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Abstract 

This article discusses the stability of wheeled mobile robots on roll and pitch, depending on their geometric 

proportions, as well as the forces acting on them. A dynamic model of this type of robot is built, based on the 

principles of kinetostatic. The influence of the parameters of the model on the roll and pitch stability has been 

studied. Coefficients of stability have been introduced. The dynamic model is built in such a way that it is possible 

to determine intervals with values of the parameters at which roll and pitch stability is guaranteed. 
 

Keywords: dynamic model of mobile robot; kinetostatic; coefficients of stability; simulation and modeling; roll 

and pitch stability. 

 

 

1. INTRODUCTION 

In recent years, the design of mobile wheeled robots has been the subject of great scientific 

and practical interest. These robots are used both indoors [4] and as autonomous vehicles [1]. 

Of particular interest are the autonomous mobile wheeled mechanisms. They solve various 

scientific tasks and problems such as: determining the trajectory of movement [2, 6, 7], 

following such a trajectory [3, 4]. As well as issues concerning the motion stability of such 

robots. 

According to the principle of D’alembert [2] – the principle of kinetostatics – the 

measurement of inertial force allows us to consider the robot as a body on which a balanced 

system of forces acts. 

Thus, under a given law of motion, we can determine the support reactions and thus obtain 

values for the parameters of the model at which the robot will remain stable - there will be no 

inversion relative to the surface of motion. 

In the present article, we extend the well-known [2, 3] models, by calculating the roll and 

pitch stability of wheeled mobile robots, using geometric and mass parameters of the 

construction. The model includes driving, resistance, inertial forces and support reactions, ie. 

active forces, support reactions and inertial forces are included. 

The article is organized as follows: in the second part we give a brief description of the 

kinematic, dynamic model and the implementation of the roll and pitch stability of the robot, 

we also introduce coefficients of stability; in the third part we study the trajectory and 

mailto:lsv@abv.bg
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accelerations to which the robot is subjected through numerical experiments; in the last part we 

draw conclusions about the work of the model. 

 

 
 

2. METHODS AND MATERIALS 

A. Presentation of the main indications 

Ogxgygzg – global Cartesian coordinate system, as in the first quadrant of Ogxgzg contains the 

longitudinal projection of the structure, and Ogxgyg is tangent to the periphery of the wheels (fig. 

1); 

 

 
Fig. 1. Longitudinal projection of a wheeled platform 

 

 
Fig. 2. Lateral projection of a wheeled platform 

 

 

Oxyz – Cartesian coordinate system connected to the robot body (fig. 1 and fig. 2);  
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m – mass; 

mc – mass center (mc ≡ О); 

G = mg – gravity where g is the gravitational acceleration; h – distance from a given mass 

center to the road (according to the set tasks, bent masses can be added to the model, each with 

its own, local mass center, at a certain distance from the road) 

P, Pcentr, U – forces: moving, centrifugal and longitudinal inertial; a – distance from the axis 

z to the front axle; b – distance from the axis z to the rear axle; 

l – base; trf – front track; 

trr – rear track; 

cr – distance from Ox to the rear left wheel; 

cf – distance from Oxz to the front left wheel; 

dr – distance from Oxz to the rear right wheel; 

df – distance from Oxz to the front right wheel;  

Al,  Ar,  Bl, Br – support reactions acting on front left, front right, rear left and rear right wheel 

respectively; 

A = Al + Ar; B = Bl + Br – total support reactions acting on the front and rear axles 

respectively;  

L = Al + Bl; R = Bl + Br – total support reactions acting on left and right wheels respectively; 

Alx, Aly, Alz , Arx, Ary, Arz and  

Blx, Bly, Blz, Brx, Bry, Brz – projections of the support reactions along the axes of the coordinate 

system Oxyz, respectively front left, front right, rear left and rear right wheel; 

�⃗�𝑥 – longitudinal acceleration; 

�⃗�𝑥𝑎𝑐+ – ultimate longitudinal acceleration when increasing the speed in the axial direction 

Ox; 

�⃗�𝑥𝑎𝑐− – ultimate longitudinal acceleration when decreasing the speed in the axial direction 

Ox; 

�⃗�𝑦 – transverse acceleration. 

 

B. Kinematic and dynamic model of a wheeled mobile robot 

1) Kinematic model and constraints 

The kinematic model of the vehicle [5] is: 

[

�̇�
�̇�

�̇�
] = [

cos𝜙 0
sin𝜙 0

0 1

] [
𝜐
𝜔

]      (1) 

 

The nonholonomic restriction of motion is: 

�̇� sin𝜙 + �̇� cos𝜙 = 0,     (2) 

which means that the achievable directions of motion are columns of the kinematic matrix: 

𝑆 = [
cos𝜙 0
sin𝜙 0

0 1

] 

 

𝐴 = [−sin𝜙 cos𝜙 0]       (3) 
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The resulting dynamic model, written in matrix form, is: 

𝑀(𝑞)�̈� + 𝑉(𝑞, �̇�) + 𝐹(�̇�) = 𝐸(𝑞)𝑢 − 𝐴𝑇(𝑞)𝜆    (4) 

 

The system can be saved in the form of a status space: 

𝑥 = 𝐹(𝑥_) + 𝑔(𝑥)𝑢,      (5) 

where the state vector is: 𝑥 = [𝑞𝑇; 𝑣𝑇]𝑇. 

 

𝑀 = [
𝑚 0 0
0 𝑚 0
0 0 𝐽

]       (6) 

 

𝐸 =
1

𝑟
[

cos𝜙 cos𝜙
sin𝜙 sin𝜙

𝐿

2
−

𝐿

2

]       (7) 

 

 𝑢 = [𝜏𝑟 𝜏𝑙] 
The resulting model is: 

[
 
 
 
 
�̇�
�̇�

�̇�
�̇�
�̇�]

 
 
 
 

=

[
 
 
 
 
𝜐 cos𝜙
𝜐 cos𝜙

𝜔
0
0 ]

 
 
 
 

+

[
 
 
 
 
 
0 0
0 0
0 0
1

𝑚𝑟

1

𝑚𝑟
𝐿

2𝑗𝑟
−

𝐿

2𝑗𝑟]
 
 
 
 
 

[
𝜏𝑟

𝜏𝑙
]     (8) 

The opposite system model is obtained taking into account: 

[
𝜏𝑟

𝜏𝑙
] = [

�̇�𝑚𝑟

2
+

�̇�𝑗𝑟

𝐿
�̇�𝑚𝑟

2
−

�̇�𝑗𝑟

𝐿

]       (9) 

 

2) Support reactions caused by gravity at the robot's position on a horizontal plane 

We determine the position of mc in Ogxgygzg as follows: 

𝑥𝑔 𝑚𝑐 =
∑𝑚𝑖𝑥𝑔𝑖

∑𝑚𝑖
; 𝑦𝑔 𝑚𝑐 =

∑𝑚𝑖𝑦𝑔𝑖

∑𝑚𝑖
,     (10) 

where xg mc, yg mc are the coordinates of the mass center of the structure; mi – mass of the 

individual structural elements; xgi, ygi – coordinates of the mass centers of these elements. 

We use the following two moment and one projection equations when only gravity acts (Fig. 

1): 

∑𝑀𝐵𝑖 = 0; ∑𝑀𝐴𝑖 = 0; ∑𝑥𝑖 = 0.     (11) 

The equation ∑𝑥𝑖 = 0 may be dropped because there is no acting forces projections on the 

x-axis other than zero. 

From the moment equations it is obtained: 

𝐴𝑧 =
𝐺.𝑏

𝑙
; 𝐵𝑧 =

𝐺.𝑎

𝑙
,      (12) 

where Az и Bz are the support reactions of the front and rear axles. 
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The vertical support reactions for each wheel are determined similarly: 

𝐴𝑙𝑧 = 𝐴𝑧
ⅆ𝑓

𝑡𝑟𝑓
; 𝐴𝑟𝑧 = 𝐴𝑧

𝑐𝑓

𝑡𝑟𝑓
;     (13) 

𝐵𝑙𝑧 = 𝐵𝑧
ⅆ𝑟

𝑡𝑟𝑟
; 𝐵𝑟𝑧 = 𝐵𝑧

𝑐𝑟

𝑡𝑟𝑟
.      (14) 

 

3) Point masses  

The moment of inertia of the robot body in the system Oxyz can be reported in the model if 

we distribute its mass appropriately in several local mass centers. For this purpose, we offer the 

formulas below, if the coordinates of the mass center and the basic geometric dimensions are 

known. This is in case we do not know the moment of inertia. 

According to the supporting reactions from 2) we determine point masses: 

𝑚𝑓 = 𝑚
𝑏

𝑙
; 𝑚𝑟 = 𝑚

𝑎

𝑙
,      (15) 

with mass centers mcf, mcr for front and rear axle and: 

𝑚𝑓𝑙 = 𝑚𝑓
ⅆ𝑓

𝑡𝑟𝑓
; 𝑚𝑓𝑟 = 𝑚𝑓

𝑐𝑓

𝑡𝑟𝑓
;      (16) 

𝑚𝑟𝑙 = 𝑚𝑟
ⅆ𝑟

𝑡𝑟𝑟
; 𝑚𝑟𝑟 = 𝑚𝑟

𝑐𝑟

𝑡𝑟𝑟
     (17) 

with mass centers mcfl, mcfr, mcrl, mcrr, respectively for front left, front right, rear left and rear 

right wheel. 

If there are no other landmarks, the coordinates of the local mass centers are taken at the 

height of the mass center, for the axles centrally, and for the wheels – at the point of contact 

with the road. 

 

4) Roll and pitch stability 

At this point we will derive the equations for roll and pitch stability under the following 

conditions (Fig. 1 and Fig. 2): 

- trf = trr = tr; cr = cf = dr = df = 
𝒕𝒓

𝟐
; 

- when turning, the axles of all the wheels are parallel to Pcentr and axle Oy; 

- the mass is concentrated in mc. 
 

4.1) Pitch stability 

We consider the following two moment and one projection equations: 

According to (11), we obtain: 

𝐴𝑧 =
𝐺𝑏−𝑈ℎ

𝑙
; 𝐵𝑧 =

𝑈ℎ+𝐺𝑎

𝑙
;      (18) 

𝑃 − 𝑈 = 𝐵𝑥 + 𝐴𝑥.       (19) 

Bx and Ax are forces of resistance as a result of moving on a given surface, therefore: 

𝐵𝑥 = 𝑓𝐵𝑧; 𝐴𝑥 = 𝑓𝐴𝑧,     (20) 

where f is the coefficient of rolling friction. So: 

𝐵𝑥 + 𝐴𝑥 = 𝑓(𝐵𝑧 + 𝐴𝑧); 
𝐵𝑥

𝐴𝑥
=

𝑓𝐵𝑧

𝑓𝐴𝑧
=

𝐵𝑧

𝐴𝑧
.    (21) 

And we have: 
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|

𝑃 − 𝑈 − 𝐵𝑥 − 𝐴𝑥 = 0

𝐵𝑥 + 𝐴𝑥 = 𝑓(𝐵𝑧 + 𝐴𝑧)
𝐵𝑥

𝐴𝑥
=

𝐵𝑧

𝐴𝑧

     (22) 

The formulas above give values of the magnitudes Ax, Bx, P, f, and either P, or f remains as 

a parameter. 

We introduce the following coefficients: 

- coefficient of stability at �⃗�𝑥 > 0: 𝐾�⃗⃗�𝑥𝑎𝑐+
=

ℎ

𝑏
; 

- coefficient of stability at �⃗�𝑥 < 0: 𝐾�⃗⃗�𝑥𝑎𝑐−
=

ℎ

𝑎
; 

- base coefficient of stability: 𝐾𝑐𝑜𝑚 =
ℎ3

𝑎𝑏𝑙
. 

 

4.2) Roll stability 

We consider the following two moment and one projection equations: 

∑𝑀𝐿𝑖 = 0; ∑𝑀𝑅𝑖 = 0; ∑𝑦𝑖 = 0.     (23) 

And we have: 

𝑅𝑧 =
𝑃𝑐𝑒𝑛𝑡𝑟.ℎ+𝐺.𝑐

𝑡𝑟
;  𝐿𝑧 =

𝐺.𝑐−𝑃𝑐𝑒𝑛𝑡𝑟.ℎ

𝑡𝑟
;     (24) 

𝑃𝑐𝑒𝑛𝑡𝑟 = 𝑅𝑦 + 𝐿𝑦. 

𝑅𝑦 and 𝐿𝑦 are forces of resistance against lateral slip-on a given surface of motion, therefore: 

𝐿𝑦 = 𝜇𝐿𝑧;  𝑅𝑦 = 𝜇𝑅𝑧,      (25) 

where 𝜇 is the coefficient of adhesion. So: 

𝐿𝑦 + 𝑅𝑦 = 𝜇(𝐿𝑧 + 𝑅𝑧); 
𝐿𝑦

𝑅𝑦
=

𝜇𝐿𝑧

𝜇𝑅𝑧
=

𝐿𝑧

𝑅𝑧
.    (26) 

And we have: 

|

𝑃𝑐𝑒𝑛𝑡𝑟 = 𝑅𝑦 + 𝐿𝑦

𝐿𝑦 + 𝑅𝑦 = 𝜇(𝐿𝑧 + 𝑅𝑧)
𝐿𝑦

𝑅𝑦
=

𝐿𝑧

𝑅𝑧

     (27) 

The formulas above give values of the magnitudes 𝐿𝑦, 𝑅𝑦, 𝑃𝑐𝑒𝑛𝑡𝑟, 𝜇, and either 𝑃𝑐𝑒𝑛𝑡𝑟, or 𝜇 

remains as a parameter. 

 

3. EXPERIMENTS AND RESULTS 

We calculate the required torques so that the mobile robot moves along the reference 

trajectory: xr = 1.1 + 0.7sin(2π/30); yr = 0.9 + 0.7sin(4π/30). 

The simulation calculates the torque of the robot using the inverse dynamic model and 

displays the trajectory of movement (fig. 3). 
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Fig. 3. Trajectory of robot movement 

 

The parameters of the robot are: 

- mass m = 1.17 kg; 

- moment of inertia J = 0.001 kg/m2; 

- base l = 0.30 m; 

- radius of the driving wheels r = 0.06 m; 

- track tr = 0.20 m. 

 

 
Fig. 4. Longitudinal acceleration 

 

Figure 4 and figure 5 are shown acceleration of the mc of the robot using the inverse dynamic 

model.  
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Fig. 5. Transverse acceleration 

 

With the parameters thus selected, the roll and pitch resistance of the robot is guaranteed. 

Here we will calculate the limiting longitudinal accelerations in rectilinear motion. The 

values for mi, xi and yi in Table 1 will be used in these calculations. 

 
Table 1. Mass and geometrical parameters of the robot 

  
Name of the 

structural element 
mi [kg] xi [m] yi [m] 

1 battery 0.35 0.174 0.048 

2 left engine 0.1 0.2 0.05 

3 right engine 0.1 0.2 0.05 

4 rear left wheel 0.04 0.12 0.06 

5 rear right wheel 0.04 0.12 0.06 

6 front left wheel 0.02 0.42 0.05 

7 front right wheel 0.02 0.42 0.05 

8 body 0.5 0.26 0.05 

 

Thus, for the position mc [m]:  

𝑥𝑔 𝑚𝑐 =
∑𝑚𝑖𝑥𝑔𝑖

∑𝑚𝑖
= 0.22; 𝑦𝑔 𝑚𝑐 =

∑𝑚𝑖𝑦𝑔𝑖

∑𝑚𝑖
= 0.05. 

Respectively a = 0.2; b = 0.1; l = 0.3; h = 0.05. 

The total mass is m = 1.17 kg. 

From (11) we have: 

𝐴𝑍. 𝑙 + 𝑈. ℎ − 𝐺. 𝑏 = 0; 

𝑈. ℎ + 𝐺. 𝑎 − 𝐵𝑍. 𝑙 = 0; 

𝑃 − 𝑈 + 𝐴𝑥 + 𝐵𝑥 = 0. 

At �⃗�𝑥 ≫ 0 we assume that 𝐴𝑥 ≈ 0; 𝐴𝑧  ≈ 0, as their values are insignificant compared to 

those of P and U. Then: 𝑃 =  𝑈 ≧ 22,96 N and 𝐴𝑧 ≦ 0, i.e. stability is lost, and the allowable 

acceleration is: 

�⃗�𝑥𝑎𝑐+ =
𝑈

𝑚
= 19.62 m/s2. 

At �⃗�𝑥 ≪ 0, when the acceleration is close to the limit in terms of stability, we assume that 

𝐵𝑥 ≈ 0, as 𝐵𝑧 ≈ 0, because at such a negative acceleration almost all the load is transferred to 
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the front axle (and front brakes). It is also logical  𝑃 = 0.  Then:  𝐴𝑥 = 𝑈 ≧ 45.9 N and 𝐵𝑧 ≦
0, i.e. stability is lost, and the allowable negative acceleration is: 

�⃗�𝑥𝑎𝑐− =
𝑈

𝑚
= 39.24 m/s2. 

The coefficients introduced in 4) give us the following dependencies:  

If m = const; 𝐾�⃗⃗�𝑥𝑎𝑐+
=

ℎ

𝑏
= const; 𝐾�⃗⃗�𝑥𝑎𝑐−

=
ℎ

𝑎
= const, then: 

�⃗�𝑥𝑎𝑐+ = const; �⃗�𝑥𝑎𝑐− = const. 
On the other hand, the closer the values of the coefficients are to zero, the more stable the 

construction is for the respective case. 

 

CONCLUSION 

A kinetic and dynamic model of a robot based on the principles of kinetostatics has been 

built. The roll and pitch stability of wheeled mobile robots have been added to the model, 

depending on their geometric proportions, as well as the forces acting on them. The influence 

of the parameters of the model on its roll and pitch stability has been studied. The dynamic 

model is built in such a way that it is possible to determine intervals with values of the 

parameters at which the roll and pitch stability is guaranteed. 
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