A small survey of some recent contributions to the subdifferential of the supremum function

Marco A. López Cerdá
Alicante University
September 9, 2011
1. Introduction

The main objective of this talk is threefold:

- To provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.
1. Introduction

The main objective of this talk is threefold:

- To provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.

- To derive explicit characterizations for the subdifferential mapping of the supremum function of an arbitrarily indexed family of convex functions, exclusively in terms of the data functions.
1. Introduction

The main objective of this talk is threefold:

- To provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.
- To derive explicit characterizations for the subdifferential mapping of the supremum function of an arbitrarily indexed family of convex functions, exclusively in terms of the data functions.
- To present alternative approaches and applications to subdifferential calculus.
Summary
Summary

1. Formula for the optimal set of the relaxed problem.
Summary

1. Formula for the optimal set of the *relaxed problem*.
2. Subdifferential of the *supremum function*.
Summary

1. Formula for the optimal set of the *relaxed problem*.
2. Subdifferential of the *supremum function*.
3. Particular cases:
Summary

1. Formula for the optimal set of the relaxed problem.
2. Subdifferential of the supremum function.
3. Particular cases:
 a. Formula for affine functions.
 b. Volle’s and Brøndsted’s formulas.
Summary

1. Formula for the optimal set of the *relaxed problem*.
2. Subdifferential of the *supremum function*.
3. Particular cases:
 - a. Formula for affine functions.
 - b. Volle’s and Brøndsted’s formulas.
2. Notation

\(X : \) (real) Hausdorff locally convex space
2. Notation

\(X \): (real) Hausdorff locally convex space

\(X^* \): dual space.

\(X \) and \(X^* \) are paired in duality by the bilinear form

\[
(x^*, x) \in X^* \times X \mapsto \langle x, x^* \rangle := x^*(x)
\]
2. Notation

X: (real) Hausdorff locally convex space

X^*: dual space.

X and X^* are paired in duality by the bilinear form

$$(x^*, x) \in X^* \times X \mapsto \langle x, x^* \rangle := x^*(x)$$

θ: zero in all the involved spaces.

$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$.
Associated with $A \neq \emptyset$ we consider the sets

$$A^\circ := \{ x^* \in X^* \mid \langle x, x^* \rangle \geq -1 \ \forall x \in A \},$$
$$A^- := - (\text{cone } A)^\circ = \{ x^* \in X^* \mid \langle x, x^* \rangle \leq 0 \ \forall x \in A \},$$
$$A^\perp := (-A^-) \cap A^- = \{ x^* \in X^* \mid \langle x, x^* \rangle = 0 \ \forall x \in A \},$$

i.e. the (one-sided) polar, the negative dual cone, and the orthogonal subspace (or annihilator) of A, respectively.

If $A \subset X$ and $x \in X$, we define the indicator function of A as

$$I_A(x) := \begin{cases} 0, & \text{if } x \in A, \\ +\infty, & \text{if } x \in X \setminus A, \end{cases}$$

and the normal cone to A at x as

$$N_A(x) := \begin{cases} (A - x)^- & \text{if } x \in A, \\ \emptyset & \text{if } x \in X \setminus A. \end{cases}$$

A_∞ represents its recession cone.
3. Optimal set for the relaxed problem

Let $h : X \to \mathbb{R}$. The *relaxed problem* associated with

$$(\mathcal{P}) : \text{minimize } h(x) \text{ s.t. } x \in X$$
3. Optimal set for the relaxed problem

Let $h : X \to \mathbb{R}$. The relaxed problem associated with

$$(\mathcal{P}) : \quad \text{minimize } h(x) \quad \text{s.t. } x \in X$$

is classically defined as

$$(\mathcal{P}') : \quad \text{minimize } h^**(x) \quad \text{s.t. } x \in X.$$
3. Optimal set for the relaxed problem

Let \(h : X \rightarrow \bar{\mathbb{R}} \). The relaxed problem associated with

\[
(P) : \quad \text{minimize } h(x) \quad \text{s.t. } x \in X
\]

is classically defined as

\[
(P') : \quad \text{minimize } h^{**}(x) \quad \text{s.t. } x \in X.
\]

The optimal values of both problems coincide:

\[
\inf_{X} h = \inf_{X} h^{**} =: m \in \bar{\mathbb{R}}.
\]
3. Optimal set for the relaxed problem

Let \(h : X \to \overline{\mathbb{R}} \). The *relaxed problem* associated with

\[
(P) : \quad \text{minimize } h(x) \quad \text{s.t. } x \in X
\]

is classically defined as

\[
(P') : \quad \text{minimize } h^{**}(x) \quad \text{s.t. } x \in X.
\]

The optimal values of both problems coincide:

\[
\inf_{X} h = \inf_{X} h^{**} =: m \in \overline{\mathbb{R}}.
\]

Our purpose here is to obtain the *optimal set of* \((P')\), i.e. \(\arg\min_{X} h^{**} \), in terms of the approximate solutions of \((P)\), i.e. \(\varepsilon - \arg\min_{X} h \).
3. Optimal set for the relaxed problem

Let \(h : X \to \mathbb{R} \). The *relaxed problem* associated with

\[
(\mathcal{P}) : \quad \text{minimize } h(x) \quad \text{s.t. } x \in X
\]

is classically defined as

\[
(\mathcal{P}') : \quad \text{minimize } h^{**}(x) \quad \text{s.t. } x \in X.
\]

The optimal values of both problems coincide:

\[
\inf_X h = \inf_X h^{**} =: m \in \mathbb{R}.
\]

Our purpose here is to obtain the *optimal set of \((\mathcal{P}')\)*, i.e. \(\text{argmin } h^{**} \), in terms of the approximate solutions of \((\mathcal{P})\), i.e. \(\varepsilon - \text{argmin } h \).

We set \(\varepsilon - \text{argmin } h = \emptyset \) for all \(\varepsilon \geq 0 \) whenever \(m \notin \mathbb{R} \).
Next we establish the \textbf{main result in this section}.
Next we establish the **main result in this section.**

Theorem 1 ([LoVo’10-Th.3.3])

For any function $h : X \to \overline{\mathbb{R}}$ such that $\text{dom } h^* \neq \emptyset$, one has

$$\text{argmin } h^{**} = \bigcap_{\varepsilon > 0} \overline{\text{co}} \left((\varepsilon - \text{argmin } h) + \{x^*\}^- \right).$$

If $\text{cone}(\text{dom } h^*)$ is w^*-closed or $\text{ri}(\text{cone}(\text{dom } h^*)) \neq \emptyset$, then

$$\text{argmin } h^{**} = \bigcap_{\varepsilon > 0} \overline{\text{co}} \left((\varepsilon - \text{argmin } h) + (\text{dom } h^*)^- \right).$$

In particular, if $\text{cone}(\text{dom } h^*)) = X^*$, then

$$\text{argmin } h^{**} = \bigcap_{\varepsilon > 0} \overline{\text{co}} (\varepsilon - \text{argmin } h).$$
Given $h : X \to \overline{\mathbb{R}}$ and $\varepsilon \geq 0$, consider the mapping
$M_\varepsilon h : X^* \rightrightarrows X$ defined by $M_\varepsilon h = (\partial_\varepsilon h)^{-1}$.
Given $h : X \to \overline{\mathbb{R}}$ and $\varepsilon \geq 0$, consider the mapping $M_\varepsilon h : X^* \rightrightarrows X$ defined by $M_\varepsilon h = (\partial_\varepsilon h)^{-1}$.

Theorem 2 ([LoVo’10-Th.3.6])

If $\text{dom } h^* \neq \emptyset$, one has for all $x^* \in X^*$,

$$\partial h^*(x^*) = \bigcap_{\varepsilon > 0} \overline{\text{co}} \left((M_\varepsilon h)(x^*) + \{u^* - x^*\}^- \right).$$

If $\text{cone} \left((\text{dom } h^*) - x^* \right)$ is w^*-closed or $\text{ri(cone((\text{dom } h^*) - x^*))} \neq \emptyset$, then

$$\partial h^*(x^*) = \bigcap_{\varepsilon > 0} \overline{\text{co}} \left((M_\varepsilon h)(x^*) + N_{\text{dom } h^*}(x^*) \right).$$
Theorem 3 ([LoVo’10-Th.4.1])

Given a family $\emptyset \neq \{f_t, \; t \in T\} \subset \overline{\mathbb{R}}^X$, consider the supremum function $f := \sup_{t \in T} f_t$, and assume that $\text{dom } f \neq \emptyset$. If

$$f^{**} \equiv \left(\sup_{t \in T} f_t \right)^{**} = \sup_{t \in T} f_t^{**},$$

the subdifferential of f at any point $x \in X$ is given by

$$\partial f(x) = \bigcap_{\varepsilon > 0, \; z \in \text{dom } f} \overline{\text{co}} \left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon} f_t(x) + \{z - x\}^- \right),$$

where $T_{\varepsilon}(x) := \{t \in T : f_t(x) \geq f(x) - \varepsilon\}$ if $f(x) \in \mathbb{R}$ and $T_{\varepsilon}(x) = \emptyset$ if $f(x) \notin \mathbb{R}$.
Theorem 3 ([LoVo’10-Th.4.1])

Given a family $\emptyset \neq \{f_t, \ t \in T\} \subset \overline{\mathbb{R}}^X$, consider the supremum function $f := \sup_{t \in T} f_t$, and assume that $\text{dom } f \neq \emptyset$. If

$$f^{**} \equiv \left(\sup_{t \in T} f_t \right)^{**} = \sup_{t \in T} f_t^{**},$$

the subdifferential of f at any point $x \in X$ is given by

$$\partial f(x) = \bigcap_{\varepsilon > 0, \ z \in \text{dom } f} \text{co} \left(\bigcup_{t \in T_\varepsilon(x)} \partial_{\varepsilon} f_t(x) + \{z - x\}^- \right),$$

where $T_\varepsilon(x) := \{t \in T : f_t(x) \geq f(x) - \varepsilon\}$ if $f(x) \in \mathbb{R}$ and $T_\varepsilon(x) = \emptyset$ if $f(x) \not\in \mathbb{R}$.
Theorem 3

Moreover, if either $\text{cone co}(\text{dom } f - x)$ is closed or $\text{ri}(\text{cone co}(\text{dom } f - x)) \neq \emptyset$, then

$$
\partial f(x) = \bigcap_{\epsilon > 0} \overline{\text{co}} \left(\bigcup_{t \in T_\epsilon(x)} \partial \epsilon f_t(x) + N_{\text{dom } f}(x) \right).
$$
The following theorem is an extension of Theorem 1:
The following theorem is an extension of Theorem 1:

Theorem 4 ([LoVo’10-Th.4.8])

For \(h : X \to \mathbb{R} \) and any family \(\{ C_i, \ i \in I \} \) of convex sets of \(X^* \) satisfying

\[
\text{dom} \ h^* \subseteq \bigcup_{i \in I} C_i,
\]

and

\[
\text{ri} \ (\text{cone}(C_i \cap \text{dom} \ h^*)) \neq \emptyset, \text{ for all } i \in I,
\]

one has

\[
\text{argmin} \ h^{**} = \bigcap_{\varepsilon > 0, \ i \in I} \overline{\text{co}} \left((\varepsilon - \text{argmin} \ h) + (C_i \cap \text{dom} \ h^*)^- \right).
\]

If \(\{ C_i, \ i \in I \} = \{ \{ x^* \}, \ x^* \in \text{dom} \ h^* \} \), we get Theorem 1.
Corollary ([LoVo’10-Cor.4.9])

For any function $h : X \to \overline{\mathbb{R}}$ with $\text{dom } h^* \neq \emptyset$, if

$$\mathcal{F}_{x^*} := \left\{ L \subset X^* \mid \text{L is a finite-dimensional linear subspace such that } x^* \in L \right\},$$

one has for all $x^* \in X^*$,

$$\partial h^*(x^*) = \bigcap_{\varepsilon > 0, L \in \mathcal{F}_{x^*}} \overline{\text{co}} \left((M_\varepsilon h)(x^*) + N_{L \cap \text{dom } h^*}(x^*) \right).$$

We applied that $(M_\varepsilon h)(x^*) = \varepsilon - \text{argmin} \left(h(\cdot) - \langle \cdot, x^* \rangle \right)$.
4. More on the subdifferential of the supremum function

The last corollary is applied to obtain an extension of Theorem 4 in [HLZ08]:

Theorem ([LoVo’10-Cor.4.11])

Given \(\emptyset \neq \{f_t, \ t \in T\} \subset \mathbb{R}^X \), and the supremum function \(f := \sup_{t \in T} f_t \), assume that \(\text{dom} f \neq \emptyset \) and \(f^{**} = \sup_{t \in T} f_t^{**} \). Then

\[
\partial f(x) = \bigcap_{\varepsilon > 0, L \in \mathcal{F}_x} \text{cl} \left(\text{co} \left(\bigcup_{t \in T \varepsilon(x)} \partial \varepsilon f_t(x) \right) + N_{L \cap \text{dom} f(x)} \right).
\]
Different characterizations of $N_{\text{dom} f}(x)$ yield:

Theorem ([HLZ’08])

Let $\emptyset \neq \{f_t, \ t \in T\} \subset \mathbb{R}^X$ and $f := \sup_{t \in T} f_t$. Then, for every $x \in X$ we have

$$
\partial f(x) = \bigcap_{L \in \mathcal{F}_x, \varepsilon > 0} \overline{\text{co}} \left(A_L + \bigcup_{t \in T_\varepsilon(x)} \partial_\varepsilon f_t(x) \right)
= \bigcap_{L \in \mathcal{F}_x, \varepsilon > 0} \overline{\text{co}} \left(B_L + \bigcup_{t \in T_\varepsilon(x)} \partial_\varepsilon f_t(x) \right),
$$

where

$$
x^* \in A_L \iff (x^*, \langle x^*, x \rangle) \in \left[\overline{\text{co}} \left((L^\perp \times \mathbb{R}^+) \cup \bigcup_{t \in T} \text{epi} f_t^* \right) \right]_\infty,
$$

$$
x^* \in B_L \iff (x^*, \langle x^*, x \rangle) \in \left[\overline{\text{co}} \left(L^\perp \times \{0\} \cup \bigcup_{t \in T} \text{gph} f_t^* \right) \right]_\infty.
$$
When the functions $f_t, t \in T,$ are **affine** our formula becomes:

Corollary ([HLZ'08])

Assume that $T \neq \emptyset$ and $f(x) := \sup \{ \langle a_t^*, x \rangle - \beta_t \mid t \in T \},$ with $a_t^* \in X^*$ and $\beta_t \in \mathbb{R}.$ Then, for every $x \in X$ we have

$$
\partial f(x) = \bigcap_{L \in \mathcal{F}_x, \varepsilon > 0} \text{cl} \left(\text{co} \{ a_t^* \mid t \in T_{\varepsilon}(x) \} + B_L \right), \text{ where }
$$

$$
x^* \in B_L \iff (x^*, \langle x^*, x \rangle) \in \left[\overline{\text{co}} \left((L^\perp \times \{0\}) \cup \{(a_t^*, \beta_t), t \in T\} \right) \right]_{\infty}.
$$
Corollary (Volle’93, for normed spaces)

Let \(\emptyset \neq \{f_t : X \to \overline{\mathbb{R}} \mid t \in T \} \) be a family of convex functions, and set \(f := \sup_{t \in T} f_t \). If \(f \) is finite and continuous at \(z \in X \), then

\[
\partial f(z) = \bigcap_{\varepsilon > 0} \co \left(\bigcup_{t \in T_\varepsilon(z)} \partial_\varepsilon f_t(z) \right).
\]

Corollary (Brøndsted’72)

Consider convex functions \(f_i : X \to \overline{\mathbb{R}} \) for \(i = 1, \ldots, k \), and \(f := \max\{f_1, \ldots, f_k\} \), and assume that (CC) holds. Given \(z \in X \) such that \((\cl f)(z) = (\cl f_i)(z) \) for \(i = 1, \ldots, k \), we have

\[
\partial f(z) = \bigcap_{\varepsilon > 0} \co \left(\bigcup_{i=1}^{k} \partial_\varepsilon f_i(z) \right).
\]
Theorem (CoHaLo’11)

Let $f_t : X \rightarrow \mathbb{R}$, $t \in T$, be convex, $f = \sup_{t \in T} f_t$, and $C \subset X$ such that $\emptyset \neq C \cap \text{dom } f$ is convex. If

$$\text{cl}(f + I_C)(x) = \sup_{t \in T} (\text{cl} f_t)(x), \quad \forall x \in C \cap \text{dom } f,$$

then, $\forall x \in X$ and $i = 1, 2$, we have

$$\partial (f + I_C)(x) = \bigcap_{\varepsilon > 0} \overline{\text{co}} \left\{ \bigcup_{L \in \mathcal{G}^i_x} \partial_{\varepsilon f_t}(x) + N_{L \cap C \cap \text{dom } f}(x) \right\},$$

where

$$\mathcal{G}^1_x = \left\{ L \subset X \text{ convex} \mid x \in L \text{ and } \text{ri} (L \cap C \cap \text{dom } f) \neq \emptyset \right\},$$

$$\mathcal{G}^2_x = \left\{ L \subset X \text{ convex} \mid \text{cone } \left\{ (L \cap C \cap \text{dom } f) - x \right\} \text{ is closed and } x \in L \right\}.$$
5. An alternative approach

Theorem (Ioffe’11)

Given $\emptyset \neq \{f_t, t \in T\} \subset \mathbb{R}^X$, and $f := \sup_{t \in T} f_t$. Assume that $x \in \text{dom } f$ and that (CC) is satisfied. Let $\{C_i, i \in I\}$ be a family of convex sets such that

$x \in C_i, \forall i \in I, \text{ and } \text{dom } f \subset \bigcup_{i \in I} C_i \subset \text{dom } f^{**}.$

(a) If all $C_i, \forall i \in I$, are closed, then

$$\partial f(x) = \bigcap_{\varepsilon > 0} \text{co} \left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon f_t(x)} + N_{C_i}^\varepsilon(x) \right),$$

where $N_{C_i}^\varepsilon(x) := \{x^* \in X^* \mid \langle x^*, z - x \rangle \leq \varepsilon, \forall z \in C_i\}.$
5. An alternative approach

Theorem (Ioffe’11)

Given \(\emptyset \neq \{f_t, t \in T\} \subset \overline{\mathbb{R}}^X \), and \(f := \sup_{t \in T} f_t \). Assume that \(x \in \text{dom} f \) and that (CC) is satisfied. Let \(\{C_i, i \in I\} \) be a family of convex sets such that

\[x \in C_i, \, \forall i \in I, \, \text{and} \, \text{dom} f \subset \bigcup_{i \in I} C_i \subset \text{dom} f^{**}. \]

(a) If all \(C_i, \, \forall i \in I, \) are closed, then

\[\partial f(x) = \bigcap_{\varepsilon > 0} \overline{\text{co}} \left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon f_t}(x) + N_{C_i}^\varepsilon(x) \right), \]

where \(N_{C_i}^\varepsilon(x) := \{x^* \in X^* \mid \langle x^*, z - x \rangle \leq \varepsilon, \forall z \in C_i\} \).
Theorem

(b) If either $\text{cone}(C_i - x)$ is closed or $\text{ri} C_i \neq \emptyset$, $\forall i \in I$, then

$$\partial f(x) = \bigcap_{\varepsilon > 0} \overline{\text{co}} \left(\bigcup_{t \in T_\varepsilon(x)} \partial_{\varepsilon f_t}(x) + N_{C_i}(x) \right).$$

If we take $I := \text{dom} f$, $C_z := \text{co}\{x, z\}$, $\forall z \in \text{dom} f$, it is obvious that $x \in C_z$, $\forall z \in \text{dom} f$, $\text{dom} f \subset \bigcup_{i \in I} C_i \subset \text{dom} f^{**}$, and $\text{cone}(C_i - x)$ is a closed ray. Applying the last theorem one gets

$$\partial f(x) = \bigcap_{\varepsilon > 0, z \in \text{dom} f} \overline{\text{co}} \left(\bigcup_{t \in T_\varepsilon(x)} \partial_{\varepsilon f_t}(x) + \{z - x\}^- \right),$$
Theorem (CoHaLo’11)

Let $f_t : X \to \overline{\mathbb{R}}$, $t \in T$, be convex functions, define $f = \sup_{t \in T} f_t$, and let $C \subset X$ be so that $C \cap \text{dom} f$ is a nonempty convex set. Assume that, for every $x \in C \cap \text{dom} f$,

$$\text{cl}(f + I_C)(x) = \sup_{t \in T} (\text{cl} f_t)(x).$$

Then, for every $x \in X$ we have that

$$\partial (f + I_C)(x) = \bigcap_{\varepsilon > 0} \text{co} \left\{ \bigcup_{F \in \mathcal{H}_x} \partial_{\varepsilon f_t} (x) + N^\varepsilon_{F \cap C \cap \text{dom} f} (x) \right\},$$

where

$$\mathcal{H}_x := \{ F \subset X \mid x \in F \text{ and } F \cap C \cap \text{dom} f \text{ is closed and convex} \}.$$
6. Other calculus rules
Given an arbitrary set T, we call space of the generalized sequences to
\[\mathbb{R}^{(T)} := \{ \gamma \in \mathbb{R}^T \mid \text{only finitely many } \gamma_t \text{ are different from 0} \}. \]
Its non-negative cone is $\mathbb{R}^{(T)}_+ = \{ \gamma \in \mathbb{R}^{(T)} \mid \gamma_t \geq 0, \forall t \in T \}$. Given $\gamma \in \mathbb{R}^{(T)}$, we define
\[\text{supp } \gamma := \{ t \in T : \gamma_t \neq 0 \}. \]
We also use the notation
\[S_T := \left\{ \gamma = (\gamma_t) \in \mathbb{R}^{(T)}_+ : \sum_{t \in T} \gamma_t = 1 \right\}. \]
When $T = \{1, 2, ..., n\}$,
\[S_T := \left\{ \lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n_+ : \sum_{i=1}^{n} \lambda_i = 1 \right\}. \]
Given \(f = \sup_{t \in T} f_t, x \in X \), and \(\varepsilon > 0 \) we define

\[
S_T(x, \varepsilon) := \left\{ \gamma \in S_T : \sum_{t \in \text{supp} \gamma} \gamma_t f_t(x) \geq f(x) - \varepsilon \right\},
\]

and

\[
D_1 := \bigcap_{t \in T} \text{dom} f_t \supset \text{dom} f =: D_2.
\]

Theorem (LoVo’11-Th.1)

Assume that \(f^{**} \equiv (\sup_{t \in T} f_t)^{**} = \sup_{t \in T} f^{**} \) and it is proper. Then, for \(D \subset X \) such that \(D_2 \subset D \subset D_1 \), and \(\forall x \in X \),

\[
\partial f(x) = \bigcap_{\varepsilon > 0} \text{cl} \bigcup_{\gamma \in S_T(x, \varepsilon)} \partial_{\varepsilon} \left(\sum_{t \in \text{supp} \gamma} \gamma_t f_t + i_D \right)(x).
\]
In order to prove Theorem 11 the following function associated with the set D satisfying $D_2 \subset D \subset D_1$ plays a crucial role:

$$
\varphi := \inf_{\gamma \in \mathcal{S}_T} \left(\sum_{t \in \text{supp } \gamma} \gamma_t f_t + i_D \right)^*.
$$

(3)

Theorem

Assume that $f^{**} \equiv (\sup_{t \in T} f_t)^{**} = \sup_{t \in T} f^{**}$ and it is proper. Then $\varphi \in (\mathbb{R} \cup \{+\infty\})^{X^*}$ is convex and proper. Moreover

$$
\text{cl}^* \varphi = f^*.
$$

(4)
The use of epigraphs
Associated with the function

\[\varphi := \inf_{\gamma \in \mathcal{S}_T} \left(\sum_{t \in \text{supp } \gamma} \gamma_t f_t + i_D \right)^*, \]

we introduce the set

\[E := \bigcup_{\gamma \in \mathcal{S}_T} \text{epi} \left(\sum_{t \in \text{supp } \gamma} \gamma_t f_t + i_D \right)^*. \]

One can prove

\[\text{epi}(\text{cl}^* \varphi) = \text{cl}^* E. \] (5)

Moreover, if \(E \) is \(w^* \)-closed, then

\[\text{epi } \varphi = E. \]
Under this closedness criterion the formula in Theorem 11, i.e.

$$\partial f(x) = \bigcap_{\varepsilon > 0} \cl \bigcup_{\gamma \in S_T(x, \varepsilon)} \partial_\varepsilon \left(\sum_{t \in \supp \gamma} \gamma_t f_t + i_D \right)(x),$$

can be significantly simplified.

Theorem (LoVo’11-Th.2)

Assume that $f^{**} \equiv (\sup_{t \in T} f_t)^{**} = \sup_{t \in T} f_t^{**}$ and it is proper, and that for $D \subset X$ such that $D_2 \subset D \subset D_1$, the set E is w^*-closed. Then,

$$\partial f(x) = \bigcup_{\gamma \in S_T(x)} \partial \left(\sum_{t \in \supp \gamma} \gamma_t f_t + i_D \right)(x), \ \forall x \in X, \quad (6)$$

where $S_T(x) := \{ \gamma \in S_T : f_t(x) = f(x), \ \forall t \in \supp \gamma \}$.
Finitely many functions

Consider the case of finitely many functions $f_1, f_2, ..., f_n$, i.e. $T = \{1, 2, ..., n\}$. The 'closedness condition' for the supremum function $f = \max_{1 \leq i \leq n} f_i$ now is

$$f^{**} = \max_{1 \leq i \leq n} f_i^{**}$$

and it is proper. \hspace{1cm} (7)

Only a domain is involved:

$$D := \text{dom} f = \bigcap_{1 \leq i \leq n} \text{dom} f_i.$$

According to the rule $0 \times (+\infty) = +\infty$ one easily checks that

$$\sum_{i \in \text{supp} \lambda} \lambda_i f_i + i_D = \sum_{1 \leq i \leq n} \lambda_i f_i, \forall (\lambda_i) \in S_T.$$ \hspace{1cm} (8)
Now

\[\varphi := \inf_{(\lambda_i) \in S_T} \left(\sum_{1 \leq i \leq n} \lambda_i f_i \right)^*, \]

and if \(f^{**} = \max_{1 \leq i \leq n} f_i^{**} \) and it is proper, then \(\varphi \in \Gamma(X^*) \) and so, \(\varphi = f^* \).

The theorem below extends [Za’02, Cor. 2.8.11].

Theorem

Assume that (7) holds. Then

\[\partial f(x) = \bigcup_{(\lambda_i) \in S(x)} \partial \left(\sum_{1 \leq i \leq n} \lambda_i f_i \right)(x), \ \forall x \in X, \quad (9) \]

where \(S(x) := \{(\lambda_i) \in S_T : f_i(x) = f(x) \text{ if } \lambda_i \neq 0\} \).

