ISETL: A Programming Language for Learning Mathematics

Ed Dubinsky
Purdue University
In honor of Jack Schwartz on his 65" birthday.

1 Historical Introduction

It was back in 1969, at a functional analysis conference at the Indian Institute of Technology
in Kanpur, India that I first heard about SETL from Jack Schwartz. It sounded fascinating,
but I was not moved to look into it any further until a dozen years later when Jack was helping
me get started with a training program for mathematicians who wanted to learn how to teach
computer science (the IFRICS project). I wanted to find out more about SETL and he gave me
a copy of an internal, unpublished report on the language. In that report I noted the following
sentence.

The [mathematical] knowledge assumed [for programming in SETL] is roughly equiv-
alent to that which would be acquired in a freshman-level course in Discrete Mathe-
matics.

What struck me about that sentence is the mismatch between the really large number of
people who are willing and able to learn to program, even in a complicated language, and the
much smaller group who are successful at assimilating even the most elementary concepts in
discrete mathematics. Jack was referring to things like sets, sequences, functions (as algorithms
or sets of ordered pairs), propositional and predicate logic. These are all topics that a successful
SETL programmer knows. They are also concepts which give much trouble to students in
mathematics courses.

The point is not trivial, because it was Jack’s intention to base a programming language on
fundemental concepts of mathematics. He felt that if one based the design of a language on
finite sets and functions on them in a manner that was true to the mathematics involved, then
the language would develop into something that could express the most complex mathematical
relationships in a manner that added little or no difficulty to what was already contained in the
mathematics. As we will see, he was not only right about that (as witness the accomplishments
of SETL), but he also produced a unique and potentially effective pedagogical tool.

A language constructed on a mathematical foundation is sure to be a powerful problem solving
tool — for those who can handle the mathematics. What, I wondered in 1981, about the others?
If SETL programmers need to be reasonably facile in working with complex mathematics, does
that not restrict access to this beautiful and expressive programming language?

Not as much as you would think. As I observed the world of computer science in the 1980s, it
seemed to me that there were quite a few people who could use programming features based on
design principles of which they were not necessarily aware. Suppose these programmers tried to
pay attention to the design principles? Or were they learning things without explicitly focussing
on these principles? I wondered if Pascal programmers got better at using the problem solving
method of “divide and conquer”, if Prolog programmers became good at logic, or if functional

programmers deepened their understanding of composition of functions. Whether or not this
happened spontaneously, suppose instruction in mathematics made use of the mathematical
foundations of a programming language? It occured to me that one could reverse Jack’s point.
One could set students the task of learning to program in SETL and then see if it was any easier
for them to learn about the algebra of sets, existential and universal quantification, and the
construction and manipulation of functions.

I decided to pursue this thought and the result has been very gratifying. I think it is fair to
say that there is today, in the field of post-secondary mathematics, a collection of individuals,
a number of projects and a body of published work involved with having students learn mathe-
matics by writing programs in what has been come to be known as a mathematical programming
language. Since Jack Schwartz’ first observation of the relationship between SETL and some im-
portant topics in mathematics, there has developed, in the last 10 years: an educational variant
of SETL, called ISETL, research papers in undergraduate mathematics education, textbooks,
course development, NSF grants, a network of ISETL users, and a network of faculty imple-
menting courses based on ISETL. ISETL has become a well known language in mathematics
education circles in the US and abroad.

Using SETL to help student learn mathematics

I began in 1981 with SETL in a course on discrete mathematics. As time went on, there were
developments, both in the language itself and in ideas on how to use it, generated by a growing
number of students and faculty who were trying something different in mathematics education.

Learning mathematics by learning SETL syntax

From the beginning, it seemed that just learning SETL syntax helped students develop math-
ematical concepts. At a very elementary level students wrote code that performed operations
on integers, floating point numbers and boolean values. This seemed to make them more com-
fortable with the general notion of operations on mathematical objects and new operations, for
example modular arithmetic, came fairly easily.

A little more sophisticated, the SETL syntax for sets and tuples of numbers and the different
properties of these objects helped students think about more than one number at a time and
the different ways in which collections of numbers could be structured.

Learning the syntax for procedures in SETL (and later, funcs in ISETL) and using these
programming structures to represent specific functions visibly enrichened students’ repertoires
of examples of functions. (See Breidenbach, Dubinsky, Hawks, and Nichols, 1992 for some
details.) Moving over to (finite) sets of ordered pairs and learning the syntax for evaluating a
function — which is identical to the syntax for functions defined as procedures — led to students
beginning to develop understandings of functions that went beyond what most people see when
teaching these topics.

The effect was striking and it led those of us who were observing it to wonder about the
mechanism by which student learning appeared to be improving.

Making the abstract more concrete

Our first thoughts were that students had a lot of trouble with mathematical ideas that were
abstract in the sense that they were not tied to what we can access through our senses. If you
write down a set former such as the following,

{x:$€{2,3,...,100}|(/§y6{2,3,...,x—1}9xm0dy:0)}

a mathematician will mentally convert the symbols to a structured collection of mathematical
objects and relations to conclude that this expression calculates the set of primes less than
100. Beginning students will not find that so easy and will treat the expression as a somewhat
mysterious collection of symbols. This seems to be the case even for students who know what
the symbols represent individually and understand each relationship.

The trouble seems to be that this expression is abstract in the the sense of not being tied to
concrete knowledge of the student. We observe that the situation is much improved if students
are asked to represent the same set in ISETL syntax. It looks like this.

{x : x in {2..100} | (not exists y in {2,3..x-1} | x .mod y = 0)}

The fact that this syntax is so close to the mathematical notation not only makes the in-
structor happy, but also minimizes the programming overhead for students.

It seems that writing and running such expressions helps students understand the mathemat-
ics in that it becomes more concrete in the students’ mind. That is, the student can imagine
what is going on inside the computer as a statement such as this is processed and often, what
is going on inside the computer can be described in ways that are close to what we would like
to be going on inside the minds of our students.

But there is more to it than that and we have tried to increase our understanding of what
goes on in people’s minds when they learn mathematics or when they try but do not succeed
in learning. We have been doing this, not just to satisfy our curiosity about why SETL (and
ISETL) are so helpful for students trying to learn mathematics. We also believe that the more we
learn about this mechanism, the more powerful kinds of instruction can be designed to facilitate
it.

Mental constructions to learn mathematics

In parallel with the development of ways of using programming to help students learn math-
ematics, we have been working on a theory of learning which informs all of our pedagogical
strategies. We will say a little more about this theory later in the paper but, basically, it has
led us to study specific mental constructions that can be useful in learning mathematics. The
application of this theory consists of designing instruction so as to foster students’ making thse
constructions. Often these constructions can be fostered by writing computer code.

Thus, if we wish students to think of functions as input/output processes, then writing a
computer program to implement functions can have a salutory effect. Consider, for example,
the classical calculus problem concerned with taking a rectangle of length [and width w and
cutting out equal squares from each corner to make a box. The usual problem is to maximize the
volume. However, for many students, the difficulty is to see, in this static situation, a function

which transforms the side s of the chosen square to a volume V. Pictures might help with this
but our theory predicts that students’ ability to think in terms of such a function is greatly
enhanced if they are asked to write a computer program which accepts s and returns V. Such
a program is very simple, of course:

V := func(s);
return s*x(1-2*s)*(w-2%*s);
end;

We find that students are helped even in such elementary cases, but the real payoff comes in
situations such as piece-wise continuous functions and functions defined by integrals.

Often in mathematics, it is necessary to think about a function as an object which can be
manipulated. This object interpretation can be very difficult for students and we will discuss
in some detail below how a programming language can be used to help students develop the
ability to interpret functions as objects. For now, consider the following example of a func in
I[SETL which accepts any computer representation of a function £ and returns a function which
approximates its derivative.

df := func(f);
return func(x);
return (f(x+ 0.000001) - f(x))/0.000001;
end;
end;

We shall discuss further in the sequel how writing programs such as this one can help students
develop the ability to to think of functions as objects.

ISETL vs. programming

All of the programming examples we give in this paper are in ISETL. As described below,
our educational activities began with SETL and our work led to the development of ISETL.
Within the world of mathematics education, some people think of those of us involved with
these projects as “ISETL people”. This is not strictly accurate. There are certain features
a programming language must have in order to be considered a mathematical programming
language. Our position is that any language which enjoys the following properties is, more or
less, a mathematical programming language.

e The syntax is reasonably close to one or another standard mathematical notation system.
It should be possible to write code so that items not necessary to the mathematics involved
occur only rarely.

e Certain mathematical features are supported together with their usual mathematical prop-
erties. This includes finite sets and finite sequences with elements from any data types
(including themselves), logical connectives and quantifiers, functions as procedures and as
sets of ordered pairs, relations as sets of ordered pairs.

e All data types are first class objects in the sense that they can appear in any expression
provided that it makes mathematical sense. In particular, sets and sequences can contain
elements of different data types and procedures can be inputs and outputs to procedures.

I[SETL has all of these features to a very high degree and I don’t know of any other language
that does so nearly as well. SETL of course comes closest, but in SETL, procedures are not first
class objects. The computer algebra system MAPLE has a programming language component
which, in recent versions, has acquired some of these features and a significant amount of what
is done with ISETL can be done with MAPLE V. I have no doubt that this amount will increase
with future enhancements of MAPLE.

The main point to be made is that the ideas expressed in this paper can be implemented
with any mathematical programming language. It is only a temporary fact that ISETL is the
closest to our ideal and hence for the time being, almost all of the examples are in ISETL.
But it is our intention that the ideas involved should transcend any particular programming
language. Our debt to Jack Schwartz is that he produced the first example — SETL — which
supported educational work that has led and will lead to continued development of mathematical
programming languages.

Overview of the movement

Here is a very rough chronology of the development of the movement to use ISETL in mathe-
matics education.

1981-1985. First steps of using SETL informally in individual courses in discrete mathematics
and abstract algebra at Clarkson University.

1985-86. Discussions with Gary Levin who developed ISETL version 1.0.

1986. First working version, ISETL 1.0 used in discrete math and abstract algebra courses at
Berkeley and Clarkson.

1988 First ISETL-based textbook, Learning Discrete Mathematics with ISETL, written by
Nancy Baxter, Ed Dubinsky and Gary Levin, published by Springer-Verlag.

1988. First NSF grant received for research and development of an ISETL-based course in
Calculus. This project has received continuing and substantial support from NSF and is
currently funded through 1996.

1990. Completion by Gary Levin of ISETL version 3.0 with interactive editing, formatted
printing and the removal of many errors in earlier versions.

1991 Beginning three-year NSF funding for research and development of an [SE'TL-based course
in Abstract Algebra.

1992 Publication of an ISETL-based textbook, Calculus, Concepts, and Computers by Ed Du-
binsky and Keith Schwingendorf, published by West Educational Publishing.

1992. First summer workshop (17 days) for faculty to learn how to use ISETL-based approach
to teaching calculus. These workshops have continued every summer since and are funded
through 1996.

1992 Publication of an ISETL user’s manual ISETL: A Language for Learning Mathematics by
Jennie Dautermann, published by West Educational Publishing.

1993 Publication of an ISETL-based textbook, Learning Abstract Algebra with ISETL, written
by Ed Dubinsky and Uri Leron, published by Springer-Verlag.

1994. First summer workshop (10 days) for faculty to learn how to use ISETL-based approach
to teaching abstract algebra. This workshop is scheduled to run again in 1995.

Networks have been set up for ISETL users, implementers of the calculus course and imple-
menters of the abstract algebra course. As of early 1995 it is estimated that more than 100
teachers in over 75 colleges (and a few high schools) throughout the world are using ISETL in
one or more mathematics courses, involving a few thousand students.

It is fair to say that in this 15-year period, ISETL has become an established feature of
undergraduate mathematics education. It has not become what one might call “widespread”, but
it is known and respected, especially among those who are engaged in postsecondary curriculum
reform in mathematics.

SETL and ISETL

When people first worked with SETL, the emphasis was on expressive power and functionality.
The most important goal was that very complex programs could be written relatively quickly
and easily, essentially by stating the required relationships in mathematical language. It was
suggested that the paradigm under which SETL worked was that the “statement of the problem
is the program”. There was less concern with speed and one heard it said about a complex SETL
program that, “If it moves, it’s fast enough.” Later, there was some concern with efficiency and
the Data Representational Sublanguage (Dubinsky, Freudenberger, Schonberg, and Schwartz,
1989) was designed to help make programs written in SETL run faster and more efficiently.

The initial reactions of students who used SETL in the first courses was that it helped
considerably. But there were properties of SETL that made it clear that its use in education for
beginning mathematics courses would be highly limited. Indeed, it was the early indications of
the educational potential of such a language that provided the impetus for designing a variation
of SETL focussed on educational uses.

The main problematic features of SETL in 1985 were:

e SETL is very large and is not useable on the small personal computers just beginning to
become popular in academia.

e SETL is slow.

e SETL is a compiled language and it was necessary to operate in batch mode.

e SETL has many complex features that are not essential for educational purposes.
e Functions are not first class objects in SETL.

In summer 1985, I began conversations with Gary Levin about the possibility of developing
an interactive version of SETL that would eliminate these problems and be more appropriate
for educational uses. Discussions continued throughout the Fall and by January, 1986 we had
agreed on specifications and Gary began to work on what would become (with the agreement
of Jack Schwartz) ISETL. By April, 1986 Levin had produced a version which ran but with

a multitude of errors and just before the semester ended it had proceeded far enough that I
could show it to my discrete mathematics class where the students had been using SETL. By
Fall of 1988, ISETL version 1.0 was sufficiently stable that I could use it in courses on discrete
mathematics and abstract algebra.

Following are the main features of ISETL that distinguish it from SETL.

e Although most of the syntax is identical to SETL, some features of SETL are not imple-
mented in ISETL.

e ISETL is interactive and response is quick.

e [SETL runs on PCs under MS-DOS, Macintosh and SUN Workstations.
e ISETL is under 250K so that it does not require very large computers.
e In ISETL, functions are first class objects.

It is worth noting that although Gary Levin retains ownership of ISETL, it is available free
to anyone who requests it. A disk is distributed with the several textbooks and manuals that
have been published. Copies can be obtained, for example, from the author.

2 Learning Theory and ISETL

Before discussing our theory of learning we must first describe a paradigm for combining this
theory with empirical investigations and development of instructional approaches. Then we
will discuss the theory in somewhat general terms. Finally, in describing the nature of mental
constructions involved we will try to indicate how the theory fits with learning mathemtics.

A paradigm for research and curriculum developent

The paradigm which is used in our investigations is a repeated traversal of a circle of activities
that can be illustrated as in Figure 1.

Figure 1: Paradigm for research and curriculum development

Investigation of a particular topic begins with a theoretical analysis based on a general the-
ory of learning (which I will discuss in the next paragraph), the researchers’ own knowledge of
the mathematics involved, and any informal observations of students, for example, in teaching

the material in a traditional way. The purpose of this analysis is to propose, in a preliminary
and tentative manner, a genetic decomposition of the concept in question. That amounts to
suggesting specific mental constructions which a student can make in order to learn the con-
cept. The next step is to design and implement instruction aimed at getting students to make
the proposed mental constructions. As the students are experiencing this instruction, data is
collected in several different ways, using both quantitative and qualitative methods of gathering
information.

The final step in the traversal is to coordinate the empirical data obtained with the theoretical
analysis. This means, on one hand, that the theoretical analysis suggests questions to ask of the
data: to wit, does it appear that the proposed mental constructions were made by students?
Focusing the analysis of data in this way can help the researcher deal with a huge amount of
information meaningfully, but far from exhaustively. Indeed we have very often used the same
data more than once in studies differentiated by the questions to which a theoretical analysis
points us.

On the other hand, it sometimes occurs that the mental constructions students appear to be
making are different from what has been proposed. One possible reaction to this is to reconsider
one or more aspects of the theoretical analysis.

To summarize, the theoretical analysis drives the instruction which creates the data. The
theoretical analysis directs the analysis of data and is simultaneously subject to revision as a
result of this data analysis. This circle of activity is then repeated with the (possibly new)
theoretical analysis. It is repeated as often as appears necessary to understand the epistemology
of the particular topic.

If things work properly, then learning should improve in a natural way as result of instruction
that relates to how the students can learn the concept or concepts.

In the remaining paragraphs of this section I will sketch the general theory in its present
stage of development and describe the nature of mental constructions that the theory proposes
along with some examples.

Mathematical knowledge and its acquisition

Our theory begins with a statement of what it means to learn and know something in mathe-
matics.

An individual’s mathematical knowledge is her or his tendency to respond to mathe-
matical problem situations by reflecting on them in a social context and constructing
or reconstructing mathematical actions, processes and objects and organizing these in
schemas to use in dealing with the situations.

There is, in this statement, references to a number of aspects of learning and knowing. For
one thing, the statement acknowleges that what a person knows and is capable of doing is not
necessarily available to her or him at a given moment and in a given situation. All of us who
have taught (or studied) are familiar with the phenomenon of a student missing a question
completely on an exam and then really knowing the answer right after, without looking it up.
A related phenomenon is to be unable to deal with a mathematical situation but, after the
slightest suggestion from a colleague or teacher, it all comes running back to your consciousness.

Thus, in the problem of knowing, there are two issues: learning a concept and accessing it when
needed.

Reflection is an important part of both learning and knowing. Mathematics in particular
is full of techniques and algorithms to use in dealing with situations. Many people can learn
these quite well and use them to do things in mathematics. But understanding mathematics
goes beyond the ability to perform calculations, no matter how sophisticated. It is necessary
to be aware of how these procedures go, to get a feel for the result without actually performing
all the calculations, to be able to work with variations of a single algorithm and to understand
relationships among algorithms.

It is a controversial point, but this theory takes the position that reflection is best performed
in a social context. There is evidence in the literature (Vidakovic, 1993) for the value to students
of social interaction and there is also the cultural fact that almost all research mathematicians
feel very strongly the need for interactions with colleagues before, during, and after creative
work in mathematics.

This theory asserts that “possessing” knowledge consists in a tendency to make mental con-
structions that are used in dealing with a problem situation. Often the construction amounts to
reconstructing (or remembering) something previously built so as to repeat a previous method.
But progress in the development of mathematical knowledge comes from making a reconstruc-
tion in a situation similar to, but different in important ways from, a problem previously dealt
with. Then the reconstruction is not exactly the same as what existed previously, and may in
fact contain one or more advances to a more sophisticated level. This whole notion is related to
the well known Piagetian dichotomy of assimilation and accomodation. (Piaget, 1992)

Finally, the question arises of what is constructed, or what is the nature of the constructions
and the ways in which they are made? It is when we talk about this that our theoretical perspec-
tive, which may appear applicable to any subject whatsoever, becomes specific to mathematics.
We will deal with this question in the next paragraph.

Mental constructions for learning mathematics

As indicated in Figure 2, understanding a mathematical concept begins with manipulating
previously constructed mental or physical objects to form actions; actions are then interiorized
to form processes which are then encapsulated to form objects. Objects can be de-encapsulated
back to the processes from which they were formed. Finally, processes and objects can be
organized in schemas.

Action. A transformation is considered to be an action when it is a reaction to stimuli which
the subject perceives as external. This means that the individual requires complete and
understandable instructions giving precise details on steps to take in connection with the
concept.

For example, a student who is unable to interpret a situation as a function unless he or
she is given a (single) formula for computing values is restricted to an action concept of
function. In such a case, the student is unable to do very much with this function except
to evaluate it at specific points and to manipulate the formula. For example, functions
with split domains, inverses of functions, composition of functions, sets of functions and

Figure 2: Constructions for mathematical knowledge

the notion that the derivative of a funtion is a function, or the solution of a differential
equation is a function are all sources of great difficulty for students.

Another example of an action conception comes from the notion of a (left or right) coset of
a group in abstract algebra. Consider, for example, the modular group [Zs, +20] — that
is, the integers {0,1,2...,19} with the operation of addition mod 20 — and the subgroup
H = {0,4,8,12,16} of multiples of 4. Tt is not very difficult for students to work with a
coset such as 2+ H = {2,6, 10, 14, 18} because it is formed either by a listing of the elements
according to some rule (“begin with 2 and add 4”) or an explicit condition such as, “the
remainder on division by 4 is 2”7. This is an action conception. Something more is required
to work with cosets in a group such as §,,, the group of all permutations on n objects where
simple formulas are not available. Even in the more elementary situation of Z, students
will have difficulty in reasoning about cosets (such as counting them, comparing them, etc.)

According to this theory, all of these difficulties are related to students’ inability to interi-
orize these actions to processes, or encapsulate the processes to objects.

Although an action conception is very limited, it is an important part of the beginning of
understanding a concept. Therefore, instruction should begin with activities designed to
help students construct actions.

Process. When an individual reflects on an action scheme and interiorizes it then the action

can become perceived as a part of the individual and he or she can establish control over
it.
In the case of functions, a process conception allows the subject to think of a function
as receiving one or more inputs, or values of independent variables, performing one or
more operations on the inputs and returning the results as outputs or values of dependent
variables. In this conception it is not necessary to explicitly perform the operations; it is
enough to imagine them in greater or less detail.

Thus, with a process conception of function, an individual can compose two or more pro-
cesses to construct the composition, or reverse the process to obtain inverse functions.

Object. When an individual reflects on operations applied to a particular process, becomes
aware of the process as a totality, realizes that transformations (whether they be actions

10

or processes) can act on it, and is able to actually construct such transformations, then he
or she is thinking of this process as an object.

In the course of performing an action or process on an object, it is often necessary to de-
encapsulate the object back to the process from which it came in order to use its properties
in manipulating it.

For example, given an element x and a subgroup H of a group G, if an individual thinks
generally of the (left) coset of x modulo H as a process of operating with x on each
element of H, then this process can be encapsulated to an object xH. Then actions on
cosets of H, such as counting their number, comparing their cardinality, and checking their
intersections can make sense to the individual. Thinking about the problem of investigating
such properties involves the interpretation of cosets as objects whereas the actual finding
out requires that these objects be de-encapsulated in the invidual’s mind so as to make
use of the properties of the processes from which these objects came (certain kinds of set
formation in this case.)

It is easy to see how encapsulation of processes and de-encapsulating them back to objects
arises when one is thinking about manipulations of functions such as adding, multiplying,
or just forming sets of functions.

In general, encapsulating processes to become objects is considered to be extremely difficult
(Sfard, 1987) and not very many pedagogical strategies have been effective in helping
students do this in situations such as functions or cosets. A part of the reason is that
there is very little in our experience that corresponds to performing actions on what are
interpreted as processes.

Schema. Once constructed, objects and proccesses can be interconnected in various ways: for

3

example, two or more processes may be coordinated by linking them through composition
or in other ways; processes and objects are related by virtue of the fact that the former
acts on the latter. A collection of processes and objects can be organized in a structured
manner to form a schema. Shemas themselves can be treated as objects and included in
the organization of “higher level” schemas.

For example, sets and binary operations are linked to form pairs which may or may not
satisfy certain properties. All of this can be organized to construct the schema for group.
Groups and rings and other such mathematical objects might be organized in a schema
called algebraic structures.

Examples of ISETL in mathematics education

We will organize our examples around the three kinds of mental constructions described in the

previous section: actions, processes and objects. At the same time, we will try to indicate,

in these examples, some of the features of full instructional treatments of various topics in

undergraduate mathematics. These will include mathematical induction, predicate calculus, the

fundemental theorem of calculus, sequences and series, binary operations, cosets and quotient

groups.

11

At the end of this section we will give a very brief description of how the work with ISETL is
integrated into a standard undergraduate mathematics course. We do this through a pedagogical
structure called the ACE Teaching Cycle.

Programming to make mental constructions

Note that actions require objects, objects require processes, and processes require actions so
there is a certain circularity or spiral aspect to these considerations.

Actions

Following is a set of [SETL instructions as they would appear on the screen followed by the
computer’s response. It is taken from the first pages of the textbook used in the calculus project.
(Dubinsky, Schwingendorf, and Mathews, 1995.) The > symbol is the ISETL prompt and lines
which begin with this symbol or >>. which indicates incomplete input, are entered by the user.
Lines without these prompts are what the computer prints on the screen.

12

> T7+18;
25;

> 13%(233.8);
-3.03940e+003;

> 5=2.0 + 3;
true;

> 4 >= 2 + 3;
false;

> 17

> + 23.7 - 46
> *2;

>
-5.1300e+001;
> x = -23/27;
> X
-6.21622e-001;

> 27/36;
7.50000e-001;

> p := [3,-2]; q := [1,4.5]; r := [0.5,-2,-3];
> pP; q; T;

[3, -21;

[1, 4.50000e+000];

[5.00000e-001, -2, -3];

> p(1); p(2); q(2); r(3); 3;
-2;

4.50000e+000;

-3;

p(L*q(1) + p(2)xq(2);
-6.00000e+000;

> length := 0;

> for i in [1..3] do

> length := length + r(i)**2;
> end;

> length := sqrt(length);

> length;

3.64005e+000;

Students are asked to do these exercises for the purpose of becoming familiar with the syntax
of ISETL, but at the same time, there are several mathematical concepts which they have an
opportunity to construct at the action level. For example, there are simple propositions, the

13

formation of pairs and triples of numbers and the action of picking out an indexed term of a
given sequence. Also the concept of dot product appears as an action. Finally, the algorithm
for computing the length of a vector in three dimensions appears as an action because the
calculation is explicit and is applied to a single vector.

Following are some examples from the first pages our textbook for an Abstract Algebra course
(Dubinsky and Leron, 1994.) Students are asked to guess what will happen when this code is
run, run it, and then explain discrepancies between their predictions and the results.

> A := "Abstract Algebra";
> AC1);

"AH;

> A(4); AQ9);

Ht";

n o on.
I

> A(11); A(6); A(10);

Hl";

"aﬂ;

"AH;

> is_string(A); is_string(A(6));
true;

true;

> A = A(10);

false;

> B := "ABSTRACT"; C := "AB" + "STRACT";
> B =C;

true;

> HBH in "ABSH; "b" in HABS";
true;

false;

> (2/=3) and ((5.2/3.1) > 0.9);

> (3 <= 3) impl (3 = 2 +1);

> (3 <= 3) impl (not (3 =2 +1));
> (3 > 3) impl (3 = 2 +1);

> (83 > 3) impl (not (3 = 2 +1));

> 7 mod 4; 11 mod 4; -1 mod 4;

> (23 + 17) mod 3;

> X :=4; y 1= 2;

> if (x + y) mod 6 = 0 then

> ans := "Additive Inverses!";
> end;

> ans;

Here we have simple string operations which the students can understand as actions, ele-
mentary operations on propositions, tests and choices among alternatives based on modular

14

arithmetic, and more string operations. The fact that everything is very explicit and tied to
single examples makes it likely that students will construct their understandings of these various
activities as actions. Although actions are the most primitive kind of mental constructions, the
computer allows students to construct them in more advanced mathematical situations than is
possible with pencil and paper.

Processes

Consider now the following list of pairs G, op of sets and operations.

1. G is Z12 (the integers mod 12) and op is a12 (addition mod 12).

2. G is Z12 (the integers mod 12) and op is m12 (multiplication mod 12).

w

. G is 2212 (the even integers mod 12) and op is m12.

W

. Gis 212 - {0} and op is m12.

5. G is Z5 (the integers mod 5) and op is m5 (multiplication mod 5).

(=}

. Gis Z5 - {0} and op is m5.

\]

. G is S3 (the set of permutations of {1,2,3}) and op is composition of permutations.

Initially, students are asked merely to express them in ISETL. Writing such code helps the
students to construct the idea of a binary operation as an action, although, in order to make
sense of the problem, each individual set and operation must be seen as a process which has
been encapsulated as an object.

In our abstract algebra course the student meets this list just after having written some short
programs to check various operations such as closure. Applying these programs to the individual
pairs and thinking about what ISETL does, for example, in running the code

is_closed(S12, A12);

where the following ISETL definitions have been made previously,

Z12 :
al2 :

0..11;
| x,y => (x+y) mod 12];

is_closed := func(S,op);
return forall x,y in S | x .op y in S;
end;

and thinking about what the computer is doing when running this code, helps the student move
from action to process.

15

The student writes little programs like this for each of the standard properties of binary
operations and applies them to long lists of examples. In this way, each of these properties is
constructed by the student as a process in her or his mind. It is a process and not just an action
because it is not specific code applicable to just one example, but rather a computer function
(called func in ISETL) that can take an arbitrary set and binary operation as input and return
the truth value of the assertion that the binary operation possesses the property.

This can be done for more advanced ideas as well. For example, the student might write
the following code in dealing with cosets of a subgroup of S, the group of permutations of four
objects.

S4

{la,b,c,d] : a,b,c,d in [1..4] | #{a,b,c,d} = 4};

op := func(p,q); return [p(q(i)) : i in [1..4]1];
H := {[1,2,3,4], [2,1,4,3, [3,4,1,2], [4,3,2,1]};

x := [2,1,3,4];
xH := {x .op y | y in H};

xH;

Hx := {y .op x | y in H};
Hx;

xH = Hx;

The result of running this code is to display the left and right cosets of x mod H and the
truth value of the proposition that these two sets are equal. Again, writing and running this
code helps students understand cosets as processes of multiplying a single element by every
element of a given set, because the computer work has gotten them to make formation of a coset
a mental process that exists in their minds.

The method is applicable a wide variety of mathematical situations. For example, in calculus,
students overcome their resistance to piece-wise defined functions when they write programs in
which the definition is implemented through the simple use of a conditional.

f := func(x);
if x <= 1 then return 2-x**2;
else return x/2 + 1.5;
end;
end;

Working with pointwise sums, products and even compositions of such functions helps stu-
dents construct a process conception of function. Research suggests that this can make a differ-
ence (Breidenbach et al, 1992.)

Finally we might mention the example of proposition-valued function of the positive integers.
Our research suggests that one of the difficulties students have with proof by induction is at the
very beginning. A student is faced with a problem: show that a certain statement involving an
arbitrary integer is true for all (sufficiently large) values of the integer. This kind of problem
is very new and different for most students. It really is a (mental) function which accepts a
positive integer and plugs it into the statement to obtain a proposition which may be true or

16

false — and the answer could be different for different values of n. Once again, expressing this
problem as an ISETL func is a big help for students in figuring out how to begin.

Suppose, for example, that the problem is to determine if a gambling casino with only $300
and $500 chips can honor any amount of money within the nearest $100. We encourage students
to begin their investigation by writing a computer program that accepts a positive integer and
returns a boolean value. Following is one solution they generally come up with in our elementary
discrete mathematics course.

P := func(n);
if is_integer(n)
and n > 0
and exists x,y in [0..n/3] | 3*x + bxy = n;
then return true;
else reurn false;
end;
end;

Objects

Objects are obtained by encapsulation of processes and an individual is likely to do this when
he or she reflects on a situation in which it is necessary to apply an action to a dynamic
process. This presents a difficulty because the action cannot be applied to the process until
after the process has been encapsulated to an object. In fact, mental constructions do not seem
to occur in simple logical sequences and so it can happen that the need to create an object
(in order to apply an action to a process), the encapsulation of a process to form the object,
and the application of an action to that object (which was the source of the need) all happen
together, initially in some amorphous combination with a gradual differentiation, reorganization
and integration culminating in the clear application of the action to the object.

Getting students to do all of this is another matter and there are very few effective pedagogical
methods here. As we have indicated, one such method is to put students in situations where
a problem is solved or a task is performed by writing programs in which the processes to be
encapsulated are inputs and/or outputs to the programs.

For example, forming a pair whose components are a set and a binary operation requires that
these components be interpreted as objects. When the student goes on to write a program (such
as is_closed) which accepts such a pair, checks a certain property for that pair and returns
true or false, then the pair is being treated as an object to which the process connected with
the property is applied. This leads to the mental act of encapsulating the binary pair into an
object. In the course of thinking about the process connected with the property (e.g., in writing
the program), this object is de-encapsulated back into a set and a binary operation, each of
which must in turn be de-encapsulated back to the processes from which they came.

A more complicated situation concerns the status of cosets, first as processes (discussed above)
and then as objects. This is important for many situations in the student’s first studies of group
theory. Counting cosets, comparing their cardinalities, thinking about their intersections are
essential components of Lagrange’s theorem and all of these mathematical activities require that
cosets be interpereted as objects. This is difficult for students and even more difficult is the idea
of defining a binary operation on cosets.

17

Our pedagogical strategy for helping students overcome the difficulty of encapsulating cosets
into objects is to ask them to write a program that accepts a binary operation pair [G,o] and
returns a function oo of two variables. These two variables can have values which are any of
the four combinations in which each variable is either an element of G or a subset of G. If both
are elements, then x .oo y is the ordinary group operation. If one is a subset and the other is
an element then x .oo y is the product of the element with all elements of the subset. If both
are subsets then x .oo y is the set of all products of two group elements, the first taken from
x and the second from y.

The solution to this problem is something like,

PR := funcG,o);
return func(x,y);
if x in G and y in G then return x .o y;
elseif x in G and y subset G then return {x .o b:b in y};
elseif x subset G and y in G then return {a .o y:a in x};
elseif x subset G and y subset G then return {a .o b:a in x, b in y};
end;
end;
end;
oo := PR{S4, o};
where the last line applies PR to the group of permutations of four objects.

Students find this problem very difficult although the reader will notice that the desired
program is not very long or subtle. As far as we can tell, from analyzing the problem and
talking to students, their difficulty seems to be that the whole thing makes no sense to them.
We think that is because they are not understanding that subsets of G can be objects. They
struggle with the problem, usually for about a week (while doing other things) in our abstract
algebra course and most of them eventually succeed with more or less help from instructors.
When it is over, we have found that understanding Lagrange’s theorem and quotient groups
becomes a reasonable expectation for students.

Two extremely important examples of construction of objects occur in Calculus in connection
with derivatives and integrals. Our research suggests that, although it is very simple for mathe-
maticians, the idea that the derivative of a function is a function is not immediate for students.
Writing a program like the following, which accepts a function and returns an approximation to
its derivative appears to help.

df := func(f);
return func(x);
return (f(x + 0.00001) - £(x))/0.00001;
end;
end;

Integration is more difficult. The idea of defining a function by using the definite integral
with one limit of integration fixed and the other allowed to vary is a major stumbling block for
calculus students. In our treatment of integration, students have written a program called Riem
which accepts a function and a pair of numbers and computes an approxiation to the integral of
the function over the interval determined by the points. The students are then asked to write
the following program.

18

Int := func(f,a,b);
return func(x);
if a <= x and x <= b then return Riem(f,a,x);
end;
end;

Using this program, students are able to construct and study approximations to the logarithm
function and inverse trigonometric functions.

In our treatment of mathematical induction, students learn to treat propositions as objects
and at the same develop an understanding of the “implication from n to n + 1”7 as the object
whose truth value as n varies is to be considered. The main tool that we use is to have them write
and apply the following program which accepts a function whose domain is the positive integers
and whose range is the two element set {true,false}. This program returns the corresponding
implication valued function. (The symbol § refers to a comment and anything after this symbol
on the line in which it appears is ignored by ISETL.

implfn := func(P); $ P is a proposition-valued function.
return func(n);
return P(n) impl P(n+1);
end;
end;

Schemas

Our use of ISETL to help students form schemas to organize collections of processes, objects,
and other schemas is at the time of this writing, somewhat ad hoc. Roughly speaking, we ask
students to write a set of computer programs that implements a mathematical concept and then
to apply their code to specific situations.

For example, over a period of time, students will write the following programs to check that a
subset is a subgroup and that it is normal. Then they write a program to construct the quotient
group of a group mod a normal subgroup. Their programs might look like the following.

19

subgrp := func(G, opl, H, op2);
return group(G,opl) and group(H,op2)
and (H subset G) and
forall x1,yl in G, x2,y2 in H |
(x1 .op y1) = (x2 .op2 y2);
end;

normal := func(G, opl, H, op2);
oo := PR(op1,G);
return subgrp(G, opl, H, op2) and
forall g in G | g .oo H=H .00 g;
end;

quotient := func(G, opl, H, op2);
oo := PR(op1,G);
if normal (G, opl, H, op2) then
return [{g .oo H : g in G}, oo];
end;
end;

Then, the following code will construct the quotient of a particular normal subgroup of Sj.
(Recall from above the definitions of S4, op, H.)

s4 := {[a,b,c,d] : a,b,c,d in [1..4] | #{a,b,c,d} = 4};

op := func(p,q); return [p(q(i)) : i in [1..4]1];

H := {[1,2,3,4], [2,1,4,3, [3,4,1,2], [4,3,2,1]};

subgrp(S4,op,H,op);
[3,2,4,1] .Pr(op) H;

[3,2,4,1] .Pr(op) H =H .Pr(op) [3,2,4,1];

normal (S4, op, H, op);
S4modH := quotient(S4, op, H, op);

S4modH;

The schema for the Fundemental Theorem of calculus requires much less code but it is
considerably more complicated. Having written the two funcs df to approximate the derivative
and Int to approximate the integral (see above), students are asked to write code that will first
do one and then the other, in both orders. This problem gives the students considerable difficulty

20

and they struggle with it for a long time. We feel that this is a useful struggle because it has
to do with their ability to interpret functions as objects, to develop processes corresponding to
differentiation and integration, and to put it all together in what is essentially a statement of
the Fundemental Theorem.

The actual code to solve this problem is very short:

df (Int(£f(a,b));

Int(df(f),a,b);

We ask students to apply their code to a specifc function and to construct a table with
four columns: values of the independent variable, corresponding values of £, and corresponding
values of the above two lines of code. When the example is a function that does not vanish at
a, then the second and third columns are identical, but the fourth is different. The students
see the point right away — all three columns are supposed to be the same, but they feel they
have made an error in connection with the last column. After some investigation, they tend to
discover on their own the idea of the “constant of integration”.

Sometimes we don’t ask students to write code but rather to investigate code which we pro-
vide. We do this in situations where the particular code involves more in the way of programming
issues than mathematical issues This is the case for code which simulates the operation of in-
duction. We give them the following code which makes use of the func implfn which they have
written (see above) and is applied to a proposition valued function P. The first few lines find a
starting point and the rest of the code runs through the induction steps. If the proposition does
hold from the selected starting point on, then the code will run forever.

start := 1;
while P(start) = false do
start := start + 1;
end;
L :=[];
L(start) := true;
while L(n) = true and implfn(P)(n) = true do
L(n+1) := true;
n := n+il;
print "The proposition P is true for n =", n;
end; print "P is not proven for n = ", n+i;

The ACE Teaching Cycle

We have found that our way of having students work with computers requires a different struc-
ture for the course. We have developed a standard structure called the ACE Teaching Cycle.
In this design, the course is broken up into sections, each of which runs for one week. During
the week, the class meets on some days in the computer lab and on other days in a regular
classroom in which there are no computers. Homework is completed outside of class. Usually,
we have the students working in cooperative groups in all of these activities.

Following is a description of the three components of this structure with some indications of
the pedagogical goals of each component.

21

Activities:

Class meets in a computer lab where students work in teams on computer tasks designed
to foster specific mental constructions suggested by research. The lab assignments are
generally too long to finish during the scheduled lab and students are expected to come to
the lab when it is open or work on their personal computers, or use other labs to complete
the assignment.

Class:

Class meets in a classroom where students again work in teams to perform paper and
pencil tasks based on the computer activities in the lab. The instructor leads inter-group
discussion designed to give students an opportunity to reflect on the calculations they have
been working on. On occasion, the instructor will provide definitions, explanations and
overviews to tie together what the students have been thinking about.

Exercises:

Relatively traditional exercises are assigned for students to work on in teams. These are
expected to be completed outside of class and lab and they represent homework that is in
addition to the lab assignments. The purpose of the exercises is for students to reinforce
the ideas they have constructed, to use the mathematics they they have learned and, on
occasion, to begin thinking about situations that will be studied later.

4 Conclusion

We have tried to show how Jack Schwartz’s original idea for, and development of, a programming
language based on mathematics, that is easy to program in, and is useful for solving major
problems in computer science, led to a variation that provides an educational tool of critical
value in one approach to designing instruction that relates to our understanding of how people
can learn mathematical concepts. The variety of mathematical situations in which this approach
can be used is indicated in the examples we have given from abstract algebra, calculus and
mathematical induction. Results of using this pedagogical strategy can be found in the literature.
The data suggests that this can be a very powerful way of helping students learn mathematical
concepts.

There are continuing efforts in the basic research into learning that is discussed in this paper
and the development of corresponding pedagogy using ISETL. The use of ISETL is firmly
established in mathematics education and we can hope that at the next festchrifft in honor of
Jack Schwartz we can report on widespread acceptance of this method.

22

REFERENCES

D. Breidenbach, E. Dubinsky, J. Hawks, and D. Nichols, Development of the process concep-
tion of function, Educational Studies in Mathematics, 23 (1992), 247-285.

E. Dubinsky, S. Freudenberger, E. Schonberg, and J.T. Schwartz, Reusability of design for
large software systems: An experiment with the ISETL optimizer, in Software Reusability I,
(T. Biggerstaff and A. Perlis, eds.), New York:ACM Press, Addison-Wesley, 1989, pp. 275-293.

E. Dubinsky and U. Leron, Learning Abstract Algebra with ISETL, New York:Springer-
Verlag, 1994.

E. Dubinsky, K. E. Schwingendorf, and D. M. Mathews, Calculus, Concepts and Com-
puters, 2nd edition, New York:McGraw-Hill, 1995.

J. Piaget, The principles of Genetic Epistemology (W. Mays trans.) London: Rout-
ledge& Kegan Paul, 1972. (Original published 1970).

A. Sfard, Two conceptions of mathematical notions, operational and structural, Proceedings
of the 11" Annual Conference of the International Group for the Psychology of Mathematics
Education, (A. Borbas, ed.) Montreal, (1987) 162-169.

D. Vidakovic, Differences between group and individual processes of construction of the con-
cept of inverse function, unpublished doctoral dissertation, Purdue University, 1993.

23

