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" . . .  t oday . . .  1,700 special programming languages used to 'com- 
municate' in over 700 application areas."--Computer Software Issues, 
an American Mathematical Association Prospectus, July 1965. 

A family of unimplemented computing languages is de- 
scribed that is intended to span differences of application area 
by a unified framework. This framework dictates the rules 
ckout the uses of user-coined names, and the conventions 
about characterizing functional relationships. Within 'lhis frame- 
work 'lhe design of a specific language splits into two inde- 
pendent parts. One is 'lhe choice of written appearances of 
programs (or more generally, their physical representation). 
The o:her is the choice of the abstract entities (such as numbers, 
character-strings, lists of them, functional relations among 
them) that can be referred to in the language. 

The system is biased towards "expressions" rather than 
"statements." It includes a nonprocedural (purely functional) 
subsystem fhat aims to expand the class of users' needs that 
can be met by a single print-instruction, without sacrificing the 
important properties that make conventional right-hand-side 
expressions easy to construct and understand. 

1. I n t r o d u c t i o n  

Most programming languages are partly a way of 
expressing things in terms of other things and partly a 
basic set of given things. The Isw~M (If you See What  I 
Mean) system is a byproduct of an at tempt to disentangle 
these two aspects in some current languages. 

This at tempt has led the author to think that  many 
linguistic idiosyneracies are concerned with the former 
rather than the latter, whereas aptitude for a particular 
class of tasks is essentially determined by the latter rather 
than the former. The conclusion follows that many 
language characteristics are irrelevant to the alleged 
problem orientation. 

IswI~ is an attempt at a general purpose system for 
describing things in terms of other things, that  can be 
problem-oriented by appropriate choice of "primitives." 
So it is not a language so much as a family of languages, 
of which each member is the result of choosing a set of 
primitives. The possibilities concerning this set and what 
is needed to specify such a set are discussed below. 

Isw~M is not alone in being a family, even after mere 
syntactic variations have been discounted (see Section 4). 
In practice, this is true of most languages that achieve 
more than one implementation, and if the dialects are well 
disciplined, they might with luck be characterized as 
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1 Throe is no more use or mentiol~ of X in this paper--eognoseenti 
will nevertheless sense an undercurrent. A not inappropriate title 
would have been "Church without lambda," 

differences in the set of things provided by the library or 
operating system. Perhaps had ALGOL 60 been launched 
as a family instead of proclaimed as a language, it would 
have fielded some of the less relevant criticisms of its 
deficiencies. 

At first sight the facilities provided in IswI~,~ will appear 
comparatively meager. This appearance will be especially 
misleading to someone who has not appreciated how much 
of current manuals are devoted to the explanation of 
common (i.e., problem-orientation independent) logical 
structure rather than problem-oriented specialties. For 
example, in almost every language a user can coin names, 
obeying certain rules about the contexts in which the 
name is used and their relation to the textual segments 
that  introduce, define, declare, or otherwise constrain its 
use. These rules vary considerably from one language to 
another, and frequently even within a single language 
there may be different conventions for different classes of 
names, with near-analogies that come irritatingly close to 
being exact. (Note that restrictions on what names can 
be coined also vary, but these are trivial differences. When 
they have any logical significance it is likely to be perni- 
cious, by leading to puns such as ALaOL'S integer labels.) 

So rules about user-coined names is an area in which 
we might expect to see the history of computer applica- 
tions give ground to their logic. Another such area is in 
specifying functional relations. In fact these two areas are 
closely related since any use of a user-coined name im- 
plicitly involves a functional relation; e.g., compare 

x(x-ka) f (b+2c)  
w h e r e  x = b -4- 2c w h e r e  f(x) = x(x+a) 

ISW~M is thus part. programming language and part pro- 
gram for research. A possible first step in the research 
program is 1700 doctoral theses called " A  Correspondence 
between x and Church's X-notation. ''~ 

2 .  T h e  w h e r e - N o t a t i o n  

In  ordinary mathematical communication, these uses 
of ' w h e r e '  require no explanation. Nor do the following: 

f(b-l-2c) ---I- f (2b--c)  
w h e r e  f (x)  = x(x-t-a) 

f(bA--2c) -- f ( 2 b - c )  
w h e r e  f (x)  = x (x+a)  
a n d  b = u / ( u + l )  
a n d  c = v/(v-t-1) 
g ( f  w h e r e  f ( x )  = ax  2 -]- bx -I- c, 

u / (u-4-1) ,  
v / ( v + l ) )  

w h e r e  g ( f ,  p,  q) = f ( p - k 2 q ,  2 p - - q )  
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A phrase of the form 'where  definition' will be called a 
"where-clause." An expression of the form 'expression 
where-clause' is a "where-expression." Its two principal 
components are called, respectively, its "main clause" 
and its "supporting definition." To put  'where '  into a 
programming language the following questions need 
answers. 

Linguistic Structure. What structures of expression 
can appropriately be qualified by a where-clause, e.g., 
conditional expressions, operand-listings, statements, 
declarations, where-expressions? 

Likewise, what structures of expression can appro- 
priately be written as the right-hand side (rhs) of a 
supporting definition? What  contexts are appropriate for a 
where-expression, e.g., as an arm of a conditional ex- 
pression, an operator, the main-clause of a where-ex- 
pression, the left-hand side (lhs) of a supporting definition, 
the rhs of a supporting definition? 

Syntax. Having answered the above questions, what 
are the rules for writing the acceptable configurations 
unambiguously? E.g., where are brackets optional or 
obligatory? or other punctuation? or line breaks? or in- 
dentation? Note the separation of decisions about struc- 
ture from decisions about syntax. (This is not a denial 
that  language designers might iterate, like hardware 
designers who distinguish levels of hardware design.) 

Semantic Constraints on Linguistic Structure. In the 
above examples each main clause was a numerical ex- 
pression; i.e., given appropriate meanings for the various 
identifiers in it, it denoted a number. What  other kinds of 
meaning are appropriate for a mainclause, e.g., arrays, 
functions, structure descriptions, print-formats? 

Likewise what kinds of meaning are appropriate for 
rhs's of supporting definitions? Notice there is not a third 
question analogous to the third question above under 
linguistic structure. This is because a where-expression 
must mean the same kind of thing as its main clause and 
hence raises no new question concerning what contexts 
are meaningful. Notice also that  the questions about 
meaning are almost entirely independent of those about 
structure. They depend on classifying expressions in two 
ways that  run across each other. 

Outcome. What is the outcome of the more recondite 
structural configurations among those deemed admissible, 
e.g. mixed nests of where-expressions, function definitions, 
conditional expressions, etc.? 

Experimental programming has led the author to think 
that  there is no configuration, however unpromising it 
might seem when judged cold, that  will not turn up quite 
naturally. Furthermore, some configurations of 'where '  
that  might first appear to reflect somewhat pedantic dis- 
tinctions, in fact provide close matches for current lan- 
guage features such as n a m e / v a l u e  and o w n  (see [2, 3]). 

All these questions are not answered in this paper. The 
techniques for answering them are outlined in Section 4. 

One other issue arises when 'where '  is added to a 
programming language--types and specifications. A 

method of expressing these functionally is explained in 
[2]. I t  amounts to using named transfer-functions instead 
of class names like in teger ,  i.e., writing 

where n = round(n) 

instead of the specification 

integer n 

Thus the use of functional notation does not jeopardize 
the determination of type from textual evidence. 

3. P h y s i c a l  I S W I M  a n d  :Logical I S W I M  

Like ALGOL 60, ISWIM has no prescribed physical 
appearance. ALGOL C0'S designers sought to avoid commit- 
ment to any particular sets of characters or type faces. 
Accordingly they distinguish between "publication hm- 
guage," "reference language" and "hardware languages." 
Of these the reference language was the standard and was 
used in the report itself whenever pieces of ALGOL 60 
occurred. Publication and hardware languages are trans- 
literations of the reference language, varying according to 
the individual taste, needs and physical constraints on 
available type faces and characters. 

Such variations are different physical representations 
of a single abstraction, whose most faithful physical 
representation is the reference language. In describing 
IswI~ we distinguish an abstract language called "logical 
ISWIM," whose texts are made up of "textual  elements," 
characterized without commitment to a particular physical 
representation. There is a physical representation suitable 
for the medium of this report, and used for presenting 
each piece of IswI~1 that  occurs in this report. So this 
physical representation corresponds to "reference ALGOL 
60," and is called "reference ISWIM," or the "IswI~i 
reference representation," or the "IswI~,r reference hm- 
guage." 

To avoid imprecision one should never speak just of 
"ISWIM," but  always of "logical IswxM" or of "such- 
and-such physical ISWlM." However, in loose speech, 
where the precise intention is clear or unimportant,  we 
refer to "ISWlM" without quMifieation. We aim at a more 
formal relation between physical and logical languages 
than was the case in the ALGOL C0. This is necessary since 
we wish to systematize and mechanize the use of different 
physical representations. 

4. F o u r  L e v e l s  o f  A b s t r a c t i o n  

The "physical~logical" terminology is often used to 
distinguish features that  are a fortuitous consequence of 
physical conditions from features that  are in some sense 
more essential. This idea is carried further by making a 
similar distinction among the "more essential" features. 
In fact ISWlM is presented here as a four-level concept 
comprising the following: 

(1) physical IswlM'S, of which one is the reference 
language and others are various publication and hardware 
languages (not described here). 
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(2) logical ISWlM, which is uncommitted as to char- 
acter sets and type faces, but  committed as to the sequence 
of textual elements, and the grammatical rules for group- 
ing them, e.g., by parentheses, indentation and precedence 
relations. 

(3) abstract Iswls,,, which is uncommitted as to the 
grammatical rules of sequence and grouping, but  com- 
mitted as to the grammatical categories and their nesting 
structure. Thus abstract Iswis,~ is a "tree language" of 
which logical IswlM is one linearization. 

(4) applicative expressions (AEs), which constitute 
another tree language, structurally more austere than 
abstract ISWlM, and providing certain basic grammatical 
categories in terms of which all of Isw1~'s more numerous 
categories can be expressed. 

The set of acceptable texts of :t physical ISWlM is 
specified by the relations between 1 and 2, and between 
2 and 3. The outcome of each text is specified by these 
relations, together with a "frame of reference," i.e., a rule 
that  associates a meaning with each of a chosen set of 
identifiers. 

These are the things that  vary from one member of our 
language family to the next. The specification of the family 
is completed by the relation between abstract IswI~ and 
AEs, together with an abstract machine that  interpret 
AEs. These elements are the same for all members of the 
family and are not discussed in this paper (see [1, 2, 4]). 

The relationship between physical ISWlM and logical 
ISWIM is fixed by saying what physical texts represent 
each logical element, and also what layout is permitted in 
stringing them together. The relationship between logical 
I s w ~  and abstract IswlM is fixed by a formal grammar 
not unlike the one in the ALGOL 60 report, together with a 
statement connecting the phrase categories with the 
abstract grammatical categories. 

These two relations cover what is usually called the 
"syntax"  or "grammar"  of a language. In this paper 
syntax is not discussed beyond a few general remarks and 
a few examples whose meaning should be obvious. 

The relationship between abstract Iswls( and AEs is 
fixed by giving the form of AE equivalent to each abstract 
IswiM grammatical category. I t  happens that  these latter 
include a subset that  exactly matches AEs. Hence this 
link in our chain of reh~tions is roughly a mapping of 
ISWIM into an essential "kernel" of IswIM, of which all the 
rest is mere decoration. 

5. A b s t r a c t  I S W I M  

The texts of abstract ISWlM are composite information 
structures called amessage's. The following structure 
definition defines ~ the class amessage in terms of a class 
called identifier. I t  also defines several functions for 
manipulating amessage's. These comprise the predicates 

2 Wri t ing a s t ruc tu re  definition i~volves coining names  for the 
var ious  a l te rna t ive  fo rmats  of amessage's and their  components .  
The only obscure coinage is " b e e t , "  which abbrev ia tes  " b e t a -  
redex ,"  i.e., " an  express ion amenable  to rule (fl)"; see Section 7'. 

demand, simple, infixed, etc; also the selectors body, rator, 
leflarm, nee, etc; also (taking for granted certain un- 
formalized conventions concerning structure definitions) 
the constructors, consdemand, conscombination (elsewhere 
~bbreviated to combine), consstandardade], etc. Examples 
of reference IswI~ are given alongside, against the right 
margin. 

An amessage is 
e i ther  a demand, and has [ P r i n t  a+2b 

a body which is an aexprcss ion,  
or e l se  a definition, [Def x=a+2b 

w h e r e  r e c  
an aexpress ion (aexp) is 

e i ther  simple, and has [CAth231" 
a body which is an identifier 

or a combination, in which  case it has [sin(a+2b) 
a rator, which is an aexp, or 
and  a rand, which is an aexp, a + 2b 

or conditional, in which case it is 
e i ther  two-armed, and has [p--*a+2b; 2a--b 

a condition, which is an aexp, 
and  a teftarm, which is an  aexp, 
and a rightarm, which is an  aexp, 

or one-armed, and has [q-+2a--b 
a condition, which is an  aexp, 
and an  arm, which is an aexp, 

or a listing, and has  [a+b, c+d, e+f  
a body which is an aexp-l ist ,  

or beet, and has [ x (x+ l )  w h e r e  x = a + 2b 
a mainclause, which is an  aexp, or 
and a support l e t  x = a + 2b; x ( x + l )  

which  is an  adef, 
a n d  
an adefinit ion (adef) is 

e i ther  standard, and has [x=a+2b 
a definee (nee), which is an abe ,  
and a definiens (niens), which is an  aexp, 

or functionform, arid has [f(x) = z ( x + l )  
a lefthandside (lhs), 

which is an  abe- l i s t  of length  >2 ,  
and a righthandside (rhs), which is an aexp 

or programpoint, and has [ pp f (x )  = x ( x + l )  
a body which is an adef, 

or  circular, and  has  [tee f ( n ) =  ( n = 0 ) - + l ;  n f ( n - 1 )  
a body which is an  adef, 

or simultaneous, and has [x=a+2b a n d  y=2a--b 
a body, which is an adef-l ist ,  

or beet, and has [f(y) = z ( x + y )  
a mainclause, w h e r e  x=a+2b 
which is an  adef, 
and a support, which is an adef. 

w h e r e  an  abe  is 
e i ther  simple, and  has  

body, which is an identifier, 
or e l se ,  is an abv-lislo. [x, (y, z), w 

A program-point definition introduces a deviant kind 
of function. Applying such a function precipitates pre- 
mature termination of the where-expression containing 
it, and causes its result to be delivered as the value of the 
entire where-expression. 

Program-points are Iswli 'S,  nearest thing to jumping. 
Assignment is covered as a particular case of an operator. 
For both of these the precise specification is in terms of the 
underlying abstract machine (see [2]). 
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6. R e l a t i o n s h i p  to  LISP 

IswI~r can be looked on as an at tempt  to deliver LisP 
fronI its eponymous commitment to lists, its reputation 
for hand-to-mouth storage allocation, the hardware 
dependent flavor of its pedagogy, its heavy bracketing, 
and its compromises with tradition. These five points are 
now dealt with in turn: 

(1) Iswi~ has no particular problem orientation. 
Experiments so far have been mainly in numerical work 
and language processing with brief excursions into "com- 
mercial" programming and elsewhere. No bias towards or 
away from a particular field of application has emerged. 

(2) Outside a certain subset (corresponding closely to 
ALGOL ~0 without dynamic own arrays), IswIM needs 
garbage collection. An experimental prototype imple- 
mentation followed common ALGOL 60 practice. I t  used 
dynamic storage allocation with two sources, one LIFO 
and the other garbage collected, with the intention that  
the LIFO source should take as big a share as possible. 

However, as with ALGOL 60, there is a latent potential 
for prealloeating storage in certain favorable and com- 
monly useful situations. Compared with LISP the chief 
amelioration of storage allocation comes out of a mere 
syntactic difference, namely, the use of where  (ol 'let' 
which is exactly equal in power and program structure). 
This provides a block-structure not dissimilar in textual 
appearance from ALGOL 60'S, though it slips off the pen 
more easily, and is in many respects more generM. 

(3) LisP has some dark corners, especially outside 
"pure LISP," in which both teachers and programmers 
resort to talking about addresses and to drawing storage 
diagrams. The abstract machine underlying IswI~,r is 
aimed at illuminating these corners with a mininmm of 
hardware dependence. 

(4) The textual appearance of IswI~l is not like Lisp's 
S-expressions. I t  is nearer to LISP'S M-expressions (which 
constitute an informal language used as an intermediate 
result in hand-preparing LISP programs). IswlAi has the 
following additional features: 

(a) "Auxiliary" definitions, indicated by 'let' or 'where ' ,  
with two decorations: ' and '  for simultaneous definitions, 
and 'rec' for self-referential definitions (not to be mistaken 
for a warning about recursive activation, which can of 
course also arise from self-application, and without self- 
reference). 

(b) Infixed operators, incorporated systematically. A 
logical ISWIM can be defined in terms of four unspecified 
parameters: three subsets of the class of identifiers, for use 
as prefixed, infixed and postfixed operators; and a prec- 
edence relation defined over the union of these subsets. 

(c) Indentation, used to indicate program structure. A 
physical IswiM can be defined in terms of an unspecified 
parameter: a subset of phrase categories, instances of 
which are restricted in layout by the following rule called 
" the offside rule." The southeast quadrant that  just con- 
tains the phrase's first symbol nmst contain the entire 
phrase, except possibly for bracketed subsegments. This 

rule has three important  features. I t  is based on vertical 
alignment, not character width, and hence is equally 
appropriate in handwritten, typeset or typed texts. Its 
use is not obligatory, and use of it can be mixed freely with 
more conventionM alternatives like punctuation. Also, it 
is incorporated in IswI~t in a systematic way that  admits 
of alternatives without changing other features of Isw~.r 
and that  can be applied to other languages. 

(5) The most important  contribution of LisP was not 
in listprocessing or storage allocation or in notation, but  
in the logic~d properties lying behind the notation, t tere  
Iswi?i makes little improvement because, except for a few 
minor details, Lisp left none to make. There are two 
equivalent ways of stating these properties. 

(a) LIsP simplified the equivalence relations that  
determine the extent to which pieces of program can be 
interchanged without affecting the outcome. 

(b) LISP brought the class of entities that  are denoted 
by expressions a programmer can write nearer to those 
that  arise in models of physical systems and in mathe- 
matieM and logical systems. 

These remarks are expanded in Sections 7 and 8. 

7. T h e  Character i s t i c  Equiva lences  o f  ISWIM 

For most programming languages there are certain 
statements of the kind, "There  is a systematic equivalence 
between pieces of program like this, and pieces like tha t , "  
that  nearly hold but  not quite. For instance in ALGOL 60 
there is a nearly true such statement concerning procedure 
calls and blocks. 

At first sight it might appear pedantic to quibble about 
such unt idiness--"What 's  the point of having two different 
ways of doing the same thing anyway? Isn' t  it better  to 
have two facilities than just one?" The author believes 
tha t  expressive power should be by design rather than 
accident, and that  there is great point in equivalences that  
hold without exception. I t  is a platitude that  any given 
outcome can be achieved by a wide variety of programs. 
The practicability of all kinds of program-processing 
(optimizing, checking satisfaction of given conditions, 
constructing a program satisfying given conditions) 
depends on there being elegant equivalence rules. For 
IswlM there are four groups 3, concerning: 

(1) the extent to which a subexpression can be replaced 
by an equivalent subexpression without disturbing the 
equivalence class of the whole expression. Without  this 
group the other rules would be applicable only to complete 
expressions, not to subexpressions. 

(2) user-coined names, i.e., in definitions and, in particu- 
lar, function definitions. 

(3) built-in entities implicit in special forms of ex- 
pression. The only iiistanees of this in Iswllv[ are conditional 
expressions, listings and self-referential definitions. 

(4) named entities added in any specific problem- 
orientation of IswIM. 

3 To facilitate subsequent discussion each rule is preceded 
by a name, e.g., "(~t)", "(,)", etc. These are chosen to conform 
with precedents in Curry's Combinatory Logic. 
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G R O U P  1 

(tz) I f  L -= L '  t h e n  L (M) -= L '  (M) 
@) I f  M ~ M '  t h e n  L (M) ~ L  (M' )  
@') I f  M ~ M '  t h e n  ( L , . . . , M ,  . . - , N ) ~ ( L ,  . . . , M ' ,  . . . N )  
(v") I f  L ~ L '  t h e n  (L--~M; N)  ~ (L'--+M, N)  
( v ' )  I f  M ~ M '  t h e n  (L--aM; N)  ~ (L-aM';  N)  
(vi~) I f  N -~ N '  t h e n  (L--~M; N)  ~ (L--~M; N ' )  
(v ~) I f  M -= M ~ t h e n  (L w h e r e  x = M )  ~- ( L w h e r e x = M  t) 

The significant omissions here are the main-clause in the 
last case above, the rhs of a function definition " f ( x )  = M "  
and of a circular definition " r e e  :c = M".  

GRoue 2 

( l e t )  l e t x  = M ;  L --= L w h e r e x  = M 

(I') f ( x )  = L ~ f = (g w h e r e  g ( x ) = L )  
f ( a , b , c ) ( x , y )  = L ~ f ( a , b , c ) =  ( g w h e r e g ( x , y ) = L )  
a n d  so  on  fo r  e a c h  s h a p e  of l e f t - h a n d  s i d e  

( I )  ( f  w h e r e  f ( x ) = L )  M ~ L w h e r e x  = M 
(~') ( x = L )  w h e r e  y = M ~ x ~ (L w h e r e  y = M )  
(D ' )  x = L a n d  y = M a n d  ~- . . -  a n d  z = N 

( z , y ,  " " , z )  = ( L , M ,  - " , N )  

Rules (I'), (~'), (D'), together with (Y) below, enable 
any definition to be "standardized," i.e., expressed in a 
lhs / rhs  form, in which the lhs is precisely the definee. Thus 
a nonstandard definition can be transformed so as to be 
amenable to rules (~) and (~) (see Group 2'). 

G R O U P  2 f 

(fl) L w h e r e  x = M 

"Subst ~i C" where 

M 
S u b s t  L 

X 

means roughly the expression resulting 

from substituting A for B throughout C. Here 'x '  may be 
any list-structure of distinct identifiers, provided that  
'M' has structure that  fits it. 

This rule is the most important, but  it has only limited 
validity, namely, within the "purely functional" subset of 
ISWlM that  results from not using the program-point 
feature or assignment. 

Its importance lies in a variant of a famous theorem of 
mathematical logic, the Church-Rosser theorem. This 
concerns the possibility of eliminating 'where '  from an 
expression by repeatedly applying the rules stated above, 
including crucially (~). The theorem ensures that  if there 
are several ways of doing this they all reach the same 
result. 

The author thinks that  the fruitful development to 
encompass all ISWlM will depend on establishing "safe" 
areas of an ISWlA~ expression, in which imperative features 
can be disregarded. The usefulness of this development 
will depend on how successfully ISWlM'S nonimperative 
features supersede conventional programming. 

GROUP 3 

(--~) t r u e  --~ M ;  N ~ M 
( - - / )  f a l s e  -~  M; N ~ N 

(---~") P ~ M ~ P ~ M;  undefined 

(undefined) undefined ~ self apply (selfapply) 
w h e r e  self apply (f) = f ( f )  

(Y)  r e c x  = L ~ x = ( L w h e r e  r e c x  = L )  
(D")  (x, - . . , z )  = M ~- (x, ' " , z )  = 

nul l  (tkw) 
hw, . . . ,  h(t~-lw) 

w h e r e  w = M 
(for  k > 2) 

(x, (u, v), z) = M =- (x, (u, v), z) = 
null  (taw) 

h(w), 
(null (t2w ') --~ 

h(w'), h(t(w')) 
w h e r e  w '  = h( t (w)) )  
h(t2w) 

w h e r e  w = M 

arid so on for each shape of definee 
(null) nul l  (nullisl) -= t r u e  
(null I) nul l  (La, . . ' ,  Lk) ~ f a l s e  

w h e r e  (x, " ' ,  z) 
= L b  " " ,  Lk (k > 2) 

(h) h (L  b " " ,  Lk) ~ x 
w h e r e  (x, - . . ,  z) 

= Lj ,  . - . ,  Lit (k > 2) 
(t) t(L1, . . . ,  L~) ~ y, . . . ,  z 

w h e r e  ( x , y ,  - . - , z )  
= L1, " ' ,  Lk (k _ 3) 

(t') t(t(Ll, L2)) =-- nullist 
w h e r e  (x, y) = L1, L2 

The rules about listings may appear willfully indirect. 
The more natural transformations are those effected by 
applying, for example, (D I') then (~). But  these would 
have suffered the same limited validity as (~). In their 
above slightly cautious formulation the validity of (DI'), 
etc. is unrestricted, and the more powerful equivalences 
that  hold for nonimperative expressions arise entirely 
from (/3). 

GRouP 4 
A problem-orientation of IswI~r can be characterized 

by additional axioms. In the simplest case such an axiom 
is an IswiM definition. The resulting modification is called 
a "definitional extension" of the original system. 

In more elaborate cases axioms may mutually constrain 
a group of identifiers; e.g. the following rule for equality 
among integers: 

(= )  Suppose L and M are ISWIM written integers 
(i.e., strings of digits); then either one or the other of the 
following holds: 

L = M ~ - t r u e  
L = M ~ f a l s e  

according as L and 114 differ at most in lefthand zeros, or 
not. 

Another example, presented even less formally, is the 
structure definition for abstract ISWlM. 

Group 1 above makes no provision for substitutions 
within expressions that are qualified by a supporting 
definition or are used to define a function. However, such 
a substitution is legitimized as long as it does not involve 
the definees or variables, by encasing it within applications 
of rule (/3) and its inverse (with any other rules that  might 
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be needed to produce something that  is amenable to (~), 
i.e., a beet with a standard definition). 

EquivMence rules can be used to prove things about the 
system. For example, the reader will readily verify that  
the equivalence of 

f (6) where reef(n) = (n=0) --~ 1; nf (n--l) 

and 

6 (f(5) where r e e f  (n) = (n=0) --~ 1; nf (n--l)) 

can be established with the following steps: 

(I'), (Y), (f~), (Y), (f3), (I), (=), (i3) backwards, (Y) backwards, 
(I') backwards. 

in this sequence we omit the auxiliary applications of (~), 
etc. that  are needed at Mmost every step to legitimize the 
substitution. 

8. A p p l i c a t i o n  a n d  D e n o t a t i o n  

The commonplace expressions of arithmetic and algebra 
have a certain simplicity that  most communications to 
computers lack. In particular, (a) each expression has a 
nesting subexpression structure, (b) each subexpression 
denotes something (usually a number, t ruth vMue or 
numerical function), (c) the thing an expression denotes, 
i.e., its "value", depends only on the values of its sub- 
expressions, not on other properties of them. 

I t  is these properties, and crucially (c), that  explains 
why such expressions are easier to construct and under- 
stand. Thus it is (c) that  lies behind the evolutionary 
trend towards "bigger righthand sides" in place of strings 
of small, explicitly sequenced assignments and jumps. 
When faced with a new notation that  borrows the func- 
tional appearance of everyday algebra, it is (c) that  gives 
us a test for whether the notation is genuinely functional 
or merely masquerading. 

The important feature of ISWIM's equivalence rules is 
chat they guarantee the same desirable properties to 
ISWlM'S nonimperative subset. We may equate "abstract  
object" with "equivalence class," and equate "denotes" 
with "is a member of." Then the properties (g) and (v) 
ensures anologies of (c) above. They state that  the value 
of an operator/operand combination depends only on the 
values of its component subexpressions, not on any other 
aspects of them. 

Thus conditions (g) and (v) are equivalent to the 
existence of a dyadic operation among the abstract ob- 
jects; we call this operation "application." 

The terminology of "abstract  objects," "denoting" and 
"application" is frequently more convenient than that  of 
equivalence relations. For example, it suggests another 
way of characterizing each problem-orientation of ISWlM. 
We can think of a set of abstract objects with a partially 
defined dyadic "application" operation and a monadic 
"designation" operation that associates a "primit ive" 
abstract object with each of some chosen set of names, 
called the "constants" of the special system. 

Consider for example a programming language that  

contains expressions such as 
'wine' 

Anyone with a generous ontology will admit that  
this 6-character expression denotes the 4-character-string 

wine 
For such a person its use in the language is characterized 
by 
• the objects that  it is applicable to, and the object it 

produces in each case (e.g., strings might be used like 
vectors, whose application to an integer produces an 
item of the string). 
• The objects that  it is amenable to, and the object it 
yields in each case (e.g., prefixing, appending, selection, 
etc.). 

The sceptic need not feel left out. He just has to talk, a 
bit more clumsily, about 

'wine' 

being in the equivalence class that  also contains 

concatenate ('wi', 'he') 

and 

append (fiflhletterof (romanalphabet), 
(threeletterstemof ('winter')) 

Then he goes on to speak of the equivalence class of 
expressions that  can serve as operand or operator to any 
of the above, and the equivalence class of the resulting 
operator/operand combination. 

9.  N o t e  o n  T e r m i n o l o g y  

ISWIM brings into sharp relief some of the distinctions 
that  the author thinks are intended by such adjectives as 
procedural, nonproeedural, algorithmic, heuristic, impera- 
tive, declarative, functional, descriptive. Here is a sug- 
gested classification, and one new word. 

First, none of these distinctions are concerned with the 
use of pidgin English rather than pidgin algebra. Any 
pidgin algebra can be dressed up as pidgin English to 
please the generals. Conversely, it is a special ease of the 
thesis underlying ISWlM that  any pidgin English that  has 
so far been implemented can be stripped to pidgin algebra. 
There is nevertheless an important  possibility of having 
languages that  are heuristic on account of their "applica- 
tive structure" being heuristic. 

An important distinction is the one between indicating 
what behavior, step-by-step, you want the machine to 
perform, and merely indicating what outcome you want. 
Pu t  that  way, the distinction will not stand up to close 
investigation. I suggest that  the conditions (a-e) in Section 
8 are a necessary part  of "merely indicating what outcome 
you want."  The word "denotat ive" seems more appro- 
priate than nonproeedural, declarative or functional. The 
antithesis of denotative is " impera t ive . "  Effectively 
"denotat ive" means "can be mapped into ISW~M without 
using jumping or assignment," given appropriate primi- 
tives. 
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I t  follows that  functional programming has little to do 
with functional notation. I t  is a trivial and pointless task 
to rearrange some piece of symbolism into prefixed opera- 
tors and heavy bracketing. I t  is an intellectually demand- 
ing activity to characterize some physical or logical 
system as a set of entities and functional relations among 
them. However, it may  be less demanding and more 
revealing than characterizing the system by a conventional 
program, and it may serve the same purpose. Having 
formulated the model, a specific desired feature of the 
system can be systematically expressed in functional 
notation. Eu t  other notations may  be better  human 
engineering. So the role of functional notation is a standard 
by which to describe others, and a s tandby when they fail. 

The phrase "describe in terms of" has been used above 
with reference to algorithmic modes of expression, i.e., 
interchangeably with "express in terms of." In  this sense 
" 3  + 4" is a description of the number 7 in terms of the 
numbers 3 and 4. This conflicts with current use of the 
phrase "descriptive languages," which appears to follow 
the logicians. For example, a language is descriptive in 
which the machine is told 

P r i n t  t h e  x s u c h  t h a t  x 2 - -  x - - 6  = 0 /~ x > 0 

Such a classification of languages (as opposed to merely 
expressions within languages) is useless, and even harmful 
by  encouraging stupidly restrictive language design, if it 
excludes the following: 

P r i n t  square ( t h e  x s u c h  t h a t  x ~ --  x - -  6 = 0 A x > 0) 
P r i n t  u ( u + l )  

w h e r e u  = t h e x s u c h t h ~ t x  2 -  x - -  6 = 0 A x  _> 0. 
P r i n t  f (1 ,  - -1 ,  6) 

where f (a ,  b, c) = the x such that ax ~ ÷ bx + c = 0 A x >_0 

On the other hand it might reasonably exclude 

P r i n t  solepositivezeroof (1, - -1 ,  - -6 )  

where so lepos i t i vezeroo]  happens to be a library function. 
The author therefore suggests that  there is a useful 

distinction that  can be made here concerning l a n g u a g e s .  

Consider the function i, which operates on a class (or 
property) having a sole member  (or instance), and trans- 
forms it into its sole member.  We are interested in whether 
or not a language permits reference to i, with more or 
less restricted domain. 

For example the above programs become: 

P r i n t  i(p w h e r e  p(x)=x2--x--6 A x > O) 
P r i n t  square (i(p w h e r e  p(x)=x2--x--6 A x > 0)) 
P r i n t  u (u--}- 1) 

w h e r e  u = i (p w h e r e  p(x)=x~--x--6 A x > O) 
P r i n t  f (1 ,  - -1 ,  - -6 )  

w h e r e  f (a, b, c) = i(p w h e r e  p(x)=ax2-bbx+c A x > O) 

More precisely, the distinction hinges on whether, when 
"applicative structure" is imputed to the language, it can 
be done without resorting to i, or to primitives in terms of 
which i can be defined. 

This discussion of i reveals the possibility that  primitives 
might be sensationally nonalgorithmie. So the algorithmic/ 
heuristic distinction cuts across the denotat ive/ imperat ive 
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(i.e., nonproeedural/procedural) distinction. On the other 
hand if limited forms of i can be algorithmized, they still 
deserve the term "descriptive." So this factor is also 
independent. 

10. Eliminating Explielt Sequenelng 

Thm'e is a game sometimes played with ALGOL 60 
programs--rewri t ing them so as to avoid using labels and 
go to  statements. I t  is part  of a more embracing g a m e - -  
reducing the extent to which the program conveys its 
information by explicit sequencing. Roughly speaking this 
amounts to using fewer and larger statements. The game's  
significance lies in tha t  it frequently produces a more 
" t ransparent"  program--eas ier  to understand, debug, 
modify and incorporate into a larger program. 

The author does not argue the ease against explicit 
sequencing here. Instead he takes as point of departure the 
observation that  the user of any programming language is 
frequently presented with a choice between using explicit 
sequencing or some alternative feature of the language. 
Furthermore languages vary  greatly in the alternatives 
they offer. For example, our game is greatly facilitated by  
ALGOL 60'S conditional s tatements  and conditional ex- 
pressions. So the question considered here is: Wha t  other 
such features are there? This question is considered be- 
cause, not surprisingly, it turns out tha t  an emphasis on 
describing things in terms of other things leads to the 
same kind of requirements as an emphasis against explicit 
sequencing. 

Though A~GO~ g0 is comparat ively favorable to this 
activity, it shares with most other current languages 
certain deficiencies that  severely limit how far the game 
can go. The author 's  experiments suggest that  two of the 
most needed features are: 
• Treat  a listing of expressions as a special ease of the 
class of expressions, especially in the arms of a conditional 
expression, and in defining a function. 
• Treat, argument  lists as a special ease of lists. So a 
triadic function can have its arguments supplied by a 
conditional whose arms are 3-listings, or by application of 
a function that  produces a 3-list. A similar situation arises 
when a 3-listing occurs as a definee. (Even LIsP trips up 
here, over lists of length one.) 

To clarify their practical use, here are some of the 
steps by which many  a conventional ALGOL e0 or PL/1  
program can be transformed into an IswI~,r program tha t  
exploits IswIsl 's  nonimperative features. 

(1) Rewrite the program so as to use two-dimensional 
layout  and arrows to illuminate the explicit sequencing, 
i.e., as a flowchart with algebraic steps. Rearrange this to 
achieve the least confusing network of arrows. 

(2) Apply the following changes repeatedly wherever 
they are applicable: 

(a) Replace a string of independent assignments by one 
multiple assignment. 

(b) Replace an assignment having purely local signifi- 
cance by  a where-clause. 

(e) Replace procedures by type-procedures (possibly 
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with multiple type), and procedure statements by assign- 
ment statements. 

(d) Replace conditional jumps by conditional state- 
ments having bigger arms. 

(e) Replace a branch whose arms have assignees in 
common by an assignment with conditional right-hand 
side. 

(f) Replace a join by two calls for a procedure. 
I t  should be observed that  translating into ISWlM does 

not force such rearrangements; it merely facilitates them. 
One interesting observation is that  the most recalcitrant 
uses of explicit sequencing appear to be associated with 
success/failure situations and the action needed on failure. 

Section 2 discussed adding 'where '  to a conventional 
programming language. Theory and experiment both 
support the opposite approach, that  taken in Llsv, of 
adding imperative features to a basically nonimperative 
language. One big advantage is that  the resulting language 
will have a nonimperative subset. 

The special claim of ISWlM is that  it grafts procedural 
notions onto a purely functional base without disturbing 
many of the desirable properties. The underlying ideas 
have been presented in [2]. This paper can do no more than 
begin the task of explaining their practical significance. 

11. C o n c l u s i o n  

The languages people use to communicate with com- 
puters differ in their intended aptitudes, towards either a 
particular application area, or a particular phase of com- 
puter use (high level programming, program assembly, 
job scheduling, etc). They also differ in physical appear- 
ance, and more important, in logical structure. The ques- 
tion arises, do the idiosyncracies reflect basic logical 
properties of the situations that  are being catered for? 
Or are they accidents of history and personal background 
that  may be obscuring fruitful developments? This 
question is clearly important  if we are trying to predict or 
imq_uence language evolution. 

To answer it we must think in terms, not of languages, 
but  of families of languages. Tha t  is to say we must 
systematize their design so that  a new language is a point 
chosen from a well-mapped space, rather than a laboriously 
devised construction. 

To this end the above paper has marshalled three 
techniques of language design: abstract syntax, axiomatiza- 
tion, and an underlying abstract machine. 

I t  is assumed that  future calls on language development 
cannot be forstalled without gener~lizing the alternatives 
to explicit sequencing. The innovations of "program- 
points" and the "off-side rule" are directed at two of the 
problems (respectively in the areas of semantics and 
syntax) that  must consequently be faced. 
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D I S C U S S I O N  

Naur: Ilegarding indentat ion,  in many ways I am in sympathy 
with this, but I believe tha t  if it came about tha t  this notat ion 
were used for very wide communication and also publication,  you 
would regret it because of the kind of rearrangement  of manu- 
scripts done in printing,  for example. You very frequently run 
into the problem tha t  you have a wide wri t ten line and then 
suddenly you go to the Communications of the ACM and radically, 
perhaps, you have to compress it. The printer  will do this in any 
way he likes; he is used to having great freedom here and he will 
foui up your notat ion.  

Landin: I have great  experience with this. (Laughter) I th ink 
I am probably  the only person who has run through three versions 
of the galley proofs for the Communications of the ACM. However, 
I think tha t  next time I could do better ,  and I th ink it is worth 
looking into. At any rate, the principle tha t  [ have described here 
is a good deal bet ter  than some tha t  one might think of ; for example 
it does riot depend on details of character  width,  character  by 
charac te r - - i t  is just  as good handwri t ten  as it is printed.  Secondly, 
limiting the breadth of the page, I agree with you, needs more 
consideration. By the time I got through with the part icular  
example I am talking about,  by gett ing it pr inted,  I had devised 
what  I thought  was a fairly reasonable method of communicating 
the principles tha t  have been used in indentat ion.  

Floyd: Another  objection tha t  7[ think is quite serious to 
indentat ion is tha t  while it works on the micro-scale-- that  is, one 
page is all r igh t - -when  dealing with an extensive program, turning 
from one page to the next there is no obvious way of indicating 
how far indentat ion stretches because there is no pr int ing at  all to 
indicate how far you have indented. I would like you to keep tha t  
in mind. 

Landin: Yes, I agree. In practice I deal with this by first making 
the page breaks in sensible places. 

Floyd: That ' s  all right as long as you don ' t  have an indented 
region which is simply several pages long. 

Landin: Well in tha t  ease the way I did it was to cut down the 
number of carryover levels to about four or five from one page to 
another.  You can at  least make it simpler when you are hand- 
writing by put t ing  some kind of symbols at the bo t tom of the page 
and top of the continuation.  

Floyd: Even if you regard your indentat ion spaces as characters 
there still doesn ' t  seem to be any way- - in  fact, I am fairly sure 
there  is no way- -of  representing the indentat ion conventions 
within a phrase-structure grammar. 

Landin: Yes, but  some indentat ion conventions can be kept  
within phrase s tructure grammars by introducing two terminal 
symbols that  are grammatically like parentheses,  but  are textually 
like typewri ter  keys for settling and clearing tabulat ion positions. 
More precisely, the textual representat ion of the second of these 
symbols can be explained as the following sequence of typewri ter  
actions: 1) line-feed; 2) back-space as far as the r ight-most  tab 
position tha t  is still currently active; 3) clear tab position; and 
4) do step 2 again. 

While this fits some indentat ion conventions, the olle I propose 
is too permissive to be included. For my language I have wri t ten 
a formal grammar tha t  is not phrase structure and includes one 
departure tha t  meets this problem. 
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Leavenworth: I should like to raise the question of eliminating 
explicit jumps, I mean of using recursion as against interation.  

Landin: I t  seems to me tha t  there are ra ther  a small number of 
functions which you could use if you were writing a Lisp program 
in the places where ordinary programs would use i terations,  and 
tha t  if you were to use these the processor might do as well as if 
you had wri t ten a loop. For example, i t e r a t e  (m, f, x) might  
apply f, m times to x with the result f'~(x). This is the simplest 
kind of loop I know and the function i t e r a t e  provides a purely 
functional notation for this rather  simple kind of loop. If a lot of 
familiar types of loop can be represented by a few functions which 
could be defined recursively, I think it is sensible to take these as 
primitive. Another such function is whi le  (p, f,  x) which goes on 
applying f to x until the predicate p becomes false. 

Strachey: I must just  interpolate here something which is a bit  
of advertising l suppose. Nearly all the linguistic features, such as 
w h e r e  and whi le  and a n d  and r ecu r s ive ,  tha t  Peter  Landin has 
been talking about are incorporated as an integral par t  of a pro- 
gramming language being developed at Cambridge and London 
called CPL. In fact the where  clauses are a very impor tant  feature 
of this" language. 

Irons: I have put  together  a program which uses some of these 
features and which has a s tandard  output  which prints  the pro- 
gram in an indented manner. If it runs off the right end of the page, 
it t:rnduces another page to go on the right, and so forth. While 
certainly there are some situations tha t  occur when it would be a 
bit  awkward to make the paper go around the room, I have found 
tha t  in practice, by and large it is true tha t  this is a very profit- 
able a ay of operating. 

Strachey: I should like to intervene now and t ry to initiate a 
slightly more general discussion on declarative or descriptive 
languages and to try to clear up some points about which there is 
considerable confusion. I have called the objects I am trying to 
discuss DLs because I don ' t  quite know what  they are. Here are 
some questions concerning ])Ls: (1) What are DLs? (2) What is 
their  relationship to imperative languages? (3) Why do we need 
DLs? (4) How can we use them to program? (5) How can we 
implement them? (6) How can we do this efficiently? (7) Should we 
mix l)Ls with imperative languages? 

It  seems to me tha t  what I mean by DLs is not exactly what  
other people mean. I inean, roughly, languages which do not 
contain assignment s ta tements  or jumps. This is, as a mat te r  of 
fact, not a very clear dist inction because you can always disguise 
the assignments and the jumps, for tha t  matter ,  inside other s tate-  
meat  forms which m~ke them look different. The important  
characteristic of DLs is tha t  it is possible to produce equivalence 
relations, particularly the rule for subst i tut ion which Peter  
Landin describes as (~) in his paper. That  equivalance relation, 
which appears to be essential in ahnost every proof, does not 
hold if you allow assignment s tatements .  The great advantage 
then of l)Ls is tha t  they give you some hope of proving the equi- 
valence of program transformations and to begin to have a calculus 
for combining and manipulating them, which at the moment we 
haven ' t  got. 

I suggest tha t  an answer to the second question is tha t  DLs form 
a subset of all languages. They are an interesting subset,  but one 
which is inconvenient to use unless you are used to it. We need 
them because at the moment we don ' t  know how to construct  
proofs with languages which include imperatives and jumps. 

How should we use them to program? I think this is a mat ter  of 
learning a new programnling technique. I am not convinced tha t  
all problems are amenable to programming in DLs but I am not 
convinced tha t  there are any which are not either; I preserve an 
open mind on this point.  It is perfectly true tha t  in the process of 
rewriting programs to avoid labels and jumps, you've gone half 
the way towards going into 1)Ls. When you have also avoided 
assignment s tatements ,  you've gone the rest of the way. With 
many problems yeu can, in fact, go the whole way. LisP has no 

assignment s ta tements  and it is remarkable what  you can do with 
pure Lisp if you try. If you think of it in terms of the implementa-  
tions tha t  we know about, the result is generally intolerably 
inefficient--but then tha t  is where we come to the later questions. 

How do we implement them? There have not been many at-  
tempts  to implement DLs efficiently, I think. Obviously, it can be 
done fairly s traightforwardly by an interpretive method, but this 
is very slow. Methods which compile a runable program run into a 
lot of very interesting problems. I t  can be done, because DLs are 
a subset of ordinary programming languages; any programming 
language which has sufficient capabilities can cope with them. 
There arc problems, however: we need entities whose value is a 
func t ion- -not  the application of a function but a func t ion- -and  
these involve some problems. 

Itow to implement efficiently is another very interest ing and 
difficult problem. It  means, I think, recognizing certain subsets 
and transforming them from, say, recursions into loops. This can 
certainly be done even if they have been wri t ten iu terms of 
recursions and not, as Peter  Landin suggested, in terms of already 
transformed functions like i t e r a t e  or whi le .  

I think the last question, "Should DLs be nIixed with impera- 
tive languages?", clearly has the answer tha t  they should, be- 
cause at the moment  we don ' t  know how to do everything in pure 
DLs. If you mix declarative and imperative features like this, you 
may get an apparent ly  large programming language, but  the 
important  thing is tha t  it should be simple and easy to define a 
function. Any language which by mere chance of the way it is writ- 
ten makes it extremely difficult to write compositions of functions 
and very easy to write sequences of commands will, of course, in an 
obvious psychological way, hinder people from using descriptive 
rather  than  imperative features. In the long run, I think the effect 
will delay our understanding of basic similarities, which underlie 
different sorts of programs and different ways of solving problems. 

Smith: As I understand the declarative languages, there has to 
be a mixture of imperative and descriptive s ta tements  or no com- 
puta t ion will take place. If I give you a set of simultaneous equa- 
tions, you may say "yes?",  meaning well, what  am I supposed to 
do about it, or you may say "yes" ,  meaning yes I understand, but  
you don ' t  do anything until I say "now find the values of the vari- 
ables."  In fact, in a well-developed language there is not just  one 
question tha t  I can ask but  a number of questions. So, in effect, the 
declarative s ta tements  are like data which you set aside to be u~ed 
later after I give you the imperatives,  of which I had a choice, 
which get the action. 

Strachey: This is a major point  of confusion. There are two ideas 
here and I th ink we should t ry to sort them out. If you give a 
quadratic equation to a machine and then say "pr in t  the value of 
x",  this is not the sort of language that  I call a DL. I regard it as 
an implicit l anguage-- tha t  is, one where you give the machine the 
data and then hope tha t  it will be smart  enough to solve the prob- 
lem for you. I t  is very different from a language such as LisP, 
where you define a function explicitly and have only one impera- 
tive. which says "evaluate this expression and print  the resul t ."  

Abrahams: I 've  clone a fair amount  of programming in LisP, 
and there is one si tuation which I feel is symptomatic  of the times 
when you really do want an imperative language. I t  is a si tuation 
tha t  arises if you are planning to do programming in pure Lisp and 
you find tha t  your functions accumulate a large number of argu- 
ments.  This often happens when you have a nmnber  of variables 
and you are actually going through a process and at each stage of 
the process you want  to change the state  of the world a little b i t - -  
say, to change one of these variables. So you have the choice of 
either t rying to communicate them all, or trying to do some sort 
of essentially imperative action tha t  changes one of them. If you 
t ry  to list all of the transit ions from state to s tate  and incorporate 
them into one function, you'll  find tha t  this is not really a very 
natural  kind of function because the natures of the transit ions 
are too different. 
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Landin:  I said in iny talk t h a t  LisP had not gone quite all the 
way and I th ink  t h a t  this  difficulty is connected with going all the  
way. If we write a funct ion definition where the r igh t -hand  side is 
a l ist ing of expressions such as 

F ( x )  = E1 , E 2 ,  E~ 

thel~ we can say t h a t  this  funct ion will produce a three-l is t  as its 
result .  If llOW we have ~mother funct ion G(x, y, z) = E, on some 
occasion we migh t  have an expression such as G(a 2, b 2, c ~) and we 
often feel t h a t  we should be able to write G(F(t)) ,  and ano ther  
example which should be allowed is 

G(a > b --~ E1 , E2 , E3 else  E4 , E5 , E6). 

l am  not  quite sure bu t  I t h ink  you can get a round your  problem 
by t rea t ing  every funct ion as if it were in fact  monadic and had 
a single a r g u m e n t  which was the  list s t ruc ture  you are t ry ing  to 
process. 

Abrahams:  This  is a difficulty in o ther  p rogramming  languages  
too; you cannot  define a func t ion  of an indefinite n u m b e r  of argu-  
ments .  

Naur:  I still don ' t  unde r s t and  this  d is t inct ion about  an im- 
plicit language.  Does it  mean  t h a t  whenever  you  have such a 
language there is a bui l t - in  fea ture  for solving equat ions?  

Abrahams:  I t h ink  the  point  is whether  you  are concerned with 
the problem or are concerned with the  me thod  of solut ion of the  
problem. 

Ingerman:  I suggest  t h a t  in the s i tua t ion  where you have speci- 
fied every th ing  t h a t  you  want  to know, though  the exact  sequence 
in which you evoke the  var ious  opera t ions  to cause the  solut ion is 
left unspecified, then  you have  s o m e t h i n g  which is effectively a 
descript ive language;  if you  have  exactly the  same pieces of in- 
format ion,  sur rounded  wi th  promises  t h a t  you  will do this  and 
then  this ,  then  you have  an impera t ive  language.  The  significant 
point  is t h a t  it is not  all or noth ing  bu t  there is a scale and while 
it  is probably  p r e t t y  simple to go all the  way with imperat ives ,  

the chances of being ttble to get all the way descript ive is about  
zero, bu t  there is a settle and we should recognize this  scale. 

Smilh:  I t h ink  tha t  there is a confusion between implicit  or 
explicit on the one hand  and imperat ive  or declarat ive on the 
other.  These are two separate  dis t inct ions  and can occur in all 
combinat ions.  For illstance, an analog compute r  handles  ilnplicit 
declaratives.  

Young:  I th ink  it is fairly obvious t ha t  you 've  got to have the  
abil i ty for sequencing imperat ives  in any  sort  of pract ical  lan- 
guage. There  are many ,  ma ny  cases in which only a certain se- 
quence of operat ions will produce the logically correct results .  
So tha t  we cannot  have a purely declarat ive language,  ~e  mus t  
have a general purpose one. A possible definition of a declarat ive 
language is one in which I can make the s t a t e m e n t s  (a), (b), (c) 
and (d) and indicate  whether  I mean  these to be t aken  as a se- 
quence or as a set; t h a t  is, m u s t  they  be performed in a par t icu lar  
order or do I merely mean  t ha t  so long as they  are all performed,  
they  may  be performed in any  sequence at  any  t ime and whenever  
convenient  for efficiency. 

Strachey: You can, in fact,  impose an ordering on a language 
which doesn ' t  have the  sequencing of commands  by nes t ing  the  
funct ional  applicat ions.  

Landin:  The point  is t h a t  when you compound  funct ional  ex- 
pressions you are imposing a par t ia l  ordering, and  when you de- 
compose this  into commands  you are unnecessar i ly  giving a lot of 
inforinat ion about  sequencing.  

Strachey: One inconvenient  th ing  about  a purely  impera t ive  
language is t ha t  you have to specify far too muc h  sequencing.  For  
example,  if you wish to do a mat r ix  mul t ip l ica t ion,  you  have  to do 
n a mul t ip l icat ions .  If you write an ordinary  program to do this ,  
you have to specify the  exact sequence which they  are all to be 
done. Actual ly ,  it doesn ' t  ma t t e r  in what  order you  do the mul t i -  
pl icat ions so long as you add t h e m  togcther  in the  r ight  groups.  
T h u s  the  ordinary  sort  of imperat ive  language imposes much  too 
much  sequencing,  which makes  it very difficult to rearrange if you  
want  to make th ings  more efficient. 

Syntax-Directed Interpretation of Classes of Pictures 
R. Naras imhan  

Tata Institute of Fundamental Research, Bombay, India 

A descriptive scheme for classes of pictures based on label- 
ing techniques using parallel processing algorithms was pro- 
posed by the author some years ago. Since then much work 
has been done in applying this to bubble chamber pictures. 
The parallel processing simulator, originally written for an 
IBM 7094 system, has now been rewritten for a CDC 3600 
system. This paper describes briefly the structure of syntactic 
descriptive models by considering their specific application to 
bubble chamber pictures. How the description generated in 
this phase can be embedded in a larger "conversation" pro- 
gram is explained by means of a certain specific example that 
has been worked out. A partial generative grammar for 
"handwritten" English letters is given, as are also a few com- 
puter-generated outputs using this grammar and the parallel 
processing simulator mentioned earlier. 

Presen ted  at  an ACM Prog ramming  Languages  and Pragmat ics  
Conference,  San Dimas ,  California,  Augus t ,  1965. 

1.  I n t r o d u c t i o n  

Recent active interest in the area of graphic data-based 
"conversation programs ''1 has pointed up the urgent need 
for sophisticated picture processing models in a convincing 
manner. Kitsch [2] has very ably argued that  "from the 
point of view of computer information processing, the 
important  fact about natural language text and pictures 
is that  both have a syntactic structure which is capable of 
being described to a machine and of being used for purposes 
of interpreting the information within a data processing 
system." "The  problem of how to describe the syntactic 
structure of text and pictures and how to use the syntactic 
description in interpreting the text and pictures" has been 
tackled in a certain specific way by Kirsch and his co- 
workers. (For other references, see [9].) 

1 See [9] for a good su rvey  of work accomplished and  in progress 
in this  area, as well as in the  general field of "Eng l i sh  quest ion-  
answer"  programs.  
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