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Introduction

Our intent is to provide a highly informal, but hopefully comprehensible, description
of the language Russell. No attempt is made to provide a complete definition of the
language; it is assumed that the on-line rhelp facility [Boe85] is available for this pur-
pose. Formal descriptions of (slightly obsolete versions of) the language semantics can
be found in [Dem80c] (operational/denotational style), [Dem83] (equational description),
and [Boe84] (axiomatic style). [Hoo84] provides a more mathematical interpretation of
the type structure of the language. An overview of the type structure can be found in
[Don85].

The description here should be adequate for someone to start using the language. We
will describe the implemented version of the language, rather than that of [Boe80].

Russell is a very compact expression language which is nevertheless extremely gen-
eral and uniform in its treatment of functions and, more importantly, datatypes.

By the term ‘expression language’ we mean that there is no distinction between ex-
pressions and statements. Any executable construct in the language returns a value. In
particular, assignment ‘statements’ and conditionals return values, which may or may not
be used. By the same token, most constructs in the language can also potentially modify
the value of some variable, and thus play the role of statements.

The following are some of the other important characteristics of the language. The
concepts involved are discussed more fully in [Dem79], [Dem80a] and [Dem80b].

• The philosophy underlying Russell datatypes is that all objects manipulated by a
Russell program are in fact elements of one universal domain or set. We may, if
we wish, think of this set as being the set of all bit sequences. Thus we can identify
an integer with its binary representation, a character string with a sequence of bits
representing the ASCII codes for the characters, and a function with a sequence of
bits representing the code to be executed to evaluate the function, possibly followed
by another sequence of bits describing the environment in which the code is to be
executed. Thus the object itself gives us no information about how to interpret it.
The same bit string could represent either a character string or a function mapping
integers to integers. (For a much more abstract view of such a domain see, for
example, [Sto77].)

What distinguishes one datatype from another then is not the set of its elements,
but rather the set of operations (or functions) that may be applied to interpret
elements of the universal set. In fact, the Russell view is that a datatype is
just that collection of operations. Thus, the Boolean type is just the collection of
functions and, or, not, etc. What makes a value an integer is not any characteristic
of the value itself, but the fact that it is intended to be interpreted by exactly these
functions.

• The language design permits static (i.e. compile time) signature checking (‘type
checking’ in Pascal terminology). Each expression in the language has a signature,
or syntactic type associated with it. Such a signature specifies in which contexts
an expression may appear. Signature checking insures that an expression does not
appear in a context in which it is not meaningful. Thus, the value produced by an
expression cannot be misinterpreted.

For example, assume we are representing integers using their binary representation.
Furthermore, we represent the Boolean constants True and False as the bit strings
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1 and 0 respectively. Signature checking in Russell will prevent us from writing
an expression like

3 * False

in spite of the fact that it produces a well-defined answer. Clearly the 0 value
produced by the expression False is intended to be used in a Boolean context,
and is not intended to be treated as an integer. This is reflected by assigning the
expression False the signature val Boolean (Boolean value). The signature of *
is

func [val Short; val Short] val Short 1

This indicates, among other things, that it is a function whose arguments must have
signatures val Short, and thus must be interpretable as short (i.e. 16 bit) integers.
Since the parameter signature for * (val Short) does not match the signature of the
second argument expression (val Boolean), the above expression will be rejected
by the compiler.

It is important to distinguish signatures, which are associated with expressions, and
are purely syntactic objects, from types, which are collections of functions. Short

is a built-in type, which contains operations, such as *. It is convenient to use the
same identifier (or expression, in general) in signatures, to indicate appropriate uses
of an expression.

• Many programming languages allow users to treat functions as data objects in at
least some contexts, e.g. as parameters. Since Russell datatypes are just collections
of functions, they can similarly be treated as data objects. Furthermore, since both
functions and datatypes are again part of the same universal data domain as other
objects, this can be done uniformly in all contexts.

• Variables are data objects which differ from others primarily in that they identify
locations where other values can be stored. The ValueOf and := operations included
in most built-in types can be applied to them to obtain and change the value stored
in the location. This will be discussed further later.

• Russell has a completely uniform declaration mechanism. A declaration simply
binds an identifier to the value of an arbitrary expression. New variables are obtained
by binding an identifier to the result obtained by calling an allocation function.

• Since Russell is an expression language, it has no notion of a procedure, distinct
from that of a function. Functions may both examine and change the values of
variable parameters, but may not depend on, or alter the values of other variables.
In fact, no expression with function or type signature may mention a variable not
local to it. As a consequence of this, two syntactically identical type expressions
always denote the same type. This is fundamental to signature checking in Russell.

• Any legal expression can be the body of a function, and any identifier that appears
inside it may be made a parameter of the function. Thus there are no constraints
imposed on the argument and result signatures for functions.

1Actually there are several instances of * with different signatures. Each of the types Short, Long,
and Float has a separate * operation. They provide 16-bit integer, unlimited integer, and floating point
multiplication, respectively.
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• An attempt was made to keep the design as conceptually clean as possible, some-
times at the expense of syntactic convenience. Thus, full Russell syntax can
be rather verbose. On the other hand, the compiler understands enough different
kinds of abbreviations, that real Russell programs do not look too unusual. We
will proceed to use abbreviated syntax, where it does not detract from explana-
tions. Nonetheless, some of the syntax given below is unnecessarily verbose. (For
a list of what the compiler can infer automatically, and under what conditions, try
rhelp inference.)

A Simple Example

We’ll start with a very simple example which will serve to illustrate some of the points
which follow.

In keeping with tradition, we will use a declaration of the factorial function:

fact == 1
func [n: val Short] val Short 2

{ 3
if 4

n > 0 ==> n*fact[n-1] 5
# n = 0 ==> 1 6
fi 7

} 8

Declarations in Russell always have the form a == b. This has the effect of binding
the identifier a to the value produced by the expression b. We could use b == 0 to declare
b to be equivalent to the integer constant 0. (This is completely distinct from declaring
an integer variable. The identifier b is purely a value. It does not make sense to assign
to it.)

In this case, the expression appearing in the declaration is an explicit function con-
struction. Its value is the factorial function whose body consists of lines 4-7. The heading
of the function construction (line 2) gives its signature, which indicates it is ‘a function
mapping a single short integer value n to a short integer value’.

The body of the fact function is an expression whose value will be returned as the
value of a function call. As expected, it consists of a conditional. Russell uses a slightly
extended version of Dijkstra’s guarded command notation [Dij76]: the keyword else

is allowed as an abbreviation for the negation of all the other guards. Since Russell
is an expression language, conditionals return a value. In this latter respect Russell
conditionals resemble Algol conditional expressions.

The conditional here should be interpreted as follows: if the first guard is true, i.e. n is
greater than 0, then the value returned is the value of the expression n*fact[n-1]. Note
that arguments to function applications (calls) are enclosed in square brackets rather than
parentheses.2

If the second guard is true, then the integer 1 is returned. If neither guard is true, a
run-time error occurs. If two or more guards of some conditional are all true, then any
one of the corresponding expressions may be chosen to be evaluated.

Assuming n ≥ 0, the conditional could also have been written as:

2Function application syntax is actually quite flexible. Brackets may frequently be omitted. This is
discussed below.
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if n > 0 ==> n*fact[n-1]

# else ==> 1

fi

An Introduction to Imperative Russell

It is much easier to write applicative (variable-free) programs in Russell than in
most other languages. Our experience indicates that small Russell programs tend to
naturally be applicative. Nonetheless, it is easy to introduce variables if one prefers. We
illustrate this by rewriting the fact function so that it uses a loop rather than recursion.
(Clearly loops are not useful without variables.)

A (short) integer variable can be declared by means of a declaration, such as

N == Short$New[ ]

The type Short is, like all Russell types, nothing but a collection of functions. One
of these functions is New. It allocates a new integer variable and returns it. Thus, its
signature is

func [ ] var Short

The $ symbol is used to indicate a selection from a type. Short$New explicitly specifies
the New function from the type Short, and Short$New[ ] is an expression which returns
a new integer variable. N is then simply bound to the result of this expression.

The loop construct has the same syntax as the conditional, except that if and fi are
replaced by do and od, respectively (see [Dij76]). It indicates that while one of the guards
is true, the corresponding expression should be executed. It always returns the special
value Null.

An imperative version of the factorial function can be written as:

fact == func [n: val Short] val Short {

let

N == Short$New[ ];

F == Short$New[ ]

in

N := 2; F := 1;

do N <= n ==> F := F*N; N := N+1 od;

V[F]

ni

}

Some other language characteristics are illustrated by this example. A block can be
used anywhere an expression is legal. Its general syntax is

let declarations in expressions ni

where both declarations and expressions are separated by semicolons. The value of the
block is the value of the last expression. Thus, the value returned by the block in the
example is the final value of the variable F. As before this becomes the value returned by
the function.

We have mentioned the V function explicitly at the end of the block. It takes a variable
as its argument and returns the value of the variable. Such functions exist for most built-
in types, including Short. It does not usually need to be mentioned explicitly. In fact,
the ‘statement’
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F := F*N

should technically have been written as

F := V[F]*V[N]

Assignment ‘statements’ have the value of the right hand side as their value. (In the
example neither of these matters since they are both discarded.)

All functions referenced by the program (e.g. +, <=, :=, V) are actually components of
the type Short, like the New function. Thus, technically, we should have written Short$+

instead of +, Short$V instead of V, etc. In their case, unlike in the case of New, it is
possible for a compiler to deduce that a selection from Short was actually meant, and we
therefore omitted that information. (Constants like 1 also fit into this framework and do
not have to be treated as special cases. This however is a little more complicated, and
won’t be discussed until later.)

Russell Lexical Structure

Now that we have hopefully conveyed some rough feeling for the language, we finally
start over at the beginning.

A Russell program consists of a sequence of identifiers, keywords, strings, comments,
and punctuation characters. Upper versus lower case distinctions are significant in all
contexts. Identifiers may have one of three forms:

• Any Algol- or Fortran-style identifier is also a Russell identifier. More pre-
cisely, an identifier can be any letter (upper and lower case are distinct), followed
by some number of letters and digits. _ is considered to be a letter.

• Any sequence of characters enclosed in quotes (’) constitute an identifier. These
identifiers are most commonly used for constants, as will be described in the next
section. A quote character can be included in such an identifier by doubling it, or
preceding it by a backslash (\) character.

• Any sequence of operator characters. These are:

! % & * + - . / : < = > ? @ \ ^ ‘ | ~

By convention these are used as function names.

An identifier may be used in one and the same type to denote two or more of its
functions, provided that each two of these functions differ in their signatures. Such an
identifier is said to be overloaded within the type. According with this, any identifier
occurring as an expression may optionally be followed by

<< signature >>

to explicitly indicate which, of a number of overloaded instances of the identifier within
a type, was intended.3

Note that Russell allows for two kinds of identifier overloading. On the one hand,
an identifier may denote functions in different types. On the other hand, it may have
different instances within the same type.4

3The signature itself may not mention an overloaded type component, since, for any identifier inside
a signature, it must be apparent which of its instances is meant, but the compiler does not consider
signature information in making such a determination.

4The New identifier exemplifies both kinds of overloading. Within almost each built-in type – ChStr,
Short, Boolean, etc. – there are two functions named New: besides the one that we already used, another
function allocates a variable and initializes it to a proper value. The signature of the second function, e.g.
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In most cases, none of the two kinds of overloading requires explicit use of $ (selec-
tion) or << . . . >> (resolution), respectively. Wherever possible, the compiler chooses the
proper function automatically.

Some of the sequences formed using the first and the third forms above are actually
reserved for use as keywords and may not be used for other purposes. These are:

Keywords Purpose
--------------------------------------------------------------------

cand cor conditional and, or
if fi do od else ==> guarded commands
then elsif conventional conditionals
enum record prod union extend building types
export hide with constants modifying types
let use in ni == declarations
val var func type field readonly characters signatures
<< >> explicit overload resolution
: parameters, declarations

The syntax of strings is complementary to that of identifiers. The following are legal
strings:

— any sequence of characters enclosed in double quotes (");

— any sequence of letters and digits starting with a digit.

The following are examples of strings:

123 "123" 0A1FB "A1FB" "Hello" "’"

"""" ("" represents a single " inside the string)
"\"" (same as """")

The sequences \n, \r, and \t may be used to denote linefeed, carriage return, and tab
characters inside strings and quoted identifiers.

The next section discusses the meaning of strings in the language. Usually they are
interpreted as in other programming languages. In particular, 123 will usually represent
the integer and "Hello" – the corresponding character string. The formal definitions
differ however, both to allow treatment of infinite sets of constants within the Russell
framework, and to allow the user the same mechanism in constructing his own types.

Russell comments are delimited by (* and *). Unlike comments in most other
languages, it is possible to nest comments. Thus, the following is legal:

(* This is a comment (* This is a nested comment *) *)

but not this:

(* (* This is an improperly constructed comment *)

for the Short type, is thus func [val Short] var Short and we could have written the imperative
version of the factorial function as:

fact == func [n: val Short] val Short {

let

N == Short$New[2]; F == Short$New[1]

in

do N <= n ==> F := F*N; N := N+1 od;

V[F]

ni

}
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Constants and Strings

As we pointed out before, types in Russell are just collections of functions. Thus,
the only way one can talk about particular values is by having functions in that type that
produce them.

Consider the built-in type Boolean. It contains two functions, named True and False,
with signatures (roughly speaking)

func [ ] val Boolean

I.e., these are functions with no arguments which produce a Boolean result. Thus, we
can always get the Boolean value False by writing

Boolean$False[ ] 5

This allows us to deal with finite sets of constants for a given type. Since we always
want to consider types as finite sets of operations, we need to extend this idea to handle
infinite sets of constants (such as those in the built-in Short type). This is done by
treating strings, in the sense described above, as abbreviations.

The only Short constants provided explicitly (i.e. in the same way as True and False

for the Boolean type) are ’0’ through ’9’. (The quotes are part of the identifiers.) Also
provided is a concatenation operation ^+ which, in this case, gives the value of the integer
obtained by writing an integer next to another digit. Roughly what happens then is that
the expression 123 is treated as an abbreviation for:

(’1’[ ] ^+ ’2’[ ]) ^+ ’3’[ ]

If the concatenation operator were not already built-in, it could be declared as:

^+ == func[x,y: val Short] {

let

’10’ == 5+5

in

’10’*x+y

ni

}

Note that using 10 instead of ’10’ would result in infinite recursion.
In the above example we have again omitted the selections of the constants ’1’,

’2’, and ’3’, as well as the ^+ operator, from the Short type. Formally strings are
always selected from a type. Thus, we should have written Short$123. The compiler will
normally infer this selection, so that, in practice, writing 123 is sufficient.

All this allows us to define the meaning of (unquoted) strings a little more precisely.
In general,

T$a1a2 . . . an

is expanded to

(. . .(T$’a1’[ ] T$^+ T$’a2’[ ]). . .) T$^+ T$’an’[ ]

Quoted strings are treated only slightly differently. Since we want "" to be legal,

5The compiler allows this to be shortened to just False in virtually all contexts. The declaration
a == False would result in a having signature func [ ] val Boolean. But even such a ‘mistake’
would be unlikely to effect the correctness or efficiency of a program. The compiler would simply convert
occurrences of a to a[ ]. Try rhelp inference for more details.
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we have to generalize the treatment to handle this in a reasonable way. We do this by
agreeing that ’’ (two single quotes) will implicitly be concatenated onto the left of any
such string. Furthermore, to distinguish such strings more explicitly from unquoted ones,
^* will be used as the concatenation operator. Thus, T$"ab" is expanded to

(T$’’[ ] T$^* T$’a’[ ]) T$^* T$’b’[ ]

In accordance with this scheme, the built-in type ChStr (character strings) has con-
stants, i.e. nil-ary functions, with names ’’ and ’c’, for all characters c in the character
set. It also includes a ^* concatenation function, which, unlike the one for integers, really
does character string concatenation.

We have gained something besides uniformity in this approach. It is possible to make
use of the string mechanism for user-defined types. For example, we can define an ‘octal
integer’ type by simply modifying the built-in type Short in the following two ways: first,
the constants ’8’ and ’9’ have to be deleted. Secondly, ^+ now has to multiply by 8
rather than 10. As will be described later, Russell allows the user to easily construct
such new types.

Some Notes on Expression Syntax

Russell provides the following primitives for building expressions:

• Selection from a type. A component function f of a type T may be selected by
writing

T$f

• Function construction (lambda abstraction in lambda calculus terminology). Any
expression E can be turned into a function by writing

function signature6 {E}

Any identifiers appearing in E can be treated as parameters by including them as such
in the signature. The above declarations of factorial functions are simple examples of this.

• Function application. A function f may be applied to arguments a1, . . . , an by
writing

[a1, . . . , ai] f [ai+1, . . . , an]

Which arguments go before the function and which go after is a choice that can be made
arbitrarily (though hopefully consistently) by the programmer. If one of the argument
lists is empty, it can always be omitted. (As mentioned above, if both are empty, they can
usually, but not always, both be omitted.) Thus, any function can be treated as an infix,
prefix, or postfix function. (We could introduce more reasonable syntax for the factorial
function by declaring it as ! == func . . .)

• Blocks. The use of blocks to introduce declarations was illustrated above. Russell
allows two other kinds of blocks. The block

let in expressions ni

can be abbreviated as

(expressions)

6The result signature may be omitted if it can be inferred by the compiler.
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The construct

use comma− separated list of type expressions in

expressions
ni

tells the compiler that it should use the types given in inferring omitted selections in the
second list of expressions. Otherwise it is equivalent to

(expressions)

Note that in inferring such selections the compiler will first try to use the types of
the arguments and then search surrounding use lists inside out. (As it turns out this
means that use lists are primarily useful for implicit selections of constants, which have
no arguments.)

Furthermore, any user program is treated as if it were embedded in the following
construct:

use Float in

use ChStr in

use Boolean in

use Short in

user program
ni ni ni ni

• Sequence control constructs. Loops and conditionals were described above. Condi-
tionals can frequently be abbreviated by the conditional and/or constructs:

expression1 cand expression2

expression1 cor expression2

Here all expressions return Boolean values. Intuitively, these constructs are similar to
the operations and and or of the built-in type Boolean. The difference (hinted at by the
absence of [ ] around the ‘arguments’) is that they are not call-by-value operations.
The second ‘argument’ is only evaluated if necessary. Thus, e1 cand e2 is actually
equivalent to

if

e1 ==> e2
# else ==> Boolean$False[ ]

fi

cand and cor, though resembling operations by their syntax, are nevertheless par-
tially evaluated expressions, and therefore can be used, as well as if . . . fi and other
constructs, to implement lazy evaluation. (Also try rhelp LList).

• Type constructions and modifications. These provide ways to build new types out
of existing ones. They are discussed below.

A few more remarks on the syntax of applications and selections are in order at this
point. First, an expression, such as [a]b$c is, in principle, ambiguous. The function b

could produce a type, and thus the expression could be interpreted as ([a]b)$c. How-
ever, by having selection bind more tightly than application, the correct interpretation is
[a](b$c).

The second problem is that the above syntax would require us to write the statement
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x := x+1

as

[x] := [[x]+[1]]

even if we assume that the constant application and all selections are automatically in-
ferred.7 This would, at best, be acceptable only to Lisp programmers. Thus, the actual
syntax allows dropping the brackets for functions used as either binary infix, or as unary
prefix operators. A standard Fortran-style precedence scheme is used to disambiguate
the resulting expressions. It is worth noting that this scheme relies purely on the identi-
fiers appearing in the expression, and not at all on any semantic or signature information.
This applies to the entire Russell parser.

It is not worth discussing the exact precedences here. In general, standard operator
symbols have conventional (not Pascal-like) precedences. It is always safe to bracket
expressions containing nonstandard operators. For details, try rhelp expressions.

The Anatomy of a Signature

As previously mentioned, each Russell expression has a signature associated with it.
This signature describes how the result produced by that expression should, and should
not, be interpreted.

Russell expressions always produce objects which are intended to be used as either
first-order (i.e. non-operation) values, variables, functions, or types. In order to distinguish
between these, there are four different kinds of signatures, corresponding to the above four
categories. They are described somewhat informally below.

Value signatures

The general form of such a signature is

val T

where T is an expression denoting a type. Informally, it indicates that the value produced
by the corresponding expression should be interpreted as a value of type T. More formally,
it means only that the result produced by the expression should only be interpreted by
(i.e. passed as a parameter to) a function that expects an argument of signature val T.
Thus, one technically correct way of viewing the whole issue is that the expression T is just
a tag used to match up functions with proper arguments. The use of a type expression
as tag turns out to be particularly convenient.

An alternate, and probably more enlightening view is the following: we want to guar-
antee that the first-class value in question is passed only to functions that know how to
interpret it. An obvious way to do that is to keep track, in its signature, of all the func-
tions that can be applied to it. Since usually all these functions are components of a type,
we use the expression representing that type as a shorthand. (In fact, some functions
not in T may also expect val T arguments. These however are usually built out of the
‘primitive’ functions in T.)

As an example consider the following expressions, where it is assumed that all identi-
fiers have the natural meanings:

(a) 1+2

7The full unabbreviated version of the above statement is
[x] Short$:= [[Short$V[x]] Short$+ [Short$’1’[ ]]]
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(b) BoundedStack[Short, 10]$push[S,3]

(c) BoundedStack[Short,5+5]$push[S,3]

(a) is a simple integer expression. It has signature val Short.

In (b) and (c) we assume that BoundedStack is a function which takes two arguments.
The first is the type of the individual elements to be pushed onto the stack. The second
is the maximum size of the stack. Its result is the corresponding type of bounded stacks.
We assume that everything works in an applicative fashion, so that the push operation
returns a stack value. The signature of (b) then is val BoundedStack[Short,10]. That
of (c) is val BoundedStack[Short,5+5].

It should be emphasized that signatures are purely syntactic objects, which are de-
termined using some simple rules described below. In particular, nothing in the whole
signature mechanism knows anything about the semantics of +. Thus, the signatures of (b)
and (c) are completely distinct, and the functions in BoundedStack[Short,5+5] cannot
be used to interpret objects of signature val BoundedStack[Short,10]. (This design
decision rarely causes any real inconvenience. Furthermore, if we want to do any syntac-
tic ‘type checking’ at all, it is clearly essential. Semantic equivalence of Russell type
expressions is in general undecidable.)

Variable signatures

The general form of a variable signature is

var T

where T is a type expression, as above. This indicates that the result of the expression is
a variable (or location) which can hold an object to be interpreted as by the functions of
type T. Usually (though not always) the only thing that can be done with an object of
signature var T is to pass it as an argument to T$:= or T$V, or to bind an identifier
to it.

The most common example of an expression of signature var T (other than a simple
variable) is

T$New[ ]

where New is the function in T that allocates a new variable. Another example is

A.1

where A is a variable of an appropriate array type, and . is the name of the subscription
operator in the (built-in) array type. It produces the location of the first element of the
array. (Array types usually have two versions of the . operation. In addition to the one
mentioned here, there would normally be an operation mapping an array value and an
index into a component value. Try rhelp Array.)

Function signatures

In order to insure that functions are passed only appropriate arguments, it is clearly
necessary that their signature include the signatures of the arguments, as well as the
signature of the result.

Function signatures may also include the names of the formal parameters. Although
these are not important in determining the correctness of a particular application, there
are nevertheless two reasons for putting them here. First, the syntax of function con-
structions requires it. (There’s nowhere else to put them.) The second, more important
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one, should become apparent when we state the rule for determining the signature of an
application.

The syntax for function signatures is

func[param1; . . . ; paramn] result signature

where each parami is a list of parameter names with identical signature, and the signature
itself:

id1, . . . , idm: parameter signature

If one of the parami includes only a single parameter name which is not otherwise
used, then both it and the : can be omitted. A signature, such as

func[x,y: val Short] val Short

is viewed as being identical to

func[x: val Short; y: val Short] val Short

and therefore to

func[val Short; val Short] val Short

Function signatures are usually written explicitly only in function headings. Even in
this case, the result signature may be omitted whenever it can be easily determined from
the body of the function.

Some examples of function signatures were already given above. More interesting
examples will be presented below in conjunction with type signatures.

Type signatures

If we want to specify how a type expression can be used, we need two kinds of infor-
mation. First, we need to know what operations can be selected from it. Second, we need
to know how those operations themselves can be used. Thus, a type signature consists of
operation names, and of the signatures corresponding to those names. The syntax is:

type {op1; . . . ; opn}

The syntax for the individual opi is the same as that used for parameters in a function
signature (except that no names can be omitted, and all signatures have to be either type
or function signatures).

The simplest example is the built-in type Void, which has no operations as part of the
type. Its signature is therefore:

type {}

There is a built-in function Null, which has signature func[ ] val Void. (Recall
that a Void value is also produced by the do . . . od loop.)

Now consider a type VOID which has the function Null as its only component.8 It
would have signature

type {Null: func [ ] val VOID}

Unfortunately, this notion of a type signature won’t get us very far.

8Such a type could be declared as VOID == Void with {Null == Null}. It would make sense to
use this as the built-in type. The other alternative was chosen only so that we could write Null[ ]

instead of Void$Null[ ]
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It is frequently useful to build a new type which behaves like an existing one, but is
nevertheless distinct from it. For example, we may wish to have two types, Meters and
Feet with the same operations of addition, subtraction, etc. By keeping them distinct we
can use the signature checking mechanism to guarantee that we don’t get the two mixed
up.

We should be able to build both of these types by first constructing Meters, and then
simply using the declaration

Feet == Meters

to get the type Feet. (Note once more that the signature mechanism is purely syntactic.
Thus, val Feet and val Meters are still distinct signatures, so we can achieve the
desired protection. In fact, this is probably too much protection. In reality, we would
want to introduce some conversion functions at some point. Again the signature checking
mechanism can assure that these are used exactly where they are appropriate.)

To illustrate what goes wrong in a simple context, let’s try the analogous exercise with
the type VOID. We use the declaration

VOID2 == VOID

to get a second type with identical characteristics. Certainly its signature has to be the
same as that of VOID (see above), but what we wanted was

type {Null: func [ ] val VOID2}

The problem is that Null should return value of whatever type it is a component of,
not the specific type VOID. Therefore, we need to give this type a name in the signature.
Such a ‘local type name’ is written immediately after the type keyword in the signature.
Thus, a more appropriate signature for VOID would be

type V {Null: func [ ] val V} 9

Now the construction of VOID2 works properly.

We conclude with two more examples. The built-in type Short will serve as the first.
Its signature is

type S {New; :=; ValueOf; <; >; =; <=; >=; <>;

-: func [val S] val S;

+, -, *, /, %, ^+: func [x,y: val S] val S;

’0’; ’1’; ’2’; ’3’; ’4’; ’5’; ’6’; ’7’; ’8’; ’9’}

The above makes use of yet another form of abbreviation. Certain operation names
tend to occur in many types with the same signature. They therefore have default signa-
tures associated with them which can be omitted from a type signature. They are:

Identifier Default signature
------------------------------------------------------

New func [ ] var T

:= func [var T; val T] val T

= < > <= >= <> func [x,y: val T] val Boolean

9This version of VOID is harder to obtain. It might be declared as
VOID = extend {Void}

with V {Null == func[ ] {V$In[Null]}}

export {Null}

These constructs are discussed below.
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^+ ^* func [x,y: val T] val T

V func [var T] val T

any quoted identifier func [ ] val T

In all of the above, T represents the local type name. If none is explicitly specified, it
can be thought of as being generated by the compiler.

As a final illustration, the following is a possible signature of the BoundedStack func-
tion used above:

func [T: type {New; V; :=}; val Short]

type S {push : func [val S; val T] val S;

top : func [val S] val T;

pop : func [val S] val S;

empty: func [ ] val S}

The signature indicates that the BoundedStack function expects an integer and a type
argument. The type argument used must include the functions New, V, and :=.

The signature checking rules described below allow the actual type argument to have
additional components as well. Thus, the built-in Short type would be an acceptable
argument. In fact, if we were willing to be slightly clever about the implementation of the
BoundedStack function, we would not even have to require that the parameter include
the three functions specified. The parameter signature would then be given simply as

type {}

and any type whatsoever could be passed to it. (If the three operations are provided,
then an array implementation could be used.)

The Signature Calculus

The Russell type checking system can be described by a pair of rules for each lan-
guage construct. The first rule gives constraints on the signatures of the subexpressions.
These constraints must be satisfied for the expression to be signature correct. The second
gives the signature of the construct itself.

Signature constraints usually require that two or more signatures be ‘the same’. This
means that they should be syntactically identical, with the following exceptions:10

• Parameter names and local type identifiers may differ, provided they are uniformly
renamed.

• Type signatures may list components in different order. (The components must,
however, have the same names.)

• Parameters with identical signatures may, or may not, be grouped together.

As we pointed out earlier, type expressions may not depend on the values of variables.
Thus, if two signatures are the same, then all type expressions they contain must actually
denote the same types.

As an example of the general approach, consider a function construction, such as

func [x: val Short] val Short {

if x%2 = 0 ==> x/2 # else ==> 3*x+1 fi

}

10The compiler allows some other minor differences, such as reordered guards in conditionals. We list
only those that are likely to be of interest.
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(x%2 yields the remainder of dividing x by 2.)

A large number of constraints needs to be checked to insure that this is signature
correct. We will elaborate on a few of them.

The checking rule for the conditional requires that all its arms have the same sig-
nature.11 In our example this is satisfied since x/2 and 3*x+1 both have signature
val Short (for reasons discussed below). The checking rule also requires all guards to
have signature val Boolean. The guard x%2 = 0 satisfies this constraint. The second
guard abbreviates not x%2 = 0 and thus also has the appropriate signature.

The signature of the conditional itself is that of the arms. In our example, the condi-
tional, and thus the body of the function, has signature val Short.

Similar rules exist for function constructions. We require that the specified result
signature (if any) match the signature of the body. The signature of the construction is
that specified by the heading (with the possible addition of an inferred result signature).
Thus, the above function construction has signature

func [x: val Short] val Short

which may be abbreviated to

func [val Short] val Short

since the parameter name is not significant for signature checking.

Signature calculus rules for the other language constructs are given by the correspond-
ing rhelp files. Only two of them are non-obvious, and they are described below. We
first examine function applications.

Given our examples so far, an obvious set of rules for function applications would be:

• the parameter signatures in the function signature must be the same as the signa-
tures of the corresponding argument subexpressions;

• the signature of the function application is the result signature of the function.

Unfortunately, this is no longer adequate, once we start taking advantage of the Rus-
sell type structure. As a simple example, consider writing an identity function. A first
attempt might be:

identity == func [x: val ?] val ? {x}

Clearly, it should be possible to apply this function to values of any type.12 Thus,
substituting for ? a specific type, say, Short, is not acceptable.

This situation is dealt with in Russell by passing the type associated with the argu-
ment as another argument. Thus, we would rewrite the identity function as

identity == func [x: val T; T: type {}] val T

If we wanted to apply the identity function to the (short) integer 17, we would write

11This constraint is not enforced when the value of the conditional is immediately discarded. Specifi-
cally, if x, y, and z are Short variables, then

if x > 0 ==> y := x # else ==> put["error"] fi;

z := y

is signature correct, in spite of the fact that the first arm of the conditional has signature val Short,
and the second has signature val ChStr. A similar situation occurs if the conditional is the body of a
function with val Void signature.

12It should actually work for functions, types, and variables as well. Unfortunately, the implemented
version of Russell does not deal with the variable case, and it deals with the other two clumsily. An
implementation of a later version of the language would resolve this problem.
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identity[17,Short]

which the compiler allows us to abbreviate as

identity[17] 13

This application is not signature correct by the first rule above. First, 17 has signature
val Short, and not val T. Clearly, the T in the parameter signature is intended to denote
the second parameter, and should not be used literally in the comparison. Thus, the
checking rule needs to be adapted to read:

• The signatures of the argument subexpressions must match the parameter signatures
after any parameter names in the parameter signatures have been replaced by the
corresponding actual argument.

Thus, we first replace the T in val T by Short, and then check that the resulting
parameter signature matches the signature of 17.

A second problem occurs when we check that the argument Short matches the sec-
ond parameter signature. The type Short contains a large number of operations, but
the parameter signature calls for none. As mentioned above, this should not matter; the
signature type{} was intended to indicate that we did not require there to be any oper-
ations in the type T. Thus, the word ‘match’ in our revised rule should be interpreted to
mean that the two signatures are either the same, or they are both type signatures, and
the argument signature contains a superset of the operations in the parameter signature.
Any type signature ‘matches’ the signature type {}.

Finally, the second rule needs to be updated to correspond to the revised checking
rule. The application identity[17,Short] should have signature val Short, rather
than val T. Thus we write:

• The signature of the function application is the result signature of the function with
parameter names replaced by actual arguments.

A situation similar to that occurring for applications occurs for selections of an oper-
ation from a type. The + component of the type Short has signature

func [val S; val S] val S

where S is the local type identifier. But the signature of Short$+ should be

func [val Short; val Short] val Short

(In particular, we need to insure that 1+2 has signature val Short and not val S.)
Thus, the signature of a selection is the signature of the component, with the local type
identifier replaced by the type expression preceding the $ sign.

More About Types

Much of Russell is devoted to the creation and manipulation of types. This is what
gives the language most of its flexibility. Rather than discussing the necessary facilities
in detail, we give an overview of what’s available, and again refer to the rhelp facility to
fill in the details.

Types in Russell are obtained:

• as built-in types,
• by applying built-in type-producing functions,
• through the use of type constructors provided by the language, or

13Trailing arguments may be omitted if they can be inferred from the explicit ones.
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• by modifying some existing type.

Built-in types

• Void
Provides no operations. Void values are used where the value of an expression is not

of interest. (Void variables are abused by the current implementation to mean ‘the whole
machine state’. See rhelp Void.)

• Boolean
Provides standard Boolean (logical) operations.

• ChStr
Provides character strings. It implements string constants, single character input,

string output, concatenation, element selection, and substring operations. Functions to
convert between strings of length 1 and the ASCII code of the character they contain are
also present.

• Short
Provides 16 bit integer operations.

• Float
Provides (64 bit) floating point operations.

• Long
Provides operations on integers of virtually unlimited size (‘bignums’ in Lisp termi-

nology).

Built-in type producing functions

• Array
Requires a (Short) size, and an element type as arguments. The result is a type, con-

taining operations to access arrays of the given size and element type. A two-dimensional
array of 100 by 100 floating point numbers might be declared as:

matrix == Array[100,Array[100,Float]];

A == matrix$New[ ];

The element Aij can then be referenced as A.i.j.

• List, LList
List produces a type that provides operations, such as head, tail, cons, is_nil, etc.

on linear lists, consisting of elements of the specified, as an argument to List, type. This
function is provided only for convenience and implementation efficiency; it can easily be
implemented within Russell.

A polymorphic function, named ^, is defined (with two instances, each through List’s
cons) in the initial environment. Because of the right associativity of ^, it is possible
to write the list with elements 3, 5, and 8 as 3^5^8 without further type specification
or other baroque syntax. This allows a convenient syntax for procedures with a variable
number of arguments of uniform type.

LList differs from List in that the resulting type provides a version of cons which
is lazy in its second argument: the tail of a list is not necessarily computed until it is
actually needed. This allows the manipulation of conceptually infinite objects.
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• Ref
Provides operations on references (pointers). It takes a type argument and produces

a type, containing functions that create pointers and do assignments, comparisons, refer-
encing and dereferencing.

It is frequently useful to build a create function that allocates a new object and
returns a pointer to it. This can be most efficiently done by defining a macro create(T)

to be (Ref[T])$In[T$New[]]. It is also possible to add a create function to the reference
type (using a with clause).

Type constructors

Note that the above types and functions are simply predeclared identifiers, and are not
otherwise special. Type constructors, on the other hand, are really language primitives,
with associated syntax.

• prod
The prod constructor creates Cartesian product types. Cartesian products are tuples

of objects with named components. Each product type provides functions to build a
tuple, giving values for all its fields, to allocate (an empty) tuple, to assign a tuple value
to a tuple variable, and to extract the value of either the tuple or any of its components.
Note, that individual fields may not be modified.

A product construction has syntax:

prod local type name { parameter list }

where parameter list is a semi-colon spearated list, with each element of the form

name: signature

var signatures are not allowed.
For example, the resulting type of

prod {i: val Short; x: val Float}

contains operations on pairs, the first of which represents an integer, and the second –
a floating point number. These would include Mk to build a pair, i to obtain the first
component, etc.

Expressions appearing inside component signatures are not evaluated. Thus, recursive
product types are acceptable.

The signature of one component may depend on another component. We may build
a product, such as:

prod {x: val T; T: type { . . . }}

Values corresponding to such a type are, in a sense, self-describing. They contain both
a value (x) and information about how to interpret it (T).

Because of the possible dependence of one component on another, Russell product
types are not Cartesian products in the strict sense.

Since the result of an expression with product type can be assigned to a variable, and
a product may have function or type components, product types may also be used simply
to convert between functions and assignable objects.

As an example, the function fact, defined earlier, cannot be directly assigned to a
variable. (All assignment operations provided by the language require the second subex-
pression to have val, and not func signature.) On the other hand, if we let T be
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prod {x: func [val Short] val Short}

then T$Mk is an operation which builds a product, i.e. has signature

func [func [val Short] val Short] val T

Thus, T$Mk[fact] has signature val T, and so it can be assigned to a var T variable
(using the assignment operation provided by the product). The T$x operation can be used
to convert back.

• union
The union constructor allows the creation of disjoint union types. Syntactically, a

union construction is like a product construction, in which prod is replaced by union.
An object of a union type can be thought of as having (any) one of the types given

in the union construction. In the Russell view, a union type contains operations to
convert back and forth between the union type and a number of other types – its disjoint
components. Thus, if T is defined as

T == union {i: val Short; x: val Float}

then T$from_i will convert from val Short to val T, T$to_i will convert in the
other direction, T$from_x and T$to_x will perform the analogous functions between
val Float and val T. T will also contain operations is_i and is_x to test which
of the to operations may be applied.

It is allowable to give the union a local name to facilitate recursion. For example

union U {

end: val Void;

other: val prod {first: val Short; rest: val U}

}

operates on elements which are either Null or consist of an integer and another similar
element. Thus, such an object is effectively a list of integers.

• record
The record constructor is similar to prod but, unlike a product variable, a record

variable can be viewed as a collection of component variables, each of which can be
separately updated. It is still possible that an individual field be protected from such an
updating.

A record construction differs from the prod and the union constructions in that
individual fields are specified by type-producing expressions instead of signatures. It is
written as:

record {name1: type expression1; . . .; namen: type expressionn}

Each type expressioni must have a signature that includes New, V, and :=, with their
standard signatures, so that the corresponding field might be treated ‘as a variable’.

• enum
Builds enumeration types, i.e. finite scalar types with named elements. The syntax is

enum {name1, . . . ,namen}

The type that a call to enum returns provides the functionality of the analogous Pascal
scalar types.
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• extend
Creates a copy of an exisiting type. The copy possesses two more functions, with

respect to the original. They are named In and Out, and provide conversion from the
original type to the new one and vice versa.

The syntax is:

extend {type expression}

The extend type constructor is frequently used in combination with the with and/or
export/hide type modifiers.

Type modifiers

• with
Adds operations to, or replaces operations in, (a copy of) an existing type. The syntax

is
old− type epression with local type name

{ new operation declarations }

The local name is optional, and may be used to refer to newly introduced components
(including self-referencing, i.e. recursive function definitions), or old components which
have not been replaced. (All old components are accessible by selecting from the old-type
name.)

• hide / export
Remove specified/unmentioned operations from (a copy of) an existing type. The

syntax for hide is:

type expression hide local type name
{hide element; . . . ; hide element}

and similarly for export. Try rhelp exp_hide for details.

Examples

We conclude with some examples.

• Example 1
The following is the factorial function we saw before, modified to compute results of

essentially unbounded size, and embedded in enough context to turn it into a complete
program:

let

! == func [n: val Short ] {

if

n > 0 ==> Long$In[n] * ((n-1)!)

# n = 0 ==> Long$1

fi

};

x == Short$New[ ];

in

do (put["Factorial of?"]; x := get[FS]) >= 0

==> put[x!]; put["\n"]

od

ni
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The program will calculate factorials until it is given a negative input. Note that
the do . . . od construct in Russell can be used to simulate a number of other loop
constructs, including a repeat . . . until loop, by moving more of the loop body into
the guard.14

• Example 2

This, and the following example, illustrate the use of functions as objects to be ma-
nipulated by the program.

Certain operations are naturally viewed as mapping functions to functions. Many
programming languages force us to modify this view, and to recast them in a different
framework. Russell allows them to be represented directly.

Here we look at (a naive view of) numerical differentiation. We give a function
derivative which returns an approximation to the derivative of a given function. We
illustrate its use by embedding it in a program which uses it to multiply 13 by 2, the hard
way:

let

epsilon == 0.0001;

derivative ==

func [f: func [val Float] val Float] {

func [x: val Float] val Float {

(f[x] - f[x-epsilon])/epsilon

}

};

square == func [x: val Float] {x*x};

double == derivative[square]

in

put[double[13.0]]; put["\n"];

ni

• Example 3

The last illustration is an unusual implementation of binary trees. The following is
a function which expects a type, describing values, stored at leaves as an argument, and
produces a type of binary trees as its result. The result type contains functions to obtain
the left or right subtree of a given tree, to obtain the value stored at a leaf, to build a leaf
containing a given value, to combine two subtrees into a new tree, and to inquire whether
a tree consists solely of a leaf. (The latter is provided directly by the union construction
and not explicitly implemented.)

A non-leaf tree could be represented as an explicit prod or record type. We instead
use a function which maps {lft,rgt} to the left and right subtrees:

func [L: type {}] {

let

lr == enum {lft,rgt};

in use lr in

union B {leaf: val L; interior: func [val lr] val B}

with B {

lft_subtr == func [x: val B] {B$to_interior[x][lft]};

rgt_subtr == func [x: val B] {B$to_interior[x][rgt]};

14This is (intentionally) not true of Dijkstra’s original version of the construct.
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leaf_value == B$to_leaf;

make_leaf == B$from_leaf;

make_tree == func [l,r: val B] val B {

B$from_interior [

func [x: val lr] {

if x = lft ==> l

# x = rgt ==> r

fi

}

]

}

}

export {New; :=; V; is_leaf; lft_subtr; rgt_subtr;

leaf_value; make_leaf; make_tree}

ni ni

}

Other Facilities

The implementation also provides facilities for limited separate compilation of both
Russell and non-Russell program segments (rhelp extern). Limited direct access to
operating system facilities is also provided (eof, argc, argv).
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Appendix: Available On-line Help

The following help files are available through the rhelp facility.

abort

Function to ungracefully terminate execution

alias

Function to test whether two variables refer to the same location

applications

Function calls

arg_c_v

Access command line arguments

Array

Function for constructing array types

Boolean

Built-in type

Callcc

Call with current continuation

cand_cor

Partial evaluation of and/or functions

ChStr

Built-in character string type

compiling

How to invoke the compiler

do

The Russell loop construct

enum

Enumeration type constructor

eof

Test for end of file on the standard input

exp_hide

Removing components from types

Expand_Hp

Fuction to expand heap

expressions

Types of expressions and how they’re parsed

extend

Building new types with conversion functions

extern

How to access separately compiled Russell and non-Russell programs

File

Built-in datatype to provide o.s. file manipulation
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Float

Built-in double precision floating point datatype

func

Function constructions

general

How to get started; also printed if no arguments are given

identifiers

Lexical rules

if

Russell conditionals, both guarded command and conventional

import_rule

Restriction on the use of global variables in functions

inference

Acceptable abbreviations

initialization

Definition of (names in) the global environment

intro

A copy of this introduction

let

Blocks and declarations

limits

Limits imposed by the compiler

List, LList
Functions for producing linear list types

Long

Unlimited size integers (bignums)

problems

Common problems

prod

Product type constructor

record

Record type constructor

Ref

Function for producing pointer types

selections

Accessing a component of a type

Short

The built-in 16 bit integer datatype

Signal

Utilization of UNIX signals
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signatures

Brief description and syntax

strings

The unorthodox treatment of character strings and numeric constants

trace

Some simple debugging facilities

union

The type constructor

Void

The built-in type and the objects, related to it: Null, FS, impure

with

Adding operations to types
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