

 Scientific conference with international participation STEMEDU-2022, Veliko Tarnovo 8

 STEMEDU-2022 Scientific conference with international participation Veliko Tarnovo, Bulgaria
S
T
E
M
E
D
U
-
2
0
2
2
S
c
i
e
n
t
i
f
i
c
c
o
n
f
e
r
e
n
c
e
w
i
t
h
i
n
t
e
r
n
a
t
i
o
n
a
l
p
a
r
t
i
c
i
p
a
t
i

ПРЕПОДАВАНЕ НА МАТЕМАТИКА

СЪС СОФТУЕРНОТО ИНЖЕНЕРСТВО

СЪВКУПНОСТ ОТ ЗНАНИЯ

[SWEBOK]

TEACHING MATHEMATICS WITH THE SOFTWARE

ENGINEERING BODY OF KNOWLEDGE

[SWEBOK]

Dr. T. V. Gopal

Professor

Department of Computer Science and Engineering

College of Engineering

Anna University

Chennai - 600 025, INDIA

E-mail: gopal@annauniv.edu, gopal.tadepalli@gmail.com

Abstract

 It is a fact that employability of the graduates and post-graduates in engineering disciplines does not explicitly

require any specific mathematical knowledge. It is unfortunate but true that even though Mathematics is the

foundation of computer science it is now being considered as a totally separate subject. The inclusion of topics

from Mathematics in the Computing Curricula all over the world has often times been very tough to justify.

Mathematical foundations any beyond the first year in a typical Undergraduate Engineering programme are

rarely found in the computing curricula today. The author is associated with working on teaching computer

science to K-12 schools. Integrating Computer Science and Mathematics has a huge potential but so are the risks.

The focus is the IEEE Software Engineering Body of Knowledge [SWEBOK].

Keywords: Computer Science, Curricula, Mathematics, Integrating, IEEE SWEBOK

1. INTRODUCTION

 The emergence of Computational Mathematics is the best possible bridge that blends the

power of abstraction of mathematics with the implementation methods [1] for problem solving

using the computers. The topics that make this bridge work are:

 Problem – Solving with Vectors and Matrices.

 Geometrical Coordinate Systems to Represent Linear Transformations.

 Sets, Relations, and Functions.

 Apply Logic to Statements.

 Discrete probability problems.

 Random Variables and Decision Problems.

 These topics clearly indicate that, prima facie there is no need for teaching mathematics to

Computer Science students any beyond the first year in the Undergraduate Engineering

programme after they finish K-12 education. It sounds ironical that even the Numerical

mailto:gopal@annauniv.edu
mailto:gopal.tadepalli@gmail.com

 Scientific conference with international participation STEMEDU-2022, Veliko Tarnovo 9

 STEMEDU-2022 Scientific conference with international participation Veliko Tarnovo, Bulgaria
S
T
E
M
E
D
U
-
2
0
2
2
S
c
i
e
n
t
i
f
i
c
c
o
n
f
e
r
e
n
c
e
w
i
t
h
i
n
t
e
r
n
a
t
i
o
n
a
l
p
a
r
t
i
c
i
p
a
t
i

Methods for Computer Science where the machines have been always dubbed as “Number

Crunchers” also disappeared from the Computing Curricula.

 One core example of the challenge is that numbers behave differently in most programming

languages. Mathematics places no limit on how small or large a number can be. However, the

programming languages frequently truncate values often times without any warning, leading

to unpredictable results. Any 5th grader should know that 2 ÷ 4 equals ½… but in Java the

teacher will have to explain why the same expression evaluates to zero.

 Making matters worse, programming languages like Java, JavaScript, Python, Scratch and

Alice all rely on the concept of assignment. Assignment means that a value is “stored in a

box”, and that the value in that box can be changed.

 Taking recourse to the “Computational Mathematics”, excellent library routines for number

crunching were readily supported by highly successful programming languages for scientific

computing. FORTRAN is a case in point. The systems began to enable linking these library

routines with any other programming language. It is enough if one knows how to call the library

routines from their computer programs written in any programming language. Many

programming paradigms [2, 3, 4] disciplined the way programs are written through well

established principles and implementation methods. Software began to blossom to a point that

after Mathematics only Software spans across all disciplines of not only engineering but also

human endeavour in general.

Computations entail finding an answer to a problem using mathematics or logic.

 This cross-disciplinary approach [5, 6, 7] prepares professionals for careers in science,

medicine, engineering and education. The success rate of Software Engineering based projects

and products is just around 36% with at most 33% of the code fully tested out by the developers.

The success of Software resulted in adding more and more courses in the computing curricula

usually at the cost of pruning mathematics course. Verification and Validation of Software is a

challenge even after 70 years of establishing its imperative need. Today Software not only

impacts the “Quality of Life” but life itself. Safety – Critical systems demand the most elusive

formal methods. Curriculum developers are once again looking up to the mathematical

foundations with very limited justification.

 Adding a new subject is easier said than done. Recruiting, training, hiring and retaining

tens of thousands of teachers takes decades and costs billions. The finite number of hours in a

given day and class rooms in typical colleges makes it difficult to find space for many likely

candidate courses.

 With the experience of being associate both with K-12 and University programmes at

Under Graduate, Post Graduate and Research leading to Ph. D, the author embarked on the

approach to teaching Software Engineering based on the IEEE Software Engineering Body of

Knowledge way back in 2002. This work in now into the fourth edition. Many eminent

professionals from all parts of the world are keenly associated with this work. This report

 Scientific conference with international participation STEMEDU-2022, Veliko Tarnovo 10

 STEMEDU-2022 Scientific conference with international participation Veliko Tarnovo, Bulgaria
S
T
E
M
E
D
U
-
2
0
2
2
S
c
i
e
n
t
i
f
i
c
c
o
n
f
e
r
e
n
c
e
w
i
t
h
i
n
t
e
r
n
a
t
i
o
n
a
l
p
a
r
t
i
c
i
p
a
t
i

summarizes the experiences of the author during the past two decades in teaching mathematics

for software engineers.

 In a nutshell:

 Programming for Software Engineering = Art of Programming + Science of Programming

+Discipline of Programming + Discipline of Software Engineering + Psychology of

Programming.

2. EXHIBITION

 Computer science is considered by some to have a much closer relationship with

mathematics than many scientific disciplines. Early computer science was strongly influenced

by the work of mathematicians such as Kurt Gödel and Alan Turing. There continues to be a

useful interchange of ideas between the two fields in areas such as mathematical logic, category

theory, domain theory, and algebra.

 Edsger Dijkstra has argued that software engineering is a branch of mathematics.

 The relationship between computer science and software engineering [8, 9] is a contentious

issue. Some people believe that software engineering is a subset of computer science. Others,

taking a cue from the relationship between other engineering and science disciplines, believe

that the principal focus of computer science is studying the properties of computation in

general, while the principal focus of software engineering is the design of specific

computations to achieve practical goals, making them different disciplines.

 The use of mathematics within software engineering is often called formal methods.

However, computability theory shows that not everything useful about a program can be

proven. Mathematics works best for small pieces of code and has difficulty scaling up.

 In mature engineering fields routine design involves solving familiar problems and reusing

large portions of prior solutions. Often these “solutions” are codified in the form of equations,

analytical models, or prebuilt components. Software engineering is different from other

engineering disciplines in some respects; perhaps the kind of science that underpins it is

different as well. “Number Crunching” or Quantitative Processing using Computations and

Software has been discussed earlier.

 Many mathematical objects, such as sets of numbers and functions, exhibit internal

structure. The structural properties of these objects are investigated in the study of groups,

rings, fields and other abstract systems, which are themselves such objects. This is the field of

abstract algebra.

 The author is using Geometry for Cyber – Physical Systems. Trigonometry, Fractals and

Topology are mathematical topics that enable the bounded regions for software testing.

 Scientific conference with international participation STEMEDU-2022, Veliko Tarnovo 11

 STEMEDU-2022 Scientific conference with international participation Veliko Tarnovo, Bulgaria
S
T
E
M
E
D
U
-
2
0
2
2
S
c
i
e
n
t
i
f
i
c
c
o
n
f
e
r
e
n
c
e
w
i
t
h
i
n
t
e
r
n
a
t
i
o
n
a
l
p
a
r
t
i
c
i
p
a
t
i

“Change Impact Analysis” in Software Requirements, Development Life – Cycle and Process

Models is formalized to a good extent with mathematical topics such as Calculus, Differential

Equations, Dynamical Systems, Vector Calculus and Chaos Theory.

3. ANALYSIS AND RESULTS

 Mathematical language also is hard for beginners. Words such as or and only have more

precise meanings than in everyday speech. Mathematicians refer to this precision of language

and logic as "rigor". Rigor is fundamentally a matter of mathematical proof. Mathematicians

want their theorems to follow from axioms by means of systematic reasoning. Such a rigor is

elusive in Software Engineering. However, a systematic integration of the mathematical

foundations based on the IEEE SWEBOK is pragmatic as shown in the fig. 1 below.

Fig. 1. IEEE SWEBOK Approach to Integrate Mathematical Foundations

 Scientific conference with international participation STEMEDU-2022, Veliko Tarnovo 12

 STEMEDU-2022 Scientific conference with international participation Veliko Tarnovo, Bulgaria
S
T
E
M
E
D
U
-
2
0
2
2
S
c
i
e
n
t
i
f
i
c
c
o
n
f
e
r
e
n
c
e
w
i
t
h
i
n
t
e
r
n
a
t
i
o
n
a
l
p
a
r
t
i
c
i
p
a
t
i

CONCLUSION

 As complex software intensive systems evolve the need for mathematical basis increases.

These systems are not only impacting the quality of life but also impacting the life forms. The

author strongly advocates the mathematical foundations to be integrated with the IEEE

Software Engineering Body of Knowledge.

REFERENCES

[1] D. Baldwin and P. B. Henderson. (2002) "The Importance of Mathematics to the

Software Practitioner", IEEE Software, vol. 19, no. 2, pp. 112-111, March-April 2002.

[2] P. Bourque and R.E. Fairley (Eds). (2014). “Guide to the Software Engineering Body

of Knowledge”, Version 3.0, IEEE Computer Society.

[3] D. Gries. (1981). “The Science of Programming”, Springer.

[4] D. Knuth. (2009). “The Art of Computer Programming”, Vol. 1 – 4A, Addison –

Wesley Publishing Company, USA.

[5] E. W. Dijkstra. (1976). “A Discipline of Programming”, Pearson.

[6] E. Schanzer. (2017). “Integrating Computer Science in Math: The Potential Is Great,

But So Are The Risks”, American Mathematical Society Blog, January 9.

[7] F. Neri. (2021). “Teaching Mathematics to Computer Scientists: Reflections and a Case

Study”, SN Computer Science, Springer, Vol. 2, Iss. 2.

[8] G. M. Weinberg. (1971). “The Psychology of Computer Programming”, Van Nostrand

Reinhold, New York.

[9] W. S. Humphrey. (1995). “A Discipline for Software Engineering”, Addison-Wesley

Professional.

