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A Lyusternik-Graves theorem for the proximal
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We consider a generalized version of the proximal point algorithm for solving
the perturbed inclusion y ∈ T (x), where y is a perturbation element near 0 and
T is a set-valued mapping acting from a Banach space X to a Banach space Y
which is metrically regular around some point (x̄, 0) in its graph. We study the
behavior of the convergent iterates generated by the algorithm and we prove that
they inherit the regularity properties of T , and vice versa. We analyze the cases
when the mapping T is metrically regular and strongly regular.

More specifically, choose a sequence of Lipschitz continuous function gn : X →
Y and consider the following algorithm:

(1) 0 ∈ gn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . . .

If the Lipschitz constants λn are upper bounded by one over twice the regularity
modulus of T around the reference solution, then for any initial point sufficiently
close to the solution, there exists a sequence satisfying (1) which is linearly con-
vergent to this solution (see [1, Theorem 3.1]). Furthermore, the convergence is
superlinear when λn converges to 0. When T happens to be strongly regular,
the sequence is unique (within a certain neighborhood). In [3] the authors prove
something more, that for any y close to 0, if one considers the perturbed problem

(2) y ∈ T (x),

then under metric regularity there exist a solution to this equation and a proximal
point sequence satisfying

(3) y ∈ gn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . .

which converges (super)linearly to that solution as long as the sequence λn is suf-
ficiently small for all n. Similarly, local uniqueness of the sequence is guaranteed
under strong regularity.

In this talk, based on [2], we consider the exact generalized proximal point
algorithm (3), as in [1, 3]. We will follow the same idea from [4, 6], where the au-
thors extend the paradigm of the Lyusternik–Graves theorem (see, e.g., [5]) to the
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framework of a mapping acting from the pair initial point-parameter to the set of
convergent Newton sequences associated with them. Under some surjectivity as-
sumption, known as ample parameterization, the (strong) metric regularity of the
generalized equation is proved to be equivalent to the (strong) metric regularity of
the inverse mapping associated with convergent Newton sequences. These results
can be understood as some sort of Lyusternik–Graves theorem, where instead of
considering a metrically regular mapping which is perturbed by some Lipschitz
function, we iteratively perturb a mapping by several Lipschitz functions whose
Lipschitz moduli are small enough to preserve, no only the metric regularity of
their sum, but the Lipschitzian properties of the mapping that associates to each
pair initial iteration-perturbation the set of converging sequences satisfying the
algorithm.

The main results in [2] that will be presented show the equivalence between
the metric regularity of T and the Aubin property of the set of convergent prox-
imal point sequences generated by the proximal point method, and the strong
regularity of T and the existence of a Lipschitz single-valued localization of the
mapping associated with the convergent sequences.
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On Solutions of Perturbed Optimization
Problems

Mitrofan M. Choban
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By a space we understand a completely regular topological Hausdorff space.
We use the terminology from [2, 5]. Let R be the space of reals and R∞ =
R ∪ {+∞}.

Let X be a topological space.
Denote by C(X) the Banach space of all bounded continuous functions f :

X −→ R with the sup-norm ‖ f ‖= sup{|f(x)|;x ∈ X}.
For any function ψ : X −→ R∞ and Y ⊆ X we put infY (ψ) = inf{ψ(x) : x ∈

Y }, mY (ψ) = {x ∈ Y : ψ(x) = infY (ψ)} and dom (ψ) = {x ∈ X : ψ(x) < +∞}.
The function ψ is called proper if hers domain dom (ψ) is non-empty.
A minimization problem (X,ψ) is called:
– Tychonoff well-posed if mX(ψ) is a singleton and every minimizing sequence

{xn ∈ X : n ∈ N} of the function ψ is convergent to a point from mX(ψ);
– almost-well-posed if every minimizing sequence {xn ∈ X : n ∈ N} of the

function ψ has a cluster point in X;
– weakly Tychonoff well-posed if mX(ψ) is a compact set and every minimizing

sequence {xn ∈ X : n ∈ N} of the function ψ has an accumulation point.
A function f : X −→ R∞ is called lower semi-continuous (respectively, upper

semi-continuous) if and only if the set {x ∈ X : f(x) > t} (respectively, {x ∈ X :
f(x) < t}) is an open set for every t ∈ R.

Let B be a Banach space and Φ : B −→ C(X) be a continuous linear operator.
For a proper bounded from below lower semi-continuous function ψ : X −→ R∞
on a space X consider the following sets of continuous perturbations:

– SM(ψ,B,Φ) = {b ∈ B : mX(Φ(b) + ψ) is a singleton};
– TWP (ψ,B,Φ) = {b ∈ B : the minimization problem (X,Φ(b) + ψ) is Ty-

chonoff well-posed};
– aWP (ψ,B,Φ) = {b ∈ B : the minimization problem (X,Φ(b)+ψ) is almost-

well-posed};
– wTWP (ψ,B,Φ) = {b ∈ B : the minimization problem (X,Φ(b) + ψ) is

weakly Tychonoff well-posed}.
We present conditions under which the set of continuous perturbations of a

given lower semi-continuous function attains minimum on a subset with concrete
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properties is “big” in a topological sense. These problems are typical for the
distinct variational principles in optimization. Some optimization problems in
topological spaces were studied in [1, 3, 4, 5].
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Approximations, attractors and singular
perturbations of evolution systems
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Department of Mathematics, University of Architecture and Civil Engineering
1, Hr. Smirnenski Blvd, 1046 Sofia, Bulgaria

e-mail: tzankodd@gmail.com

In the talk we consider discrete approximations of non-convex valued evolution
inclusions in a evolution triple X ⊂ H ⊂ X∗, where H is a Hilbert space and X
a reflexive and separable Banach space embedded densely in H with embedding
map continuous and compact.

with the following right–hand side:

(4) ẋ(t) + Ax ∈ F (x), x(0) = x0 ∈ H, t ∈ I = [0, 1].
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where A : X→ X∗ and F : H ⇒ H.

The nonempty closed bounded subset A of H is said to be invariant attractor
of (4), when it is minimal invariant set such that lim

t→∞
Ex(Reach(t, (4)),A) = 0

for any initial condition x0. Here Reach(t, (4)) is the reachable set of (4) at the
time t and Ex(A,B) = sup

a∈A
inf
b∈B
‖a− b‖.

We show existence of attractor in two cases – asymptotic compactness and
one sided Lipschitz condition with negative constant.

Examples of partial differential equations control systems are provided.

Afterwards we discuss the connections between existence of attractors and
existence of exact upper limit of the solution and reachable set of singularly
perturbed control systems.

Generalized Nash equilibrium problems under
relaxed assumptions

Pando Georgiev

Center for Applied Optimization, University of Florida
303 Weil Hall, PO Box 116595, Gainesville, FL 32611

e-mail: pandogeorgiev@ufl.edu

The generalized Nash equilibrium problems have increasing popularity be-
cause of their applications in many applied areas. We consider a class of gener-
alized Ky Fan inequalities (quasi-variational inequalities) in which the involved
multi-valued mapping is lower semi-continuous. We present a relaxed version
of the generalized Nash equilibrium problem involving strategy maps, which are
only lower semi-continuous. This relaxed version may have no exact Nash equilib-
rium, but has ε-Nash equilibrium for every ε > 0. The proof involves parametric
variational principles. We give positive answers to two questions (in the compact
case) raised in a recent paper of Cubiotti and Yao.

We consider several definitions of semi-continuity for multifunctions, com-
bining the topological and the ordered structure of a Banach space induced by a
closed convex cone. Several types of Nash equilibrium theorems for multifunctions
are presented. As corollaries we obtain saddle point theorems for convex-concave
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multifunctions, which can be considered as generalization to the vector-valued
set-valued case of the classical minimax theorems.

Variational Approach to Second-Order
Optimality Conditions for Control Problems

with Pure State Constraints

Daniel Hoehener

Combinatoire & Optimisation
Institut de Mathématiques de Jussieu (UMR 7586)

Université Pierre et Marie Curie,
4 place Jussieu, 75252 Paris cedex 05, France

We consider the following optimal control problem of the Bolza form:

(P ) Minimize

∫ 1

0

l(t, x(t), u(t))dt

over measurable u and solutions x of the control system
ẋ(t) = f(t, x(t), u(t)) u(t) ∈ U(t) a.e.
x(0) = x0

x(t) ∈ K, ∀t ∈ [0, 1]

where the maps f : [0, 1] × Rn × Rm → Rn, l : [0, 1] × Rn × Rm → R, the
set-valued map U : [0, 1] Rm, the subset K ⊂ Rn and the initial state x0 ∈ Rn

are given.
Second-order optimality conditions for optimal control problems have been

studied for almost half a century but it remains a challenge to formulate them in
a very general context. In some recent works (see [1, 4]), second-order necessary
optimality conditions for problems with pure state constraints were obtained
by using an abstract infinite dimensional optimization problem. On the other
hand, in the absence of pure state constraints, second-order necessary optimality
conditions can be obtained by using a variational approach (see for instance
[2, 3]). Inspired by these variational techniques, we use a variational approach
to deduce new second-order necessary optimality conditions for the problem (P ).
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In addition to the usual second-order derivative of the Hamiltonian, our second-
order necessary conditions contain extra terms involving second-order tangents
to the set of admissible trajectory-control pairs at the extremal process under
consideration.

This approach allows a direct proof in which we use a new second-order varia-
tional equation. Further, it allows to separate the proofs of the first- and second-
order necessary conditions. In particular, our result applies to any first-order
necessary optimality conditions in the form of the constrained maximum principle.
Another important advantage is that the presence of pure state
constraints does not lead to any restrictions on the control constraints, i.e. the
result is applicable for any measurable set-valued map U . Finally, we do not
assume any regularity of the optimal control other than measurability and also
the dynamics of the control system are allowed to be merely measurable in the
time variable t.

To prove our results we consider a new second-order Mangasarian-Fromovitz
like qualification condition. This raises up new open problems concerning its
verification and stability.
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Subdifferential estimate of the directional
derivative of lower semicontinuous functions
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Let X be a Banach space and let f : X → R∪{∞} be a function. The (radial)
directional derivative of f at point x̄ ∈ dom f in direction d ∈ X is defined by

f ′(x̄; d) := lim inf
t↘0

f(x̄+ td)− f(x̄)

t
∈ R .

For a subdifferential ∂ on the class of lower semicontinuous functions on X,
we discuss the following Controlled subdifferential estimate of the Directional
Derivative, which extends the known formula for convex functions:

(CDD) For any lower semicontinuous f : X → R ∪ {∞}, x̄ ∈ dom f and d ∈ X,
there exists a sequence {(x̄n, x̄∗n)} ⊂ ∂f such that

(i) xn → x̄ and f(xn)→ f(x̄);

(ii) f ′(x̄; d) ≤ lim inf
n→∞

〈x∗n, d〉;

(iii) lim sup
n→∞

〈x∗n, xn − x̄〉 ≤ 0.

We show that this property is equivalent to other subdifferential properties,
such as controlled dense subdifferentiability, optimality criterion, mean value in-
equality and separation principles. As an application, we obtain a first-order
sufficient condition for optimality, which extends the known condition for differ-
entiable functions in finite-dimensional spaces. Such a condition can be regarded
as expressing a maximality property of the subdifferential operator with respect
to monotone operators, namely:

Assume that (CDD) holds. Then, for every lower semicontinuous f : X →
R ∪ {∞}, the operator ∂f : X ⇒ X∗ is not properly contained in any monotone
operator. In particular, if f is convex, then ∂f is maximal monotone.

∗Joint work with Florence Jules.
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Approximating fixed points of Bregman
nonexpansive type mappings in Banach spaces

Victoria Mart́ın-Márquez

Departamento de Análisis Matemático
Universidad de Sevilla
41012 Sevilla, Spain

Diverse notions of nonexpansive type mappings have been generalized to the more
general framework of Bregman distances in reflexive Banach spaces. We study
these classes of mappings, where the existence and approximation of fixed points
and asymptotic fixed points is concerned. Then the asymptotic behavior of Picard
and Mann type iterations is discussed for quasi-Bregman nonexpansive mappings.
Likewise we provide parallel algorithms for approximating common fixed points of
a finite family of Bregman strongly nonexpansive mappings by means of a block
operator which preserves the Bregman strong nonexpansivity. In particular, all
the results hold for the smaller class of Bregman firmly nonexpansive mappings,
a class which contains the generalized resolvent with respect to the Bregman
distance of monotone operators. This talk is based on a joint work with Prof.
Simeon Reich and Shoham Sabach.
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On the Validity of the Euler-Lagrange Equation
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Consider an open subset Ω of Rn, a Carathéodory map L(x, u, ξ) : Ω × R ×
RN → R, convex with respect to ξ, and the problem of minimizing the integral
functional

(1)

∫
Ω

L(x, u(x),∇u(x)) dx

on u ∈ u0 + W 1,1
0 (Ω). Under some standard assumptions on the Lagrangian L

(i.e. regularity properties, structure and growth conditions with respect to the
variable ξ), it is a classical result that the Euler-Lagrange equation holds: if u is
a minimizer of (1), then

(2) divx∇ξL(x, u(x),∇u(x)) = Lu(x, u(x),∇u(x)).

We investigate the validity of (2) for larger classes of functionals. For L satisfying
an upper growth condition of exponential type, but without assuming differen-
tiability, we prove that a weak form of the Euler-Lagrange equation holds. This
condition turns out to be equivalent to the normal version of the Pontryagin max-
imum principle for multidimensional domains. Afterward, we obtain the validity
of the Euler-Lagrange equation for functionals of the kind∫

Ω

[F (∇u (x)) + g (x, u (x))] dx,

where F is convex and g is a Carathéodory function such that the map u 7→
g (x, u) is concave and satisfies some growth assumptions. The main feature here
is that no growth assumptions on F are needed. Finally we consider again general
functionals of the form (1) and we prove that it is possible to overcome the expo-
nential growth condition by using higher integrability properties of minimizers.

These are joint works with Giovanni Bonfanti and Arrigo Cellina.
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Numerical Optimization in Support to
Graph-based Scenario Modelling
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e-mail: zlatogor@math.bas.bg

The study considers a practical approach for using the liner-quadratic [1] and
heuristic fuzzy optimization [2] in support to an ad-hoc discrete clusterisation
task of a weighted graph representation regarding a fictitious scenario model. The
main idea is to enhance the utilization of the experts’ opinions transformation
into a complex dynamic system model represented by a weighted labeled graph.
As a result of this, a graph nodes classification is performed. The optimization is
used for repositioning a certain (desired) node amongst the clusterisation classes,
defining boundary conditions for the rest of the nodes. A practical direct imple-
mentation of the achieved results is visible as a supporting solution to the new
21st century security challenges meeting [3].
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Approximate values for mathematical programs
with variational inequality constraints
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In general the infimal value of a mathematical program with variational in-
equality constraints (MPV I) is not stable under perturbations in the sense that,
even in presence of nice data, it may occur that the sequence of infimal values
for the perturbed programs may not converge to the infimal value of the original
problem. Thus, we present for these programs different types of values which
approximate, under or without perturbations, the exact value from below or/and
from above.

Ergodic convergence of the Forward-Backward
algorithm to a zero of the extended sum of two

maximal monotone operators

Ludovic Nagesseur

Université des Antilles et de la Guyane
Département de Mathématiques et Informatique

Laboratoire LAMIA
Pointe-à-Pitre, Guadeloupe

A wide range of problems in physics, economics, etc. can be formulated as a
solution of the inclusion 0 ∈ T (x), where T is a set-valued mapping on a Hilbert
space H. When T is maximal monotone, a classical tool to solve those problems
is the proximal point algorithm of Rockafellar [3].
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Splitting methods as forward-backward, backward-backward and proximal bary-
centric algorithms can be used in the investigation of zeros of monotone operators
which admit a decomposition T = A + B, where A and B are maximal mono-
tone operators on a Hilbert space. However, the pointwise sum of two maximal
monotone operators is not necessarily maximal monotone. The extended sum of
two maximal monotone operators is an extension of A+B in the sense of graphs
inclusion, and it can be maximal monotone in some cases where the pointwise
sum is not (see [2, Theorem 4.4]). Consequently, it is interesting to study how
we can obtain a zero of this sum, that is, to solve the inclusion:

0 ∈
(
A+B

ext

)
(x).

Moudafi and Théra in [1] have proposed two splitting methods: the backward-
backward and the barycentric proximal point algorithms in order to solve this
problem. In the same goal, we propose to use the forward-backward algorithm
given by:

(3) xn+1 = JλnA(xn − λnyn) with yn ∈ B(xn), ∀n ∈ N,

and with D(A) ⊂ D(B) in order to well define the iteration.
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Regularization of nonsmooth functions

Nina Ovcharova
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e-mail: nina.ovcharova@unibw.de

We discuss some classes of smoothing approximations of nonsmooth functions
arising from complementarity, variational and hemivariational inequality prob-
lems. For details we refer e.g. to [1], Vol. II, and the references given there to
the numerous works of Chen, Qi, Sun, Zang et al.
All regularizations are based in a direct or indirect way on convolution. To
overcome the calculation of multivariate integrals that appears inevitable in a
general approach of constructing smoothing functions via convolution, we focus
our attention only to some specific instances like maximum, minimum or nested
maxmin functions. These functions still describe some practice-oriented cases
as many problems arising in mechanics and engineering show. We point out
that smoothing functions are the basis of the smoothing Newton methods and
the regularization method used to regularize a non-differentiable functional by
a sequences of differentiable ones. As a model problem we consider an obsta-
cle problem with a nonmonotone unilateral contact without friction [2], which
gives rise to hemivariational inequality defined on a boundary. We also give some
relations to Moreau-Yosida and Lasry-Lions regularizations [3].
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Evolutionary Stable Strategies and Well
Posedness Property

Lucia Pusillo

DIMA – Department of Mathematics, University of Genoa
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e-mail: pusillo@dima.unige.it

In this paper I study Evolutionary stable strategies as defined by Maynard
Smith and I introduce approximate evolutionary stable equilibria and a new con-
cept of well posedness wich characterizes some problems with only one evolution-
ary stable equilibria.

Key-words: non cooperative games, evolutionary stable strategies, approxi-
mate equilibria, well posedness
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On sweeping process without convexity
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The classical sweeping process introduced by Moreau (cf. for example [5])
has been extensively studied in the literature. The mathematical formulation
of sweeping process is the study under different assumptions of the following
constrained differential inclusion

ẋ(t) ∈ −NC(t)(x(t)),
x(0) = x0 ∈ C(0),
x(t) ∈ C(t),

where C(·) is a given moving closed set. G. Colombo, V. Goncharov (cf. [2]) and
H. Benabdellah (cf. [1]) proved that the sweeping process has a solution if the
phase space is Rn, the multifunction C(·) is Lipschitz continuous with respect to
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the Hausdorff distance and NC(t)(x(t)) is the Clarke normal cone to the set C(t)
at the point x(t). It is natural to ask the following question (posed by Jourani
in 2007): Is it possible to replace the Clarke normal cone by the Morduchovich
normal cone in the result of G. Colombo, V. Goncharov and H. Benabdellah?
This is a substantially new problem because of the non convexity of the right-
hand side of the differential inclusion. We present an example showing that the
answer of the so stated problem is “no” even when the set C(·) is moving in the
simplest but non trivial possible way, i.e. when C(t) = K+at, where K is a fixed
closed subset of Rn and a ∈ Rn is a constant vector. Some positive results on
the existence of solution to the sweeping process with Morduchovich normal cone
are presented. They are based on the approach proposed in [3]. In particular, a
generalization of a classical result of Olech (cf. [6]) and Lojasiewicz (cf. [4]) is
obtained.
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Generalized univariate Newton methods
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We devise new generalized univariate Newton methods for solving nonlinear
equations, motivated by the Bregman distances and the proximal regularization of
optimization problems. We prove quadratic convergence of the new methods, and
illustrate their benefits over the classical Newton’s method by means of three test
problems. These test problems provide insight as to which generalized method
could be chosen for a given nonlinear equation. Finally, we derive a closed-form
expression for the asymptotic error constants of the generalized methods and
make further comparisons involving these constants.

This is a joint project with Regina S. Burachik and C. Yalcn Kaya.

Convergence of accelerated proximal methods in
the presence of computational errors

S. Salzo and S. Villa
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Via Dodecaneso 35 – 16146, Genova, Italy

Given a Hilbert space H we consider the optimization problem

(P) min
x∈H

F (x) := f(x) + g(x)

where f : H → R is convex and differentiable with a Lipschitz continuous gra-
dient, and g : H → R ∪ {+∞} is proper, convex and lower semicontinuous.
Problem (P) covers a wide range of applications and to solve it, proximal meth-
ods - in particular forward-backward splitting - received much attention. More
precisely, resorting to the ideas contained in the seminal work of Nesterov [3],
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recently there has been an active interest in accelerations and modifications of
the forward-backward method for solving (P), see e.g. FISTA [1].

The computational effort of accelerated methods is comparable with that of
the standard algorithm and mainly lies in the minimization subproblem required
to compute the proximal point at each iteration. In fact, very often in the ap-
plications, a formula for the proximity operator is not available in closed form.
In those cases the proximity operator is usually computed using ad hoc algo-
rithms, and therefore inexactly. For this reason, it is indeed critical to study the
convergence of the algorithms under possible perturbations of proximal points.
This program has been pursued in the pioneering paper by Rockafellar [4] for
what concerns the basic proximal point algorithm, and under different notions
of admissible approximations of proximal points. Since then, there has been a
growing interest in inexact implementations of proximal methods and many works
appeared, treating the problem under different perspectives.

We analyze the convergence of accelerated and inexact versions of the proximal
point algorithm and forward-backward splitting. Leveraging on a new concept of
admissible errors, convergence of inexact and accelerated schemes is guaranteed,
and the rate is the same of the exact ones. Moreover, if f = 0, using even a
generalization of the type of errors considered in [2], convergence of the inexact
and accelerated proximal point algorithm is proved. In both cases conditions on
the asymptotic behavior of the errors’ magnitude are needed.
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Completely monotone functions and convexity
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We extend a construction by J. Borwein and O. Hijab, by showing how every
completely monotone function on (0,∞) can be extended to a symmetric convex
function on Rn

++. Since every completely monotone function is a Laplace trans-
form of a measure on [0,∞) properties of that measure determine properties of
the symmetric convex function. We discuss an order between functions g, h on
the same domain in R: g � h if for any other function f we have (g ◦ f convex
⇒ h ◦ f is convex). Well-known example is −1/x � log(x) � id(x). We show
that this extends to every completely monotone function g and its derivative:
−g′ � g � id(x).

This is a joint work with Ričardas Zitikis, the University of Western Ontario.

Best approximation problems in a class of
Banach spaces

N. V. Zhivkov
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Acad. G. Bonchev Str., Bl. 8, 1113 Sofia, Bulgaria

The best approximation problem to a nonempty closed subset is generalized
well-posed, or the set of solutions is either empty or generalized well posed, for
the majority of the points in a class of Banach spaces. Under “majority” we
understand a set whose complement in the space is sigma-porous or sigma-cone
supported. Analogously, to the the case when uniqueness of the best approxima-
tion is required, it turns out that the conditions that assure this are certain local
uniform, or uniform, properties of the norm of the underlying space.
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Perturbation method for variational problems∗
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We provide a general method for proving existence of solutions of suitable per-
turbations of certain variational problems. A novel variational principle enables
perturbing only the integrand, thus preserving the form of the problem.
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