWIM is fixed by saying what physical texts represent
each logical element, and also what layout is permitted in
stringing them together. The relationship between logical
I s w ~ and abstract IswlM is fixed by a formal grammar
not unlike the one in the ALGOL 60 report, together with a
statement connecting the phrase categories with the
abstract grammatical categories.

These two relations cover what is usually called the
"syntax" or "grammar" of a language. In this paper
syntax is not discussed beyond a few general remarks and
a few examples whose meaning should be obvious.

The relationship between abstract Iswls(and AEs is
fixed by giving the form of AE equivalent to each abstract
IswiM grammatical category. I t happens that these latter
include a subset that exactly matches AEs. Hence this
link in our chain of reh~tions is roughly a mapping of
ISWIM into an essential "kernel" of IswIM, of which all the
rest is mere decoration.

5. A b s t r a c t I S W I M

The texts of abstract ISWlM are composite information
structures called amessage's. The following structure
definition defines ~ the class amessage in terms of a class
called identifier. I t also defines several functions for
manipulating amessage's. These comprise the predicates

2 Wri t ing a s t ruc tu re definition i~volves coining names for the
var ious a l te rna t ive fo rmats of amessage's and their components .
The only obscure coinage is " b e e t , " which abbrev ia tes " b e t a -
redex ," i.e., " an express ion amenable to rule (fl)"; see Section 7'.

demand, simple, infixed, etc; also the selectors body, rator,
leflarm, nee, etc; also (taking for granted certain un-
formalized conventions concerning structure definitions)
the constructors, consdemand, conscombination (elsewhere
~bbreviated to combine), consstandardade], etc. Examples
of reference IswI~ are given alongside, against the right
margin.

An amessage is
e i ther a demand, and has [P r i n t a+2b

a body which is an aexprcss ion,
or e l se a definition, [Def x=a+2b

w h e r e r e c
an aexpress ion (aexp) is

e i ther simple, and has [CAth231"
a body which is an identifier

or a combination, in which case it has [sin(a+2b)
a rator, which is an aexp, or
and a rand, which is an aexp, a + 2b

or conditional, in which case it is
e i ther two-armed, and has [p--*a+2b; 2a--b

a condition, which is an aexp,
and a teftarm, which is an aexp,
and a rightarm, which is an aexp,

or one-armed, and has [q-+2a--b
a condition, which is an aexp,
and an arm, which is an aexp,

or a listing, and has [a+b, c+d, e+f
a body which is an aexp-l ist ,

or beet, and has [x (x+ l) w h e r e x = a + 2b
a mainclause, which is an aexp, or
and a support l e t x = a + 2b; x (x + l)

which is an adef,
a n d
an adefinit ion (adef) is

e i ther standard, and has [x=a+2b
a definee (nee), which is an abe ,
and a definiens (niens), which is an aexp,

or functionform, arid has [f(x) = z (x + l)
a lefthandside (lhs),

which is an abe- l i s t of length >2 ,
and a righthandside (rhs), which is an aexp

or programpoint, and has [pp f (x) = x (x + l)
a body which is an adef,

or circular, and has [tee f (n) = (n = 0) - + l ; n f (n - 1)
a body which is an adef,

or simultaneous, and has [x=a+2b a n d y=2a--b
a body, which is an adef-l ist ,

or beet, and has [f(y) = z (x + y)
a mainclause, w h e r e x=a+2b
which is an adef,
and a support, which is an adef.

w h e r e an abe is
e i ther simple, and has

body, which is an identifier,
or e l se , is an abv-lislo. [x, (y, z), w

A program-point definition introduces a deviant kind
of function. Applying such a function precipitates pre-
mature termination of the where-expression containing
it, and causes its result to be delivered as the value of the
entire where-expression.

Program-points are Iswli 'S, nearest thing to jumping.
Assignment is covered as a particular case of an operator.
For both of these the precise specification is in terms of the
underlying abstract machine (see [2]).

V o l u m e 9 / N u m b e r 3 / M a r c h , 1966 C o m m u n i c a t i o n s o f t h e ACM 159

6. R e l a t i o n s h i p to LISP

IswI~r can be looked on as an at tempt to deliver LisP
fronI its eponymous commitment to lists, its reputation
for hand-to-mouth storage allocation, the hardware
dependent flavor of its pedagogy, its heavy bracketing,
and its compromises with tradition. These five points are
now dealt with in turn:

(1) Iswi~ has no particular problem orientation.
Experiments so far have been mainly in numerical work
and language processing with brief excursions into "com-
mercial" programming and elsewhere. No bias towards or
away from a particular field of application has emerged.

(2) Outside a certain subset (corresponding closely to
ALGOL ~0 without dynamic own arrays), IswIM needs
garbage collection. An experimental prototype imple-
mentation followed common ALGOL 60 practice. I t used
dynamic storage allocation with two sources, one LIFO
and the other garbage collected, with the intention that
the LIFO source should take as big a share as possible.

However, as with ALGOL 60, there is a latent potential
for prealloeating storage in certain favorable and com-
monly useful situations. Compared with LISP the chief
amelioration of storage allocation comes out of a mere
syntactic difference, namely, the use of where (ol 'let'
which is exactly equal in power and program structure).
This provides a block-structure not dissimilar in textual
appearance from ALGOL 60'S, though it slips off the pen
more easily, and is in many respects more generM.

(3) LisP has some dark corners, especially outside
"pure LISP," in which both teachers and programmers
resort to talking about addresses and to drawing storage
diagrams. The abstract machine underlying IswI~,r is
aimed at illuminating these corners with a mininmm of
hardware dependence.

(4) The textual appearance of IswI~l is not like Lisp's
S-expressions. I t is nearer to LISP'S M-expressions (which
constitute an informal language used as an intermediate
result in hand-preparing LISP programs). IswlAi has the
following additional features:

(a) "Auxiliary" definitions, indicated by 'let' or 'where ' ,
with two decorations: ' and ' for simultaneous definitions,
and 'rec' for self-referential definitions (not to be mistaken
for a warning about recursive activation, which can of
course also arise from self-application, and without self-
reference).

(b) Infixed operators, incorporated systematically. A
logical ISWIM can be defined in terms of four unspecified
parameters: three subsets of the class of identifiers, for use
as prefixed, infixed and postfixed operators; and a prec-
edence relation defined over the union of these subsets.

(c) Indentation, used to indicate program structure. A
physical IswiM can be defined in terms of an unspecified
parameter: a subset of phrase categories, instances of
which are restricted in layout by the following rule called
" the offside rule." The southeast quadrant that just con-
tains the phrase's first symbol nmst contain the entire
phrase, except possibly for bracketed subsegments. This

rule has three important features. I t is based on vertical
alignment, not character width, and hence is equally
appropriate in handwritten, typeset or typed texts. Its
use is not obligatory, and use of it can be mixed freely with
more conventionM alternatives like punctuation. Also, it
is incorporated in IswI~t in a systematic way that admits
of alternatives without changing other features of Isw~.r
and that can be applied to other languages.

(5) The most important contribution of LisP was not
in listprocessing or storage allocation or in notation, but
in the logic~d properties lying behind the notation, t tere
Iswi?i makes little improvement because, except for a few
minor details, Lisp left none to make. There are two
equivalent ways of stating these properties.

(a) LIsP simplified the equivalence relations that
determine the extent to which pieces of program can be
interchanged without affecting the outcome.

(b) LISP brought the class of entities that are denoted
by expressions a programmer can write nearer to those
that arise in models of physical systems and in mathe-
matieM and logical systems.

These remarks are expanded in Sections 7 and 8.

7. T h e Character i s t i c Equiva lences o f ISWIM

For most programming languages there are certain
statements of the kind, "There is a systematic equivalence
between pieces of program like this, and pieces like tha t , "
that nearly hold but not quite. For instance in ALGOL 60
there is a nearly true such statement concerning procedure
calls and blocks.

At first sight it might appear pedantic to quibble about
such unt idiness--"What 's the point of having two different
ways of doing the same thing anyway? Isn' t it better to
have two facilities than just one?" The author believes
tha t expressive power should be by design rather than
accident, and that there is great point in equivalences that
hold without exception. I t is a platitude that any given
outcome can be achieved by a wide variety of programs.
The practicability of all kinds of program-processing
(optimizing, checking satisfaction of given conditions,
constructing a program satisfying given conditions)
depends on there being elegant equivalence rules. For
IswlM there are four groups 3, concerning:

(1) the extent to which a subexpression can be replaced
by an equivalent subexpression without disturbing the
equivalence class of the whole expression. Without this
group the other rules would be applicable only to complete
expressions, not to subexpressions.

(2) user-coined names, i.e., in definitions and, in particu-
lar, function definitions.

(3) built-in entities implicit in special forms of ex-
pression. The only iiistanees of this in Iswllv[are conditional
expressions, listings and self-referential definitions.

(4) named entities added in any specific problem-
orientation of IswIM.

3 To facilitate subsequent discussion each rule is preceded
by a name, e.g., "(~t)", "(,)", etc. These are chosen to conform
with precedents in Curry's Combinatory Logic.

160 Communications of the ACM Volume 9 / Number 3 / March, 1966

G R O U P 1

(tz) I f L -= L ' t h e n L (M) -= L ' (M)
@) I f M ~ M ' t h e n L (M) ~ L (M')
@') I f M ~ M ' t h e n (L , . . . , M , . . - , N) ~ (L , . . . , M ' , . . . N)
(v") I f L ~ L ' t h e n (L--~M; N) ~ (L'--+M, N)
(v ') I f M ~ M ' t h e n (L--aM; N) ~ (L-aM'; N)
(vi~) I f N -~ N ' t h e n (L--~M; N) ~ (L--~M; N ')
(v ~) I f M -= M ~ t h e n (L w h e r e x = M) ~- (L w h e r e x = M t)

The significant omissions here are the main-clause in the
last case above, the rhs of a function definition " f (x) = M "
and of a circular definition " r e e :c = M".

GRoue 2

(l e t) l e t x = M ; L --= L w h e r e x = M

(I') f (x) = L ~ f = (g w h e r e g (x) = L)
f (a , b , c) (x , y) = L ~ f (a , b , c) = (g w h e r e g (x , y) = L)
a n d so on fo r e a c h s h a p e of l e f t - h a n d s i d e

(I) (f w h e r e f (x) = L) M ~ L w h e r e x = M
(~') (x = L) w h e r e y = M ~ x ~ (L w h e r e y = M)
(D ') x = L a n d y = M a n d ~- . . - a n d z = N

(z , y , " " , z) = (L , M , - " , N)

Rules (I'), (~'), (D'), together with (Y) below, enable
any definition to be "standardized," i.e., expressed in a
lhs / rhs form, in which the lhs is precisely the definee. Thus
a nonstandard definition can be transformed so as to be
amenable to rules (~) and (~) (see Group 2').

G R O U P 2 f

(fl) L w h e r e x = M

"Subst ~i C" where

M
S u b s t L

X

means roughly the expression resulting

from substituting A for B throughout C. Here 'x ' may be
any list-structure of distinct identifiers, provided that
'M' has structure that fits it.

This rule is the most important, but it has only limited
validity, namely, within the "purely functional" subset of
ISWlM that results from not using the program-point
feature or assignment.

Its importance lies in a variant of a famous theorem of
mathematical logic, the Church-Rosser theorem. This
concerns the possibility of eliminating 'where ' from an
expression by repeatedly applying the rules stated above,
including crucially (~). The theorem ensures that if there
are several ways of doing this they all reach the same
result.

The author thinks that the fruitful development to
encompass all ISWlM will depend on establishing "safe"
areas of an ISWlA~ expression, in which imperative features
can be disregarded. The usefulness of this development
will depend on how successfully ISWlM'S nonimperative
features supersede conventional programming.

GROUP 3

(--~) t r u e --~ M ; N ~ M
(- - /) f a l s e -~ M; N ~ N

(---~") P ~ M ~ P ~ M; undefined

(undefined) undefined ~ self apply (selfapply)
w h e r e self apply (f) = f (f)

(Y) r e c x = L ~ x = (L w h e r e r e c x = L)
(D") (x, - . . , z) = M ~- (x, ' " , z) =

nul l (tkw)
hw, . . . , h(t~-lw)

w h e r e w = M
(for k > 2)

(x, (u, v), z) = M =- (x, (u, v), z) =
null (taw)

h(w),
(null (t2w ') --~

h(w'), h(t(w'))
w h e r e w ' = h(t (w)))
h(t2w)

w h e r e w = M

arid so on for each shape of definee
(null) nul l (nullisl) -= t r u e
(null I) nul l (La, . . ' , Lk) ~ f a l s e

w h e r e (x, " ' , z)
= L b " " , Lk (k > 2)

(h) h (L b " " , Lk) ~ x
w h e r e (x, - . . , z)

= Lj , . - . , Lit (k > 2)
(t) t(L1, . . . , L~) ~ y, . . . , z

w h e r e (x , y , - . - , z)
= L1, " ' , Lk (k _ 3)

(t') t(t(Ll, L2)) =-- nullist
w h e r e (x, y) = L1, L2

The rules about listings may appear willfully indirect.
The more natural transformations are those effected by
applying, for example, (D I') then (~). But these would
have suffered the same limited validity as (~). In their
above slightly cautious formulation the validity of (DI'),
etc. is unrestricted, and the more powerful equivalences
that hold for nonimperative expressions arise entirely
from (/3).

GRouP 4
A problem-orientation of IswI~r can be characterized

by additional axioms. In the simplest case such an axiom
is an IswiM definition. The resulting modification is called
a "definitional extension" of the original system.

In more elaborate cases axioms may mutually constrain
a group of identifiers; e.g. the following rule for equality
among integers:

(=) Suppose L and M are ISWIM written integers
(i.e., strings of digits); then either one or the other of the
following holds:

L = M ~ - t r u e
L = M ~ f a l s e

according as L and 114 differ at most in lefthand zeros, or
not.

Another example, presented even less formally, is the
structure definition for abstract ISWlM.

Group 1 above makes no provision for substitutions
within expressions that are qualified by a supporting
definition or are used to define a function. However, such
a substitution is legitimized as long as it does not involve
the definees or variables, by encasing it within applications
of rule (/3) and its inverse (with any other rules that might

V o l u m e 9 / N u m b e r 3 M a r c h , 1966 C o m m u n i c a t i o n s o f t h e A C M 161

be needed to produce something that is amenable to (~),
i.e., a beet with a standard definition).

EquivMence rules can be used to prove things about the
system. For example, the reader will readily verify that
the equivalence of

f (6) where reef(n) = (n=0) --~ 1; nf (n--l)

and

6 (f(5) where r e e f (n) = (n=0) --~ 1; nf (n--l))

can be established with the following steps:

(I'), (Y), (f~), (Y), (f3), (I), (=), (i3) backwards, (Y) backwards,
(I') backwards.

in this sequence we omit the auxiliary applications of (~),
etc. that are needed at Mmost every step to legitimize the
substitution.

8. A p p l i c a t i o n a n d D e n o t a t i o n

The commonplace expressions of arithmetic and algebra
have a certain simplicity that most communications to
computers lack. In particular, (a) each expression has a
nesting subexpression structure, (b) each subexpression
denotes something (usually a number, t ruth vMue or
numerical function), (c) the thing an expression denotes,
i.e., its "value", depends only on the values of its sub-
expressions, not on other properties of them.

I t is these properties, and crucially (c), that explains
why such expressions are easier to construct and under-
stand. Thus it is (c) that lies behind the evolutionary
trend towards "bigger righthand sides" in place of strings
of small, explicitly sequenced assignments and jumps.
When faced with a new notation that borrows the func-
tional appearance of everyday algebra, it is (c) that gives
us a test for whether the notation is genuinely functional
or merely masquerading.

The important feature of ISWIM's equivalence rules is
chat they guarantee the same desirable properties to
ISWlM'S nonimperative subset. We may equate "abstract
object" with "equivalence class," and equate "denotes"
with "is a member of." Then the properties (g) and (v)
ensures anologies of (c) above. They state that the value
of an operator/operand combination depends only on the
values of its component subexpressions, not on any other
aspects of them.

Thus conditions (g) and (v) are equivalent to the
existence of a dyadic operation among the abstract ob-
jects; we call this operation "application."

The terminology of "abstract objects," "denoting" and
"application" is frequently more convenient than that of
equivalence relations. For example, it suggests another
way of characterizing each problem-orientation of ISWlM.
We can think of a set of abstract objects with a partially
defined dyadic "application" operation and a monadic
"designation" operation that associates a "primit ive"
abstract object with each of some chosen set of names,
called the "constants" of the special system.

Consider for example a programming language that

contains expressions such as
'wine'

Anyone with a generous ontology will admit that
this 6-character expression denotes the 4-character-string

wine
For such a person its use in the language is characterized
by
• the objects that it is applicable to, and the object it

produces in each case (e.g., strings might be used like
vectors, whose application to an integer produces an
item of the string).
• The objects that it is amenable to, and the object it
yields in each case (e.g., prefixing, appending, selection,
etc.).

The sceptic need not feel left out. He just has to talk, a
bit more clumsily, about

'wine'

being in the equivalence class that also contains

concatenate ('wi', 'he')

and

append (fiflhletterof (romanalphabet),
(threeletterstemof ('winter'))

Then he goes on to speak of the equivalence class of
expressions that can serve as operand or operator to any
of the above, and the equivalence class of the resulting
operator/operand combination.

9. N o t e o n T e r m i n o l o g y

ISWIM brings into sharp relief some of the distinctions
that the author thinks are intended by such adjectives as
procedural, nonproeedural, algorithmic, heuristic, impera-
tive, declarative, functional, descriptive. Here is a sug-
gested classification, and one new word.

First, none of these distinctions are concerned with the
use of pidgin English rather than pidgin algebra. Any
pidgin algebra can be dressed up as pidgin English to
please the generals. Conversely, it is a special ease of the
thesis underlying ISWlM that any pidgin English that has
so far been implemented can be stripped to pidgin algebra.
There is nevertheless an important possibility of having
languages that are heuristic on account of their "applica-
tive structure" being heuristic.

An important distinction is the one between indicating
what behavior, step-by-step, you want the machine to
perform, and merely indicating what outcome you want.
Pu t that way, the distinction will not stand up to close
investigation. I suggest that the conditions (a-e) in Section
8 are a necessary part of "merely indicating what outcome
you want." The word "denotat ive" seems more appro-
priate than nonproeedural, declarative or functional. The
antithesis of denotative is " impera t ive . " Effectively
"denotat ive" means "can be mapped into ISW~M without
using jumping or assignment," given appropriate primi-
tives.

162 Communicat ions of the ACM Voh, me 9 / Number 3 / March, 1966

I t follows that functional programming has little to do
with functional notation. I t is a trivial and pointless task
to rearrange some piece of symbolism into prefixed opera-
tors and heavy bracketing. I t is an intellectually demand-
ing activity to characterize some physical or logical
system as a set of entities and functional relations among
them. However, it may be less demanding and more
revealing than characterizing the system by a conventional
program, and it may serve the same purpose. Having
formulated the model, a specific desired feature of the
system can be systematically expressed in functional
notation. Eu t other notations may be better human
engineering. So the role of functional notation is a standard
by which to describe others, and a s tandby when they fail.

The phrase "describe in terms of" has been used above
with reference to algorithmic modes of expression, i.e.,
interchangeably with "express in terms of." In this sense
" 3 + 4" is a description of the number 7 in terms of the
numbers 3 and 4. This conflicts with current use of the
phrase "descriptive languages," which appears to follow
the logicians. For example, a language is descriptive in
which the machine is told

P r i n t t h e x s u c h t h a t x 2 - - x - - 6 = 0 /~ x > 0

Such a classification of languages (as opposed to merely
expressions within languages) is useless, and even harmful
by encouraging stupidly restrictive language design, if it
excludes the following:

P r i n t square (t h e x s u c h t h a t x ~ -- x - - 6 = 0 A x > 0)
P r i n t u (u + l)

w h e r e u = t h e x s u c h t h ~ t x 2 - x - - 6 = 0 A x _> 0.
P r i n t f (1 , - -1 , 6)

where f (a , b, c) = the x such that ax ~ ÷ bx + c = 0 A x >_0

On the other hand it might reasonably exclude

P r i n t solepositivezeroof (1, - -1 , - -6)

where so lepos i t i vezeroo] happens to be a library function.
The author therefore suggests that there is a useful

distinction that can be made here concerning l a n g u a g e s .

Consider the function i, which operates on a class (or
property) having a sole member (or instance), and trans-
forms it into its sole member. We are interested in whether
or not a language permits reference to i, with more or
less restricted domain.

For example the above programs become:

P r i n t i(p w h e r e p(x)=x2--x--6 A x > O)
P r i n t square (i(p w h e r e p(x)=x2--x--6 A x > 0))
P r i n t u (u--}- 1)

w h e r e u = i (p w h e r e p(x)=x~--x--6 A x > O)
P r i n t f (1 , - -1 , - -6)

w h e r e f (a, b, c) = i(p w h e r e p(x)=ax2-bbx+c A x > O)

More precisely, the distinction hinges on whether, when
"applicative structure" is imputed to the language, it can
be done without resorting to i, or to primitives in terms of
which i can be defined.

This discussion of i reveals the possibility that primitives
might be sensationally nonalgorithmie. So the algorithmic/
heuristic distinction cuts across the denotat ive/ imperat ive

V o l u m e 9 / N u m b e r 3 / M a r c h , 1966

(i.e., nonproeedural/procedural) distinction. On the other
hand if limited forms of i can be algorithmized, they still
deserve the term "descriptive." So this factor is also
independent.

10. Eliminating Explielt Sequenelng

Thm'e is a game sometimes played with ALGOL 60
programs--rewri t ing them so as to avoid using labels and
go to statements. I t is part of a more embracing g a m e - -
reducing the extent to which the program conveys its
information by explicit sequencing. Roughly speaking this
amounts to using fewer and larger statements. The game's
significance lies in tha t it frequently produces a more
" t ransparent" program--eas ier to understand, debug,
modify and incorporate into a larger program.

The author does not argue the ease against explicit
sequencing here. Instead he takes as point of departure the
observation that the user of any programming language is
frequently presented with a choice between using explicit
sequencing or some alternative feature of the language.
Furthermore languages vary greatly in the alternatives
they offer. For example, our game is greatly facilitated by
ALGOL 60'S conditional s tatements and conditional ex-
pressions. So the question considered here is: Wha t other
such features are there? This question is considered be-
cause, not surprisingly, it turns out tha t an emphasis on
describing things in terms of other things leads to the
same kind of requirements as an emphasis against explicit
sequencing.

Though A~GO~ g0 is comparat ively favorable to this
activity, it shares with most other current languages
certain deficiencies that severely limit how far the game
can go. The author 's experiments suggest that two of the
most needed features are:
• Treat a listing of expressions as a special ease of the
class of expressions, especially in the arms of a conditional
expression, and in defining a function.
• Treat, argument lists as a special ease of lists. So a
triadic function can have its arguments supplied by a
conditional whose arms are 3-listings, or by application of
a function that produces a 3-list. A similar situation arises
when a 3-listing occurs as a definee. (Even LIsP trips up
here, over lists of length one.)

To clarify their practical use, here are some of the
steps by which many a conventional ALGOL e0 or PL/1
program can be transformed into an IswI~,r program tha t
exploits IswIsl 's nonimperative features.

(1) Rewrite the program so as to use two-dimensional
layout and arrows to illuminate the explicit sequencing,
i.e., as a flowchart with algebraic steps. Rearrange this to
achieve the least confusing network of arrows.

(2) Apply the following changes repeatedly wherever
they are applicable:

(a) Replace a string of independent assignments by one
multiple assignment.

(b) Replace an assignment having purely local signifi-
cance by a where-clause.

(e) Replace procedures by type-procedures (possibly

C o m m u n i c a t i o n s o f t b e A C M 163

with multiple type), and procedure statements by assign-
ment statements.

(d) Replace conditional jumps by conditional state-
ments having bigger arms.

(e) Replace a branch whose arms have assignees in
common by an assignment with conditional right-hand
side.

(f) Replace a join by two calls for a procedure.
I t should be observed that translating into ISWlM does

not force such rearrangements; it merely facilitates them.
One interesting observation is that the most recalcitrant
uses of explicit sequencing appear to be associated with
success/failure situations and the action needed on failure.

Section 2 discussed adding 'where ' to a conventional
programming language. Theory and experiment both
support the opposite approach, that taken in Llsv, of
adding imperative features to a basically nonimperative
language. One big advantage is that the resulting language
will have a nonimperative subset.

The special claim of ISWlM is that it grafts procedural
notions onto a purely functional base without disturbing
many of the desirable properties. The underlying ideas
have been presented in [2]. This paper can do no more than
begin the task of explaining their practical significance.

11. C o n c l u s i o n

The languages people use to communicate with com-
puters differ in their intended aptitudes, towards either a
particular application area, or a particular phase of com-
puter use (high level programming, program assembly,
job scheduling, etc). They also differ in physical appear-
ance, and more important, in logical structure. The ques-
tion arises, do the idiosyncracies reflect basic logical
properties of the situations that are being catered for?
Or are they accidents of history and personal background
that may be obscuring fruitful developments? This
question is clearly important if we are trying to predict or
imq_uence language evolution.

To answer it we must think in terms, not of languages,
but of families of languages. Tha t is to say we must
systematize their design so that a new language is a point
chosen from a well-mapped space, rather than a laboriously
devised construction.

To this end the above paper has marshalled three
techniques of language design: abstract syntax, axiomatiza-
tion, and an underlying abstract machine.

I t is assumed that future calls on language development
cannot be forstalled without gener~lizing the alternatives
to explicit sequencing. The innovations of "program-
points" and the "off-side rule" are directed at two of the
problems (respectively in the areas of semantics and
syntax) that must consequently be faced.

Acknowledgments. The author is grateful for helpful
discussions with W. H. Burge. Wider influences on the
investigation of which this paper is one outcome are
mentioned in [1]. Of these the main ones are the publica-
tions of Curry and of McCarthy.

~ E F E R E N C E S

1. LANDIN, P. J. The mechanical evaluation of expressions.
Comput. J. 6, 4 (Jan. 1964), 308-320.

2 . - - . A correspondence between ALGOL 60 arid Church 's
Lambda-notat ion. Comm. ACM 8 (1965), 89-101; 158-165.

3. - - . A formal description of ALGOL 60. In Formal Language
Description Languages for Computer Programming, T. B.
Steel, Jr. (Ed.), Nor th Holland, Amsterdam, 1965.

4. - - . An abstract machine for designers of computing lan-
guages. (Summary). IFIP65 Proc., Par t II.

D I S C U S S I O N

Naur: Ilegarding indentat ion, in many ways I am in sympathy
with this, but I believe tha t if it came about tha t this notat ion
were used for very wide communication and also publication, you
would regret it because of the kind of rearrangement of manu-
scripts done in printing, for example. You very frequently run
into the problem tha t you have a wide wri t ten line and then
suddenly you go to the Communications of the ACM and radically,
perhaps, you have to compress it. The printer will do this in any
way he likes; he is used to having great freedom here and he will
foui up your notat ion.

Landin: I have great experience with this. (Laughter) I th ink
I am probably the only person who has run through three versions
of the galley proofs for the Communications of the ACM. However,
I think tha t next time I could do better , and I th ink it is worth
looking into. At any rate, the principle tha t [have described here
is a good deal bet ter than some tha t one might think of ; for example
it does riot depend on details of character width, character by
charac te r - - i t is just as good handwri t ten as it is printed. Secondly,
limiting the breadth of the page, I agree with you, needs more
consideration. By the time I got through with the part icular
example I am talking about, by gett ing it pr inted, I had devised
what I thought was a fairly reasonable method of communicating
the principles tha t have been used in indentat ion.

Floyd: Another objection tha t 7[think is quite serious to
indentat ion is tha t while it works on the micro-scale-- that is, one
page is all r igh t - -when dealing with an extensive program, turning
from one page to the next there is no obvious way of indicating
how far indentat ion stretches because there is no pr int ing at all to
indicate how far you have indented. I would like you to keep tha t
in mind.

Landin: Yes, I agree. In practice I deal with this by first making
the page breaks in sensible places.

Floyd: That ' s all right as long as you don ' t have an indented
region which is simply several pages long.

Landin: Well in tha t ease the way I did it was to cut down the
number of carryover levels to about four or five from one page to
another. You can at least make it simpler when you are hand-
writing by put t ing some kind of symbols at the bo t tom of the page
and top of the continuation.

Floyd: Even if you regard your indentat ion spaces as characters
there still doesn ' t seem to be any way- - in fact, I am fairly sure
there is no way- -of representing the indentat ion conventions
within a phrase-structure grammar.

Landin: Yes, but some indentat ion conventions can be kept
within phrase s tructure grammars by introducing two terminal
symbols that are grammatically like parentheses, but are textually
like typewri ter keys for settling and clearing tabulat ion positions.
More precisely, the textual representat ion of the second of these
symbols can be explained as the following sequence of typewri ter
actions: 1) line-feed; 2) back-space as far as the r ight-most tab
position tha t is still currently active; 3) clear tab position; and
4) do step 2 again.

While this fits some indentat ion conventions, the olle I propose
is too permissive to be included. For my language I have wri t ten
a formal grammar tha t is not phrase structure and includes one
departure tha t meets this problem.

164 C o m m u n i c a t i o n s of t h e ACM V o l u m e 9 / N u m b e r 3 / M a r c h , 1966

Leavenworth: I should like to raise the question of eliminating
explicit jumps, I mean of using recursion as against interation.

Landin: I t seems to me tha t there are ra ther a small number of
functions which you could use if you were writing a Lisp program
in the places where ordinary programs would use i terations, and
tha t if you were to use these the processor might do as well as if
you had wri t ten a loop. For example, i t e r a t e (m, f, x) might
apply f, m times to x with the result f'~(x). This is the simplest
kind of loop I know and the function i t e r a t e provides a purely
functional notation for this rather simple kind of loop. If a lot of
familiar types of loop can be represented by a few functions which
could be defined recursively, I think it is sensible to take these as
primitive. Another such function is whi le (p, f, x) which goes on
applying f to x until the predicate p becomes false.

Strachey: I must just interpolate here something which is a bit
of advertising l suppose. Nearly all the linguistic features, such as
w h e r e and whi le and a n d and r ecu r s ive , tha t Peter Landin has
been talking about are incorporated as an integral par t of a pro-
gramming language being developed at Cambridge and London
called CPL. In fact the where clauses are a very impor tant feature
of this" language.

Irons: I have put together a program which uses some of these
features and which has a s tandard output which prints the pro-
gram in an indented manner. If it runs off the right end of the page,
it t:rnduces another page to go on the right, and so forth. While
certainly there are some situations tha t occur when it would be a
bit awkward to make the paper go around the room, I have found
tha t in practice, by and large it is true tha t this is a very profit-
able a ay of operating.

Strachey: I should like to intervene now and t ry to initiate a
slightly more general discussion on declarative or descriptive
languages and to try to clear up some points about which there is
considerable confusion. I have called the objects I am trying to
discuss DLs because I don ' t quite know what they are. Here are
some questions concerning])Ls: (1) What are DLs? (2) What is
their relationship to imperative languages? (3) Why do we need
DLs? (4) How can we use them to program? (5) How can we
implement them? (6) How can we do this efficiently? (7) Should we
mix l)Ls with imperative languages?

It seems to me tha t what I mean by DLs is not exactly what
other people mean. I inean, roughly, languages which do not
contain assignment s ta tements or jumps. This is, as a mat te r of
fact, not a very clear dist inction because you can always disguise
the assignments and the jumps, for tha t matter , inside other s tate-
meat forms which m~ke them look different. The important
characteristic of DLs is tha t it is possible to produce equivalence
relations, particularly the rule for subst i tut ion which Peter
Landin describes as (~) in his paper. That equivalance relation,
which appears to be essential in ahnost every proof, does not
hold if you allow assignment s tatements . The great advantage
then of l)Ls is tha t they give you some hope of proving the equi-
valence of program transformations and to begin to have a calculus
for combining and manipulating them, which at the moment we
haven ' t got.

I suggest tha t an answer to the second question is tha t DLs form
a subset of all languages. They are an interesting subset, but one
which is inconvenient to use unless you are used to it. We need
them because at the moment we don ' t know how to construct
proofs with languages which include imperatives and jumps.

How should we use them to program? I think this is a mat ter of
learning a new programnling technique. I am not convinced tha t
all problems are amenable to programming in DLs but I am not
convinced tha t there are any which are not either; I preserve an
open mind on this point. It is perfectly true tha t in the process of
rewriting programs to avoid labels and jumps, you've gone half
the way towards going into 1)Ls. When you have also avoided
assignment s tatements , you've gone the rest of the way. With
many problems yeu can, in fact, go the whole way. LisP has no

assignment s ta tements and it is remarkable what you can do with
pure Lisp if you try. If you think of it in terms of the implementa-
tions tha t we know about, the result is generally intolerably
inefficient--but then tha t is where we come to the later questions.

How do we implement them? There have not been many at-
tempts to implement DLs efficiently, I think. Obviously, it can be
done fairly s traightforwardly by an interpretive method, but this
is very slow. Methods which compile a runable program run into a
lot of very interesting problems. I t can be done, because DLs are
a subset of ordinary programming languages; any programming
language which has sufficient capabilities can cope with them.
There arc problems, however: we need entities whose value is a
func t ion- -not the application of a function but a func t ion- -and
these involve some problems.

Itow to implement efficiently is another very interest ing and
difficult problem. It means, I think, recognizing certain subsets
and transforming them from, say, recursions into loops. This can
certainly be done even if they have been wri t ten iu terms of
recursions and not, as Peter Landin suggested, in terms of already
transformed functions like i t e r a t e or whi le .

I think the last question, "Should DLs be nIixed with impera-
tive languages?", clearly has the answer tha t they should, be-
cause at the moment we don ' t know how to do everything in pure
DLs. If you mix declarative and imperative features like this, you
may get an apparent ly large programming language, but the
important thing is tha t it should be simple and easy to define a
function. Any language which by mere chance of the way it is writ-
ten makes it extremely difficult to write compositions of functions
and very easy to write sequences of commands will, of course, in an
obvious psychological way, hinder people from using descriptive
rather than imperative features. In the long run, I think the effect
will delay our understanding of basic similarities, which underlie
different sorts of programs and different ways of solving problems.

Smith: As I understand the declarative languages, there has to
be a mixture of imperative and descriptive s ta tements or no com-
puta t ion will take place. If I give you a set of simultaneous equa-
tions, you may say "yes?", meaning well, what am I supposed to
do about it, or you may say "yes" , meaning yes I understand, but
you don ' t do anything until I say "now find the values of the vari-
ables." In fact, in a well-developed language there is not just one
question tha t I can ask but a number of questions. So, in effect, the
declarative s ta tements are like data which you set aside to be u~ed
later after I give you the imperatives, of which I had a choice,
which get the action.

Strachey: This is a major point of confusion. There are two ideas
here and I th ink we should t ry to sort them out. If you give a
quadratic equation to a machine and then say "pr in t the value of
x", this is not the sort of language that I call a DL. I regard it as
an implicit l anguage-- tha t is, one where you give the machine the
data and then hope tha t it will be smart enough to solve the prob-
lem for you. I t is very different from a language such as LisP,
where you define a function explicitly and have only one impera-
tive. which says "evaluate this expression and print the resul t ."

Abrahams: I 've clone a fair amount of programming in LisP,
and there is one si tuation which I feel is symptomatic of the times
when you really do want an imperative language. I t is a si tuation
tha t arises if you are planning to do programming in pure Lisp and
you find tha t your functions accumulate a large number of argu-
ments. This often happens when you have a nmnber of variables
and you are actually going through a process and at each stage of
the process you want to change the state of the world a little b i t - -
say, to change one of these variables. So you have the choice of
either t rying to communicate them all, or trying to do some sort
of essentially imperative action tha t changes one of them. If you
t ry to list all of the transit ions from state to s tate and incorporate
them into one function, you'll find tha t this is not really a very
natural kind of function because the natures of the transit ions
are too different.

V o l u m e 9 / N u m b e r 3 / M a r c h , 1966 C o m m u n i c a t i o n s o f t h e ACM 165

Landin: I said in iny talk t h a t LisP had not gone quite all the
way and I th ink t h a t this difficulty is connected with going all the
way. If we write a funct ion definition where the r igh t -hand side is
a l ist ing of expressions such as

F (x) = E1 , E 2 , E~

thel~ we can say t h a t this funct ion will produce a three-l is t as its
result . If llOW we have ~mother funct ion G(x, y, z) = E, on some
occasion we migh t have an expression such as G(a 2, b 2, c ~) and we
often feel t h a t we should be able to write G(F(t)) , and ano ther
example which should be allowed is

G(a > b --~ E1 , E2 , E3 else E4 , E5 , E6).

l am not quite sure bu t I t h ink you can get a round your problem
by t rea t ing every funct ion as if it were in fact monadic and had
a single a r g u m e n t which was the list s t ruc ture you are t ry ing to
process.

Abrahams: This is a difficulty in o ther p rogramming languages
too; you cannot define a func t ion of an indefinite n u m b e r of argu-
ments .

Naur: I still don ' t unde r s t and this d is t inct ion about an im-
plicit language. Does it mean t h a t whenever you have such a
language there is a bui l t - in fea ture for solving equat ions?

Abrahams: I t h ink the point is whether you are concerned with
the problem or are concerned with the me thod of solut ion of the
problem.

Ingerman: I suggest t h a t in the s i tua t ion where you have speci-
fied every th ing t h a t you want to know, though the exact sequence
in which you evoke the var ious opera t ions to cause the solut ion is
left unspecified, then you have s o m e t h i n g which is effectively a
descript ive language; if you have exactly the same pieces of in-
format ion, sur rounded wi th promises t h a t you will do this and
then this , then you have an impera t ive language. The significant
point is t h a t it is not all or noth ing bu t there is a scale and while
it is probably p r e t t y simple to go all the way with imperat ives ,

the chances of being ttble to get all the way descript ive is about
zero, bu t there is a settle and we should recognize this scale.

Smilh: I t h ink tha t there is a confusion between implicit or
explicit on the one hand and imperat ive or declarat ive on the
other. These are two separate dis t inct ions and can occur in all
combinat ions. For illstance, an analog compute r handles ilnplicit
declaratives.

Young: I th ink it is fairly obvious t ha t you 've got to have the
abil i ty for sequencing imperat ives in any sort of pract ical lan-
guage. There are many , ma ny cases in which only a certain se-
quence of operat ions will produce the logically correct results .
So tha t we cannot have a purely declarat ive language, ~e mus t
have a general purpose one. A possible definition of a declarat ive
language is one in which I can make the s t a t e m e n t s (a), (b), (c)
and (d) and indicate whether I mean these to be t aken as a se-
quence or as a set; t h a t is, m u s t they be performed in a par t icu lar
order or do I merely mean t ha t so long as they are all performed,
they may be performed in any sequence at any t ime and whenever
convenient for efficiency.

Strachey: You can, in fact, impose an ordering on a language
which doesn ' t have the sequencing of commands by nes t ing the
funct ional applicat ions.

Landin: The point is t h a t when you compound funct ional ex-
pressions you are imposing a par t ia l ordering, and when you de-
compose this into commands you are unnecessar i ly giving a lot of
inforinat ion about sequencing.

Strachey: One inconvenient th ing about a purely impera t ive
language is t ha t you have to specify far too muc h sequencing. For
example, if you wish to do a mat r ix mul t ip l ica t ion, you have to do
n a mul t ip l icat ions . If you write an ordinary program to do this ,
you have to specify the exact sequence which they are all to be
done. Actual ly , it doesn ' t ma t t e r in what order you do the mul t i -
pl icat ions so long as you add t h e m togcther in the r ight groups.
T h u s the ordinary sort of imperat ive language imposes much too
much sequencing, which makes it very difficult to rearrange if you
want to make th ings more efficient.

Syntax-Directed Interpretation of Classes of Pictures
R. Naras imhan

Tata Institute of Fundamental Research, Bombay, India

A descriptive scheme for classes of pictures based on label-
ing techniques using parallel processing algorithms was pro-
posed by the author some years ago. Since then much work
has been done in applying this to bubble chamber pictures.
The parallel processing simulator, originally written for an
IBM 7094 system, has now been rewritten for a CDC 3600
system. This paper describes briefly the structure of syntactic
descriptive models by considering their specific application to
bubble chamber pictures. How the description generated in
this phase can be embedded in a larger "conversation" pro-
gram is explained by means of a certain specific example that
has been worked out. A partial generative grammar for
"handwritten" English letters is given, as are also a few com-
puter-generated outputs using this grammar and the parallel
processing simulator mentioned earlier.

Presen ted at an ACM Prog ramming Languages and Pragmat ics
Conference, San Dimas , California, Augus t , 1965.

1. I n t r o d u c t i o n

Recent active interest in the area of graphic data-based
"conversation programs ''1 has pointed up the urgent need
for sophisticated picture processing models in a convincing
manner. Kitsch [2] has very ably argued that "from the
point of view of computer information processing, the
important fact about natural language text and pictures
is that both have a syntactic structure which is capable of
being described to a machine and of being used for purposes
of interpreting the information within a data processing
system." "The problem of how to describe the syntactic
structure of text and pictures and how to use the syntactic
description in interpreting the text and pictures" has been
tackled in a certain specific way by Kirsch and his co-
workers. (For other references, see [9].)

1 See [9] for a good su rvey of work accomplished and in progress
in this area, as well as in the general field of "Eng l i sh quest ion-
answer" programs.

166 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 9 / N u m b e r 3 / M a r c h , 1966

