
Programming Algol 68Made Easy
Sian Leit
h

Ph�nix Engineering

TEX is a trademark of the Ameri
an Mathemati
al So
iety.Copyright

 Sian Leit
h, 1995, 1997, 2000.This do
ument is subje
t to the provisions of the GNU General Publi
 Li
en
e verstion 2, or at youroption, any later version.
Publishing history� First edition published by Oxford & Cambridge Compilers Ltd in 1995.� Se
ond (revised) edition published by Oxford & Cambridge Compilers Ltd in 1997.� Third edition published by Phoenix Engineering in 2000.

Prepared in S
otland.

RiAad van Wijngaarden
Athair na h-Algol 68

iv

Contents
Prefa
e xi1 Introdu
tion 11.1 What you will need . 11.2 Terminology . 21.3 Values and modes . 21.4 Integers . 21.5 Identity de
larations . 31.6 Chara
ters . 51.7 Real numbers . 51.8 Program stru
ture . 61.9 Comments . 71.10 External values . 91.11 Summary . 92 Formul� 112.1 Monadi
 operators . 112.2 Dyadi
 operators . 122.3 Multipli
ation . 132.4 Division . 142.5 Exponentiation . 152.6 Mixed arithmeti
 . 152.7 Order of elaboration . 152.8 Changing the mode . 162.9 Mis
ellaneous operators . 162.10 Operators using CHAR . 162.11 print revisited . 172.12 Summary . 173 Repetition 193.1 Multiples . 193.1.1 Row-displays . 203.1.2 Dimensions . 203.1.3 Subs
ripts and bounds . 213.2 Sli
ing . 223.3 Trimming . 233.4 Printing multiples . 243.5 Operators with multiples . 253.6 Ranges . 263.7 Program repetition . 263.8 Nested loops . 283.9 Program stru
ture . 283.10 The FORALL loop . 293.11 Summary . 29v

vi CONTENTS4 Choi
e 314.1 Boolean values . 314.2 Boolean operators . 314.3 Relational operators . 324.4 Compound Boolean formul� . 334.5 Conditional
lauses . 344.5.1 Pseudo-operators . 364.6 Multiple
hoi
e . 374.7 Summary . 405 Names 415.1 Assignment . 425.1.1 Copying values . 435.1.2 Assigning operators . 435.2 Assignments in formul� . 455.3 Multiple names . 455.4 Assigning to multiple names . 465.4.1 Individual assignment . 465.4.2 Colle
tive assignment . 475.5 Flexible names . 495.6 The mode STRING . 505.7 Referen
e modes in transput . 515.8 Dynami
 names . 525.9 Loops revisited . 535.10 Abbreviated de
larations . 535.11 Summary . 546 Routines 576.1 Routines . 576.1.1 Routine modes . 586.1.2 Multiples as parameters . 596.1.3 Names as parameters . 596.1.4 The mode VOID . 596.1.5 Routines yielding names . 606.1.6 Parameterless routines . 606.2 Operators . 616.2.1 Identi�
ation of operators . 626.2.2 Operator usage . 636.2.3 Dyadi
 operators . 646.2.4 Operator symbols . 666.3 Pro
edures . 666.3.1 Parameterless pro
edures . 676.3.2 Pro
edures with parameters . 696.3.3 Pro
edures as parameters . 716.3.4 Re
ursion . 716.3.5 Standard pro
edures . 726.3.6 Other features of pro
edures . 736.4 Summary . 747 Stru
tures 757.1 Stru
ture denotations . 757.2 Field sele
tion . 767.3 Mode de
larations . 787.4 Complex numbers . 807.5 Multiples in stru
tures . 827.6 Rows of stru
tures . 847.7 Transput of stru
tures . 847.8 Summary . 85

CONTENTS vii8 Unions 878.1 United mode de
larations . 878.2 United modes in pro
edures . 898.3 Conformity
lauses . 908.4 Summary . 919 Transput 939.1 Books,
hannels and �les . 939.2 Reading books . 939.3 Writing to books . 959.4 String terminators . 979.5 Events . 979.5.1 Logi
al �le end . 979.5.2 Physi
al �le end . 989.5.3 Value error . 999.5.4 Char error . 999.6 The
ommand line . 1009.7 Environment strings . 1019.8 Writing reports . 1029.9 Binary books . 1039.10 Internal books . 1059.11 Other transput pro
edures . 1059.12 Summary . 10510 Units 10710.1 Phrases . 10710.2 Contexts . 10810.3 Coer
ions . 10910.3.1 Depro
eduring . 10910.3.2 Dereferen
ing . 11010.3.3 Weakly-dereferen
ing . 11110.3.4 Uniting . 11110.3.5 Widening . 11110.3.6 Rowing . 11110.3.7 Voiding . 11210.3.8 Legal
oer
ions . 11310.4 En
losed
lauses . 11310.5 Primaries . 11410.6 Se
ondaries . 11510.7 Tertiaries . 11710.8 Quaternaries . 11710.9 Balan
ing . 11910.10 Well-formed modes . 12010.11 Flexible names . 12210.12 Orthogonality . 12210.13 Summary . 12311 Advan
ed
onstru
ts 12511.1 Bits, bytes and words . 12511.1.1 Radix arithmeti
 . 12511.2 The mode BITS . 12711.3 Overlapping sli
es . 13011.4 Completers . 13111.5 Referen
es to names . 13311.6 Identity relations . 13411.7 The value NIL . 13511.8 Queues . 13711.9 The pro
edure add fan . 14011.10 More queue pro
edures . 14111.11 Trees . 143

viii CONTENTS11.12 Parallel programming . 14511.13 Summary . 14612 Program development 14712.1 Writing programs . 14712.1.1 Top-down analysis . 14812.1.2 Program layout . 14812.1.3 De
larations . 14912.1.4 Pro
edures . 14912.1.5 Monetary values . 14912.1.6 Optimisation . 15112.1.7 Testing and debugging . 15112.1.8 Compilation errors . 15212.1.9 Arithmeti
 over
ow . 15312.1.10 Do
umentation . 15312.2 Non-
anoni
al input . 15412.3 A simple utility . 15512.3.1 The sour
e
ode . 15512.3.2 Routines . 15612.3.3 Dry-running example . 15712.3.4 ALIEN pro
edures . 15712.4 Summary . 15913 Standard Prelude 16113.1 Standard modes . 16113.2 Environment enquiries . 16213.2.1 Arithmeti
 enquiries . 16313.2.2 Chara
ter set enquiries . 16513.3 Standard operators . 16513.3.1 Method of des
ription . 16613.3.2 Standard priorities . 16613.3.3 Operators with row operands . 16613.3.4 Operators with BOOL operands . 16713.3.5 Operators with INT operands . 16713.3.6 Operators with REAL operands . 16813.3.7 Operators with COMPL operands . 17013.3.8 Operators with mixed operands . 17113.3.9 Operators with BITS operands . 17113.3.10 Operators with CHAR operands . 17213.3.11 Operators with STRING operands . 17213.3.12 Assigning operators . 17313.3.13 Other operators . 17413.4 Standard pro
edures . 17513.4.1 Mathemati
al pro
edures . 17513.4.2 Other pro
edures . 17613.5 Ctrans extensions . 17613.5.1 Modes pe
uliar to Ctrans . 17613.5.2 Ctrans
onstru
ts . 17713.5.3 Operators . 17813.6 Control routines . 17913.6.1 Floating-point unit
ontrol . 17913.6.2 Terminating a pro
ess . 18013.6.3 Garbage-
olle
tor
ontrol . 18113.7 Transput . 18213.7.1 Transput modes . 18213.7.2 Standard
hannels . 18213.7.3 Standard �les . 18713.7.4 Opening �les . 18713.7.5 Closing �les . 18713.7.6 Transput routines . 187

CONTENTS ix13.7.7 Interrogating �les . 19013.7.8 File properties . 19113.7.9 Event routines . 19113.7.10 Conversion routines . 19213.7.11 Layout routines . 19313.8 Summary . 193A Answers 195A.1 Chapter 1 . 195A.2 Chapter 2 . 197A.3 Chapter 3 . 198A.4 Chapter 4 . 201A.5 Chapter 5 . 203A.6 Chapter 6 . 208A.7 Chapter 7 . 212A.8 Chapter 8 . 213A.9 Chapter 9 . 215A.10 Chapter 10 . 230A.11 Chapter 11 . 232Bibliography 239

x CONTENTS

Prefa
e
It is a falla
y to say that progress
onsists of repla
ing the workable by the new. The bri
k was invented bythe Babylonians and has been used virtually un
hanged for 2500 years. Even now, despite the advent of
urtain-walling, the bri
k is still the primary building material. Likewise, the long-predi
ted revolution in
omputer programming to be produ
ed by the introdu
tion of fourth- and �fth-generation languages hasnot
ome to pass, almost
ertainly be
ause their purported advantages are outweighed by their manifestdisadvantages. Third-generation languages are still used for the bulk of the world's programming. Algol 68has been used as a paradigm of third-generation languages for 32 years.Ea
h
omputer programming language has a primary purpose: C was developed as a suitable tool inwhi
h to write the Unix operating system, Pas
al was designed spe
i�
ally to tea
h
omputer program-ming to university students and Fortran was designed to help engineers perform
al
ulations. Where aprogramming language is used for its design purpose, it performs that purpose admirably. Fortran, whenit �rst appeared, was a massive improvement over assembler languages whi
h had been used hitherto.Likewise, C, when restri
ted to its original purpose, is an admirable tool, but it is a mena
e in the handsof a novi
e. However, novi
es do not write operating systems.A

ording to the \Revised Report on the Algorithmi
 Language Algol 68" (see the Bibliography),Algol 68 was \designed to
ommuni
ate algorithms, to exe
ute them eÆ
iently on a variety of di�erent
omputers, and to aid in tea
hing them to students". Although this book has not been geared to anyspe
i�
 university syllabus, the logi
al development of the exposition should permit its use in su
h anenvironment. However, sin
e no programming expertise is assumed, the book is also suitable for home-study.It is time to take a fresh approa
h to the tea
hing of
omputer programming. This book breaksnew ground in that dire
tion. The
on
ept of a variable (a term borrowed from mathemati
s, applied toanalogue
omputers and then, inappropriately, to digital
omputers) has been repla
ed by the prin
iple ofvalue integrity: in Algol 68, every value is a
onstant. All the usual paraphernalia of pointers, statementsand expressions is dispensed with. Instead, a whole new sublanguage is provided for understanding thenature of programming.This book
overs the language as implemented by the Ctrans
ompiler. Sin
e the last edition, a new
hapter on the Standard Prelude has been added, thereby bringing together all the referen
es to thatPrelude in the rest of the book. This edition is an interim edition des
ribing the QAD transput providedwith the Ctrans pa
kage. When the van Vliet transput model has been implemented for the Ctrans
ompiler, a new version of the book will be published.It has been a
ons
ious aim of the author to redu
e the amount of des
ription to a minimum. It isadvisable, therefore, that the text be read slowly, re-reading a point if it is not
lear. This is parti
ularlytrue for
hapter 5 where the
on
ept of the name has been introdu
ed rather
arefully. The exer
isesare intended to be worked. Answers to all the exer
ises have been given ex
ept for those whi
h areself-marking.A program written for use with the book
an be found in the same dire
tory as this book.I should like to thank Wilhelm Kloke for bringing the Ctrans
ompiler to my attention and John KHarris, James Jones and Greg Nunan for their a
tive help in the preparation of the QAD transput.In 33 years of programming, I have had many tea
hers and mentors, and I have no doubt that I havebene�ted from what they have told me, although now it is diÆ
ult to pinpoint pre
isely whi
h part ofmy understanding is due to whi
h individual. Any errors in the book are my own. If any reader shouldfeel that the book
ould be improved, I should be grateful if she would
ommuni
ate her suggestions tothe publisher, so that in the event of another edition, I
an in
orporate those I feel are appropriate (shein
ludes he). Sian Leit
hInbhir NisL�unasdal BP21500xi

xii CONTENTS

Chapter 1
Introdu
tion
Algol 68 is a high-level, general-purpose programming language ideally suited to modern operating sys-tems. This book will tea
h you Algol 68 plus the ne
essary development skills to enable you to writesubstantial programs whi
h
an be exe
uted from the
ommand line.In prin
iple, you
an solve any
omputable problem with Algol 68. You
an write programs whi
hperform word pro
essing, perform
ompli
ated
al
ulations with matri
es, design graphs or bridges,pro
ess pi
tures, predi
t the weather, and so on. Or you
an write simple programs whi
h
ount thenumber of words in a �le or list a �le with line numbers.Algol 68 is a powerful language. There are many
onstru
ts whi
h enable you to manipulate
ompli-
ated data stru
tures with ease, and yet it is all easy to understand be
ause one of the guiding prin
iplesof Algol 68 was that it was designed to be orthogonal. This means that the language is based on a fewindependent ideas whi
h are developed and applied with generality. The language was designed in su
ha way that it is impossible to write ambiguous programs. The design is also diÆ
ult to des
ribe until ithas been fully des
ribed, whi
h means that some
on
epts have to be introdu
ed in a super�
ial manner,but later reading will deepen your understanding.You need to have a thorough grasp of the basi
 ideas if you are going to write powerful programs inAlgol 68: these ideas unfold in the �rst �ve
hapters. The
hapters should be read in order, but
hapter 5is a watershed|it forms the basis of mu
h of the
omputer programming performed in the world today.Its ideas should be mastered before
ontinuing.Chapter 10 draws together all the various referen
es to grammati
al points and
lari�es the limitationsof the language|you will need to know these if you want to squeeze the last oun
e of power out of thelanguage. Chapters 11 and 12 deal with advan
ed topi
s whi
h should not be tou
hed until you havemastered pre
eding material. Chapter 13 des
ribes the standard prelude whi
h, besides providing meansof determining the
hara
teristi
s of an Algol 68 implementation, also provides the transput fa
ilitieswhose power are
hara
teristi
 of Algol 68.In this
hapter, some aspe
ts of Algol 68 grammar are des
ribed. Don't worry if they seem
onfusing;all will be
ome
lear later in the book. It also
overs denotations and the identity de
laration, the latterhaving
ru
ial importan
e in the language.
1.1 What you will needThe language des
ribed in this book is that made available by the Ctrans Algol 68
ompiler developedby the Defen
e Resear
h Agen
y (see se
tion 1.9 for more information about what a
ompiler does). Itimplements almost all of the language known as Algol 68, and extends that language in minor respe
ts.To run the programs des
ribed in this book you will need a mi
ro
omputer with a Linux system. Thesour
e pa
kage will o

upy � 12Mb on the hard disk while the binary pa
kage will also need � 9Mb ofspa
e on the hard disk. The sour
e pa
kage may be deleted on
e the binary pa
kage has been installed.The book expe
ts you to be familiar with the usual
ommands for manipulating �les. You will needto know how to use an editor for plain text �les (not a word pro
essor). No programming expertise isassumed.Mu
h program development work on Linux takes pla
e at the
ommand line be
ause a graphi
al userinterfa
e is usually too
umbersome to
ope with the myriad
ommands issued by the programmer. Seethe do
umentation in /usr/info/mm.info.gz and the man page for a68to
 for details of how to use theCtrans program development system. 1

2 CONTENTS1.2 TerminologyIn des
ribing Algol 68, it is ne
essary to use a number of te
hni
al terms whi
h have a spe
ialist meaning.However, the number of terms used has been redu
ed to a minimum. Whenever a term is introdu
ed itwill be written in bold. Parts of programs are printed as though they had been produ
ed by a typewriterlike this:BEGINSome of the terminology may seem pedanti
. Des
ribing the parts of an Algol 68 program
an, andshould be, pre
ise. The power of Algol 68 derives as mu
h from the pre
ision as from the generality ofits ideas.
1.3 Values and modesTwo of the guiding prin
iples of Algol 68 are the
on
epts of value and mode. Typi
ally, an Algol 68program manipulates values to produ
e new values, and, in the pro
ess, does useful work (su
h as word-pro
essing). Values are su
h entities as numbers and letters, but you will see in later
hapters that values
an be very
ompli
ated and, indeed,
an be things that you would not normally think of as a value.A value is
hara
terised by its mode. Every value has only one mode, and
annot
hange its mode.Therefore, if you have a mode
hange you must have a new value as well (but see
hapter 8). A modede�nes a set of values. The number of values in the set depends on the mode and there
an be from noneto potentially in�nity. For example, the whole number represented by the digits 37 has mode INT. Thesymbol INT is
alled a mode indi
ant. You will be meeting many more mode indi
ants in the
ourse ofthis book and they are all written in
apital letters and sometimes with digits. The stri
t de�nition of amode indi
ant is that it
onsists of a series of one or more
hara
ters whi
h starts with a
apital letter,and is
ontinued by
apital letters or digits. No intervening spa
es are allowed. There is no limit to thelength of a mode indi
ant although in pra
ti
e it is rare to �nd mode indi
ants longer than 16
hara
ters.Here are some more mode indi
ants whi
h you will meet in this and later
hapters:BOOL CHAR COMPL FILE HMEANSe
tion 7.3 explains how you
an de�ne your own mode indi
ants. Although you
an use any sequen
eof valid
hara
ters, meaningful mode indi
ants
an help you to understand your programs.
Exer
ises1.1 Is there anything wrong with the following mode indi
ants?(a) RealNumber(b) 2NDINT(
) COMPL(d) UPPER CASE(e) ONE.TWO1.2 What is the de�nition of a mode indi
ant?
1.4 IntegersAlthough, stri
tly speaking, there is no largest positive integer, the largest positive integer whi
h
anbe manipulated by the Ctrans Algol 68
ompiler is 2 147 483 647, and the largest negative integer is�2 147 483 647 (the �rst is 231 � 1 and the se
ond is �231 + 1). The representation of a value in anAlgol 68 program is
alled a denotation be
ause it denotes the value. It is important to realise that thedenotation of a value is not the same as the value itself. To be pre
ise, we say that the denotation of avalue represents an instan
e of that value. For example, three separate instan
es of the value denoted bythe digits 31 o

ur in this paragraph. All the instan
es denote the same value.If you want to write the denotation of an integer in an Algol 68 program, you must use any of thedigits 0 to 9. No signs are allowed. This means that you
annot write denotations for negative integers

1.5. IDENTITY DECLARATIONS 3in Algol 68 (but this is not a problem as you will see). Although you
annot use
ommas or de
imalpoints, spa
es
an be inserted anywhere. Here are some examples of denotations of integers separated by
ommas (the
ommas are not part of the denotations):0 , 3 , 03 , 3000000 , 2 147 483 647Note that 3 and 03 denote the same value be
ause the leading zero is not signi�
ant. However, the zerosin the three million are signi�
ant. The mode of ea
h of the �ve denotations is INT. The following arein
orre
t denotations:3,451 -2 1e6The �rst
ontains a
omma, the se
ond is a formula, and the third
ontains the letter e. You will see lateron that the third expression denotes a number, but by de�nition this denotation does not have modeINT.
Exer
ises1.3 Write a denotation for thirty-three.1.4 What is wrong with the following integer denotations?(a) 1,234,567(b) 5.(
) -4
1.5 Identity de
larationsSuppose you want to use the integer whose denotation is48930767in various parts of your program. If you had to write out the denotation ea
h time you wanted to use it,you would �nd that� you would almost
ertainly make mistakes in
opying the value, and� the meaning of the integer would not be at all
learIt is imperative, parti
ularly with large programs, to make the meaning of the program as
lear as possible.Algol 68 provides a spe
ial
onstru
t whi
h enables you to de
lare a synonym for a value (in this
ase,an integer denotation). It is done by means of the
onstru
t known as an identity de
laration whi
his used widely in the language. Here is an identity de
laration for the integer mentioned at the start ofthis paragraph:INT spe
ial integer = 48930767Now, whenever you want to use the integer, you writespe
ial integerin your program.An identity de
laration
onsists of four parts:<mode indi
ant> <identifier> = <value>You have already met the <mode indi
ant>. An identi�er is a sequen
e of one or more
hara
terswhi
h starts with a lower-
ase letter and
ontinues with lower-
ase letters or digits or unders
ores. It
anbe broken-up by spa
es, newlines or tab
hara
ters. Here are some examples of valid identi�ers (they areseparated by
ommas to show you where they end, but the
ommas are not part of the identi�ers):i, algol, rate 2 pay, eigen_value_3The following are wrong:

4 CONTENTS2pairs es
ape.velo
ity XConfigureEventThe �rst starts with a digit, the se
ond
ontains a
hara
ter whi
h is neither a letter nor a digit nor anunders
ore, and the third
ontains
apital letters.An identi�er looks like a name, in the ordinary sense of that word, but we do not use the term \name"in this sense be
ause it has a spe
ial meaning in Algol 68 whi
h will be explained in Chapter 5. Theidenti�er
an abut the mode indi
ant as inINTa = 4but this is unusual. For
larity in your programs, ensure that a mode indi
ant followed by an identi�eris separated from the latter by a spa
e.The third part is the equals symbol =. The fourth part (the right-hand side of the equals symbol)requires a value. You will see later that the value
an be any pie
e of program whi
h yields a value of themode spe
i�ed by the mode indi
ant. So far, we have only met integers, and we
an only denote positiveintegers.There are two ways of de
laring identi�ers for two integers:INT i = 2 ; INT j=3The semi
olon ; is
alled the go-on symbol be
ause it means \throw away the value yielded by theprevious phrase, and go on to the next phrase". If this statement seems a little odd, just bear with itand all will be
ome
lear later. We
an abbreviate the de
larations as follows:INT i=2, j = 3The
omma separates the two de
larations, but does not mean that the i is de
lared �rst, followed by thej. On the
ontrary, it is up to the
ompiler to determine whi
h de
laration is elaborated �rst. They
ouldeven be done in parallel on a parallel pro
essing
omputer. This is known as
ollateral elaboration, asopposed to sequential elaboration determined by the go-on symbol (the semi
olon). We shall be meeting
ollateral elaboration again in later
hapters. Elaboration means, roughly, exe
ution or \working-out".The
ompilation system translates your Algol 68 program into ma
hine
ode. When the ma
hine
ode isobeyed by the
omputer, your program is elaborated. The sequen
e of elaboration is determined by the
ompiler as well as by the stru
ture of your program. Note that spa
es are allowed almost everywhere inan Algol 68 program.Some values are prede�ned in what is
alled the standard prelude. You will be learning more aboutit in su

eeding
hapters. One integer whi
h is prede�ned in Algol 68 has the identi�er max int. Canyou guess its value?
Exer
ises1.5 What is wrong with the following identi�ers?(a) INT(b) int(
) thirty-four(d) AreaOfSquare1.6 What is wrong with the following identity de
larations?(a) INT thirty four > 33(b) INT big int = 3 000 000 0001.7 Write an identity de
laration for the largest integer whi
h the Algol 68
ompiler
an handle. Usethe identi�ermax int.

1.6. CHARACTERS 51.6 Chara
tersAll the symbols you
an see on a
omputer, and some you
annot see, are known as
hara
ters. Thealphabet
onsists of the
hara
ters A to Z and a to z. The digits
omprise the
hara
ters 0 to 9. Every
omputer re
ognises a parti
ular set of
hara
ters. The
hara
ter set re
ognised by the Ctrans
ompilerare the ASCII
hara
ters (ASCII stands for Ameri
an Standard Code for Information Inter
hange). Themode of a
hara
ter is CHAR (read \
ar" be
ause it is short for
hara
ter). A
hara
ter is denoted bypla
ing it between quote
hara
ters. Thus the denotation of the lower-
ase a is "a". Here are some
hara
ter denotations:"a" "A" "3" ";" "\" "'" """" " "Note that quote
hara
ters are doubled in their denotations. The third denotation is "3". This value hasmode CHAR. The denotation 3 has mode INT: the two values are quite distin
t, and one is not a synonymfor the other. The last denotation is that of the spa
e
hara
ter.Here are some identity de
larations for values of mode CHAR:CHAR a = "A", zed = "z"; CHAR tilde = "~"Note that the two sets of identity de
larations are separated by a semi
olon, but the de
laration fortilde is not followed by a semi
olon. This is be
ause the semi
olon ; is not a terminator; it is an a
tion.Identity de
larations do not yield any value. An identity de
laration is a phrase. Phrases are eitheridentity de
larations or units. When a phrase is elaborated, if it is a unit, it will yield a value. That is,after elaboration, a value will be available for further use if required. Again, this may not make mu
hsense now, but it will be
ome
learer as you learn the language.Here is a pie
e of program with identity de
larations for an INT and a CHAR:1INT ninety nine=99 , CHAR x = "X"The
ompiler re
ognises 512 distin
t values of mode CHAR, but most of them
an only o

ur in deno-tations. The spa
e is de
lared as blank in the standard prelude.
Exer
ises1.8 Write the denotations for the full-stop, the
omma and the digit 8 (not the integer 8).1.9 Write a suitable identity de
laration for the question mark.
1.7 Real numbersNumbers whi
h
ontain fra
tional parts, su
h as 3:5 or0:0005623956, or numbers expressed in s
ienti�
 notation, su
h as 1:95 � 1034 are values of mode REAL.Reals are denoted by digits and one at least of the de
imal point (whi
h is denoted by a full stop), or theletter e. The e means �10some power. Just as with integers, there are no denotations for negative reals.When the exponent is pre
eded by a minus sign, this does not mean that the number is negative, butthat the de
imal point should be shifted leftwards. For example, in the following REAL denotations, thethird denotation has the same value as the fourth (again, the denotations are separated by
ommas, butthe
ommas are not part of the denotations):4.5, .9, 0.000 000 003 4, 3.4e-9, 1e6Although the se
ond denotation is valid, it is advisable in su
h a
ase to pre
ede the de
imal point with azero: 0.9. This is better be
ause a de
imal point not pre
eded by an integer
an be easily missed. Hereare some identity de
larations for values of mode REAL:REAL e = 2.718 281 828,ele
tron
harge = 1.602 10 e-19,monthly salary = 2574.431The Ctrans
ompiler insists on a semi
olon between identity de
larations for di�erent modes. In the above
ase, you would have to write INT ninety nine=99 ; CHAR x = "X"

6 CONTENTSThe largest REAL whi
h the
ompiler
an handle is de
lared in the standard prelude as max real. Itsvalue is 1:79769313486231571e308 :The value of � is de
lared in the standard prelude with the identi�er pi and a value ofREAL pi = 3.141592653589793238462643It was mentioned above that in an identity de
laration, any pie
e of program yielding a value of therequired mode
an be used as the value. Here, for example, is an identity de
laration where the valuehas mode INT:REAL a = 3However, the mode required is REAL. In
ertain
ir
umstan
es, a value of one mode
an be
oer
ed into avalue of another mode. These
ir
umstan
es are known as
ontexts. There are �ve
ontexts de�ned inthe language. Ea
h
ontext will be mentioned as it o

urs. The right-hand side of an identity de
larationhas a strong
ontext. In a strong
ontext, a value and its mode
an be
hanged a

ording to six rules,known as
oer
ions, de�ned in the language. Again, ea
h
oer
ion will be explained as it o

urs. The
oer
ion whi
h repla
es a value of mode INT with a value of mode REAL is known as widening. You willmeet a di�erent kind of widening in se
tion 7.4.You
an even supply an identi�er yielding the required mode on the right-hand side. Here are twoidentity de
larations:REAL one = 1.0;REAL one again = oneYou
annot
ombine these two de
larations into one with a
omma as inREAL one = 1.0, one again = onebe
ause you
annot guarantee that the identity de
laration for one will be elaborated before the de
la-ration for one again (be
ause the
omma is not a go-on symbol).2Values of modes INT, REAL and CHAR are known as plain values. We shall be meeting another modehaving plain values in
hapter 4, and modes in
hapter 3 whi
h are not plain. Complex numbers are dealtwith in
hapter 7.
Exer
ises1.10 Is there anything wrong with the following identity de
larations?REAL x = 5.,y = .5;z = 1001.11 Given that light travels 2:997 925�108 metres per se
ond in a va
uum, write an identity de
larationfor the identi�er light year in terms of metres to an a

ura
y of 5 de
imal pla
es (use a
al
ulator).
1.8 Program stru
tureAlgol 68 programs
an be written in one or more parts. Here is a valid Algol 68 program:PROGRAM firstprogram CONTEXT VOIDUSE standardBEGINprint(20)ENDFINISHOnly the three lines starting with BEGIN and ending with END are stri
tly part of the Algol 68 program.The �rst, se
ond and last lines are spe
i�
 to the Ctrans
ompiler. The �rst line gives the identi�
ation ofthe program as firstprogram and the fa
t that this �le
ontains a program. The CONTEXT VOID phrasespe
i�es that the program stands on its own instead of being embedded in other parts. The phrase is avestige of the modular
ompilation system originally provided by the
ompiler at the heart of Ctrans.2The Ctrans
ompiler does permit a subsequent de
laration to use the value of a previous value, but it isstri
tly non-standard. You would be wise to restri
t your programs to Algol 68 syntax be
ause other Algol 68
ompilers will not ne
essarily be so lax.

1.9. COMMENTS 7A full explanation of the print phrase will be found in
hapter 9 (Transput). For now, it is enoughto know that it
auses the value in the parentheses to be displayed on the s
reen.3 The standard preludemust be USEd if you want to use print. You
an use any identi�er for the operating system �le in whi
hto store the Algol 68 sour
e
ode of the program. Although it does not have to be the same as theidenti�er of the module, it is advisable to make it so.Both the print phrase and the denotation are units. Chapter 10 will explain units in detail. Phrasesare separated by the go-on symbol (a semi
olon ;). Be
ause there is only one phrase in firstprogram,no go-on symbols are required. Here is another valid program:PROGRAM prog CONTEXT VOIDUSE standardBEGININT spe
ial integer = 48930767;print(20) ; print(spe
ial integer)ENDFINISHThe semi
olon between the two print phrases is not a terminator: it is a separator. It means \throwaway any value yielded by the previous phrase and go on with the su

eeding phrase". That is why it is
alled the go-on symbol. Noti
e that there is no semi
olon after the third phrase.Algol 68 programs are written in free format. This means that the meaning of your program isindependent of the layout of the sour
e program. However, it is sensible to lay out the
ode so as to showthe stru
ture of the program. For example, you
ould write the �rst program like this:PROGRAM firstprogram CONTEXT VOIDUSE standard(print(20))FINISHwhi
h is just as valid, but not as
omprehensible. Noti
e that BEGIN and END
an be repla
ed by (and) respe
tively. How you lay out your program is up to you, but writing it as shown in the examples inthis book will help you write
omprehensible programs.
Exer
ises1.12 What is wrong with this sample program?PROGRAM testBEGINprint("A"))ENDFINISH1.13 Using an editor, key in the two sample programs given in this se
tion, and
ompile and exe
utethem. What do they display on your s
reen?
1.9 CommentsWhen you write a program in Algol 68, the pie
es of program whi
h do the work are
alled \sour
e
ode". The Algol 68
ompiler translates this sour
e
ode into C sour
e
ode whi
h is then translatedby the GNU C
ompiler into \obje
t
ode". This is then
onverted by a program
alled a linker intoma
hine
ode, whi
h is understood by the
omputer. You then exe
ute the program by typing its nameat the
ommand-line plus any arguments needed. This is
alled running the program.When you write the program, it is usually quite
lear to you what the program is doing. However,if you return to that program after a gap of several months, the sour
e
ode may not be at all
lear toyou. To help you understand what you have written in the program, it is possible, and re
ommended,to write
omments in the sour
e
ode. Comments
an be put almost anywhere, but not in the middleof mode indi
ants and not in the middle of denotations. A
omment is ignored by the
ompiler, ex
eptthat
omments
an be nested. A
omment is surrounded by one of the following pairs:3When Algol 68 was �rst implemented there were few monitors around, so print literally printed its outputonto paper.

8 CONTENTSCOMMENT ... COMMENTCO ... CO#...#{...}where the : : : represent the a
tual
omment. The paired bra
es are pe
uliar to the Ctrans
ompiler.Other
ompilers may not a

ept them. Here is an Algol 68 program with
omments added:PROGRAM prog CONTEXT VOIDUSE standardBEGININT i = 23, # My brother's age #s = 27; CO My sister's age COCHAR z = "&", COMMENT An ampersandCOMMENT y{a
ht}="y";REAL x = 1.25;print(i); print(s); print(z);print(y); print(x)ENDFINISHThere are four
omments in the above program. If you start a
omment with CO then you must also �nishit with CO, and likewise for the other
omment symbols (ex
ept the bra
es). Here is a program with abit of sour
e
ode \
ommented out":PROGRAM prog CONTEXT VOIDUSE standardBEGININT i = 1, j = 2 #, k = 3#;print(i); print(j)ENDFINISHThe advantage of
ommenting out sour
e is that you only have to remove two
hara
ters and that sour
e
an be in
luded in the program again. You
an use any of the
omment symbols for
ommenting out.Here is another program with a part of the program
ontaining a
omment
ommented-out:PROGRAM prog CONTEXT VOIDUSE standardBEGININT i = 1;COMMENTREAL six = 6.0, # Used subsequently #one by 2 = 0.5;COMMENTCHAR x = "X";print(i); {print(six);} print(x)ENDFINISHThis is an example of nested
omments. You
an use any of the
omment symbols for this purpose aslong as you �nish the
omment with the mat
hing symbol. However, if the part of your program thatyou want to
omment out already
ontains
omments, you should ensure that the en
losing
ommentsymbols should be di�erent. One way of using
omment symbols is to develop a standard method. Forexample, the author uses the #...#
omment symbols for one line
omments in the
ode, CO symbols formultiline
omments and COMMENT symbols for extensive
omments required at the start of programs orsimilar
ode
hunks.
Exer
ises1.14 Write a short program whi
h will print the letters of your �rst name. You should de
lare anidenti�er of mode CHAR for ea
h letter, and write a print phrase for ea
h letter. Remember to putsemi
olons in the right pla
es. Add
omments to your program to explain what the program does.

1.10. EXTERNAL VALUES 91.10 External valuesValues denoted or manipulated by a program are
alled internal values. Values whi
h exist outside aprogram and whi
h are data used by a program or data produ
ed by a program (or both) are known asexternal values.In the previous se
tions we have been learning how plain values are denoted in Algol 68 programs.This internal display of values is not ne
essarily the same as that used for external values. If you
opythe following program into a �le and
ompile and run it you will get +10A +.15000000000000000e +1output on your s
reen.PROGRAM test CONTEXT VOIDUSE standardBEGINprint(10); print("A"); print(1.5)ENDFINISHNoti
e that although the denotation for the �rst letter of the alphabet is surrounded by quote
hara
ters,when it is displayed on your s
reen, the quote
hara
ters are omitted. The rules for numbers are asfollows: if a number is not the �rst value in the line it is pre
eded by a spa
e. Integers are always printedin the spa
e required by max int plus one position for the sign. Both positive and negative integers havea sign. A real number is always printed using the print positions required by max real, plus a sign forthe number. The exponent is also pre
eded by a sign. If you want extra spa
es, you have to insert them.Try the following program:PROGRAM print2 CONTEXT VOIDUSE standardBEGINprint(10); print(blank); print("A");print(0.015); print(0.15); print(1.5);print(15.0); print(150.0); print(1500.0);print(15e15)ENDFINISH
1.11 SummaryAn Algol 68 program manipulates values. A value is
hara
terised by its mode. A mode is indi
ated bya mode indi
ant. Plain values
an be denoted. Values o

ur in
ontexts, and
an sometimes be
oer
edinto values of di�erent modes. Identi�ers
an be linked to values using identity de
larations. The valuesmanipulated by a program are
alled internal values. External values are data used by, or produ
ed by,a program. Comments des
ribe a program, but add nothing to its elaboration.Finally, here are some exer
ises whi
h test you on
on
epts you have met in this
hapter.
Exer
ises1.15 Give denotations of the following values:(a) one thousand nine hundred and ninety six.(b) The �fth letter of the lower-
ase Roman alphabet.(
) The fra
tion 17 expressed as a de
imal fra
tion to 6 de
imal pla
es.1.16 Is there anything wrong with the following mode indi
ants?(a) C H A R(b) INT.CHAR(
) THISISANEXTREMELYLONGMODEINDICANT(d) 2CHAR

10 CONTENTS1.17 Write suitable identity de
larations for the following identi�ers:(a) fifty five(b) three times two point seven(
)
olon1.18 Is there anything wrong with the following identity de
larations?REAL x = 1.234,y = x;1.19 What is the di�eren
e in meaning between 0 and 0.0?1.20 Write a program
ontaining print phrases to print the following values on your s
reen, separatedby one spa
e between ea
h value:0.5 "G" 1 ":" 34000000

Chapter 2
Formul�
Formul�
onsist of operators with operands. Operators are prede
lared pie
es of program whi
h
om-pute a value determined by their operands. Algol 68 is provided with a ri
h set of operators in thestandard prelude and you
an de�ne as many more as you want. In this
hapter, we shall examine allthe operators in the standard prelude whi
h
an take operands of mode INT, REAL or CHAR. In
hapter 6,we shall return to operators and look at what they do in more detail, as well as how to de�ne new ones.Operators are written as a
ombination of one or more symbols, or in
apital letters like a modeindi
ant. We shall meet both kinds in this
hapter.
2.1 Monadi
 operatorsOperators
ome in two
avours: monadi
 and dyadi
. A monadi
 operator has only one operand, buta dyadi
 operator has two operands. A monadi
 operator is written before its operand. For example, themonadi
 minus - reverses the sign of its operand:-3000This
ould equally well be written - 3000 sin
e spa
es are, generally speaking, not signi�
ant. There is,likewise, a monadi
 + operator whi
h doesn't do anything to its operand, but is useful where you want torefer expressly to a positive number. It has been provided for the sake of
onsisten
y. You should notethat -3000 is not a denotation, but a formula
onsisting of a monadi
 operator operating on an operandwhi
h is a denotation. We say that the monadi
 operator - takes an operand of mode INT and yields avalue of mode INT. It
an also take an operand of mode REAL when it will yield a value of mode REAL.A formula
an be used as the value part of an identity de
laration. Thus the following identityde
larations are both valid:INT minus 2 = -2;REAL minus point five = -0.5The operator ABS takes an operand of mode INT and yields the absolute value again of mode INT. Forexample, ABS -5 yields the value denoted by 5:INT five = ABS -5Note that when two monadi
 operators are
ombined, they are elaborated in right-to-left order, as in theabove example. That is, the - a
ts on the 5 to yield -5, then the ABS a
ts on -5 to yield +5. This is justwhat you might expe
t. ABS
an also take an operand of mode REAL yielding a value of mode REAL. Forexample:REAL x = -1.234;REAL y = ABS xAnother monadi
 operator whi
h takes an INT operand is SIGN. This yields �1 if the operand isnegative, 0 if it is zero, and +1 if it is positive. Thus you
an de
lareINT res = SIGN iif i has been previously de
lared. 11

12 CONTENTS2.2 Dyadi
 operatorsA dyadi
 operator takes two operands and is written between them. The simplest operator is dyadi
 +.Here is an identity de
laration using it:INT one = 1;INT two = one + oneThis operator takes two operands of mode INT and yields a result of mode INT. It is also de�ned for twooperands of mode REAL yielding a result of mode REAL:REAL x = 1.4e5 + 3.7e12The + operator performs an a
tion quite di�erent for REAL operands from that performed for INT operands.Yet the meaning is essentially the same, and so the same symbol is used for the two operators.Before we
ontinue with the other dyadi
 operators, a word of
aution is in order. As we have seen,the maximum integer whi
h the
omputer
an use is max int and the maximum real is max real. Thedyadi
 + operator
ould give a result whi
h is greater than those two values. Adding two integers su
hthat the sum ex
eeds max int is said to give \integer over
ow". Algol 68
ontains no spe
i�
 rules aboutwhat should happen in su
h a
ase.1The dyadi
 - operator
an take two operands of mode INT or two operands of mode REAL and yieldsan INT or REAL result respe
tively:INT minus 4 = 3 - 7,REAL minus one point five = 1.9 - 3.4Note that the dyadi
 - is quite di�erent from the monadi
 -. You
an have both operators in the sameformula:INT minus ten = -3 - 7The �rst minus sign represents the monadi
 operator and the se
ond, the dyadi
.Sin
e a formula yields a value of a parti
ular mode, you
an use it as an operand for another operator.For example:INT six = 1 + 2 + 3The operators are elaborated in left-to-right order. First the formula 1+2 is elaborated, then the formula3+3. What about the formula 1-2-3? Again, the �rst - operator is elaborated giving -1, then the se
ondgiving the value -4.Instead of saying \the value of mode INT", we shall sometimes say \the INT value" or even \theINT"|all these expressions are equivalent.
Exer
ises2.1 Write an identity de
laration for the INT value -35.2.2 What is the value of ea
h of the following formul�?(a) 3 - 2(b) 3.0 - 2.0(
) 3.0 - -2.0(d) 2 + 3 - 5(e) -2 + +3 - -42.3 Given the following de
larationsINT a = 3, REAL b = 4.51The standard prelude supplied with the Linux port of the Ctrans
ompiler provides the programmer a meansof spe
ifying what should be done if integer over
ow o

urs. See se
tion 13.6.1 for the details. Likewise for\
oating-point over
ow" and \
oating-point under
ow" (se
tion 13.6.1).

2.3. MULTIPLICATION 13what is the value of the following formul�?(a) a+a(b) -a-a(
) b+b+b(d) -b - -b + -b
2.3 Multipli
ationThe operand * (often said "star") represents normal arithmeti
 multipli
ation and takes INT operandsyielding an INT result. For example:INT produ
t = 45 * 36Likewise, * is also de�ned for multipli
ation of two values of mode REAL:REAL real produ
t = 2.4e-4 * 0.5It is important to note that although the a
tions of the two operators are quite di�erent, they bothrepresent multipli
ation so they both use the same symbol.Like + and -, multipli
ation
an o

ur several times:INT fa
torial six = 1 * 2 * 3 * 4 * 5 * 6the order of elaboration being left-to-right.You
an also
ombine multipli
ation with addition and subtra
tion. For example, the value of theformula 2+3*4 is 14. At s
hool, you were probably taught that multipli
ation should be done beforeaddition (your tea
hers may have used the mnemoni
 BODMAS to show the order in whi
h operationsare done. It stands for Bra
kets, Over, Division, Multipli
ation, Addition and Subtra
tion). In Algol 68,the same sort of thing applies and it is done by operators having a priority. The priority of multipli
ationis higher than the priority for addition or subtra
tion. The priority of the dyadi
 + and - operators is 6,and the priority of the * operator is 7.Here are identity de
larations using a
ombination of multipli
ation and addition and subtra
tion:INT i1 = 3, i2 = -7;INT result1 = i1 * i2 - 8;REAL r1 = 35.2, r2 = -0.04;REAL result2 = r1 * -r2 + 12.67 * 10.0In the elaboration of result2, the multipli
ations are elaborated �rst, and then the addition.Remember from
hapter 1 that widening is allowed in the
ontext of the right-hand side of an identityde
laration, so the following de
laration is valid:REAL a = 24 * -36It is important to note that an operand is not in a strong
ontext, so no widening is allowed. The
ontextof an operand is �rm. Be
ause widening is not allowed in a �rm
ontext, it is possible for the
ompiler toexamine the modes of the operands of an operator and determine whi
h de
laration of the operator is tobe used in the elaboration of the formula. This also applies to monadi
 operators (see 6.2.1 for details).Looking again at the above identity de
laration, the
ontext of the denotation 36 is �rm (it is theoperand of the monadi
 -), the
ontexts of the 24 and the -36 are also �rm be
ause they are the operandsof the dyadi
 *, but the value yielded by the formula is on the right-hand side of the identity de
laration,so it is in a strong
ontext. It is this value whi
h is
oer
ed to a value of mode REAL by the widening.Note that the value of the formula (whi
h has mode INT) does not
hange. Instead, it is repla
ed by the
oer
ion with a value of mode REAL whose whole number part has the same value as the INT value. It isworth saying that the value of the formula obtained by elaboration is lost after the
oer
ion. You
ouldhang on to the intermediate integer value by using another identity de
laration:INT intermediate value = 24 * -36;REAL a = intermediate value

14 CONTENTS
Exer
ises2.4 In this exer
ise, these de
larations are assumed to be in for
e:INT d1 = 12, d2 = -5;REAL d3 = 4.0 * 3.5, d4 = -3.0What is the value of ea
h of the following formul�?(a) ABS d2(b) - ABS d4 + d3 * d4(
) d2 - d1 * 3 + d2 * 4
2.4 DivisionIn the pre
eding se
tions, all the operators mentioned yield results whi
h have the same mode as theoperand or operands. In this and following se
tions, we shall see that this is not always the
ase.Division poses a problem be
ause division by integers
an have two di�erent meanings. For example,3� 2
an be taken to mean 1 or 1.5. In this
ase, we use two di�erent operator symbols.Integer division is represented by the symbol %. It takes operands of mode INT and yields a valueof mode INT. It has the alternative representation OVER. The formula 7 % 3 yields the value 2, and theformula -7 % 3 yields the value -2. The priority of % is 7, the same as multipli
ation. Here are someidentity de
larations using the operator:INT r = 23 OVER 4, s = -33 % 3;INT q = r * s % 2Using the given values of r and s, the value of q is -27. When a formula
ontaining
onse
utive dyadi
operators of the same priority is elaborated, elaboration is always left-to-right, so in this
ase the multipli-
ation is elaborated �rst, followed by the integer division. Of
ourse, %
an be
ombined with subtra
tionas well as all the other operators already dis
ussed.The modulo operator MOD gives the remainder after integer division. It requires two operands of modeINT and yields a value also of mode INT. Thus 5 MOD 3 yields 2, and 12 MOD 3 yields 0. It does workwith negative integers, but the results are unexpe
ted. You
an explore MOD with negative integers in anexer
ise. MOD
an also be written as %*. The priority of MOD is 7.Division of real numbers is performed by the operator /. It takes two operands of mode REAL andyields a REAL result. Thus the formula 3.0/2.0 yields 1.5. Again, /
an be
ombined with * and theother operators already dis
ussed. It has a priority of 7. The operator is also de�ned for integer operands.Thus 3/2 yields the value 1.5. No widening takes pla
e here sin
e the operator is de�ned to yield a valueof mode REAL when its operands have mode INT.Here are some identity de
larations using the operators des
ribed so far:REAL pi by 2 = pi / 2,pm3 = pi - 3.0 * -4.1;INT
 = 22 % 3 - 22 MOD 3;INT d =
 MOD 6 + SIGN -36
Exer
ises2.5 What is the value yielded by ea
h of the following formul�, and what is its mode?(a) 5 * 4(b) 5 % 4(
) 5 / 4(d) 5 MOD 4(e) 5.0 * 3.5 - 2.0 / 4.02.6 Write a short program to print the results of using MOD with negative integer operands. Try eitheroperand negative, then both operands negative.2.7 Give an identity de
laration for the identi�er two pi.

2.5. EXPONENTIATION 152.5 ExponentiationIf you want to
ompute the value of 3*3*3*3 you
an do so using the multipli
ation operator, but itwould be
learer and faster if you used the exponentiation operator **. The mode of its left operand
an be either REAL or INT, but its right operand must have mode INT. If both its operands have themode INT, the yield will have mode INT (in this
ase the right operand must not be negative), otherwisethe yield will have mode REAL. Thus the formula 3**4 yields the value 81, but 3.0**4 yields the value81.0. Its priority is 8. In a formula involving exponentiation as well as multipli
ation or division, theexponentiation is elaborated �rst. For example, the formula 3*2**4 yields 48, not 1296.Every dyadi
 operator has a priority of between 1 and 9 in
lusive, and all monadi
 operators bind moretightly than all dyadi
 operators. For example, the formula -2**2 yields 4, not -4. Here the monadi
minus is elaborated �rst, followed by the exponentiation.
Exer
ises2.8 Given these de
larations:INT two = 2, m2 = -2;REAL x = 3.0 / 2.0, y = 1.0what is the value and mode yielded by the following formul�?(a) two ** -m2(b) x ** two + y ** two(
) 3 * m2 ** two
2.6 Mixed arithmeti
Up to now, the four basi
 arithmeti
 operators have always had operands of the same modes. In pra
ti
e,it is quite surprising how often you want to
ompute something like 2 * 3.0. Well, fortunately, thedyadi
 operators +, -, * and / (but not %) are also de�ned for mixed modes. That is, any
ombinationof REAL and INT
an be used. With mixed modes the yield is always REAL. Thus the following formul�are all valid:1+2.5 3.1*-4 2*3.5**3 2.4-2The priority of the mixed-mode operators is un
hanged. As we shall see later, the priority relates to theoperator symbol rather than the
avour of the operator in use.
2.7 Order of elaborationEven though the order of elaboration is dependent on the priority of operators, it is often
onvenient to
hange the order. This
an be done by inserting parentheses (and) (or BEGIN and END): the formulainside the parentheses is evaluated �rst. Here are two formul� whi
h di�er only by the insertion ofparentheses:3 * 4 - 23 *(4 - 2)The �rst has the value 10, and the se
ond 6. Parentheses
an be nested to any depth.REAL a = (3*a3*(xmin+eps1)**2)/4;REAL alpha g=(ymax - ymin)/(xmax - xmin);INT p=BEGIN 2 * 3**4 % (13-2**3) END - 4.0It is un
ommon to �nd BEGIN and END in short formul�. If you use BEGIN at the start of a formula, youmust use END to
omplete it even though these symbols and parentheses are equivalent.

16 CONTENTS2.8 Changing the modeWe have seen that in a strong
ontext, a value of mode INT
an be
oer
ed by widening to a value ofmode REAL. What about the other way round? Is it possible to
oer
e a value of mode REAL to a value ofmode INT? Fortunately, it is impossible using
oer
ion. The reason behind this is related to the fa
t thatreal numbers
an
ontain fra
tional parts. In repla
ing an integer by a real number there is no essential
hange in the value, but when a real number is
hanged to an integer, in general the fra
tional part willbe lost. It is undesirable that data should be lost without the programmer noti
ing.If you want to
onvert a REAL value to an INT, you must use one of the operators ROUND or ENTIER.The operator ROUND takes a single operand of mode REAL and yields an INT whose value is the operandrounded to the nearest integer. Thus ROUND 2.7 yields 3, and ROUND 2.2 yields 2. The same rule applieswith negative numbers, thus ROUND -3.6 yields -4. At the half way
ase, for example, ROUND 2.5, thevalue is rounded away from zero if the whole number part is odd, and rounded toward zero if it is even(zero, in this
ase, is taken to be an even number). This ensures that rounding errors over a large numberof
ases tend to
an
el out.The operator ENTIER (Fren
h for \whole") takes a REAL operand and likewise yields an INT result, butthe yield is the largest integer equal to or less than the operand. Thus ENTIER 2.2 yields 2, ENTIER -2.2yields -3.The operator SIGN
an also be used with a REAL operand. Its yield has mode INT with the same valuesas before, namely: -1 if the operand is negative, 0 if it is zero, and +1 if it is positive. We shall see insubsequent
hapters that this property of SIGN
an be useful.
Exer
ises2.9 What is the value and mode of the yield of ea
h of the following formul�?(a) ROUND(3.0 - 2.5**2)(b) ENTIER -4.5 + ROUND -4.5(
) SIGN(ROUND 3.6 / 2.0) * 2.02.10 What is the value of the formula(ENTIER -2.9 + 3**2)/4.0
2.9 Mis
ellaneous operatorsThe operators MAX and MIN are de�ned for any
ombination of INT and REAL operands and yield themaximum, or minimum, of two values. They
an also be
ombined in the same formula:INT max min = 345 MAX 249 MIN 1000whi
h yields 345. Like +, -, and *, they only yield a value of mode INT if both their operands are INT.Otherwise, they yield a value of mode REAL. They both have a priority of 9.
2.10 Operators using CHARThis
hapter has been rather heavy on arithmeti
 up to now. You might wonder whether operators
anhave operands of mode CHAR. The answer is yes. Indeed, the + and * operators are so de
lared, andwe shall meet them in
hapter 3. There are two monadi
 operators whi
h involve the mode CHAR. Theoperator ABS (whi
h we have already met)
an take a CHAR operand and yields the integer
orrespondingto that
hara
ter. For example, ABS "A" yields 65 (the number asso
iated with the letter "A" as de�nedby the ASCII standard). The identi�er max abs
har is de
lared in the standard prelude with the value255. Conversely, we
an
onvert an integer to a
hara
ter using the monadi
 operator REPR. The formulaREPR 65yields the value "A". REPR
an a
t on any integer in the range 0 to max abs
har. REPR is of parti
ularvalue in allowing a

ess to
ontrol
hara
ters. For example, the tab
hara
ter is de
lared in the standardprelude as tab
h. Consult se
tion 13.2.2 for the details.

2.11. PRINT REVISITED 172.11 print revisitedIn
hapter 1, we used the print phrase to
onvert internal values to external
hara
ters. We ought tosay what print is and how it works, but we don't yet know enough about the language. Just use it forthe moment, and we shall learn more about it later.Besides being able to
onvert internal values to external
hara
ters, print
an take two parameters(see
hapter 6 for the low-down on parameters) whi
h
an be used to format your output. newlinewill
ause following output to be displayed on a new line, and newpage will emit a form-feed
hara
ter(REPR 12). newline and newpage will be des
ribed in detail in se
tion 13.7.11.If you want to print the
hara
ters emitted by your Algol 68 programs you
an use �le redire
tion toredire
t your output to a �le, whi
h you
an later
opy to the printer. For example, suppose you have
ompiled a program
alled tt. To redire
t its output to a �le
alled tt.res, whi
h you
an later
opy tothe printer, you issue the
ommandtt > tt.resat the
ommand line. Alternatively, you send the output dire
tly to the printer using the
ommandtt | lprat the
ommand line. Try
ompiling and running the following program:PROGRAM tt CONTEXT VOIDUSE standardBEGINprint(newpage);INT a = ENTIER (3.6**5);REAL p = 4.3 / 2.7;print(a); print(newline);print(b); print(newline)ENDFINISH
2.12 SummaryOperators
ombined with operands are
alled formul�. Operators are monadi
 or dyadi
. Monadi
 oper-ators take a single operand, bind more tightly than dyadi
 operators and when
ombined are elaboratedfrom right to left. Dyadi
 operators take two operands and have a priority of 1 to 9. Su

essive dyadi
operators having the same priority are elaborated from left to right. Parentheses, or BEGIN and END, maybe used to alter the order of elaboration.A summary of all the operators des
ribed in this
hapter, together with their priorities,
an be foundin
hapter 13.Here are some exer
ises whi
h test you on what you have learned in this
hapter. The exer
isesinvolving ABS and REPR will need to be written as small programs and
ompiled and run. In fa
t, itwould be a good idea to write all the answers as small programs (or in
orporate them all in one largeprogram). Don't forget to use the print phrase with newline and newpage to separate your output.
Exer
ises2.11 The following de
larations are assumed to be in for
e for these exer
ises:INT i = 13, j = -4, k = 7;CHAR s = "s", t = "T";REAL x = -2.4, y = 2.7, z = 0.0What is the value of ea
h of the following formul�?(a) (2 + 3) * (3 - 2)(b) j+i-k

18 CONTENTS(
) 3*ABS s(d) ABS"t"-ABS t(e) REPR(k**2)(f) ROUND(x**2-y/(x+1))(g) z**92.12 Be
ause of the kind of arithmeti
 performed by the
ompiler, division of values of mode REAL byzero does not
ause a program to fail (but see se
tion 13.6.1). Write a program
ontaining thephrases REAL z=0.0/0.0; and REAL iz=1/0; and see what happens. In pra
ti
e, it's probably agood idea to
he
k for division by zero.2.13 Now try the phrase print(1%0).2.14 What is wrong with the following formul�?(a) [4-j℄*3(b) (((3-j)*x+3)*x+5.6(
) ROUND "e"(d) ENTIER 4 + 3.0

Chapter 3
Repetition
Up to now, we have dealt with plain values: that is, values with modes INT, REAL or CHAR. In pra
ti
e,plain values are of limited use when dealing with a lot of data. For example,
ommer
ial programs are
ontinually dealing with strings of
hara
ters and engineers use ve
tors and matri
es. In this
hapter, westart the pro
ess of building more
ompli
ated modes. Firstly, we
onsider repetition of values.
3.1 MultiplesA multiple
onsists of a number of elements, ea
h of whi
h have the same mode (sometimes knownas the base mode). The mode of a multiple
onsists of the mode indi
ant for ea
h element pre
ededby bra
kets, and is said \row of mode". For example, here is an identity de
laration of a row of CHARmultiple:[℄CHAR a = "ab
d"The phrase on the left-hand side of the equals symbol is read \row of
ar a". The phrase on the right-hand side of the equals symbol is the denotation of a value whose mode is [℄CHAR. Spa
es
an, of
ourse,appear before, between or after the bra
kets.Multiples of mode [℄CHAR are so
ommon that this denotation was devised as a kind of shorthand.The maximum number of elements in a multiple is equal to the maximum positive integer (max int),although in pra
ti
e, your program will be limited by the available memory. The denotation of a [℄CHARmay extend over more than one line. There are two ways of doing this. You
an simply write thedenotation on more than one line in whi
h
ase every
hara
ter \between" the starting and ending quote
hara
ters is in
luded ex
ept the newline
hara
ters, or you
an split the denotation with quote
hara
tersat the end of one line and at the start of the
ontinuation of the denotation on the next line. Here aretwo de
larations whi
h exemplify these rules:[℄CHAR long1 = "The first stage in the development of a new program
onsists of analysingthe problem that the program must solve.";[℄CHAR long2 = "The first stage in the ""development of a new ""program
onsists of ""analysing the problem ""that the program must ""solve."Noti
e that the se
ond method is neater be
ause you
an indent the subsequent parts of the denotation.Everything \between" the se
ond and third quote
hara
ters and \between" the fourth and �fth quote
hara
ters is ignored, although you should not put anything other than spa
es or tabs and newlines there.If you want to pla
e a quote
hara
ter (") in the denotation, you must double it, just as in the
hara
terdenotation. Here are two [℄CHAR denotations, ea
h
ontaining two quote
hara
ters:[℄CHAR r
a = """Will you
ome today?""",r
b = "The minority report stated ""that ""in their opinion""";The repeated quote
hara
ters are di�erent from the quote
hara
ters whi
h
hain the two parts of thedenotation of r
b. 19

20 CONTENTS3.1.1 Row-displaysMultiples of other modes
annot be denoted as shown above, but use a
onstru
t
alled a row-display.A row-display
onsists of none or two or more units separated by
ommas and en
losed by parentheses(or BEGIN and END). Here is the identity de
laration for a written using a row-display:[℄CHAR a = ("a","b","
","d")It is important to note that the units in the row-display
ould be quite
ompli
ated. For example, hereis another de
laration for a multiple with mode [℄CHAR:[℄CHAR b = ("a","P",REPR 36,"""")In ea
h of these two de
larations, the number of elements is 4.Here are identity de
larations for a multiple of mode [℄INT and a multiple of mode [℄REAL:[℄INT
 = (1, 2+3, -2**4, 7, -11, 2, 1);[℄REAL d = (1.0, -2.9, 3e4, -2e-2, -5)Note that the last unit of the row-display for
 has the same value as the �rst unit. In a multiple of mode[℄INT, the individual elements
an have any value of mode INT: that is to say, any integer or formulayielding an integer. In d, the unit yielding the last element is written as a formula yielding a value ofmode INT. Sin
e the
ontext of the row-display is strong (be
ause it o

urs on the right-hand side of anidentity de
laration), this
ontext is passed on to its
onstituent units. Thus, the
ontext of the formulais also strong, and so the value yielded by the formula is widened to yield -5.0.An empty row-display
an be used to yield a
at multiple (one with no elements). For example, hereis an identity de
laration using an empty row-display:[℄REAL empty = ()The denotation for a
at [℄CHAR is used in the identity de
laration[℄CHAR none = ""A multiple
an also have a single element. However, a row-display
annot have a single unit (be
ause itwould be an en
losed
lause, whi
h is a di�erent
onstru
t). In this
ase, we use a unit (or a formula,whi
h is another kind of unit) for the only element, and the value of that unit is
oer
ed to a multiplewith a single element using the rowing
oer
ion. For example,[℄INT ri = 4yields a multiple with one element. An en
losed
lause
an be used instead:[℄INT ri1 = (4)sin
e an en
losed
lause is also a unit (see se
tion 10.4).Rowing
an only o

ur in strong
ontexts (and the right-hand side of an identity de
laration is astrong
ontext). Here is another example:[℄CHAR r
 = "p"A row-display
an only be used in a strong
ontext. Be
ause the
ontext of an operand is �rm, a row-display
annot appear in a formula (but there is a way round this, see se
tion 10.5). The shorthanddenotation for a [℄CHAR is not a row-display and so does not su�er from this limitation.3.1.2 DimensionsOne of the properties of a multiple is its number of dimensions. All the multiples de
lared so far haveone dimension. The number of dimensions a�e
ts the mode. A two-dimensional multiple of integers hasthe mode[,℄INT(said \row-row-of-int"), while a 3-dimensional multiple of reals (real numbers) has the mode[,,℄REAL

3.1. MULTIPLES 21Note that the number of
ommas is always one less than the number of dimensions. In Algol 68, multiplesof any number of dimensions
an be de
lared.1To
ater for more than one dimension, ea
h of the units of a row-display
an also be a row-display.For example, the row-display for a multiple with mode [,℄INT
ould be((1,2,3),(4,5,6))The fa
t that this is the row-display for a 2-dimensional multiple would be
learer if it were written((1,2,3),(4,5,6))For two dimensions, it is
onvenient to talk of \rows" and \
olumns". Here is an identity de
larationusing the previous row-display:[,℄INT e = ((1,2,3),(4,5,6))The �rst \row" of e is yielded by the row-display (1,2,3) and the se
ond \row" is yielded by (4,5,6).The �rst \
olumn" of e is yielded by the row-display (1,4), the se
ond \
olumn" by (2,5) and the third\
olumn" by (3,6). Note that the number of elements in ea
h \row" is the same, and the number ofelements in ea
h \
olumn" is also the same, but that the number of \rows" and \
olumns" di�er. Wesay that e is a re
tangular multiple. If the number of \rows" and \
olumns" are the same, the multipleis said to be square. Here is an identity de
laration for a square multiple:[,℄CHAR f = (("a","b","
"),("A","B","C"),("1","2","3"))All square multiples are also re
tangular, but the
onverse is not true. Note that in the row-display fora multi-dimensional multiple of
hara
ters, it is not possible to use the spe
ial denotation for a [℄CHAR.The base mode of a multiple
an be any mode, in
luding another row mode. For example:[℄[℄CHAR days =("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday")The mode is said \row of row of CHAR". Note that days is one-dimensional, ea
h element
onsisting of aone-dimensional [℄CHAR. The shorthand denotation for a [℄CHAR
an be used in this
ase. Be
ause thebase mode is [℄CHAR, the individual [℄CHARs
an have di�erent lengths. Here is another example usingintegers:[℄[℄INT trapezium = ((1,2),(1,2,3),(1,2,3,4))3.1.3 Subs
ripts and boundsEa
h element of a multiple has one integer asso
iated with it for ea
h dimension. These integers in
reaseby 1 from the �rst to the last element in ea
h dimension. For example, in the de
laration[℄INT r1 = (90,95,98)the integers asso
iated with the elements are [1℄, [2℄ and [3℄ (see the next se
tion for an explanationof why the integers are written like this). Remember that the �rst element in a row-display always hasan asso
iated integer of [1℄. These integers are known as subs
ripts2 or indexers. Thus the subs
ript of98 in r1 is [3℄. In the two-dimensional multiple[,℄INT r2 = ((-40, -30, -20),(100, 130, 160))1However, the Ctrans Algol 68
ompiler limits the number of dimensions to three. If you try to de
lare rowshaving more than three dimensions, the translation pro
eeds without error messages, but the resulting C
odewill fail to
ompile.2From the pra
ti
e of mathemati
ians who write x1; x2; : : :

22 CONTENTSthe subs
ripts for -40 are [1,1℄ and the subs
ripts for 160 are [2,3℄.We say that the lower bound of r1 is 1, and its upper bound is 3. The multiple r2 has a lowerbound of 1 for both the �rst and se
ond dimensions, an upper bound of 2 for the �rst dimension (2\rows") and an upper bound of 3 for the se
ond dimension (3 \
olumns"). We shall write the bounds ofr1 and r2 as [1:3℄ and [1:2,1:3℄ respe
tively. The bounds of a
at multiple, unless spe
i�ed otherwise(see the se
tion on trimming), are [1:0℄.The bounds of a multiple
an be interrogated using the operators LWB for the lower bound, and UPBfor the upper bound. The bounds of the �rst, or only, dimension
an be interrogated using the monadi
form of these operators. For example, using days de�ned above, LWB days yields 1, and UPB days yields7. Where the multiple is multi-dimensional, the bounds are interrogated using the dyadi
 form of LWBand UPB: the left operand is the dimension while the right operand is the identi�er of the multiple. Forexample, 1 UPB r2 yields 2 and 2 UPB r2 yields 3. The priority of the dyadi
 operators is 8.
Exer
ises3.1 What is wrong with the following identity de
larations?(a) ()CHAR
1 = "Today"(b) [℄CHAR
2 = 'Yesterday'(
) [℄INT i1 = (1, 2.0, 3)3.2 Using the identi�er first 4 odd numbers, write an appropriate identity de
laration.3.3 Given the identity de
larations[℄CHAR s = "ab
defgh";[℄REAL r = (1.4e2, 3.5e-1, -4.0);[,℄INT t = ((2,3,5),(7,11,13),(17,19,23))what is the value of the following:(a) UPB s(b) LWB r(
) 2 UPB t - 1 LWB t + 13.4 Write the formul� whi
h give the upper and lower bounds of ea
h of the following multiples:(a) [,,℄INT a = (((1,2,3),(4,5,6)),((7,8,9),(10,11,12)))(b) [℄REAL b = ()
3.2 Sli
ingIn the previous se
tion, it was mentioned that a subs
ript is asso
iated with every element in a multiple.The lower-bound of the multiple for a dimension determines the minimum subs
ript for that dimensionand the upper-bound for that dimension determines the maximum subs
ript. Thus there is a set ofsubs
ripts for ea
h dimension. The individual elements
an be a

essed by quoting all the subs
ripts forthat element. For example, the elements of the multiple[℄INT odds = (1,3,5)
an be a

essed as odds[1℄, odds[2℄ and odds[3℄. The �rst of these is read \odds sub one bus" (\bus"is the opposite of \sub"). In a multi-dimensional multiple, two or more subs
ripts are required to a

essa single element, the subs
ripts being separated by
ommas. For example, in the multiple

3.3. TRIMMING 23[,℄REAL rs = ((1.0, 2.0, 3.0),(4.0, 5.0, 6.0))rs[1,2℄ yields 2.0. Similarly, rs[2,3℄ yields 6.0. Thus one
an de
lareREAL rs12 = rs[1,2℄,rs23 = rs[2,3℄Although, te
hni
ally, a multiple with all its subs
ripts spe
i�ed is
alled a sli
e, the term is usuallyreserved for a multiple with less than the maximum number of subs
ripts (in other words, at least one ofthe dimensions does not have a subs
ript). For example, using rs de
lared above, we
an write[℄REAL srs = rs[1,℄whi
h yields the multiple denoted by (1.0,2.0,3.0). The
omma must be present in the sli
e on theright-hand side otherwise the
ompiler will report an error of \wrong number of indi
es".Verti
al sli
ing is also possible. The phrase rs[,2℄ yields the multiple (2.0,5.0). In the
ontext ofthe de
laration[,℄CHAR rs2 = (("a","b","
","d"),("e","f","g","h"),("i","j","k","l"))the sli
e rs2[,3℄ yields the value "
gk" with a mode of [℄CHAR. Note, however, that verti
al sli
ing isonly possible for multiples with at least two dimensions. The multiple days, de
lared in the previousse
tion, is one-dimensional and so
annot be sli
ed verti
ally.In a 3-dimensional multiple, both 2-dimensional and 1-dimensional sli
es
an be produ
ed. Here aresome examples:[,,℄INT r3 = (((1,2),(3,4),((5,6),(7,8)));[,℄INT r31 = r3[1,,℄,r32 = r3[,2,℄,r33 = r3[,,3℄;[℄INT r312 = r31[2,℄, r4 = r31[,2℄
Exer
ises3.5 The de
laration[,℄INT r = ((1, 2, 3, 4),(5, 6, 7, 8),(9,10,11,12),(13,14,15,16))is in for
e for this and the following exer
ise. Give the value of the following sli
es:(a) r[2,2℄(b) r[3,℄(
) r[,2 UPB r℄3.6 Write sli
es for the following values(a) 10(b) (5,6,7,8)(
) (3,7,11,15)
3.3 TrimmingThe bounds of a multiple
an be
hanged using the �
onstru
tion. For example, in the de
laration[℄CHAR digits = "0123456789"[�0℄the bounds of digits are [0:9℄. Bounds do not have to be non-negative. For example,[,℄INT ii = ((1,2,3),(4,5,6));[,℄INT jj = ii[�-3,�-50℄when
e the bounds of jj are [-3:-4,-50:-48℄. Noti
e that you
annot
hange the bounds of a row-display (ex
ept by using a
ast|see se
tion 10.5). For now, always de
lare an identi�er for the display,and then alter the bounds. The bounds of a sli
e
an be
hanged:

24 CONTENTS[,℄INT ij = ((1,3,5),(7,9,11),(13,15,17));[℄INT ij2 = ij[2,℄[�0℄The de
laration for ij2
ould also be written[℄INT ij2 = ij[2,�0℄�
an also be written AT.Wherever an integer is required in the above, any unit yielding an integer will do. Thus it is quite inorder to use the formula(a+b) UPB rwhere the parentheses are ne
essary if a+b is expe
ted to yield the dimension of r under
onsideration(be
ause the priority of UPB is greater than the priority of +).A trimmer uses the :
onstru
tion. In the
ontext of the de
laration of digits above, the phrasedigits[1:3℄ yields the value "123" with mode [℄CHAR. Again, using the de
laration of r in the last setof exer
ises, r[1:2,1℄ yields (1,2), and r[1:2,1:2℄ yields ((1,2),(5,6)).Trimming is parti
ularly useful with values of mode [℄CHAR. Given the de
laration[℄CHAR quote = "Habent sua fata libelli"(the quotation at the start of the a
knowledgements in the \Revised Report"),quote[:6℄quote[8:10℄quote[12:15℄yield the �rst three words. Note that when the �rst subs
ript in a trimmer is omitted, the lower boundfor that dimension is assumed, while omission of the se
ond subs
ript assumes the
orresponding upperbound. Again, any unit yielding INT may be used for the trimmers. The
ontext for a trimmer or asubs
ript is meek.Omission of both subs
ripts yields the whole sli
e with a lower bound of 1. So, the upper bound ofthe phrase digits[:℄ is 10 whi
h is equivalent to digits[�1℄.The lower bound of a trimmer is, by default, 1, but may be
hanged by the use of �. For example,digits[3:6℄ has bounds [1:4℄, but digits[3:6�2℄ has bounds [2:5℄. The bounds of quote[17:℄mentioned above are [1:7℄.
Exer
ises3.7 Write an identity de
laration for months on the lines of the de
laration of days in se
tion 3.1.3.8 Given the de
larations[,℄INT i = ((1,-2,3,4),(-5,6,7,8));[℄REAL r= (1.4,0,-5.4,3.6);[℄CHAR s= "ab
defghijklmnopqrstuvwxyz"[� ABS"a"℄what are the values of the following phrases?(a) 2 UPB i + UPB s[�1℄(b) r[2:3℄(
) i[2,2℄ - r[3℄(d) i[2,2:℄(e) s[ABS"p":ABS"t"℄
3.4 Printing multiplesWe have already used print to
onvert plain values to
hara
ters displayed on your s
reen. In fa
t, print
an be supplied with a row of values to be
onverted, so it is quite valid to write[℄INT i1 = (2,3,5,7,11,13); print(i1)You
an also present an a
tual row-display. Instead of usingprint(2); print(blank); print(3)

3.5. OPERATORS WITH MULTIPLES 25you
an write print((2,blank,3)). The doubled parentheses are ne
essary: the outer pair are neededby print anyway, and the inner pair are part of the row-display. Noti
e that the modes of the elementsof the row-display are quite di�erent. We shall learn in
hapter 8 how that
an be so.Here is a program whi
h will print the answers to the last exer
ise.PROGRAM test CONTEXT VOIDUSE standardBEGIN[,℄INT i = ((1,-2,3,4),(-5,6,7,8));[℄REAL r= (1.4,0,-5.4,3.6);[℄CHAR s= "ab
defghijklmnopqrstuvwxyz"[� ABS"a"℄;print(("i=",i,newline,"r=",r,newline,"s=[",s,"℄",newline,"2 UPB i + UPB s[�1℄=",2 UPB i+UPB s[�1℄,newline,"r[2:3℄=",r[2:3℄,newline,"i[2,2℄ - r[3℄=",i[2,2℄ - r[3℄,newline,"i[2,2:℄=",i[2,2:℄,newline,"s[ABS""p"":ABS""t""℄=",s[ABS"p":ABS"t"℄,newline))ENDFINISHAs you
an see, print will quite happily take values of modes [℄CHAR, [,℄INT, [℄REAL and so on3.Noti
e also that in order to get quote symbols in the last line to be printed, they are doubled. A
ommonmistake is to omit a quote symbol or a
losing
omment symbol. If your editor provides lexi
al highlighting(usually
alled \syntax" highlighting), an omitted quote or
omment symbol will
ause a large part ofyour program to be highlighted as though it were a [℄CHAR or a
omment. The mistake will be very
lear. If your editor does not support lexi
al highlighting, you will get an odd message from the
ompiler(usually to the e�e
t that it has run out of program!).
Exer
ises3.9 Write short programs to print the answers to all the exer
ises in this
hapter from 3.2.1. Youshould insert multiples of CHAR at suitable points, as in the example above, so that you
an identifythe printed answers.
3.5 Operators with multiplesNo operators are de�ned in the standard prelude for multiples whose elements have modes INT or REAL.This is not a drawba
k as you will learn in
hapter 6. Nor are there any monadi
 operators in the standardprelude for multiples of CHAR. However, multiples of CHAR o

ur so often, that two dyadi
 operators areavailable for them.The operator + is de�ned for all
ombinations of CHAR and [℄CHAR. Thus, the formula"ab
" + "d"yields the value denoted by "ab
d". With these operands, + a
ts as a
on
atenation operator. Theoperator has a priority of 6 as before.Multipli
ation of values of mode CHAR or [℄CHAR is de�ned using the operator *. The other operandhas mode INT and the yield has mode [℄CHAR. For example, in the de
laration3but Ctrans will only a

ept multiples of upto three dimensions.

26 CONTENTS[℄CHAR repetitions = "ab" * 3repetitions identi�es "ababab". The formula
ould have been written with the integer as the leftoperand. In both
ases, the operator only makes sense with a positive integer.
Exer
ises3.10 Given the identity de
larations[℄CHAR s = "Dog bites man",t = "aeiou"what is the value of the following formul�?(a) "M"+s[UPB s-1:℄+s[4:10℄+"d"+s[2:3℄(b) s[5℄*3+2*s[6℄
3.6 RangesIf you
ast your mind ba
k to the form of an Algol 68 program, you will remember that it
onsists ofa number of phrases en
losed by BEGIN and END (or parentheses) pre
eded by a PROGRAM phrase withan optional USE phrase. The part of the program en
losed by BEGIN and END (in
luding the BEGIN andEND) is
alled a
losed
lause. The important point here is that a
losed
lause
onsists of one or morephrases separated by semi
olons; (the last phrase being a unit), surrounded by parentheses (or BEGINand END). Sin
e a de
laration is not a unit, the last phrase
annot be a de
laration. We say that thevalue of a
losed
lause is the value yielded by the �nal unit. As an example, here is a
losed
lause witha value of mode INT:BEGININT i = 43;print((i,newline));iENDAn important adjun
t of a
losed
lause is that any identi�ers de
lared in the
lause do not existoutside the
lause. We say that the range of an identi�er is
on�ned to that se
tion of the
losed
lausefrom its de
laration to the end of the
lause.
3.7 Program repetitionHaving investigated the
onstru
tion and use of multiple values, it is now time to address repetition ofprogram a
tions. For example, suppose you wanted to output 8 blank lines. You
ould writeprint((newline,newline,newline,newline,newline,newline,newline,newline))A simpler way would be to writeTO 8 DO print(newline) ODThe integer following the TO
an be any unit yielding an integer (not ne
essarily positive) in a meek
ontext. If the value yielded is zero or negative, then the ensuing
lause en
losed by DO and OD will notbe elaborated at all. The TO : : : OD
onstru
t is
alled a loop
lause or, more simply, a loop.If you omit the TO integer
onstru
t, the loop will be repeated inde�nitely. In that
ase, you wouldneed some way of terminating the program inside the loop.A more useful form of the loop
lause is shown by the following exampleFOR i TO 10DO print((i,newline))OD

3.7. PROGRAM REPETITION 27The i is an identi�er, whose de
laration o

urs at that point and whose mode is INT. The example willprint the numbers 1 to 10, ea
h on its own line. The range of i is the whole of the loop
lause, but doesnot in
lude the unit following TO. Any identi�er may be used in pla
e of i. When the TO part is omitted,it is as though TO 1 had been written.It is possible to modify the number of times the loop is obeyed. The simplest way is to de�ne thestarting point using the FROM
onstru
t. Here is an example:FOR n FROM -10 TO 10 DO print((n,blank)) ODThis prints the numbers from -10 to +10 on the s
reen. The integer after FROM
an be any unit whi
hyields a value of mode INT in a meek
ontext. When FROM is omitted, it is assumed that the �rst valueof the identi�er following FOR is 1.This example prints the square of ea
h of the numbers from 0.2 to 0.9:FOR number FROM 2 TO 9DO REAL value = number / 10;print((value," squared =",value * value,newline))In these examples, the value of the identi�er has always in
reased by 1. The in
rease
an be
hangedusing the BY
onstru
t. For example, to print the
ubes of the even numbers between 30 and 50 in
lusive,you
ould write4FOR n FROM 30 BY 2 TO 50DO print((n**3,newline))ODThe BY
onstru
t is parti
ularly useful for de
reasing the value of the identi�er:[℄CHAR title ="Programming Algol 68 Made Easy";FOR
 FROM UPB title BY -1 TO LWB titleDO print(title[
℄)ODThis last example shows how useful the loop
lause
an be for a

essing some of or all of the elements ofa multiple. Here is another example:[℄INT hh=(7,17,27,37,47);INT two=2;FOR i BY two TO UPB hhDO print(hh[i℄ * hh[i℄)ODwhi
h will print+49 +729 +2209on one line. Omitting the BY
onstru
t assumes a default step of 1.Noti
e how use of the LWB and UPB operators ensures that your program does not try to use a subs
riptoutwith the bounds of the multiple. If you try to a

ess an element whose subs
ript is greater than theupper bound (or less than the lower bound), the program will fail at run-time with an appropriate errormessage.An important use of the identity de
laration is that of optimisation. In the previous example, the
omputation of the ith element of hh takes a little time, and there is no point in repeating it. In thefollowing example, the identity de
laration
omputes the value of hh[i℄ and the print statement usesthe resulting value twi
e:4Unfortunately, there is a bug in the Ctrans
ompiler whi
h prevents you from using a denotation after BY.Nor does BY (2) or BY +2 work. You
an get round this bug by de
laring INT two = 2; and then using BY twofor your loop
lause. For other ways see
hapter 6.

28 CONTENTSFOR i BY 2 TO UPB hhDO INT hhi = hh[i℄;print((hhi * hhi,newline))ODEverything said about multiples with elements of mode INT or CHAR applies equally well to multipleswhose elements have mode REAL. A FOR loop yields no value (
f se
tion 6.1.5).
Exer
ises3.11 Write an Algol 68 program whi
h will print the
ubes of the numbers from 1 to 25.3.12 Write a program whi
h will print the
hara
ters of the alphabet ba
kwards, all on one line.
3.8 Nested loopsWhen dealing with two-, and higher-dimensional multiples, it is often ne
essary to run a subsidiary loop.For example, suppose we wanted to print the square of ea
h element in the multiple de
lared as[,℄INT primes = ((2, 3, 5, 7),(11,13,17,19),(23,29,31,37),(41,43,47,53))with ea
h row on one line. Here is a pie
e of program whi
h will do it:FOR i FROM 1 LWB primes TO 1 UPB primesDO [℄INT pri=primes[i,℄;FOR j FROM LWB pri TO UPB priDO INT prij = pri[j℄;print(prij * prij)OD;print(newline)ODNoti
e the optimisations. The �rst de�nes the ith \row", and the se
ond de�nes the jth element in that\row". The point is that any pie
e of program
an appear inside the loop
lause. Loop
lauses
an benested to any depth. Be
ause the loop
lause is an en
losed
lause, it must
ontain at least one phrase,and the last phrase must be a unit (see
hapter 10 for a thorough dis
ussion of units).
Exer
ises3.13 Using a nested loop, write a short program to display the �rst 25 letters of the alphabet on yours
reen in �ve rows of �ve letters. Separate ea
h letter with a
omma.3.14 Write a program to print the value of a 3-dimensional multiple of real numbers whi
h you havede
lared in your program.
3.9 Program stru
tureIn
hapter 1, it was mentioned that the basi
 stru
ture of an Algol 68 program
onsists ofBEGINphrasesENDThis is not stri
tly true. It is quite possible to write a program
onsisting solely of a DO loop! For example:

3.10. THE FORALL LOOP 29PROGRAM dosumUSE standardFOR i TO 5DO print((i**2,newline))ODFINISH
3.10 The FORALL loopThe FORALL loop is not part of Algol 68, but an extension introdu
ed by the Ctrans
ompiler. It is similarto the FOR loop, but the identi�er has the mode of an element of the multiple under
onsideration. Lookat this example:[℄REAL r1 = (1.0,2.0,3.0,4.0,5.0);FORALL e IN r1 DO print(e * e) ODIn the FORALL loop, e takes the value of ea
h element in r1 and so has mode REAL. The
ompiler generatesmore eÆ
ient
ode using the FORALL loop by avoiding the normal overheads of the subs
ripting me
hanism.However, the FORALL loop
an only be used when all the elements of a dimension are required. If youwant to limit the pro
essing to a few elements, you
an trim the multiple or use the FOR loop.The elements of more than one multiple
an be
ombined simultaneously. For example:[℄INT i = (1,2,3,4,5),j = (11,12,13,14,15);FORALL ii IN i, jj IN jDO print((ii * jj,newline))ODThe
omma between ii IN i and jj IN j means that the
onstru
ts are elaborated
ollaterally. Thebounds of i must be the same as the bounds of j.FORALL
lauses
an be nested as in the
ase of FOR
lauses. If we use l and m de
lared in a previousexample, thenFORALL ll IN lDO FORALL mm IN mDO print(ll * mm)ODOD
ould be used to print the produ
ts of all the integers.
3.11 SummaryModes of multiples start with bra
kets ([℄). A multiple of
hara
ters has a spe
ial denotation. Allmultiples
an be
onstru
ted using a row-display. Rows have bounds and dimensions. Rows
an be sli
edand trimmed, and their bounds
an be
hanged using the �
onstru
t.The FOR loop has the formFOR id FROM a BY b TO
 DO ... ODwhere the default values of a, b and
 are 1, 1 and 1 respe
tively, but may take any value of mode INTin a meek
ontext. If
 is greater than or equal to a and b is negative, the loop will not be exe
uted. If bis zero, the loop will be exe
uted inde�nitely. The range of id ex
ludes the units a, b and
. The FORALLloop has the formFORALL id1 IN row1 DO ... ODWe have
overed a good deal of ground in this
hapter, so here are some more exer
ises revising whatyou have learnt. It is most instru
tive to verify your answers by writing appropriate Algol 68 programs.

30 CONTENTSExer
ises3.15 What is wrong with the following identity de
larations?(a) [℄REAL r1 = [2.5,-2.5,3.5℄(b) [,℄INT i1 = ((1,2,3),(4,5,6,7))(
) [℄CHAR s1 = "ab
de'fg"3.16 What are the upper and lower bounds of the following?(a) ((10,20,30),(-10,-20,-30))(b) ("a","b","
")(
) "ab
def"[3:4℄3.17 If a is de
lared as[,℄INT a = ((9,8,7),(6,5,4),(3,2,1))what is the value and mode of(a) a[2,℄(b) a[,2℄(
) a[:2,3℄(d) a[2:,:2℄3.18 What value does "ab
"*3+"defg" yield?3.19 Write a program to display every �fth letter of the alphabet all on one line.

Chapter 4
Choi
e
One of the essential properties of a
omputer program is its ability to modify its a
tions depending on its
ir
umstan
es and environment. In other words, its behaviour is not predetermined, but
an vary fromone exe
ution to another. In this
hapter, we shall introdu
e a new plain mode, des
ribe the operatorsusing or yielding values of the new mode, and then investigate the program stru
tures whi
h allow anAlgol 68 program to
hoose between alternatives.
4.1 Boolean valuesThe mode BOOL is named after George Boole, the distinguished nineteenth
entury mathemati
ian whodeveloped the system of logi
 whi
h bears his name. There are only two values of mode BOOL, and theirdenotations are TRUE and FALSE. Let us de
lare two identi�ers:BOOL t = TRUE,f = FALSEThe print phrase, when fed with Boolean values prints T for TRUE, and F for FALSE, with spa
es neitherbefore nor after. Thusprint((t,f,t,f,t))produ
es TFTFT on the s
reen.
4.2 Boolean operatorsThe simplest operator whi
h has an operand of mode BOOL is NOT. If its operand is TRUE, it yields FALSE.Conversely, if its operand is FALSE, it yields TRUE. The operator ODD yields TRUE if its operand is an oddinteger and FALSE if it is even. The operators
an be
ombined, soNOT ODD 2yields TRUE.ABS
onverts its operand of mode BOOL and yields an integer: ABS TRUE yields 1, ABS FALSE yields 0.Boolean dyadi
 operators
ome in two kinds: those that take operands of mode BOOL, yielding TRUEor FALSE, and those that operate on operands of other modes.Two dyadi
 operators are de
lared in the standard prelude whi
h take operands of mode BOOL. Theoperator AND (alternative representation &) yields TRUE if, and only if, both its operands yield TRUE, sothatt AND fyields FALSE (t and f were de
lared earlier). Both the operands are elaborated before the operator (butsee the se
tion later on pseudo-operators). The priority of AND is 3.The operator OR yields TRUE if at least one of its operands yields TRUE. Thust OR fyields TRUE. It has no alternative representation. Again, both operands are elaborated before the operator.The priority of OR is 2.You will learn in
hapter 6 how to de�ne new operators if you need them.31

32 CONTENTS4.3 Relational operatorsValues of modes INT, REAL, CHAR and [℄CHAR
an be
ompared with ea
h other. The expression3 = 1+2yields TRUE. Similarly,1+1=1yields FALSE. The equals symbol =
an also be written EQ. Likewise, the formula35.0 EQ 3.5e1should also yield TRUE, but you should be
hary of
omparing two REALs for equality or inequality be
ausethe means of transforming the denotations into binary values may yield values whi
h di�er slightly. Theoperator is also de�ned for both operands being CHAR or [℄CHAR. In the latter
ase, the two multiplesmust have the same number of elements, and
orresponding elements must be equal if the operator is toyield TRUE. Thus"a" = "ab
"yields FALSE. Noti
e that the bounds do not have to be the same. So a and b de
lared as[℄CHAR a = "Dodo" [�0℄,b = "Dodo"yield TRUE when
ompared with the equals operator. Be
ause the rowing
oer
ion is not allowed informul�, the operator is de
lared in the standard prelude for mixed modes (su
h as REAL and INT).The
onverse of = is /= (not equal). So the formula3 /= 2yields TRUE, and"r" /= "r"yields FALSE. An alternative representation of /= is NE. The priority of both = and /= is 4. The operandsof = and /=
an be any
ombination of values of mode INT and REAL. No widening takes pla
e, theoperators being de
lared for the mixed modes.The ordering operators <, >, <= and >=
an be used to
ompare values of modes INT, REAL, CHAR and[℄CHAR in the same way as = and /=. They are read \less than", \greater than", \less than or equal to"and \greater than or equal to" respe
tively. The formula3 < 3.1yields TRUE.If the identi�ers b and
 are de
lared as having mode CHAR, then the formula
 < bwill yield the same value asABS
 < ABS band similarly for the operator >. The operators <= and >=
an both be used with equal values. Forexample,24 <= 24.0yields TRUE.For values of mode [℄CHAR, the formula"ab
d" > "ab

"yields TRUE. Two values of mode [℄CHAR of di�erent length
an be
ompared. For example, both

4.4. COMPOUND BOOLEAN FORMUL� 33"aaa" <= "aaab"and"aaa" <= "aaaa"yield TRUE. Alternative representations for these operators are LT and GT for < and > and LE and GE for<= and >= respe
tively. The priority of all four ordering operators is 5.Note that apart from values of mode [℄CHAR, no operators are de�ned in the standard prelude formultiples.
Exer
ises4.1 What is the value of ea
h of the following formul�?(a) ABS NOT TRUE(b) 3.4 + ABS TRUE(
) -3.5 <= -13.4(d) 2e10 >= 3e9(e) "ab
d" > "ab
"4.2 In the
ontext of these de
larations[℄INT i1 = (2,3,5,7);[℄CHAR t = "uvwxyz"what is the value of ea
h of the following?(a) UPB i1 < UPB t(b) t[2:4℄ >= t[2:3℄(
) i1[3℄ < UPB t[2:℄
4.4 Compound Boolean formul�Formul� yielding TRUE or FALSE
an be
ombined. For example, here is a formula whi
h tests whether �lies between 3 and 4pi > 3 & pi < 4whi
h yields TRUE. The priorities of <, > and & are so de�ned that parentheses are unne
essary in this
ase. Likewise, we may write"ab" < "aa
" OR 3 < 2whi
h yields FALSE. More
ompli
ated formul�
an be written:3.4 > 2 & "a" < "
" OR "b" >= "ab"whi
h yields TRUE. Be
ause the priority of the operator & is higher than the priority of OR, the & in theabove formula is elaborated �rst. The order of elaboration
an be
hanged using parentheses.There does not seem mu
h point to these formul� sin
e everything is known beforehand, but all willbe
ome
lear in the next
hapter.Compound Boolean formul�
an be
onfusing. Being aware of the
onverse of a
ompound
onditionhelps you to ensure you have
onsidered all possibilities. For example, the
onverse of the formulaa < b &
 = dis the formulaa >= b OR
 /= dOne of the formul� would yield TRUE and the other FALSE.

34 CONTENTSExer
ises4.3 What is the value of ea
h of the following:(a) NOT ODD 3 OR 3 < 4(b) 3 > 2 & (5 > 12 OR 7 <= 8)(
) (TRUE OR FALSE) AND (FALSE OR TRUE)(d) NOT("d">"e")ANDFALSEORNOT(ODD 5 & 3.6e12 < 0)(e) 3<4 & 4<5 & 5<6 & 6>74.4 For ea
h
ondition, write out its
onverse:(a) FALSE(b) 4 > 2(
) a > b AND b >
(d) x = y OR x = z
4.5 Conditional
lausesNow we
an dis
uss
lauses whi
h
hoose between alternatives. We have met the en
losed
lause
onsistingof at least one phrase en
losed by BEGIN and END (or parentheses) in the stru
ture of an Algol 68 program,and also in the DO : : : OD loop of a FOR or FORALL
lause. The part of the en
losed
lause inside theparentheses (or BEGIN and END) is
alled a serial
lause be
ause, histori
ally, sequential elaborationused to be
alled \serial elaboration". The value of the serial
lause is the value of the last phrase whi
hmust be a unit.There are two kinds of
lause whi
h enable programs to modify their behaviour. They are
alled
hoi
e
lauses. The
onditional
lause allows a program to elaborate
ode depending on the value ofa boolean serial
lause,
alled a BOOL enquiry
lause. Here is a simple example:IF salary < 5000THEN 0ELSE (salary-allowan
es)*rateFIThe enquiry
lause
onsists of the formulasalary < 5000whi
h yields a value of mode BOOL. Two serial
lauses, both
ontaining a single unit
an be elaborated. Ifthe value yielded by salary is less than 5000, the value 0 is yielded. Otherwise, the program
al
ulatesthe tax. That is, if the BOOL enquiry
lause yields TRUE, the serial
lause following THEN is elaborated,otherwise the serial
lause following ELSE is elaborated. The FI following the ELSE serial
lause must bethere.The enquiry
lause and the serial
lauses may
onsist of single units or possibly de
larations andformul� and loops. However, the last phrase in an enquiry
lause must be a unit yielding BOOL. Therange of any identi�ers de
lared in the enquiry
lause extends to the serial
lauses as well. The range ofany identi�ers de
lared in either serial
lause is limited to that serial
lause. For example, assuming thata and i are prede
lared, we
ould write:IF INT ai = a[i℄; ai < 0THEN print((ai," is negative",newline))ELSE print((ai," is non-negative",newline))FIThe
onditional
lause
an be written wherever a unit is permitted, so the previous example
ould alsobe written

4.5. CONDITIONAL CLAUSES 35INT ai = a[i℄;print((ai,IF ai < 0THEN "is negative"ELSE "is non-negative"FI,newline))The value of ea
h of the serial
lauses following THEN and ELSE in this
ase is [℄CHAR. Here is an examplewith a
onditional
lause inside a loop:FOR i TO 100DO IF i MOD 10 = 0THEN print((i,newline))ELSE print((i,blank))FIODThe ELSE part of a
onditional
lause
an be omitted. Thus the above example
ould also be writtenFOR i TO 100DO print((i,blank));IF i MOD 10 = 0 THEN print(newline) FIODThe whole
onditional
lause
an appear as a formula or as an operand. The short form of the
lause isoften used for this: IF and FI are repla
ed by (and) respe
tively, and THEN and ELSE are both repla
edby the verti
al bar |1. For example, here is an identity de
laration whi
h assumes a previous de
larationfor x:REAL xx = (x < 3.0|x**2|x**3)If the ELSE part is missing then its serial
lause is regarded as
ontaining the single unit SKIP. In this
ase, SKIP will yield an unde�ned value of the mode yielded by the THEN serial
lause. This is an exampleof balan
ing (explained in
hapter 10). This is parti
ularly important if a
onditional
lause is used asan operand.2Sin
e the right-hand side of an identity de
laration is in a strong
ontext, widening is allowed. Thus,in REAL x = (i < j|3|4)whi
hever value the
onditional
lause yielded would be widened to a value of mode REAL.Sin
e the enquiry
lause is a serial
lause, it
an have any number of phrases before the THEN. Forexample:IF [℄CHAR line ="a growing gleam glowing green";INT sz = UPB line - LWB line + 1;sz > 35THEN...Conditional
lauses
an be nestedIF a < 4.1THENIF b >= 35THEN print("yes")ELSE print("no")1Some editors insert a di�erent
hara
ter when you press the key marked |. Che
k that the
hara
ter produ
edis a

epted by the Algol 68
ompiler.2The Ctrans
ompiler generates
ode whi
h will
ause a run-time fault if your program tries to exe
ute anELSE part whi
h has been omitted. You
an get around that bug by expli
itly writing ELSE SKIP.

36 CONTENTSFIELSEIF
 <= 20THEN print("perhaps")ELSE print("maybe")FIFIThe ELSE IF in the above
lause
ould be repla
ed by ELIF, and the �nal FI FI with a single FI, giving:IF a < 4.1THENIF b >= 35THEN print("yes")ELSE print("no")FIELIF
 <= 20THEN print("perhaps")ELSE print("maybe")FIHere is another
ontra
ted example:INT p = IF
 = "a" THEN 1ELIF
 = "h" THEN 2ELIF
 = "q" THEN 3ELSE 4FIThe range of any identi�er de
lared in an enquiry
lause extends to any serial
lause beyond itsde
laration but within the overall
onditional
lause. Consider this
onditional
lause:IF INT p1 = ABS(
="a"); p1=1THEN p1+2ELIF INT p2 = p1-ABS(
="h"); p2 = -1THEN INT i1 = p1+p2; i1+p1ELSE INT i2 = p1+2*p2; i2-p2FIThe range of p1 extends to the en
losing FI; likewise the range of p2. The ranges of i1 and i2 are
on�ned to their serial
lauses.In the abbreviated form, |:
an be used instead of ELIF. For example, the above identity de
larationfor p
ould be writtenINT p = (
="a"|1|:
="h"|2|:
="q"|3|4)In both identity de
larations, the opening parenthesis is an abbreviated symbol for IF.Sometimes it is useful to in
lude a
onditional
lause in the IF part of a
onditional
lause. In otherwords, a BOOL enquiry
lause
an be a
onditional
lause yielding a value of mode BOOL. Here is anexample with a and b prede
lared with mode BOOL:IF IF aTHEN NOT bELSE bFITHEN print("First possibility")ELSE print("Se
ond possibility")FI
4.5.1 Pseudo-operatorsAs was mentioned in
hapter 2, both the operands of an operator are elaborated before the operatoris elaborated. The Ctrans
ompiler implements the pseudo-operator ANDTH whi
h although it lookslike an operator, has its right-hand operand elaborated only if its left-hand operand yields TRUE. Com-pare ANDTH (whi
h is read \and then") with the operator AND. The priority of ANDTH is 1. The phraseIF p ANDTH q THEN ... FI is equivalent to

4.6. MULTIPLE CHOICE 37IF IF NOT p THEN FALSEELIF q THEN TRUEELSE FALSEFITHEN ...FIYou should be
hary of using ANDTH in a
ompound boolean expression. For example, given the
onditionUPB s > LWB sANDTHs[UPB s℄="-"AND(CHAR
=s[UPB s-1℄;
>="a" &
<="z")the intention of the
ompound
ondition is to determine whether a terminating hyphen is pre
eded bya lower-
ase letter. Clearly, testing for a
hara
ter whi
h pre
edes the hyphen
an only be elaborated ifthere are at least two
hara
ters in s. The �rst boolean formula (the left operand of ANDTH) ensures thatthe se
ond formula (the right operand of ANDTH) is only elaborated if s identi�es at least two
hara
ters.Unfortunately, be
ause the priority of AND is greater than the priority of ANDTH and be
ause both operandsof an operator must be elaborated before the operator is elaborated, the right-hand operand of AND willbe elaborated whatever the value of the left operand of ANDTH. In order to a
hieve the above aim, the
ompound
ondition should be writtenUPB s > LWB sANDTH(s[UPB s℄="-"AND(CHAR
=s[UPB s-1℄;
>="a" &
<="z"))Note the additional parentheses whi
h ensure that the boolean formula
ontaining AND is treated as awhole as the right-hand operand of the pseudo-operator ANDTH.There is another pseudo-operator OREL (read \or else") whi
h is similar to the operator OR ex
ept thatits right-hand operand is only elaborated if its left-hand operand yields FALSE. Like ANDTH, the priority ofOREL is 1. The remarks given above about the use of ANDTH in
ompound boolean formul� apply equallyto OREL.Neither ANDTH nor OREL are part of Algol 68.
Exer
ises4.5 Write a
onditional
lause whi
h tests whether a REAL value is less than �, and prints "Yes" if it isand "No" otherwise.4.6 Write a
onditional
lause inside a loop
lause to display the �rst 96 multiples of 3 (in
luding 3)in lines of 16. Use the operator MOD for the test.4.7 Repla
e the operator OREL in the following program with a suitable
onditional
lause:PROGRAM p CONTEXT VOIDUSE standardIF INT a=3, b=5,
=4;a > b OREL b >
THEN print("Ok")ELSE print("Wrong")FIFINISH
4.6 Multiple
hoi
eSometimes the number of
hoi
es
an be quite large or the di�erent
hoi
es are related in a simple way.For example,
onsider the following
onditional
lause:

38 CONTENTSIF n = 1THEN a
tion1ELIF n = 2THEN a
tion2ELIF n = 3THEN a
tion3ELIF n = 4THEN a
tion4ELSE a
tion5FIThis sort of
hoi
e
an be expressed more
on
isely using the
ase
lause in whi
h the boolean enquiry
lause is repla
ed by an integer enquiry
lause. Here is the above
onditional
lause rewritten using a
ase
lause:CASE nIN a
tion1,a
tion2,a
tion3,a
tion4OUTa
tion5ESACwhi
h
ould be abbreviated as(n|a
tion1,a
tion2,a
tion3,a
tion4|a
tion5)Noti
e that a
tion1, a
tion2, a
tion3 and a
tion4 are separated by
ommas (they are not termina-tors). Ea
h of a
tion1, a
tion2 and a
tion3 is a unit, so that if you want more than one phrase forea
h a
tion, you must make it an en
losed
lause by en
losing the a
tion in parentheses (or BEGIN andEND). If the INT enquiry
lause yields 1, a
tion1 is elaborated, 2, a
tion2 is elaborated and so on. Ifthe value yielded is negative or zero, or ex
eeds the number of a
tions available, a
tion5 in the OUT partis elaborated. The OUT part is a serial
lause so no en
losure is required if there is more than one unit.In the following
ase
lause, the se
ond unit is a
onditional
lause to show you that any pie
e ofprogram whi
h happens to be a unit
an be used for one of the
ases:CASE i IN 3,(x>3.5|4|-2),6 OUT i+3 ESACThe �rst a
tion yields 3, the se
ond yields 4 if x ex
eeds 3.5 and -2 otherwise, and the third a
tionyields 6.Sometimes the OUT
lause
onsists of another
ase
lause. For example,CASE n MOD 4IN print("
ase 1"),print("
ase 2"),print("
ase 3")OUTCASE (n-10) MOD 4IN print("
ase 11"),print("
ase 12"),print("
ase 13")OUTprint("other
ase")ESACESAC

4.6. MULTIPLE CHOICE 39Just as with ELIF in a
onditional
lause, OUT CASE : : : ESAC ESAC
an be repla
ed by OUSE : : : ESAC. Sothe above example
an be rewrittenCASE n MOD 4IN print("
ase 1"),print("
ase 2"),print("
ase 3")OUSE (n-10) MOD 4IN print("
ase 11"),print("
ase 12"),print("
ase 13")OUT print("other
ase")ESACHere is a
ase
lause with embedded
ase
lauses:CASE
ommandIN a
tion1,a
tion2,(sub
ommand1|suba
tion1,suba
tion2|suba
tion3)OUSE sub
ommand2IN suba
tion4,suba
tion5,suba
tion6OUTsuba
tion7ESACCalendar
omputations, whi
h are notoriously diÆ
ult, give examples of
ase
lauses:INT days = CASE month IN31,IF year MOD 4 = 0&year MOD 100 /= 0ORyear MOD 400 = 0THEN 29ELSE 28FI,31,30,31,30,31,31,30,31,30,31OUT -1ESACAnd here is one in dealing
ards:[℄CHAR suit=(i|"spades","hearts","diamonds","
lubs"|"")

40 CONTENTSLike the
onditional
lause, if you omit the OUT part, the
ompiler assumes that you wrote OUT SKIP.In the following example, when i is 4, nothing gets printed:3PROGRAM prog CONTEXT VOIDUSE standardFOR i TO 5DO print((i MOD 4|"a","g","r"))ODFINISH
Exer
ises4.8 What is wrong with the following identity de
laration, assuming that p has been prede
lared as avalue of mode BOOL:INT i = (p|1,2,3|4)4.9 Write a program
onsisting solely of a
ase
lause whi
h uses the SIGN operator to give threedi�erent a
tions depending on the sign of a number of mode REAL.
4.7 SummaryThere are two values having mode BOOL. Operators with operands of mode BOOL are prede
lared in thestandard prelude. A
onditional
lause uses an enquiry
lause yielding a value of mode BOOL. A
ase
lause uses an enquiry
lause yielding a value of mode INT. Both
onditional and
ase
lauses
an beabbreviated. Extended
onditional and
ase
lauses
an be written using ELIF and OUSE respe
tively.Conditional
lauses and
ase
lauses are sometimes grouped together and termed
hoi
e
lauses. Choi
e
lauses are examples of en
losed
lauses, and are units.Here are some exer
ises whi
h test you on the material
overed in this
hapter.
Exer
ises4.10 Whi
h values have the mode BOOL?4.11 What is the value of ea
h of the following formul�?(a) 3 < 4(b) 4.0 >= 0.4e1(
) 2 < 3 & 3 > 2(d) 11 < 2 OR 10 < ABS TRUE(e) NOT TRUE & ABS "A" < ABS "D"(f) NOT(3 > 2 & 3 > 1 OR 10 < 6)4.12 What is wrong with the following (m is prede
lared):IF m>4|print("ok")ELSE print(".")ESAC4.13 What would be displayed on your s
reen by the following:FOR i TO 10 DO print(ODD i) OD4.14 Use a
onditional
lause to print "Units" if m (whi
h has mode INT) is less than 10, "Tens" if itis less than 100, "Hundreds" if it is less than 1000 and "Too big" otherwise.4.15 Use a
ase
lause to print the value of a
ard in words. For example, if it is a queen, print "Queen".

3The Ctrans
ompiler obje
ts to this with a run-time error. Ensure that at least OUT SKIP o

urs in every
ase
lause.

Chapter 5
Names
Previous
hapters dealt with values that have always been known when the program was written. If aprogram is to be able to rea
t to its environment, it must be able to
onvert external values into internalvalues and then manipulate them. Analogous to print, the
onversion
an be done by read whi
h
onstru
ts internal values from external
hara
ter sequen
es. In order to manipulate su
h
onvertedvalues, we need some way of referring to them. Algol 68
an generate values whi
h
an refer to othervalues. This kind of value is
alled a name. Although a name has a value, it is quite di�erent from thevalue referred to. The di�eren
e is rather like your name: your name refers to you, but is quite distin
tfrom you.For example, suppose read is presented with the
hara
ter sequen
e \123G" and is expe
ting aninteger. read will
onvert the digits into the number \one hundred and twenty-three", held in a spe
ialinternal form
alled \2's-
omplement binary". To manipulate that value, a name must be generated torefer to it. The mode of a name is
alled a \referen
e mode".A name whi
h
an refer to a value of mode INT is said to have the mode REF INT. Likewise, we
an
reate names with modesREF BOOL REF[℄CHAR REF[,℄REALAs you
an see, REF
an pre
ede any mode. It
an also in
lude a mode already
ontaining REF. Thus itis possible to
onstru
t modes su
h asREF REF INTREF[℄REF REALREF[℄REF[℄CHARREF REF REF BOOLbut we shall defer dis
ussion of these latter modes to
hapter 11.Names are
reated using generators. There are two kinds of generator: lo
al and global. The extentto whi
h a name is valid is
alled its s
ope. The s
ope of a lo
al name is restri
ted to the smallesten
losing
lause whi
h
ontains de
larations. The s
ope of a global name extends to the whole program.In general, values have s
ope, identi�ers have range. We shall meet global generators in
hapters 6 and 11.The phrase LOC INT generates a name of mode REF INT whi
h
an refer to a value of mode INT.1 TheLOC stands for lo
al. It is quite reasonable to write the phraseread(LOC INT)Unfortunately, the
reated name is an anonymous name in the sense that it has no identi�er so thaton
e the read has
ompleted, the name disappears. We need some way of linking an identi�er with thegenerated name so that we
an a

ess the name after read has �nished. This is done with an identityde
laration. Here is an identity de
laration with a lo
al generator:REF INT a = LOC INTThe value identi�ed by a has the mode REF INT be
ause the phrase LOC INT generates a name of modeREF INT. Thus it is a name, and it
an refer to a value (as yet unde�ned) of mode INT (the value referredto always has a mode of one less REF). So now, we
an write1Histori
ally, programmers were more interested in the value referred to than the name (Algol 68 was the �rstlanguage to distinguish
learly between a name and the value referred to), so the generator is followed by themode of the value to whi
h the name will refer. 41

42 CONTENTSread(a)After that phrase has been elaborated, a identi�es a name whi
h now refers to an integer.Names
an also be de
lared using a prede
lared name on the right-hand side of the identity de
laration.Here is another identity de
laration using a:REF INT b = aIn this de
laration, b has the mode REF INT so it identi�es a name. a also has the mode REF INT andtherefore also identi�es a name. The identity de
laration makes b identify the same name as a. Thismeans that if the name identi�ed by a refers to a value, then the name identi�ed by b (the same name)will always refer to the same value.
5.1 AssignmentThe pro
ess of
ausing a name to refer to a value is
alled assignment. Using the identi�er de
laredabove, we
an writea:=3We say \a assign 3". Note that the mode of the name identi�ed by a is REF INT, and the mode of thedenotation 3 is INT. After the assignment, the name identi�ed by a refers to the value denoted by 3.Suppose now we want the name identi�ed by a to refer to the value denoted by 4 (this may seempedanti
, but as you will see below, it is ne
essary to distinguish between the denotation of a value andthat value itself). We writea:=4Let us juxtapose these two assignments:a:=3;a:=4If you look
arefully at the two assignments, a number of things spring to mind. Firstly, an assignment
onsists of three parts: on the left-hand side is an identi�er of a name, in the middle is the assignmenttoken, and on the right-hand side is a denotation. Se
ondly, the left-hand side of the two assignmentsis the same identi�er: a. Sin
e the identi�er is the same, the value must be the same.2 That is, in thetwo assignments, a is synonymous with a value whi
h does not
hange. The value is a name and has themode REF INT (in this
ase). Thus the value of the left-hand side of an assignment is a name.Thirdly, the values on the right-hand side of the two assignments di�er. Firstly, a is assigned thevalue denoted by 3, then (after the go-on symbol), a is assigned the value denoted by 4.After the se
ond assignment, a refers to 4. Of
ourse, when we say \a refers to", we mean \the nameidenti�ed by a refers to". What has happened to the value 3? To understand this, we need to look alittle more
losely at what we mean by the value 3. The denotation 3 represents the number three. Now,of
ourse, the number three exists independently of a
omputer program. When the digit 3 is elaboratedin an Algol 68 program, an instan
e of the number three is
reated. Likewise, elaborating the digit 4
reates an instan
e of the number four. When a is assigned an instan
e of the value four, the instan
eof the value three disappears. This property of assignment is very important. Be
ause an assignment
auses data to disappear, it is dangerous to use. You have to be
areful that the data whi
h disappearsis not data you wanted to keep. So the instan
e of a value
an disappear, but the value still exists (likethe number three).It is worth reiterating that however many times a name is assigned a value, the value of the nameremains un
hanged. It is the value referred to whi
h is superseded. Outwith the realm of
omputers,if an individual is assigned to a department of an organisation,
learly the department hasn't
hanged.Only its members have
hanged.When an identi�er for a name has been de
lared, the name
an be made to refer to a value immediatelyafter the de
laration. For exampleREF REAL x = LOC REAL := pi2Provided that both identi�ers appear in the same range.

5.1. ASSIGNMENT 43where pi is the value de
lared in the standard prelude. LOC REAL generates a name of mode REF REAL.The right-hand side of an assignment is a strong
ontext so widening is allowed. Thus we
an writex:=3where the 3 is widened to 3.0 before being assigned to x. In reality, the value denoted by 3 is not
hangedto the value denoted by 3.0: it is repla
ed by the new value. There is an important prin
iple here. It is
alled the \prin
iple of value integrity": on
e an instan
e of a value has been
reated, it does not
hangeuntil su
h time as it disappears. Thus, in Algol 68, every value is a
onstant. Every
oer
ion de�ned inAlgol 68 repla
es a value of one mode with a related value of another mode.5.1.1 Copying valuesHere is another identity de
laration with an initial assignment:REF INT
 = LOC INT := 5Using the identi�er a de
lared earlier, we
an writea:=
and say \a assign
". The name on the left-hand side of the assignment has mode REF INT, so a valuewhi
h has mode INT is required on the right-hand side, but what has been provided is a name with modeREF INT. Fortunately, there is a
oer
ion whi
h repla
es a name with the value to whi
h it refers. It is
alled dereferen
ing and is allowed in a strong
ontext. In the above assignment, the name identi�edby
 is dereferen
ed yielding an instan
e of the value �ve whi
h is a
opy of the instan
e referred to by
.That new instan
e is assigned to a. It is important to remember that the pro
ess of dereferen
ing yieldsa new instan
e of a value.Try the following program:PROGRAM assign CONTEXT VOIDUSE standardBEGINREF INT a = LOC INT,b = LOC INT:=7;print(("b=",b,newline));print("Please key 123G:"); read(b);a:=b;print(("a now refers to",a,newline,"b now refers to",b,newline))ENDFINISHThis should
onvin
e you that dereferen
ing involves
opying.Every
onstru
t in Algol 68 has a value ex
ept an identity de
laration. We said above that the valueof the left-hand side of an assignment is a name. In fa
t, the value of the whole of the assignment isthe value of the left-hand side. Be
ause this is a name, it
an be used on the right-hand side of anotherassignment. For example:a:=b:=
You should note that an assignment is not an operator. The assignments are performed from right to left :�rstly,
 is dereferen
ed and the resulting value assigned to b. Then b is dereferen
ed and the resultingvalue is assigned to a.5.1.2 Assigning operatorsThe following assignmenta:=adoes not do anything useful, but serves to remind us that the name identi�ed by a on the right-hand sideof the assignment is dereferen
ed, and the resulting value is assigned to a. However, a now refers to anew instan
e of the value it previously referred to and the previous instan
e has now disappeared.Now
onsider the phrases

44 CONTENTS
:=5; a:=
+1The right-hand side of the se
ond assignment is now a formula. The name identi�ed by
 is now in a�rm
ontext (it is the left-operand of the + operator). Fortunately, dereferen
ing is also allowed in a�rm
ontext. Thus the value of
 (a name with mode REF INT) is repla
ed in the formula by a
opy ofthe value to whi
h it refers (5), whi
h is added to 1, and a is assigned the new value (6). We say \a isassigned
 plus one".What about the phrasea:=a+1In exa
tly the same way as the previous phrase, the name on the right-hand side is dereferen
ed, the newvalue
reated is added to 1, and then the same name is assigned the new value.One of the features of assignment is that the elaboration of the two sides is performed
ollaterally.This means that the order of elaboration is unde�ned. This does not matter in the last example be
ausethe value of the name identi�ed by a is the same on the two sides of the assignment. Remember that thevalue of a is a name with mode REF INT. It is the value to whi
h a referred whi
h was super
eded.Assignments of this kind are so
ommon that a spe
ial operator has been devised to perform them.The above assignment
an be writtena+:=1and is read \a plus-and-assign one". The operator has the alternative representation PLUSAB.3 Note thatthe left-hand operand must be a name. The right-hand operand must be any unit whi
h yields a valueof the appropriate mode in a �rm
ontext.The operator +:= is de�ned for a left-operand of mode REF INT or REF REAL, and a right-operand ofmode INT or REAL respe
tively. The yield of the operator is the value of the left-operand (the name).If the left-operand has mode REF REAL, the right-operand
an also have mode INT. No widening o

ursin this
ase, the operator having been de
lared for operands having these modes. Be
ause the operatoryields a name, that name
an be used as the operand for another assigning operator. For examplex +:= 3.0 *:= 4.0whi
h results in x referring to 4.0*(x+3.0). The formula is elaborated in left-to-right order be
ause theoperators have the same priority. The operators are more eÆ
ient than writing out the assignments infull.There are four other operators like +:=. They are -:=, *:=, /:=, %:= and %*:=. Their alternativerepresentations are respe
tively MINUSAB, TIMESAB, DIVAB, OVERAB and MODAB. The operators OVERAB andMODAB are only de
lared for operands with modes REF INT and INT. The priority of all the operators is 1.The assignment operators are operators, not assignments (although they perform an assignment), sothat the previous example is not an assignment, but a formula.The right-hand side of an assignment
an be any unit whi
h yields a value whose mode has one lessREF than the mode of the name on the left-hand side. Names whose mode
ontains more than one REFwill be
onsidered in
hapter 11.
Exer
ises5.1 The following identity de
larationsREF CHAR s = LOC CHAR,REF INT i = LOC INT,REF REAL r = LOC REALhold in this and the following exer
ises.4 What is the mode of i?5.2 After the assignment r:=-2.7 has been elaborated, what is the mode of the value referred to byr?5.3 What is wrong with the assignment i:=r and how would you
orre
t it?3PLUSAB stands for \plus-and-be
omes". When Algol 68 was �rst designed, people were more
on
erned withthe values referred to than the names, so PLUSAB was intended to des
ribe what happens to the value referredto. Bearing in mind the prin
iple of value integrity, the value referred to by a does not be
ome anything, but isrepla
ed by its value plus 1.4The Ctrans
ompiler requires that you write semi
olons instead of
ommas to separate these three de
larations.

5.2. ASSIGNMENTS IN FORMUL� 455.2 Assignments in formul�Sin
e an assignment yields a name, it
an be used in a formula. However, the assignment must be
onverted into an en
losed
lause (using parentheses or BEGIN and END) ensuring that the assignment iselaborated �rst. For example, in3*(a:=
+4)+2if
 refers to 3, the value of the formula will be 23 with mode INT, a will refer to 7, the value of theassignment is a name of mode REF INT and
 will still refer to 3. Remember that assignment is not anoperator.Here is an example of two assignments in a
onditional
lause:IF a<2 THEN x:=3.2 ELSE x:=-5.0 FIThis
an be written with greater eÆ
ien
y asx:=IF a < 2 THEN 3.2 ELSE -5.0 FIThe left-hand side of an assignment has a soft
ontext. In a soft
ontext, dereferen
ing is not allowed(it is the only
ontext in whi
h dereferen
ing is not allowed). In the following phrase, the
onditional
lause on the left yields a name whi
h is then assigned the value of the right-hand side:IF a < 2 THEN x ELSE y FI := 3.5In the next assignment, a
onditional
lause appears on both sides of the assignment:(a<2|x|y):=(b<2|x|y)The result depends on the values referred to by both a and b as mu
h as on the values referred to byboth x and y.
Exer
ises5.4 What is wrong with the following program fragment?REF REAL x = LOC REAL,y = LOC REAL:=3.5;y:=4.2+x5.5 If x refers to 3.5 and y refers to -2.5, what is the mode and value yielded by the following phrases:(a) x:=-y(b) ABS y5.6 What does x refer to afterx:=1.5; x PLUSAB 2.0 DIVAB 3.0(try it in a small program).
5.3 Multiple namesHere is an identity de
laration for a name whi
h
an refer to a multiple::REF[℄INT i7 = LOC[1:7℄INTThere are two things to noti
e about this de
laration. Firstly, the mode on the left-hand side is known asa formal-de
larer. It says what the mode of the name is, but it says nothing about how many elementsthere will be in any multiple to be assigned, nor what its bounds will be. All the identity de
larationsfor multiples in
hapter 3 used formal-de
larers on the left-hand side. In fa
t, only formal-de
larers areused on the left-hand side of any identity de
laration.Se
ondly, the generator on the right-hand side is an a
tual-de
larer. It spe
i�es how many elements
an be assigned. In fa
t, the trimmer represents the bounds of the multiple whi
h
an be assigned. Ifthe lower bound is 1 it may be omitted, so the above de
laration
ould well have been writtenREF[℄INT i7 = LOC[7℄INTwhi
h
an be read as \ref row of int i7 equals lo
 row of seven int". The bounds of a multiple do nothave to start from 1 as we saw in
hapter 3. In this identity de
laration

46 CONTENTSREF[℄INT i7 at 0 = LOC[0:6℄INTthe bounds of the multiple will be [0:6℄.
5.4 Assigning to multiple namesWe
an assign values to the elements of a multiple either individually or
olle
tively.5.4.1 Individual assignmentYou may remember from
hapter 3 that we
an a

ess an individual element of a multiple by spe
ifyingthe subs
ript(s) of that element. For example, suppose that we wish to a

ess the third element of i7as de
lared in the last se
tion. The rules of the language state that a subs
ripted element of a multiplename is itself a name. In fa
t, the elaboration of a sli
e of a multiple name
reates a new name. Thusthe mode of i7[3℄ is REF INT. We
an assign a value to i7[3℄ by pla
ing the element on the left-handside of an assignment:i7[3℄:=4Unless you de�ne a new identi�er for the new name, it will
ease to exist after the above assignment hasbeen elaborated (see below for examples of this).Sin
e ea
h element of i7 has an asso
iated name (
reated by sli
ing) of mode REF INT, it
an be usedin a formula:i7[2℄:=3*i7[i7[1℄℄ + ENTIER(4.0/i7[3℄)As you
an see, an element was used to
ompute a subs
ript. It has been presumed that the valueobtained after dereferen
ing lies between 1 and 7 in
lusive. If this were not so, a run-time error would begenerated. In the above assignment, all three elements on the right-hand side of the assignment wouldbe dereferen
ed before being used in the formula. Note that subs
ripting (or sli
ing or trimming) bindsmore tightly than any operator. Thus, in the last term in the above example, i7 would be sli
ed �rst,then the yielded name dereferen
ed, and �nally, the new value would be divided into 4.0.Here is a FOR loop whi
h assigns a value to ea
h element of i7 individually:FOR e FROM LWB i7 TO UPB i7DO i7[e℄:=e**3ODUsing the bounds interrogation operators is useful be
ause:1. The fa
t that the lower bound of i7 is 1 is masked, but the formula LWB i7 ensures that the
orre
tvalue is used.2. If the bounds of i7 are
hanged when the program is being maintained, the loop
lause
an remainun
hanged. This simpli�es the maintenan
e of Algol 68 programs.3. The
ompiler
an omit bounds
he
king. For large multiples, this
an speed up pro
essing
onsid-erably.Here is a program whi
h uses a name whose mode is REF[℄BOOL. It
omputes all the prime numbersless than 1000 and is known as Eratosthenes' Sieve:PROGRAM sieve CONTEXT VOIDUSE standardBEGININT size = 1000;REF[℄BOOL flags = LOC[2:size℄BOOL;FOR i FROM LWB flags TO UPB flagsDO flags[i℄ := TRUEOD;

5.4. ASSIGNING TO MULTIPLE NAMES 47
FOR i FROM LWB flags TO UPB flagsDO IF flags[i℄THENFOR kFROM 2*i BY i TO UPB flagsDO flags[k℄ := FALSECO Remove multiples of i COODFIOD;FOR i FROM LWB flags TO UPB flagsDO IF flags[i℄ THEN print((i,blank)) FIODENDFINISH5.4.2 Colle
tive assignmentThere are two ways of assigning values
olle
tively. Firstly, it
an be done with a row-display or a [℄CHARdenotation. For example, using the de
laration of i7 above:i7:=(4, -8, 11, ABS "K",ABS TRUE, 0, ROUND 3.4)Noti
e that the bounds of both i7 and the row-display are [1:7℄. In the assignment of a multiple,the bounds of the multiple on the right-hand side must mat
h the bounds of the multiple name on theleft-hand side. If they di�er, a fault is generated. If the bounds are known at
ompile-time, the
ompilerwill generate an error message. If the bounds are only known at run-time (see se
tion 5.8 on dynami
names), a run-time error will be generated. The bounds
an be
hanged using a trimmer or the � symbol(or AT). See
hapter 3 for details.The se
ond way of assigning to the elements of a multiple
olle
tively is to use an identi�er of amultiple with the required bounds. For example:[℄INT i3 = (1,2,3);REF[℄INT k = LOC[1:3℄INT := i3The right-hand side has been assigned to the multiple name k.As mentioned above, parts of a multiple
an be assigned using sli
ing or trimming. For example, giventhe de
larationsREF[,℄REAL x = LOC[1:3,1:3℄REAL,y = LOC[0:2,0:2℄REALand the assignmentx:=((1,2,3),(4,5,6),(7,8,9))we
an writey[2,0℄:=x[3,2℄The multiple name y is sli
ed yielding a name of mode REF INT. Then5 the multiple name x is sli
edalso yielding a name of mode REF INT whi
h is then dereferen
ed yielding a new instan
e of the valueto whi
h it refers (8) whi
h is then assigned to the new name on the LHS of the assignment. Here is anidentity-de
laration whi
h makes the new name permanent:5But be
ause the two sides of an assignment are elaborated
ollaterally, the RHS might be elaborated beforethe LHS or even in parallel.

48 CONTENTSREF INT y20 = y[2,0℄; y20:=x[3,2℄whi
h has its uses (see below).Here are some examples of sli
ing with (implied) multiple assignments:y := x[�0,�0℄;y[2,℄ := x[1,�0℄;y[,1℄ := x[2,�0℄In the �rst example, the right-hand side is a sli
e of a name whose mode is REF[,℄REAL. Be
ause the sli
ehas no trimmers its mode is also REF[,℄REAL. Using the � symbol, the lower bounds of both dimensionsare
hanged to 0, ensuring that the bounds of the multiple name thus
reated mat
h the bounds of themultiple name y on the left. After the assignment (and the dereferen
ing), y will refer to a
opy of themultiple x and the name
reated by the sli
ing will no longer exist.In the se
ond assignment, the multiple x has been sli
ed yielding a name whose mode is REF[℄REAL.It refers, in fa
t, to the �rst \row" of x. The �0 ensures that the lower bound of the se
ond dimension ofx is 0. The left-hand side yields a name of mode REF[℄REAL whi
h refers to the last \row" of the multipley. The name on the right-hand side is dereferen
ed. After the assignment y[2,℄ will refer to a
opy ofthe �rst \row" of x and the name produ
ed by the sli
ing will no longer exist.In the third assignment, the se
ond \row" of x is assigned to the se
ond \
olumn" of y. Again, the�0
onstru
tion ensures that the lower bound of the se
ond dimension of x is zero. After the assignment,the name
reated by the sli
ing will no longer exist.Noti
e how the two de
larations for x and y have a
ommon formal-de
larer on the left-hand side,with a
omma between the two de
larations. This is a
ommon abbreviation. The
omma means that thetwo de
larations are elaborated
ollaterally (and on a parallel pro
essing
omputer, possibly in parallel).It was stated in the se
tion on names that names
an be put on the right-hand side of an identityde
laration. This is parti
ularly useful for a

essing elements of rows. Consider the following:REF[℄INT r = LOC[100℄INT;FOR i FROM LWB r TO UPB r DO r[i℄:=i*i OD;FOR i FROM LWB r TO UPB r-1DO IF REF INT ri=r[i℄, ri1=ri[i+1℄;ri > ri1THEN ri:=ri1ELSE ri1:=riFIODThis is another example of optimisation, but in this
ase, we need names be
ause the THEN and ELSE
lauses
ontain assignments. Both ri and ri1 are used thri
e in the
onditional
lause, but the multipler is only subs
ripted twi
e in ea
h loop. In the
ondition following the IF, both ri and ri1 would bedereferen
ed (but not in the identity de
larations). The values of ri and ri1 remain
onstant: the namesare assigned new values. You
an see from the identity de
larations that the modes of the names ri andri1 are both REF INT.Here is a program fragment whi
h uses a REF[℄REAL identity de
laration for optimisation:REF[,℄REAL m = LOC[3,4℄REAL; read(m);FOR i FROM 1 LWB m TO 1 UPB mDO REF[℄REAL mi = m[i,℄;FOR j FROM LWB mi TO UPB miDO REF REAL mij = mi[j℄;mij*:=mijODOD;print((m,newline))

5.5. FLEXIBLE NAMES 49As you
an see, read behaves just like print in that a whole multiple
an be read at one go (see
hapter 3for the use of print with multiples). The only di�eren
e between the way read is used and the wayprint is used is that the values for read must be names (or identi�ers of names) whereas print
an usedenotations or identi�ers of names or identi�ers whi
h are not names.
Exer
ises5.7 After the assignments of x to y dis
ussed above, what is the �nal value of y (
areful)?5.8 Given these de
larationsREF[,℄INT m = LOC[3:5,-2:0℄INT,REF[℄INT n = LOC[1:3℄INT:=(1,2,3)

(a) What is wrong with the assignment m[1,℄:=n?(b) How would you assign the se
ond \
olumn" of m to its third \row"?5.9 Modify Eratosthenes' Sieve to
ompute the 365th prime.
5.5 Flexible namesIn the previous se
tion, we de
lared mutliple names. The bounds of the multiple to whi
h the name
anrefer are in
luded in the generator. In subsequent assignments, the bounds of the new multiple to beassigned must be the same as the bounds given in the generator. In Algol 68, it is possible to de
larenames whi
h
an refer to a multiple of any number of elements (in
luding none) and, at a later time,
anrefer to a di�erent number of elements. They are
alled
exible names. Here is an identity de
larationfor a
exible name:REF FLEX[℄INT fn = LOC FLEX[1:0℄INTThere are several things to note about this de
laration. Firstly, the mode of the name is not REF[℄INT,but REF FLEX[℄INT. The FLEX means that the bounds of the multiple to whi
h the name
an refer
andi�er from one assignment to the next. Se
ondly, the bounds of the name generated at the time of thede
laration are [1:0℄. Sin
e the upper bound is less than the lower bound, the multiple is said to be
at; in other words, it has no elements at the time of its de
laration6. Thirdly, FLEX is present on bothsides of the identity de
laration (but in the last se
tion of this
hapter we shall see a way round that).We
an now assign multiples of integers to fn:fn:=(1,2,3,4)The bounds of the multiple to whi
h fn now refers are [1:4℄. Again, we
an writefn:=(2,3,4)Now the bounds of the multiple to whi
h fn refers are [1:3℄. We
an even writefn:=7in whi
h the right-hand side will be rowed to yield a one-dimensional multiple with bounds [1:1℄, andfn:=()giving bounds of [1:0℄.In the original de
laration of fn the bounds were [1:0℄. The
ompiler will not ignore any boundsother than [1:0℄, but will generate a name whose initial bounds are those given. So the de
larationREF FLEX[℄INT fn1 = LOC FLEX[1:4℄INT6The Revised Report mentions a \ghost element" in this
ontext (see se
tion 10.11 for details)

50 CONTENTSwill
ause fn1 to have the bounds [1:4℄ instead of [1:0℄.The lower bound does not have to be 1. In this example,REF[℄INT m1 = LOC[-1:1℄INT;FOR i FROM LWB m1 TO UPB m1 DO m1[i℄:=i+3 OD;REF FLEX[℄INT f1 = LOC FLEX[1:0℄INT := m1the bounds of f1 after the initial assignment are [-1:1℄.If a
exible name is sli
ed or trimmed, the resulting name is
alled a transient name be
ause it
anonly exist so long as the
exible name stays the same size. Su
h names have a restri
ted use to avoid theprodu
tion of names whi
h
ould refer to nothing. For example,
onsider the de
laration and assignationREF FLEX[℄CHAR
1 = LOC FLEX[1:0℄INT;
1:="ab
def";Suppose now we have the de
larationREF[℄CHAR l
1=
1[2:4℄; #WRONG#followed by this assignment:
1:="z";It is
lear that l
1 no longer refers to anything meaningful. Thus transient names
annot be assignedwithout being dereferen
ed, nor given identi�ers, nor used as parameters for a routine (whether operatoror pro
edure). However there is nothing to prevent them being used in an assignment. For example,REF FLEX[℄CHAR s=LOC[1:0℄CHAR:="ab
defghijklmnopqrstuvwxyz";s[2:7℄:=s[9:14℄where the name yielded by s[9:14℄ is immediately dereferen
ed. Note that the bounds of a trim are�xed even if the value trimmed is a
exible name. So the assignments[2:7℄:="ab
"would produ
e a run-time fault.
Exer
ises5.10 The de
larationREF FLEX[℄CHAR s = LOC FLEX[1:0℄CHARapplies to the following:(a) What is the value of s?(b) After the assignments:="aeiou"what are the bounds of s?
5.6 The mode STRINGThe mode STRING is de�ned in the standard prelude as having the same mode as the expression FLEX[1:0℄CHAR.That is, the identity de
larationREF STRING s = LOC STRINGhas exa
tly the same e�e
t as the de
larationREF FLEX[℄CHAR s = LOC FLEX[1:0℄CHARYou will noti
e that although the mode indi
ant STRING appears on both sides of the identity de
la-ration for s, in the se
ond de
laration the bounds are omitted on the left-hand side (the mode is aformal-de
larer) and kept on the right-hand side (the a
tual-de
larer). Without getting into abstrusegrammati
al explanations, just a

ept that if you de�ne a mode like STRING, whenever it is used on theleft-hand side of an identity de
laration the
ompiler will ignore the bounds inherent in its de�nition.We
an now writes:="String"

5.7. REFERENCE MODES IN TRANSPUT 51whi
h gives bounds of [1:6℄ to s. We
an sli
e that row to get a value with mode REF CHAR whi
h
anbe used in a formula. If we want to
hange the bounds of s, we must assign a value whi
h yields a valueof mode [℄CHAR to the whole of s as ins:="Another string" or s:=s[2:4℄Wherever [℄CHAR appears in
hapter 3, it may be safely repla
ed by STRING. This is be
ause it is onlynames whi
h are
exible so the
exibility of STRING is only available in REF STRING de
larations.There are two operators de�ned in the standard prelude whi
h use an operand of mode REF STRING:PLUSAB, whose left operand has mode REF STRING and whose right operand has mode STRING or CHAR,and PLUSTO, whose left operand has mode STRING or CHAR and whose right operand has mode REF STRING.Using the
on
atenation operator +, their a
tions
an be summarised as follows:a PLUSAB b � a:=a+ba PLUSTO b � b:=a+bThus PLUSAB
on
atenates b onto the end of a, and PLUSTO
on
atenates a to the beginning of b. Theiralternative representations are +:= and +=: respe
tively. For example, if a refers to "ab
" and b refers to"def", after a PLUSAB b, a refers to "ab
def", and after a PLUSTO b, b refers to "ab
defdef" (assumingthe PLUSAB was elaborated �rst).
Exer
ises5.11 Write a program whi
h de
lares a name with mode REF STRING and then
onse
utively assigns therows of
hara
ters "ab", "ab
", upto the whole alphabet and prints ea
h row on a separate line.Use a FOR loop
lause.5.12 De
lare a
exible name whi
h
an refer to a 2-dimensional row whose elements have mode REAL.Assign a one-dimensional row whose elements are5.0 10.0 15.0 20.0Write the print phrase whi
h will display ea
h bound on the s
reen followed by a spa
e, all onone line.
5.7 Referen
e modes in transputWherever previously we have used a value of mode INT with print, we
an safely use a name with modeREF INT, and similarly with all the other modes (su
h as [,℄REAL). This is be
ause the parameters forprint (the identi�ers or denotations used for print) are in a �rm
ontext and so
an be dereferen
edbefore being used.In the preamble to this
hapter, print's
ounterpart read was mentioned. It is now time to examineread more
losely. Generally speaking, values displayed with print
an be input with read. The maindi�eren
es are that �rstly, the parameters for read must be names. For example, we may writeREF REAL r = LOC REAL;read(r)and the program will skip spa
es, tabs and end-of-line and new-page
hara
ters until it meets an optionalsign followed by optional spa
es and at least one digit, when it will expe
t to read a number. If an integeris present, it will be read,
onverted to the internal representation of an integer and then widened to areal.Likewise, read may be used to read integers. The plus and minus signs (+ and -)
an pre
ede integersand reals. Absen
e of a sign is taken to mean that the number is positive. Any non-digit will terminatethe reading of an integer ex
ept for a possible sign at the start. Reals
an
ontain e as in 3.41e5. It isbest to ensure that ea
h number is pre
eded by a sign so that the reading of any pre
eding number willbe terminated by that sign.For a name of mode REF CHAR, a single
hara
ter will be read, newline or newpage being
alled ifne
essary. In fa
t, tabs and any other
ontrol
hara
ters (whose absolute value is less than ABS blank)will also be skipped.If read is used to read a [℄CHAR with �xed bounds as in

52 CONTENTSREF[℄CHAR sf = LOC[36℄CHAR;read(sf)then the number of
hara
ters spe
i�ed by the bounds will be read, newline and newpage being
alledas needed. You
an
all newline and newpage expli
itly to ensure that the next value to be input willstart at the beginning of the next line or page.Just like print, read
an take more than one parameter by en
losing them in a row-display.You should note that the end of a line or page will not terminate the reading of a number. So if youwant to read a number from the keyboard, you should follow the number with a non-digit before pressing\Enter". In this
ase, you don't have to read a newline as well, but the \Enter" generates a newline andthat newline will be pending in the input.7The only
exible name for whi
h read
an be used is REF STRING. When reading values for REF STRING,the reading pointer will not go past the end of the
urrent line.8 If the reading position is already at theend of the line, the row will have no elements. When reading a STRING, newline must be
alled expli
itlyfor transput to
ontinue. The
hara
ters read are assigned to the name.
Exer
ises5.13 Write a program to read two real numbers and then print their sum and produ
t.5.14 Write a program whi
h will input text line by line (the lines being of di�erent length) and whi
hwill then write out ea
h line with the
hara
ters reversed. For example, the line "and so on" willbe displayed as "no os dna". Continue reading until a line of zero length is read.
5.8 Dynami
 namesHitherto, all the names whi
h
an refer to rows were de
lared with bounds whose values were given byinteger denotations. In fa
t, the bounds given on the right-hand side of the identity de
laration
an beany unit whi
h yields an integer in a meek
ontext. So it is quite reasonable to writeREF INT size = LOC INT; read(size);REF[℄INT a = LOC[1:size℄INTor evenREF[℄INT r=LOC[1:(REF INT i=LOC INT;read(i);i)℄INTsin
e an en
losed serial
lause has the value of its last unit. The value of the
lause in the parenthesesis a name of mode REF INT and sin
e the
ontext of the
lause is meek, dereferen
ing is allowed. The
ontext is passed on to the last unit in the
lause. Thus the integer read by read will be passed to thegenerator.A dynami
 name is one whi
h
an refer to a multiple whose bounds are determined at the time theprogram is elaborated. It means that you
an de
lare names referring to multiples of the size you a
tuallyrequire, rather than the maximum size that you might ever need.
Exer
ises5.15 De
lare a name whi
h
an refer to a multiple of reals whose upper bound is determined by readingan integer from the keyoard.5.16 Write a program whi
h will read an integer whi
h says how many integers follow it. Compute thesum of all the integers and print it.7Console input is better handled using the kbd
hannel des
ribed in se
tion 13.7.2.8See se
tion 9.4 for details of string terminators.

5.9. LOOPS REVISITED 535.9 Loops revisitedIn se
tion 3.7, we introdu
ed the loop
lause whose start, step and �nish were spe
i�ed by integerdenotations. Instead of an integer, a unit whi
h yields a value of mode INT in a meek
ontext
an besupplied. The prin
iple
oer
ions not available in a meek
ontext are rowing and widening. In pra
ti
e,almost any unit yielding INT will do. In parti
ular, a name with mode REF INT
an be given.There is an extra
onstru
t whi
h is extremely useful for
ontrolling the exe
ution of the DO : : : ODloop. It is very
ommon to exe
ute a loop while a parti
ular
ondition holds. For example, while integersare negative:WHILEREF INT int=LOC INT; read(int); int < 0DO print((ABS int,newline))ODIn this example, no loop
ounter was needed and so the FOR id part was omitted. The phrase followingthe WHILE must be an enquiry
lause yielding BOOL. In this
ase, an integer is read ea
h time the loopis elaborated until a non-negative integer is read. The range of any de
larations in the enquiry
lauseextends to the DO : : : OD loop.It happens quite often that the WHILE enquiry
lause performs all the a
tions whi
h need repeatingand nothing is required in the DO part. Sin
e the loop
lause must
ontain at least one unit, SKIP
an beused as inFOR i FROM LWB a TO UPB aWHILE (sum+:=a[i℄) <= maxDO SKIPODThe
omplete loop
lause thus takes the form:FOR id FROM from-unit BY by-unit TO to-unitWHILE boolean-enquiry-
lauseDO serial
lauseOD
Exer
ises5.17 Write a program whi
h will read integers until zero is en
ountered. The program should print thesums of the negative and positive integers.5.18 Write a program whi
h will read lines from the keyboard and then
ompute a unique
ode for ea
hline as follows: if "did" is read,
ompute the value ofABS"d" + ABS"i"*2 + ABS"d"*3Display the string and its
orresponding number on the s
reen. Terminate the program when azero-length line has been read (if the result ex
eeds max int, you will normally not get an error:just erroneous results|see se
tion 13.6.1).
5.10 Abbreviated de
larationsYou have now met many identity de
larations. When de
laring names, it is apparent that mu
h of thede
laration is repeated on both sides. For example:REF[℄REAL r = LOC[10℄REALDe
larations of names are very
ommon in Algol 68 programs and abbreviated de
larations are available.The above de
laration
an be written

54 CONTENTSLOC[10℄REAL ror, most
ommonly[10℄REAL rAn abbreviated de
laration uses the a
tual-de
larer (the right-hand side of an identity de
laration) fol-lowed by the identi�er; and if the a
tual-de
larer
ontains the generator LOC, you
an omit the LOC (seese
tion 6.1 whi
h explains a
tual-de
larers and formal-de
larers).Here are some of the de
larations given as examples in this
hapter rewritten in their abbreviatedform:INT a;REAL x:=pi;CHAR s;[7℄INT i7;[0:6℄INT i7 at 0;[3℄INT k:=(1,2,3);[3,3℄REAL x; [0:2,0:2℄REAL y;FLEX[1:0℄INT fn;[36℄CHAR sf;[(INT i; read(i); i)℄INT rIt is important to note that identity de
larations should not be mixed with abbreviated name de
larationsbe
ause the modes are quite di�erent. For example, inREAL a:=2.4;REAL b = a+2.1the mode of a is REF REAL, but the mode of b is REAL. In the abbreviated de
laration of a name, themode given is that of the value to whi
h the name will refer (the a
tual-de
larer).When you de
lare a new obje
t, if you do not intend assigning to it, use an identity de
laration. Onlyde
lare it as a name if you intend superseding the value to whi
h it will refer. Remember that assignment
an be dangerous be
ause values are superseded.
Exer
ises5.19 Write abbreviated de
larations for the following:(a) REF[℄CHAR r
 = LOC[1000℄CHAR(b) REF FLEX[℄INT fi = LOC FLEX[1:0℄INT(
) REF BOOL b = LOC BOOL := TRUE5.20 Write full identity de
larations for the following:(a) INT a,b,
(b) REAL x;[5℄CHAR y;[3,3℄REAL z(
) FLEX[1:0℄CHAR s
5.11 SummaryA name is a value whose mode always begins with the mode
onstru
tor REF. A name
an refer to avalue whose mode starts with one less REF than the mode of the name. An assignment
auses a nameto refer to a value. The value to whi
h a name refers
an be superseded using a further assignment. Anassignment is a kind of unit and
an appear in a formula if it is en
losed by parentheses (or BEGIN andEND). Multiple assignments
an be used to assign the same value to more than one name.A name
an be generated using a lo
al or global generator and
an be made to refer to a value in thesame phrase in whi
h it is de
lared.

5.11. SUMMARY 55Algol 68 provides
exible names as well as �xed names for multiples. The mode indi
ant for FLEX[℄CHARis de�ned in the standard prelude as STRING. Names for multiples
an have bounds determined at run-time.read will
onvert external
hara
ter sequen
es into internal values. Its parameters must be names ornewline or newpage.Name de
larations may be written as identity de
larations or in an abbreviated form.Before
ontinuing with
hapter 6, it would be wise to revise the material in the �rst �ve
hapters sin
ethese
omprise the basis of the language.
Exer
ises5.21 De
lare a name to refer to a multiple of 1000 integers, �rst as an identity de
laration, and se
ondlyin abbreviated form.5.22 Write a program whi
h will
ompute the average of a number of salaries (eg, 1010.53) read fromthe keyboard until the number -1 is read. Display the average on the s
reen.5.23 Write a program whi
h will read a line and then s
an it, writing out the individual words on oneline apie
e. The program should read the line into a REF STRING name, then remove leading andtrailing spa
es and add a spa
e to the end. Use a boolean name
alled in word and make it referto FALSE. As you step along the line, make in word refer to FALSE if you read a spa
e and TRUEotherwise. Keep a tra
k of the length of the
urrent word. Whenever the value in word
hangesfrom TRUE to FALSE, extra
t the word using an appropriate trimmer and print it. Allow for therebeing more than one spa
e between words. Ignore the possibility of
ommas, bra
kets et
.

56 CONTENTS

Chapter 6
Routines
Routines
onsist of two types: operators and pro
edures. They have mu
h in
ommon, so the �rst se
tion
overs their
ommon aspe
ts. These are followed by a se
tion on operators and a se
tion on pro
edures.The length of this
hapter re
e
ts the importan
e of routines in the language.
6.1 RoutinesA routine is a number of en
apsulated a
tions whi
h
an be elaborated in their entirety in other partsof the program. A routine has a well-de�ned mode. The value of a routine is expressed as a routinedenotation. Here is an example:([℄INT a)INT:(INT sum:=0;FOR i FROM LWB a TO UPB a DO sum+:=i OD;sum)In this example, the header of the routine is given by([℄INT a)INT:whi
h
ould be read as \with (parameter) row of INT a yielding INT". The mode of the routine is givenby the header, less the
olon and any identi�ers. So the mode of the above routine is([℄INT)INTWe say that the routine takes one parameter of mode [℄INT and yields a value of mode INT.As you
an see from the body of the routine (everything ex
ept the header), the routine yields thesum of the individual elements of the parameter. The body of a routine is a unit. In this
ase, it is anen
losed
lause.We have met parameters before in a di�erent guise. The formal de�nition of an identity de
larationis <formal-mode-param> = <a
tual-mode-param>The formal-mode-param
onsists of an identi�er pre
eded by a formal-mode-de
larer (referred to in thelast
hapter as a formal-de
larer). An a
tual-mode-param is a pie
e of program whi
h yields an internalobje
t whi
h hen
eforth is identi�ed by the identi�er. For example, in the identity de
laration[℄INT a = (2,3,5,7,11)[℄INT a is the formal (mode) parameter, [℄INT is the formal (mode) de
larer, the identi�er is a, and thea
tual (mode) parameter is the row-display (2,3,5,7,11). The word \mode" was pla
ed in parenthesesbe
ause it is
ommon usage to omit it. Hen
eforth, we shall talk about formal parameters and a
tualparameters.In the header of the above routine, a is de
lared as a formal parameter. The mode of a is [℄INT.At the time the routine is de
lared, a does not identify a value. That is why it is
alled a \formal"57

58 CONTENTSparameter. It is only when the routine is used that a will identify a value. We'll
ome to that later. Anyidenti�er may be used for the formal parameter of a routine.In the body of the routine, a is treated as though it has a value. Sin
e its mode is [℄INT, it is amultiple and so it
an be sli
ed to a

ess its individual elements.The body of the routine written above
onsists of an en
losed
lause. In this
ase, the en
losure
onsists of the parentheses (and), but it might well have been written using BEGIN and END. Insidethe en
losure is a serial
lause
onsisting of three phrases. The �rst is a de
laration with an initialassignment. Although an assignment yields a name, an identity de
laration with an initial assignment,even an abbreviated one, does not. This is the only ex
eption.The se
ond phrase is a FOR loop
lause whi
h yields VOID (see se
tion 6.1.4). The third phrase
onsistsof the identi�er sum whi
h yields its name of mode REF INT.Now, a

ording to the header of the routine, the routine must yield a value of mode INT. The
ontextof the body of a routine is strong. Although a serial
lause
annot be
oer
ed, the
ontext of the serial
lause is passed to the last phrase of that
lause. In this
ase, we have a value of mode REF INT whi
h,in a strong
ontext,
an be
oer
ed to a value of mode INT by dereferen
ing.
Exer
ises6.1 What is the formal de�nition of an identity de
laration?6.2 Why is the parameter of a routine denotation
alled a formal parameter?6.3 In the routine denotation(REAL r)INT: ENTIER r;(a) What is the mode of the formal parameter?(b) What is the mode of the value yielded?(
) What is the
ontext of the body of the routine?(d) If the value of r were -4.6, what value would the routine yield?6.4 Write a routine whi
h takes a parameter of mode [℄INT and yields a value of mode [℄CHAR, whereea
h element of the result yields the
hara
ter equivalent of the
orresponding element in theparameter (use FOR and REPR).
6.1.1 Routine modesIn general, a routine may have any number of parameters, in
luding none, as we shall see. The modeof the parameters may be any mode, and the value yielded may be any mode. The modes written forthe parameters and the yield are always formal de
larers, so no bounds are used if the modes of theparameters or yield involve multiples.Here is a possible header of a more
ompli
ated routine:(INT i,REF[,℄CHAR
,REAL a,REAL b)BOOL:A minor abbreviation would be possible in this
ase. TheREAL a,REAL b
ould be written REAL a,b giving(INT i,REF[,℄CHAR
,REAL a,b)BOOL:Noti
e that the parameters are separated by
ommas. This means that when the routine is used, thea
tual parameters are evaluated
ollaterally. We shall see later that this is important when we
onsiderside-e�e
ts.The order in whi
h parameters are written in the header is of no parti
ular signi�
an
e.The mode of the routine whose header is given above is(INT,REF[,℄CHAR,REAL,REAL)BOOL(\with int ref row row of
ar real real yielding bool").

6.1. ROUTINES 596.1.2 Multiples as parametersSin
e a formal parameter whi
h is a multiple has no bounds written in it, any multiple having thatmode
ould be used as the a
tual parameter. This means that if you need to know the bounds of thea
tual multiple, you will need to use the bounds interrogation operators. For example, here is a routinedenotation whi
h �nds the smallest element in its multiple parameter:([℄INT a)INT:(INT min:=a[LWB a℄;FOR i FROM LWB a TO UPB aDO min:=min MIN a[i℄OD;min)6.1.3 Names as parametersThe se
ond parameter in the more
ompli
ated routine header given in se
tion 6.1.1 had the modeREF[,℄CHAR. When a parameter is a name, the body of the routine
an have an assignment whi
h makesthe name refer to a new value. For example, here is a routine denotation whi
h assigns a value to itsparameter:(REF INT a)INT: a:=2Noti
e that the unit in this
ase is a single phrase and so does not need to be en
losed. Here is a routinedenotation whi
h has two parameters and whi
h yields a value of mode BOOL:(REF[℄CHAR r
,[℄CHAR
)BOOL:IF UPB r
 - LWB r
 /= UPB
 - LWB
THEN FALSEELSE r
[:℄:=
[:℄; TRUEFIHere, the body is a
onditional
lause whi
h is another kind of en
losed
lause. Note the use of trimmersto ensure that the bounds of the multiples on ea
h side of the assignment mat
h.If a
exible name
ould be used as an a
tual parameter, then the mode of the formal parameter mustin
lude the mode
onstru
tor FLEX. For example,(REF FLEX[℄CHAR s)INT:(CO Code to
ompute the number of words CO)Of
ourse, in this example, the mode of s
ould have been given as REF STRING.6.1.4 The mode VOIDA routine must yield a value of some mode, but it is possible to throw away that value using the voiding
oer
ion. The mode VOID has a single value whose denotation is EMPTY. In pra
ti
e, be
ause the
ontextof the yield of a routine is strong, use of EMPTY is usually unne
essary (but see se
tion 8.2). Here isanother way of writing the last routine in the previous se
tion:(REF[℄CHAR r
,[℄CHAR
)VOID:IF UPB r
 - LWB r
 /= UPB
 - LWB
THENprint(("Bounds mismat
h",newline));stopELSE r
[:℄:=
[:℄FIThis version produ
es an emergen
y error message and terminates the program prematurely (see se
tion4 for details of stop). Sin
e the yield is VOID, any value the
onditional
lause might yield will be thrownaway. A FOR loop yields EMPTY and a semi
olon voids the previous unit. De
larations yield no value, noteven EMPTY.

60 CONTENTS6.1.5 Routines yielding namesSin
e the yield of a routine
an be a value of any mode, a routine
an yield a name, but there is arestri
tion: the name yielded must have a s
ope larger than the body of the routine. This means thatany names de
lared to be lo
al,
annot be passed from the routine. Names whi
h exist outwith the s
opeof the routine
an be passed via a parameter and yielded by the routine. For example, here is a routinedenotation whi
h yields the name passed by su
h a parameter:(REF INT a)REF INT: a:=2Compare this routine with the �rst routine denotation in se
tion 6.1.3.In
hapter 5, we said that a new name
an be de
lared using the generator LOC. For example, here isan identity de
laration for a name:REF INT x = LOC INTThe range of the identi�er x is the smallest en
losed
lause in whi
h it has been de
lared. The s
ope ofthe value it identi�es is limited to that smallest en
losed
lause be
ause the generator used is the lo
algenerator LOC. Here is a routine whi
h tries to yield a name de
lared within its body:(INT a)REF INT:(REF INT x = LOC INT:=a; x) #wrong!#This routine is wrong be
ause the s
ope of the name identi�ed by x is limited to the body of the routine.Note, however, the Ctrans Algol 68
ompiler provides neither
ompile-time nor run-time s
ope
he
kingso that it is possible to yield a lo
ally de
lared name. However, the rest of the program would beunde�ned|you might or might not get meaningful things happening. When s
opes are
he
ked, this sortof error
annot o

ur.However, there is a way of yielding a name de
lared in a routine. This is a
hieved using a globalgenerator. If x above were de
lared asREF INT x = HEAP INTor, in abbreviated form, HEAP INT x, then the s
ope of the name identi�ed by x would be from itsde
laration to the end of the program even though the range of the identi�er x is limited to the body ofthe routine:(INT a)REF INT: (HEAP INT x:=a; x)Noti
e that the mode of the yield is still REF INT. All that has
hanged is the s
ope of the value yielded.Of
ourse, you would not be able to identify the yielded name using x, but we'll
ome to that problemwhen we deal with how routines are used. Noti
e that the global generator is written HEAP instead ofGLOB as you might expe
t. This is be
ause global generators use a di�erent method of allo
ating storagefor names with global s
ope and, histori
ally, this di�erent method is re
orded in the mode
onstru
tor.The di�eren
e between range and s
ope is that identi�ers have range, but values have s
ope. Further-more, denotations have global s
ope.
Exer
ises6.5 Write the header of a routine with a parameter of mode REF REAL and whi
h yields a value ofmode REAL.6.6 Write the header of a routine whi
h takes two parameters ea
h of whi
h is a name of mode REF CHAR,and yields a name of mode REF CHAR.6.7 Write a routine whi
h takes a parameter of mode STRING and yields a value of mode [℄STRING
onsisting of the words of the parameter (use your answer to exer
ise A).
6.1.6 Parameterless routinesA routine
an have no parameters. In the header, the parentheses normally en
losing the formal parameterlist (either one parameter, or more than one separated by
ommas) are also omitted. Here is a routinewith no parameters and whi
h yields a value of mode INT:INT: 2*3**4 - ENTIER 36.5It would be more usual to use identi�ers whi
h had been de
lared in some en
losing range. For example,INT: 2*a**4 - ENTIER b

6.2. OPERATORS 61Routines whi
h have no parameters and yield no value are fairly
ommon. For example,VOID: print(2)Stri
tly speaking, there is one value having the mode VOID, but there's not a lot you
an do with it. Inpra
ti
e, VOID routines usually use identi�ers de
lared in an en
losing range (they are
alled identi�ersglobal to the routine). For example:VOID: (x:=a; x<=2|print(x)|print("Over 2"))where the body is an abbreviated
onditional
lause, and x and a have been de
lared globally withappropriate modes.Assignment of values to names de
lared globally1 to the routine is known as a side-e�e
t. We shalldeal with side-e�e
ts when we des
ribe how routines are used, and we shall show why side-e�e
ts areundesirable. If you write parameterless routines, it is preferable not to put any assignments to globally-de
lared names in them. In fa
t, it would be safer to say: \In a routine, don't assign to names notde
lared in the routine or not provided as parameters". Side-e�e
ts are messy and are usually a sign ofbadly designed programs. It is better to use a parameter (or an extra parameter) using a name, andthen assign to that name. This ensures that values
an only get into or out of your routines via theheader, and results in a mu
h
leaner design. Cleanly designed programs are easier to write and easierto maintain.
Exer
ises6.8 Write the header of a routine whi
h yields a value of mode REAL, but takes no parameters.6.9 Write a routine of mode VOID whi
h printsHi, thereon your s
reen.
6.2 OperatorsIn the preamble to this
hapter, it was mentioned that routines
onsist of two kinds: pro
edures andoperators. See se
tion 6.3 for details of pro
edures.An operator has a mode and a value (its routine denotation) and, if dyadi
, a priority. The parametersto routines whi
h are de�ned as operators are
alled operands. Monadi
 operators, while not having apriority, behave as though they had a priority greater than any dyadi
 operator and take one operandand yield a value of some mode.Here is an identity de
laration of the monadi
 operator B:OP(INT)INT B = (INT a)INT: aThere are several points to note.1. The mode of the operator is OP(INT)INT. That is, it takes a single operand of mode INT and yieldsa value of mode INT.2. The symbol for the operator looks like a mode indi
ant. It isn't a mode indi
ant, but obeys thesame rules (starts with an upper
ase letter and possibly
ontinues with upper
ase letters or digits,and no spa
es are allowed inside the symbol).3. The right-hand side of the identity de
laration is a routine denotation. A spe
ial identity de
larationis used for operators: instead of the mode of the operator, the mode
onstru
tor OP is used followedby the operator symbol. The abbreviated de
laration of the operator B isOP B = (INT a)INT: a1The phrase \names de
lared globally" is intended to mean here that the names have been de
lared in a rangewhi
h en
loses the routine, not that HEAP has ne
essarily been used in the de
laration. We use the phrase \aglobal name" in the latter
ase.

62 CONTENTSChapter 2 des
ribed how operators are used in formul�. A possible formula using B
ould beB 2whi
h would yield 2.26.2.1 Identi�
ation of operatorsThis se
tion is more diÆ
ult than pre
eding se
tions and
ould be omitted on a �rst reading. You areunlikely to fall afoul of what is des
ribed here unless you are de
laring many new operators.One of the most useful properties of operators is that there
an be more than one de
laration of thesame operator symbol using an operand having a di�erent mode. This is
alled \operator overloading".How does the
ompiler know whi
h version of the operator to use? Before answering this question,
onsider the following program fragment:1 BEGIN2 OP D = (INT a)INT: a+2;3 OP D = (REAL a)REAL: a+2.0;4 REAL x:=1.5, a:=-2.0; INT i:=4;56 x:=IF OP D = (REF REAL a)REF REAL:7 a+:=2.0;8 ENTIER(D a:=x) > i9 THEN D i10 ELSE D x11 FI;1213 OP D = (REF REAL a)REF REAL: a+:=3.0;14 x:=D a15 ENDThe numbers on the left-hand side are not part of the program. As you
an see, there are four de
larationsof D: one with an INT operand, one with a REAL operand and two with a REF REAL operand. If you try
ompiling this you will get the errorERROR (146) more than one version of Dfor the last de
laration. There are two points to be made here.1. Outside the
onditional
lause, there are three de
larations of D: on lines 2, 3 and 13. Now, anoperator is used in a formula and the
ontext of the operand of an operator is �rm. Of the
oer
ionswe have met so far, only one, namely dereferen
ing, is allowed in a �rm
ontext. If you look atthe assignment on line 14, you
an see that the mode of the operand of D is REF REAL (fromthe de
laration of a on line 4). Now a value of mode REF REAL is �rmly
oer
ible to REAL (bydereferen
ing). So there are two de
larations of D whi
h
ould be used: the de
laration on line 3and the de
laration on line 13 (the range of the de
laration on line 6 is
on�ned to the
onditional
lause). A

ording to the rules for the identi�
ation of operators (see below), the
ompiler wouldnot be able to distinguish between the two de
larations. Hen
e the error message.2. Why did the identi
al de
laration of D on line 6 not
ause a similar error message? Answer:be
ause the de
laration on line 6 is at the start of a new range: the en
losed
lause starting online 6 and extending to the FI on line 11. Sin
e that is a new range, any operator de
larations witha mode whi
h is �rmly related to the mode of an operator de
lared in an outer range makes thede
laration in the outer range ina

essible. Thus, the assignment on line 8 will use the version ofD de
lared on line 6, the D on line 9 identi�es the D de
lared on line 2, and the D on line 10 againuses the D de
lared on line 6.Thus, in determining whi
h operator to use, the
ompiler �rstly �nds a de
laration whose mode
an beobtained from the operands in question using any of the
oer
ions allowed in a �rm
ontext (
hapter 10will state all the
oer
ions allowed). Se
ondly, it will use the de
laration in the smallest range en
losingthe formula.2In
hapter 3, we mentioned a bug in the Ctrans Algol 68
ompiler
onne
ted with the BY
onstru
t in loop
lauses. Using the B operator is another way of getting round the bug.

6.2. OPERATORS 63The de
laration of an obje
t is known as its de�ning o

urren
e. Where the obje
t is used is
alledits applied o

urren
e. In pra
ti
e, it is rare to �nd like operator de
larations in nested ranges.
Exer
ises6.10 This and the following exer
ise use the following program fragment:1 IF2 OP T = (INT a)INT: a*a;3 OP T = (CHAR a)INT: ABS a * ABS a;4 INT p:=3, q:=4; CHAR
:=REPR 3;5 T p < T
6 THEN7 OP T = (REF INT a)REF INT: a*:=a;8 IF T 4 < T q9 THEN "Yes"10 ELSE T REPR 211 FI12 ELSE T
 > T q13 FIThere are 3 de�ning o

urren
es of the operator T on lines 2, 3 and 7. There are 7 appliedo

urren
es of the operator (on lines 5, 8, 10 and 12). Whi
h de�ning o

urren
e is used for ea
happlied o

urren
e?6.11 What is the mode and value yielded by(a) T q on line 8(b) T q on line 12(
) T
 on line 12(d) T REPR 2 on line 106.12 What is wrong with these two de
larations o

urring in the same range:OP TT = ([℄INT a)[℄INT:FOR i FROM LWB a TO UPB aDO print(a[i℄*3) OD;OP TT = (REF[℄INT a)[℄INT:FOR i FROM LWB a TO UPB aDO print(a[i℄*3) OD
6.2.2 Operator usageBefore we go on to dyadi
 operators, there is one more point to
onsider. Given the operator de
larationOP PLUS2 = (REAL a)REAL: a+2.0what is the me
hanism by whi
h the formal parameter gets its value? Firstly, we must remember thata parti
ular version of the operator is
hosen on the basis of �rmly relatedness. In other words, only
oer
ions allowed in a �rm
ontext
an determine whi
h de
laration of the operator to use. Se
ondly, inelaborating the formulaPLUS2 xwhere x has the mode REF REAL, the
ompiler elaborates the identity de
larationREAL a = x

64 CONTENTSwhere REAL a is the formal parameter. Sin
e the
ontext of the right-hand side of an identity de
larationis strong, any of the strong
oer
ions would normally be allowed (all
oer
ions, in
luding dereferen
ing).However, be
ause the version of the operator was
hosen on the basis of �rmly relatedness, the
oer
ionsavailable in a strong
ontext whi
h are not available in a �rm
ontext (that is, widening and rowing)are not available in the
ontext of an operand. If an operand of mode INT is supplied to an operatorrequiring a REAL, the
ompiler will
ag an error: widening would not o

ur. This is the only ex
eptionto the rule that the right-hand side of an identity de
laration is a strong
ontext.It was pointed out in se
tion 6.1.5 that a routine
an yield a name. An operator does not usuallyyield a name be
ause subsequent use of the name usually involves dereferen
ing and using the value thename refers to. However, here is an operator de
laration whi
h yields a name of a multiple whi
h is usedin a subsequent phrase:OP NAME = (INT a)REF[℄INT:(HEAP[2℄INT x:=(a,a); x);REF[℄INT a = NAME 3After the elaboration of the identity de
laration, the name
ould be a

essed wherever ne
essary.
Exer
ises6.13 Given the de
larationsOP M3 = (INT i)INT: i-3;OP M3 = ([℄INT i)[℄INT:FORALL n IN i DO n-3 OD;INT i:=1,[3℄INT j:=(1,2,3)whi
h operator de
larations would be used for the following formul�(a) M3 i(b) M3 j[2℄(
) M3 j(d) M3 j[:2℄
6.2.3 Dyadi
 operatorsThe only di�eren
es between monadi
 and dyadi
 operators are that the latter have a priority and taketwo operands. Therefore the routine denotation used for a dyadi
 operator has two formal parameters.The priority of a dyadi
 operator is de
lared using the indi
ant PRIO:PRIO HMEAN = 7; PRIO WHMEAN = 6The de
laration of the priority of the operator uses an integer denotation in the range 1 to 9 on theright-hand side.Conse
utive priority de
larations do not need to repeat the PRIO, but
an be abbreviated in the usualway. The priority de
laration relates to the operator symbol. Hen
e the same operator
annot havetwo di�erent priorities in the same range, but there is no reason why an operator
annot have di�erentpriorities in di�erent ranges. A priority de
laration does not
ount as a de
laration when determiningthe s
ope of a lo
al name.If an existing operator symbol is used in a new de
laration, the priority of the new operator must bethe same as the old if it is in the same range, so the priority de
laration should be omitted.The identi�
ation of dyadi
 operators pro
eeds exa
tly as for monadi
 operators ex
ept that the mostre
ently de
lared priority in the same range is used to determine the order of elaboration of operatorsin a formula. Again, two operators using the same symbol
annot be de
lared in the same range if theyhave �rmly related modes (see se
tion 6.2.1).These de
larations apply to the remainder of this se
tion:

6.2. OPERATORS 65PRIO HMEAN = 7, WHMEAN = 6;OP HMEAN = (REAL a,b)REAL:2.0/(1.0/a+1.0/b);OP WHMEAN = (REAL a,b)REAL:2.0/(1.0/a+2.0/b)If HMEAN appears in the formulax HMEAN ywhere x and y both have mode REF REAL, the
ompiler
onstru
ts the identity de
larationsREAL a = x, REAL b = yNoti
e that the two identity de
larations are elaborated
ollaterally (due to the
omma separating them),whi
h
ould be important (see below). If x refers to 2.5 and y refers to 3.5, the formula will yield2.0/(1.0/2.5 + 1.0/3.5)whi
h is 2:91_6. Likewise, the formulax WHMEAN ywould yield 2 � 058 823 529 411 76. Now
onsider the formula(x+:=1.0) WHMEAN (x+:=1.0)whi
h
ause the value referred to by x to be in
remented twi
e as a side-e�e
t. The resulting identityde
larations areREAL a = (x+:=1.0), REAL b = (x+:=1.0)The de�nition of Algol 68 says that the operands of a dyadi
 operator should be elaborated
ollaterally,so the order of elaboration is unknown. Suppose x refers to 1.0 before the formula is elaborated. Thereare three
ases:1. The identity de
laration for a is elaborated �rst, giving a=2.0 and b=3.0. The formula will yield1:714 285 714.2. The identity de
laration for b is elaborated �rst, giving b=2.0 and a=3.0. The formula will yield1:5.3. The identity de
larations are elaborated in parallel. In this
ase, the result
ould be indeterminate.If you
ompile a program using Ctrans with the de
laration for WHMEAN and try to
ompute the formulagiven above, you get the result +1.5000000000000000 whi
h suggests that
ase 2 holds.If x refers to 1.0, then the formula1.0/(x+:=1.0) + 1.0/(x+:=1.0)yields +.83333333333333339e +0 whi
h is
orre
t provided that the two operands are elaborated se-quentially. The moral of all this is: avoid side-e�e
ts like the plague.What happens if the identi�er of an a
tual parameter is the same as the identi�er of the formalparameter? There is no
lash. Consider the identity de
larationINT a = awhere the a on the left-hand side is the formal parameter for a routine denotation, and the a on theright-hand side is an a
tual parameter de
lared in some surrounding range. The formal parameter o

ursat the start of a new range. Within that range, the identi�er a in the outer range be
omes ina

essible,but at the moment that the identity de
laration is being elaborated, the formal parameter is made toidentify the value of the a
tual parameter whi
h, of
ourse, is not an identi�er. So go ahead and useidenti
al identi�ers for formal parameters and a
tual parameters.

66 CONTENTS6.2.4 Operator symbolsMost of the operators des
ribed in
hapters 2 to 5 used symbols rather than upper-
ase letters. You mayuse any
ombination of the <=>*/: symbols (and any number of them) ex
ept :=, :=: and :/=: (thelatter two are des
ribed in
hapter 11). Any of the symbols +-?&%
an only start a
ompound symbol. Of
ourse, they
an stand on their own for an operator. In
hapter 11, you will �nd the << and >> operatorsdes
ribed as well as more de
larations for existing operators. Here are some de
larations of operatorsusing the above rules:OP *** = (INT a)INT: a*a*a;OP %< = (CHAR
)CHAR: (
<" "|" "|
);OP -:: = (CHAR
)INT: (ABS
-ABS"0")We have now
overed everything about operators in the language.
Exer
ises6.14 Why are side-e�e
ts undesirable?6.15 What is wrong with these operator symbols:(a) M*(b) %+/(
) :=:6.16 De
lare an operator using the symbol PP whi
h will add 1 to the value its REF INT operand refersto, and whi
h will yield the name of its parameter.
6.3 Pro
eduresThe se
ond way of using routines is to de
lare them as pro
edures. We have seen that an operator
an bede
lared and used, have a mode and a value (its routine denotation), but apart from having an operatorsymbol, it
annot be identi�ed with an identi�er in the way that a name or a denotation of a CHAR value
an. Pro
edures are quite di�erent.Firstly, here are some general remarks on the way pro
edures di�er from operators. The modeof a pro
edure always starts with the mode
onstru
tor PROC. A pro
edure
an have any number ofparameters, in
luding none. Two pro
edures having the same identi�er
annot be de
lared in the samerange (so \overloading" is not allowed). When a pro
edure is used, its parameters, if any, are in a strong
ontext. This means that rowing and widening are available.Pro
edures are de
lared using the mode
onstru
tor PROC. Here is a pro
edure whi
h
reates a rangeof
hara
ters:PROC(CHAR,CHAR)[℄CHAR range =(CHAR a,b)[℄CHAR:BEGINCHAR aa,bb;(a<=b|aa:=a; bb:=b|aa:=b; bb:=a);[ABS aa:ABS bb℄CHAR r;FOR iFROM LWB r TO UPB rDO r[i℄:=REPR iOD;rEND

6.3. PROCEDURES 67This pro
edure identity de
laration resembles the de
laration for a multiple: mu
h of the mode is repeatedon the right-hand side and the formal-de
larer on the left-hand side has no identi�ers for the modes ofthe parameters. Noti
e that the modes of the parameters must be repeated in the formal-de
larer, butthat the mode of the pro
edure on the right-hand side
an
ontain the usual abbreviation. Here is theabbreviated header:PROC range = (CHAR a,b)[℄CHAR:The formal-de
larer is important for
reating synonyms:PROC(REAL)REAL sine = sinTwo or more pro
edure de
larations
an be separated by
ommas, even if the pro
edures have di�erentmodes. Consider, for example:PROC pa = (INT i)INT: i*i,pb = (INT i)CHAR: REPR(i*i),p
 = (INT i)REAL: (i=0|0|1/i)6.3.1 Parameterless pro
eduresPro
edures
an have no parameters. Suppose the following names have been de
lared:INT i,jHere is a pro
edure with mode PROC INT whi
h yields an INT:PROC INT p1 = INT: i:=3+jA pro
edure
an be invoked or
alled by writing its identi�er. For example, the pro
edure p1 would be
alled byp1or INT a = p1The right-hand side of this identity de
laration requires a value of mode INT, but it has been given a unitof mode PROC INT. This is
onverted into a value of mode INT by the
oer
ion known as depro
eduring.This
oer
ion is available in every
ontext (even soft).Have you realised that print must be the identi�er of a pro
edure? Well done! However, we
annottalk about its parameters yet be
ause we don't know enough about the language.Here is another pro
edure whi
h yields a name of mode REF INT. The mode of the pro
edure isPROC REF INT:PROC p2 = REF INT: IF i < 0 THEN i ELSE j FIand assumes that the names identi�ed by i and j had already been de
lared. Here is an identityde
laration whi
h uses p2:REF INT i or j = p2Be
ause p2 yields a name, it
an be used on the left-hand side of an assignment:p2:=4Here, 4 will be assigned to i or j depending on the value i refers to. The left-hand side of an assignmenthas a soft
ontext in whi
h only the depro
eduring
oer
ion is allowed.In pro
edures p1 and p2, the identi�er i had been de
lared globally to the pro
edures. Assignment tosu
h an identi�er is, as already stated, a side-e�e
t. Here is another pro
edure of mode PROC INT whi
huses a global identi�er, but does not assign to it:

68 CONTENTSPROC p3 = REAL:([i℄REAL a; read((a,newline));REAL sum:=0.0;FOR i FROM LWB a TO UPB aDO sum+:=a[i℄OD;sum)and here is a
all of p3:print(p3)In the identity de
larationREAL r = p2p2 is depro
edured to yield a name of mode REF INT, dereferen
ed to yield an INT, and then widenedto yield a REAL. All these
oer
ions are available in a strong
ontext (the right-hand side of an identityde
laration).The
all of a pro
edure
an appear in a formula without parentheses. Here is an example:p2:=p1 * ROUND p3If we
all the pro
edure p1, de
lared above, its value does not have to be used. For example, inp1;the value yielded by p1 has been voided by the following semi
olon after the pro
edure had been
alled.In the se
tion on routines, we introdu
ed the mode VOID. Here is a pro
edure yielding VOID:PROC p4 = VOID: print(p3)and a possible use:; p4;where the semi
olons show that the
all stands on its own.When a parameterless pro
edure yields a multiple, the
all of that pro
edure
an be sli
ed to get anindividual element. For example, suppose we de
larePROC p5 = [,℄REAL:([i,j℄REAL a;read((a,newline));a)where i and j were de
lared above, and then
all p5 in the formulaREAL x = p5[i-3,j℄ * 2When p5 is
alled, it yields a two-dimensional multiple of mode [,℄REAL whi
h is then sli
ed using thetwo subs
ripts (assuming that i-3 is within the bounds of the �rst dimension) to yield a value of modeREAL, whi
h is then used in the formula.Pro
edure p2, de
lared above, yielded a name de
lared globally to the pro
edure. As explained inthe se
tions on routines, a pro
edure
annot yield a lo
ally-generated name. However, if the name isgenerated using HEAP, then the name
an be yielded as in p6:PROC p6 = REF INT: (HEAP INT i:=3; i)

6.3. PROCEDURES 69Here is a
all of p6 where the yielded name is
aptured with an identity de
laration:REF INT global int = p6Then print(global int) will display 3.The yield of a pro
edure
an be another pro
edure. Consider this program fragment:PROC q2 = INT: max int % 2,q3 = INT: max int % 3,q4 = INT: max int % 4,q5 = INT: max int % 5;INT i; read((i,newline));PROC q = PROC INT:CASE i+1 IN q2,q3,q4 OUT q5 ESACPro
edure q will yield one of the prede
lared pro
edures depending on the value of i. Here, the yieldedpro
edure will not be depro
edured be
ause the mode required is a pro
edure.One parameterless pro
edure is provided in the standard prelude. Its identi�er is random, and when
alled returns the next pseudo-random real number of a series. If
alled a large number of times, thenumbers yielded are uniformly distributed in the range [0; 1).
Exer
ises6.17 Write a pro
edure whi
h assigns a value to a name de
lared globally to the pro
edure.6.18 Write a pro
edure whi
h reads an integer from the keyboard, then de
lares a dynami
 name of amultiple of one dimension, and reads that number of integers from the keyboard. Now
omputethe sum of all the integers, and yield its value as the yield of the pro
edure.6.19 Write a pro
edure whi
h yields the name of a two dimensional multiple
ontaining
hara
ters readfrom the keyboard. The mode of the multiple should be REF[,℄CHAR.
6.3.2 Pro
edures with parametersParameters of pro
edures
an have any mode (in
luding pro
edures). Unlike operators, pro
edures
anhave any number of parameters. The parameters are written as a parameter list whi
h
onsists of oneparameter, or two or more separated by
ommas.Here is a pro
edure with a single parameter:PROC(INT)CHAR p7 = (INT i)CHAR: REPR(i>0|i|0)This is a full identity de
laration for p7. It
an be abbreviated toPROC p7 = (INT i)CHAR: REPR(i>0|i|0)The mode of p7 is PROC(INT)CHAR. That is, p7 is a pro
edure with a single integer parameter and yieldinga
hara
ter. Here is a
all of p7:CHAR
 = p7(-3)Note that the single parameter is written between parentheses. Sin
e the
ontext of an a
tual parameterof a pro
edure is strong, a name of mode REF INT
ould be used:CHAR
 = p7(i)or CHAR
 = p7(ai[j℄)where ai has mode REF[℄INT and j has mode INT or REF INT or PROC INT (or even PROC REF INT).Here is a pro
edure whi
h takes three parameters:

70 CONTENTSPROC
har in string =(CHAR
,REF INT p,STRING s)BOOL:(BOOL found:= FALSE;FOR k FROM LWB s TO UPB sWHILE NOT foundDO (
 = s[k℄ | i:=k; found:= TRUE)OD;found)The pro
edure (whi
h is in the standard prelude) tests whether a
hara
ter is in a string, and if it is,returns its position in the parameter p. The pro
edure yields TRUE if the
hara
ter is in the string, andFALSE if not. Here is a possible
all of the pro
edure:IF INT p;
har in string(
har,"ab
de",p)THEN ...where
har was de
lared in an outer range. Noti
e that the REF INT parameter of
har in string isnot assigned a new value if the
hara
ter is not found in the string.When
alling a pro
edure, the
all must supply the same number of a
tual parameters, and in thesame order, as there are formal parameters in the pro
edure de
laration.If a multiple is one of the formal parameters, a row-display
an be supplied as an a
tual parameter(remember that a row-display
an only o

ur in a strong
ontext). In this
ase, the row-display
ounts asa single parameter, but the number of elements in the row-display
an di�er in su

essive
alls sin
e thebounds of the multiple
an be determined by the pro
edure using the bounds interrogation operators.Here is an example:PROC pb = ([℄INT m)INT:(INT sum:=0;FOR i FROM LWB m TO UPB m DO sum+:= m[i℄ OD;sum)and here are some
alls of pb:pb((1,2,3)) pb((2,3,5,7,11,13))Again, pro
edures with parameters
an assign to, or use, globally de
lared names and other values,but it is better to in
lude the name in the header of the pro
edure. Here is a pro
edure whi
h reads datainto a globally de
lared multiple using that multiple as a parameter:PROC rm = (REF[℄REAL a)VOID:read((a,newline))It
ould now be
alled byrm(multiple)where multiple had been previously de
lared as having mode REF[℄REAL.As des
ribed in se
tion 6.1.3, a
exible name
an be used as an a
tual parameter provided that theformal parameter has also been de
lared as being
exible. For example, here is a pro
edure whi
h takesa single parameter of mode REF STRING and whi
h yields an INT:PROC read line = (REF STRING s)INT:(read((s,newline));UPB s #LWB is 1#)read line reads the next line of
hara
ters from the keyboard, assigns it to its parameter, whi
h is a
exible name, and yields the length of the line.

6.3. PROCEDURES 71Exer
ises6.20 Write a pro
edure whi
h takes a REF REAL parameter, divides the value it refers to by �, multipliesit by 180, assigns the �nal value to its parameter, and yields the parameter (that is, its name).6.21 Write a pro
edure whi
h takes two parameters: the �rst should have mode STRING and the se
ondmode INT. Display the string on the s
reen the number of times given by the integer. If the integeris negative, display a newline �rst and then use the absolute value (use the operator ABS) of theinteger. Yield the mode VOID.6.22 Write a pro
edure, identi�ed as num in multiple, whi
h does for an integer what
har in stringdoes for a
hara
ter.
6.3.3 Pro
edures as parametersHere is a pro
edure whi
h takes a pro
edure as a parameter:PROC sum = (INT n,PROC(INT)REAL p)REAL:(REAL s:=0;FOR i TO n DO s+:=p(i) OD;s)Noti
e that the mode of the pro
edure parameter is a formal mode so no identi�er is required for its INTparameter in the header of the pro
edure sum. In the loop
lause, the pro
edure is
alled with an a
tualparameter.When a parameter must be a pro
edure, there are two ways in whi
h it
an be supplied. Firstly, aprede
lared pro
edure identi�er
an be supplied, as inPROC pa = (INT a)REAL: 1/a;sum(34,pa)Se
ondly, a routine denotation
an be supplied:sum(34,(INT a)REAL: 1/a)A routine denotation is a unit. In this
ase, the routine denotation has the mode PROC(INT)REAL, so it
an be used in the
all of sum. Noti
e also that, be
ause the routine denotation is an a
tual parameter,its header in
ludes the identi�er a. In fa
t, routine denotations
an be used wherever a pro
edure isrequired, so long as the denotation has the required mode. The routine denotation given in the
all ison the right-hand side of the implied identity de
laration of the elaboration of the parameter. It is anexample of an anonymous routine denotation.
Exer
ises6.23 Given the de
laration of sum in the text, what is the value of:(a) sum(4,(INT a)REAL: a)(b) sum(2,(INT b)REAL: 1/(5*b))(
) sum(0,pa) (pa is de
lared in the text)
6.3.4 Re
ursionOne of the fun aspe
ts of using pro
edures is that a pro
edure
an
all itself. This is known as re
ursion.For example, here is a simplisti
 way of
al
ulating a fa
torial:PROC fa
torial = (INT n)INT:(n=1|1|n*fa
torial(n-1))Try it with the
all

72 CONTENTSfa
torial(7)Here is another re
ursively de�ned pro
edure whi
h displays an integer on the s
reen in minimum spa
e:PROC ai = (INT i)VOID:IF i < 0 THEN print("-"); ai(ABS i)ELIF i < 10 THEN print(REPR(i+ABS"0"))ELSE ai(i%10); ai(i MOD 10)FIIn ea
h of these two
ases, the pro
edure in
ludes a test whi
h
hooses between a re
ursive
all andphrases whi
h do not result in a re
ursive
all. This is ne
essary be
ause, otherwise, the pro
edure wouldnever
omplete. Neither of these pro
edures uses a lo
ally de
lared value. Here is one whi
h does:PROC new fa
t = (INT i)INT:IF INT n:=i-1; n = 1THEN 2ELSE i*new fa
t(n)FIThe example is somewhat arti�
ial, but illustrates the point. If new fa
t is
alled by, for example,new fa
t(3), then in the �rst
all, n will have the value 2, and new fa
t will be
alled again with theparameter equal to 2. In the se
ond
all, n will be 1, but this n this time round will be a new n, with the�rst n ina

essible (it being de
lared in an en
losing range). new fa
t will yield 2, and this value will beused in the formula on line 4 of the pro
edure. The �rst
all to new fa
t will then exit with the value 6.Apart from being fun, re
ursive pro
edures
an be an eÆ
ient way of programming a parti
ularproblem. Chapter 11 deals with, amongst other topi
s, re
ursive modes, and there, re
ursive programming
omes into its own.A di�erent form of re
ursion, known as mutual re
ursion, is exempli�ed by two pro
edures whi
h
all ea
h other. You have to ensure there is no
ir
ularity. The prin
ipal diÆ
ulty of how to use apro
edure before it has been de
lared is over
ome by �rst de
laring a pro
edure name and then assigninga routine denotation to the pro
edure name after the other pro
edure has been de
lared. Here is a simpleexample:3PROC(INT)INT pb;PROC pa = (INT i)INT: (i>0|pb(i-1)|i);pb:=(INT i)INT: (i<0|pa(i+1)|i);Then pa(4) would yield 3 and pa(-4) would yield -4. Similarly, pb(4) would yield 4 and pb(-4) wouldyield -3. Noti
e that the right-hand side of the assignment is an anonymous routine denotation.
Exer
ises6.24 Write a re
ursive pro
edure to reverse the order of letters in a value of mode [℄CHAR. It shouldyield a value also of mode [℄CHAR.6.25 Write two mutually re
ursive pro
edures whi
h take an integer parameter and whi
h yield an INT.The �rst should
all the se
ond if the parameter is odd, and the se
ond should
all the �rst if theparameter is even. The alternative option should yield the square of the parameter for the �rstpro
edure and the
ube of the parameter for the se
ond pro
edure. Use square and
ube as thepro
edure identi�ers.
6.3.5 Standard pro
eduresThe standard prelude
ontains the de
larations of more than 60 pro
edures, most of them
on
erned withtransput (see
hapter nine). A number of pro
edures, all having the modePROC(REAL)REALare de
lared in the standard prelude and yield the values of
ommon mathemati
al fun
tions. Theseare sqrt, exp, ln,
os, sin, tan, ar
tan, ar
sin and ar

os. Naturally, you must be
areful to ensurethat the a
tual parameter for sqrt is non-negative, and that the a
tual parameter for ln is greater thanzero. The pro
edures
os, sin and tan expe
t their REAL parameter to be in radians.3A
ompiler whi
h implements the Algol 68 de�ned by the Revised Report would not have to resort to thisdevi
e be
ause the de
laration of ea
h pro
edure would be available everywhere in the en
losing range (but seese
tion 6.3.6).

6.3. PROCEDURES 73New pro
edures using these prede
lared pro
edures
an be de
lared:PROC sinh =(REAL x)REAL: (exp(x) + exp(-x))/2A variety of pseudo-random numbers
an be produ
ed using random int. The mode of the pro
edurerandom int isPROC(INT)INTand yields a pseudo-random integer greater than or equal to one, and less than or equal to its integerparameter. For example, here is a pro
edure whi
h will
ompute the per
entage of ea
h possible diethrow in 10 000 su
h throws:PROC per
entage = [℄REAL:(PROC throw = INT: random int(6);[6℄REAL result:=(0,0,0,0,0,0);TO 10 000 DO result[throw℄+:=1 OD;FOR i FROM LWB result TO UPB resultDO result[i℄ /:= 10 000 OD;result)Noti
e that per
entage has another pro
edure (throw) de
lared within it. There is no limit to su
hnesting.6.3.6 Other features of pro
eduresSin
e a pro
edure is a value, it is possible to de
lare values whose modes in
lude a pro
edure mode. Forexample, here is a multiple of pro
edures:[℄PROC(REAL)REAL pr = (sin,
os,tan)and here is a possible
all:pr[2℄(2)whi
h yields�0:416 146 836 5. We
ould also de
lare a pro
edure whi
h
ould be
alled with the expressionpr(2)[2℄but this is left as an exer
ise.Similarly, names of pro
edures
an be de
lared and
an be quite useful. Instead of de
laringPROC p
 = (INT i)PROC(REAL)REAL: pr[i℄using pr de
lared above, with a possible
all of p
(2) we
ould writePROC(REAL)REAL pn:=pr[i℄and then use pn instead of p
. The advantage of this would be that pr would be subs
ripted only on
einstead of whenever p
 is elaborated. Furthermore, another pro
edure
ould be assigned to pn and thepro
edure it refers to again
alled. Using pn would usually involve dereferen
ing.There are s
oping problems involved with pro
edure names. Although the s
ope of a denotation isglobal, pro
edure denotations may in
lude an identi�er whose range is not global. For this reason, thes
ope of a pro
edure denotation is limited to the smallest en
losing
lause
ontaining a de
laration of anidenti�er or mode or operator indi
ant whi
h is used in the pro
edure denotation.For example, in this program fragment

74 CONTENTSPROC REAL pp; REAL y;BEGINREAL x:=3.0;PROC p = REAL: x:=4.0;print(p);pp:=p; CO wrong COprint(x)END;print(("pp=",pp)) #wrong#the assignment in line 6 is wrong be
ause the s
ope of the right-hand side is less than the s
ope of theleft-hand side. Unfortunately, the Ctrans
ompiler does not perform s
ope
he
king and so will not
agthe in
orre
t assignment.There are times when SKIP is useful in a pro
edure de
laration:PROC p = REAL:IF x<0THEN print("Negative parameter"); stop; SKIPELSE sqrt(x)FIThe yield of the pro
edure is REAL, so ea
h part of the
onditional
lause must yield a value of modeREAL. The
onstru
t stop yields VOID, and even in a strong
ontext, VOID
annot be
oer
ed to REAL.However, SKIP will yield an unde�ned value of any required mode. In this
ase, SKIP yields a value ofmode REAL, but the value is never used, be
ause the program is terminated just before.Grouping your program into pro
edures helps to keep the logi
 simple at ea
h level. Nesting pro
eduresmakes sense when the nested pro
edures are used only within the outer pro
edures. This topi
 is
overedin greater depth in
hapter 12.
6.4 SummaryThe fa
t that this is one of the longer
hapters in the book re
e
ts the importan
e of routines in Algol 68programs. Every formula uses operators, and pro
edures enable a program to be written in small
hunksand tested in a pie
ewise manner.A routine denotation forms the basis of both operators and pro
edures. Routine denotations have awell-de�ned mode, the value being the denotation itself. A routine
an de
lare identi�ers within its body,in
luding other routines (whether operators or pro
edures).Operators
an have one or two operands (as the parameters are
alled) and usually yield a value ofsome mode other than VOID. Dyadi
 operators have a priority of 1 to 9. Firmly related operators
annotbe de
lared in the same range. The operator symbol
an be a bold indi
ant (like a mode indi
ant) or oneof or a
ombination of various symbols.Pro
edures
an have none or more parameters of any mode, and
an yield a value of any mode(in
luding VOID). Pro
edures
an
all themselves: this is known as re
ursion.Rows of pro
edures, names of pro
edures and other modes using pro
edure modes
an all be de
laredand, on o

asion,
an be useful.Here are some exer
ises whi
h
over some of the topi
s dis
ussed in this rather long
hapter.
Exer
ises6.26 At the time of the
all of a pro
edure or operator, what is the relationship between the formalparameters and the a
tual parameters?6.27 Write an operator whi
h will �nd the largest element in its two-dimensional row-of-reals parameter.6.28 Write a pro
edure, identi�ed by pr, whi
h
an be
alled by the phrase pr(2)[2℄.6.29 Write a pro
edure whi
h
omputes the length of a line read from the keyboard.

Chapter 7
Stru
tures
Stru
tures are a powerful pie
e of Algol 68, parti
ularly when
ombined with the unions des
ribed inthe next
hapter. In this
hapter, we shall meet another mode
onstru
tor, examine
omplex numbersand their asso
iated operators and learn how to
onstru
t new modes. In doing so, you will deepen yourunderstanding of the language.
7.1 Stru
ture denotationsIn
hapter 3, we saw how a number of individual values
an be
olle
ted together to form a multiplewhose mode was expressed as \row of" the base mode. The prin
ipal
hara
teristi
 of multiples is thatall the elements have the same mode. A stru
ture is another way of grouping data elements, but inthis
ase, the individual parts
an be, but need not be, of di�erent modes. In general, a

essing theelements of a multiple is determined at run-time by the elaboration of a sli
e. In a stru
ture, a

ess tothe individual parts,
alled �elds, are determined at
ompile time. Stru
tures are, therefore, an eÆ
ientmeans of grouping data elements.The mode
onstru
tor STRUCT is used to
reate stru
ture modes. Here is a simple identity de
larationof a stru
ture:STRUCT(INT i,CHAR
) s = (2,"e")The mode of the stru
ture isSTRUCT(INT i,CHAR
)and its identi�er is s. The i and the
 are
alled �eld sele
tors and are part of the mode. They are notidenti�ers, even though the rule for identi�er
onstru
tion applies to them, be
ause they are not valuesin themselves. You
annot say that i has mode INT be
ause i
annot stand by itself. We shall see in thenext se
tion how they are used.The expression to the right of the equals symbol is
alled a stru
ture-display. Like row-displays,stru
ture-displays
an only appear in a strong
ontext. In a strong
ontext, the
ompiler
an determinewhi
h mode is required and so it
an tell whether a row-display or a stru
ture-display has been provided.We
ould now de
lare another su
h stru
ture:STRUCT(INT i,CHAR
) t = sand t would have the same value as s.Here is a stru
ture de
larationSTRUCT(INT j,CHAR
) ss = (2,"e")whi
h looks almost exa
tly like the �rst stru
ture de
laration above, ex
ept that the �eld sele
tor i hasbeen repla
ed with j. The stru
ture ss has a di�erent mode from s be
ause not only must the
onstituentmodes be the same, but the �eld sele
tors must also be identi
al.Stru
ture names
an be de
lared:REF STRUCT(INT i,CHAR
) sn =LOC STRUCT(INT i,CHAR
) 75

76 CONTENTSBe
ause the �eld sele
tors are part of the mode, they appear on both sides of the de
laration. Theabbreviated form isSTRUCT(INT i,CHAR
) snWe
ould then writesn:=sin the usual way.The modes of the �elds
an be any mode. For example, we
an de
lareSTRUCT(REAL x,REAL y,REAL z) ve
torwhi
h
an be abbreviated toSTRUCT(REAL x,y,z)ve
torand here is a possible assignment:ve
tor:=(1.3,-4,5.6e10)where the value -4 would be widened to -4.0.Here is a stru
ture with a pro
edure �eld:STRUCT(INT int,PROC(REAL)REAL p,CHAR
har) method = (1,sin,"s")Here is a name referring to su
h a stru
ture:STRUCT(INT int,PROC(REAL)REAL p,CHAR
har) m := methodA stru
ture
an even
ontain another stru
ture:STRUCT(CHAR
,STRUCT(INT i,j)s) double=("
",(1,2))In this
ase, the inner stru
ture has the �eld sele
tor s and its �eld sele
tors are i and j.
Exer
ises7.1 De
lare a stru
ture
ontaining three integer values with �eld sele
tors i, j and k.7.2 De
lare a name whi
h
an refer to a stru
ture
ontaining an integer, a real and a boolean using�eld sele
tors i, r and b respe
tively.
7.2 Field sele
tionThe �eld-sele
tors of a stru
ture mode are used to \extra
t" the individual �elds of a stru
ture. Forexample, given this de
laration for the stru
ture s:STRUCT(INT i,CHAR
) s = (2,"e")we
an sele
t the �rst �eld of s using the sele
tioni OF sThe mode of the sele
tion is INT and its value is 2. Note that the
onstru
t OF is not an operator. These
ond �eld of s
an be sele
ted using the sele
tion
 OF s

7.2. FIELD SELECTION 77whose mode is CHAR with value "e". The �eld-sele
tors
annot be used on their own: they
an only beused in a sele
tion.A sele
tion
an be used as an operand. Consider the formulai OF s * ABS
 OF sIn the stru
ture method, de
lared in the previous se
tion, the pro
edure in the stru
ture
an be sele
tedby p OF methodwhi
h has the mode PROC(REAL)REAL. For a reason whi
h will be
lari�ed in
hapter 10, if you want to
all this pro
edure, you must en
lose the sele
tion in parentheses:(p OF method)(0.5)Remembering that the
ontext of the a
tual-parameters of a pro
edure is strong, you
ould also write(p OF method)(int OF method)where int OF method would be widened to a real number and the whole expression would yield a valueof mode REAL.The two �elds of the stru
ture double (also de
lared in the previous se
tion),
an be sele
ted bywriting
 OF doubles OF doubleand their modes are CHAR and STRUCT(INT i,j) respe
tively. Now the �elds of the inner stru
ture s ofdouble
an be sele
ted by writingi OF s OF doublej OF s OF doubleand both sele
tions have mode INT.Now
onsider the stru
ture name sn de
lared bySTRUCT(INT i,CHAR s) sn;The mode of sn isREF STRUCT(INT i,CHAR s)This means that the mode of the sele
tioni OF snis not INT, but REF INT, and the mode of the sele
tion
 OF snis REF CHAR. That is, the modes of the �elds of a stru
ture name are all pre
eded by REF (they are allnames). This is parti
ularly important for re
ursively de�ned stru
tures (see
hapter 11). Thus, insteadof assigning a
omplete stru
ture using a stru
ture-display, you
an assign values to individual �elds.That is, the assignmentsn:=(3,"f")is equivalent to the assignmentsi OF sn := 3;
 OF sn := "f"ex
ept that the assignments to the individual �elds are separated by the go-on symbol (the semi
olon ;)and the two units in the stru
ture-display are separated by a
omma and so are elaborated
ollaterally.Given the de
laration and initial assignment

78 CONTENTSSTRUCT(CHAR
,STRUCT(INT i,j)s)dn:=doublethe sele
tions OF dnhas the mode REF STRUCT(INT i,j), and so you
ould assign dire
tly to it:s OF dn:=(-1,-2)as well as to one of its �elds:j OF s OF dn:=0
Exer
ises7.3 Given the de
larationsSTRUCT(STRUCT(CHAR a,INT b)
,PROC(STRUCT(CHAR a,INT b))INT p,INT d)st;STRUCT(CHAR a,INT b)stawhat is the mode of(a)
 OF st(b) a OF
 OF st(
) a OF sta(d) (p OF st)(sta)(e) b OF
 OF st * b OF sta(f) sta:=
 OF st7.4 De
lare a pro
edure whi
h
ould be assigned to the sele
tion p OF st in the last question.
7.3 Mode de
larationsStru
ture de
larations are very
ommon in Algol 68 programs be
ause they are a
onvenient way ofgrouping disparate data elements, but writing out their modes every time a name needs de
laring is error-prone. Using the mode de
laration, a new mode indi
ant
an be de
lared to a
t as an abbreviation.For example, the mode de
larationMODE VEC = STRUCT(REAL x,y,z)makes VEC synonymous for the mode spe
i�
ation on the right-hand side of the equals symbol. Hen
eforth,new values using VEC
an be de
lared in the ordinary way:VEC ve
 = (1,2,3);VEC vn := ve
;[10℄VEC va;PROC(VEC v)VEC pv=CO a routine-denotation CO;STRUCT(VEC v,w,x) tensorHere is a mode de
laration for a stru
ture whi
h
ontains a referen
e mode:MODE RV = STRUCT(CHAR
,REF[℄CHAR s)but we shall
onsider su
h advan
ed modes in
hapter 11. Using a mode de
laration, you might betempted to de
lare a mode su
h asMODE CIRCULAR =STRUCT(INT i,CIRCULAR
) CO wrong CObut this is not allowed. However, there is nothing wrong with su
h modes as

7.3. MODE DECLARATIONS 79MODE NODE = STRUCT(STRING s,REF NODE next),PNODE = STRUCT(STRING s,PROC(PNODE)STRING pro
)be
ause the NODE inside the STRUCT of its de
laration is hidden by the REF. Likewise, the PNODE parameterfor pro
 in the de
laration of PNODE is hidden by the PROC.Suppose you want a mode whi
h refers to another mode whi
h hasn't been de
lared, and the se
ondmode will refer ba
k to the �rst mode. Both mode de
larations
annot be �rst. In Algol 68 proper, yousimply de
lare both modes in the usual way. However, the Ctrans
ompiler is a single-pass
ompiler (itreads the sour
e program on
e only) and so all applied-o

urren
es must o

ur later in the sour
e programthan the de�ning-o

urren
es. In this
ase, one of the modes is de
lared using a stub de
laration. Hereis an example:MODE MODE2,MODE1 = STRUCT(CHAR
,REF MODE2 rb),MODE2 = STRUCT(INT i,REF MODE1 ra)There is nothing
ir
ular about these de
larations. This is another example of mutual re
ursion. Goahead and experiment.This raises the point of whi
h modes are a
tually permissible. We shall deal with this in
hapter 10.For now, just ensure that you don't de
lare modes like CIRCULAR, and avoid modes whi
h
an be strongly
oer
ed into themselves, su
h asMODE WRONG = [1:5℄WRONGIf you inadvertently de
lare a disallowed mode, the
ompiler will de
lare that the mode is not legal.Mode de
larations are not
on�ned to stru
tures. For example, the mode STRING is de
lared in thestandard prelude asMODE STRING = FLEX[1:0℄CHARand you
an write de
larations likeMODE FDES = INT,MULTIPLE = [30℄REAL,ROUTINE = PROC(INT)INT,MATRIX = [n,n℄REALNoti
e that the mode de
larations have been abbreviated (by omitting MODE ea
h time and using
ommas).In the de
laration of ROUTINE, noti
e that no identi�er is given for the parameter of the pro
edure. Inthe last de
laration, the bounds will be determined at the time of the de
laration of any value using themode MATRIX. Here, for example, is a small program using MATRIX:PROGRAM tt CONTEXT VOIDUSE standardBEGININT n;MODE MATRIX = [n,n℄REAL;WHILEprint((newline,"Enter an integer ","followed by a blank:"));read(n);n > 0DO MATRIX m;FOR i TO 1 UPB mDO FOR j TO 2 UPB m

80 CONTENTSDO m[i,j℄:=random*1000ODOD;FOR i TO 1 UPB mDO print((m[i,℄,newline))ODODENDFINISH
Exer
ises7.5 De
lare a mode for a stru
ture
ontaining two �elds, one of mode REAL and one of mode PROC(REAL)REAL.
7.6 De
lare a mode for a stru
ture whi
h
ontains three �elds, the �rst being the mode of the previousexer
ise, the se
ond a pro
edure whi
h takes that mode as a parameter and yields VOID, and thethird being of mode CHAR.7.7 What is wrong with these two de�nitions?MODE AMODE = STRUCT(INT i,BMODE b),BMODE = STRUCT(CHAR
,AMODE a)Try writing a program
ontaining these de
larations, with names of modes AMODE and BMODE and�nish the program with the unit SKIP.
7.4 Complex numbersThis se
tion des
ribes the mode used to perform
omplex arithmeti
. This kind of arithmeti
 is useful toengineers, parti
ularly ele
tri
al engineers. Even if you know nothing about
omplex numbers, you maystill �nd this se
tion useful.The standard prelude
ontains the mode de
larationMODE COMPL = STRUCT(REAL re,im)You
an use values based on this mode to perform
omplex arithmeti
. Here are de
larations for valuesof modes COMPL and REF COMPL respe
tively:COMPL z1 = (2.4,-4.6);COMPL z2:=z1Most of the operators you need to manipulate
omplex numbers have been de
lared in the standardprelude.You
an use the monadi
 operators + and - whi
h have also been de
lared for values of mode COMPL.The dyadi
 operator ** has been de
lared for a left-operand of mode COMPL and a right-operand ofmode INT. The dyadi
 operators + - * / have been de
lared for all
ombinations of
omplex numbers,real numbers and integers, and so have the boolean operators = and /=. The assigning operators TIMESAB,DIVAB, PLUSAB, and MINUSAB all take a left operand of mode REF COMPL and a right-operand of modesINT, REAL or COMPL. In a strong
ontext, a real number will be widened to a
omplex number. So, forexample, in the following identity de
larationCOMPL z3 = -3.4z3 will have the same value as if it had been de
lared byCOMPL z3 = (-3.4,0)

7.4. COMPLEX NUMBERS 81This is the only
ase where a real number
an be widened into a stru
ture.The dyadi
 operator I takes left- and right-operands of any
ombination of REAL and INT and yieldsa
omplex number. It has a priority of 9. For example, in a formula, the
ontext of operands is �rm andso widening is not allowed. Nevertheless, the yield of this formula is COMPL:2 * 3 I 4Some operators a
t only on
omplex numbers. The monadi
 operator RE takes a COMPL operand andyields its re �eld with mode REAL. Likewise, the monadi
 operator IM takes an operand of mode COMPLand yields its im �eld with mode REAL. For example, given the de
laration above of z3, RE z3 would yield-3.4, and IM z3 would yield 0.0. Given the
omplex number z de
lared asCOMPL z = 2 I 3then CONJ z would yield RE z I - IM z or (2.0,-3.0). The operator ARG gives the argument of itsoperand: ARG z would yield 0:982 793 723 2, lying in the interval (��; �℄. The monadi
 operator ABS witha
omplex number may be de�ned asOP ABS = (COMPL z)REAL:sqrt(RE z**2 + IM z**2)Remember that in the formula RE z**2, the operator RE is monadi
 and so is elaborated �rst.As des
ribed in the previous se
tion, the mode COMPL
an be used wherever a mode is required. Inparti
ular, pro
edures taking COMPL parameters and yielding COMPL values
an be de
lared. Stru
tures
ontaining COMPL
an be de
lared as above.From the se
tion on �eld sele
tion, it is
lear that in the de
larationsCOMPL z = (2.0,3.0);COMPL w:=zthe sele
tionre OF zhas mode REAL (and value 2.0), while the sele
tionre OF whas mode REF REAL (and its value is a name). However, the formulaRE wstill yields a value of mode REAL be
ause RE is an operator whose single operand has mode COMPL. In theabove phrase, the w will be dereferen
ed before RE is elaborated. Thus it is quite legal to writeim OF w:=RE wor im OF w:=re OF win whi
h
ase the right-hand side of the assignment will be dereferen
ed before a
opy is assigned.
Exer
ises7.8 If the
omplex number za has the mode COMPL and the value yielded by (2,-3), what is the valueof(a) CONJ za(b) IM za * RE za * RE za(
) ABS za(d) ARG za7.9 What is the value of the formula 23 - 11 I -10?7.10 Given the de
larationsCOMPL a = 2 I 3;COMPL b:= CONJ awhat is the mode and value of ea
h of the following:(a) im OF b(b) IM b

82 CONTENTS(
) im OF a(d) IM a
7.5 Multiples in stru
turesIf multiples are required in a stru
ture, the stru
ture de
laration should only
ontain the required boundsif it is an a
tual-de
larer. For example, we
ould de
lareSTRUCT([℄CHAR forename,surname,title)le
turer=("Nerissa","Leit
h","Dr")where the mode on the left is a formal-de
larer (remember that the mode on the left-hand side of anidentity de
laration is always a formal-de
larer). We
ould equally well de
lareSTRUCT([℄CHAR forename,surname,title)student=("Tom","Ma
Allister","Mr")As you
an see, the bounds of the individual multiples di�er in the two
ases.When de
laring a name, be
ause the mode pre
eding the name identi�er is an a
tual-de
larer (in anabbreviated de
laration), the bounds of the required multiples must be in
luded. A suitable de
larationfor a name whi
h
ould refer to le
turer would beSTRUCT([7℄CHAR forename,[6℄CHAR surname,[3℄CHAR title)new le
turer := le
turerbut this would not be able to refer to student. A better de
laration would use STRING:STRUCT(STRING forename,surname,title)personin whi
h
ase we
ould now writeperson:=le
turer;person:=studentUsing �eld sele
tion, we
an writetitle OF personwhi
h would have mode REF STRING. Thus, using �eld sele
tion, we
an assign to the individual �elds ofperson:surname OF person:="M
Rae"When sli
ing a �eld whi
h is a multiple, it is ne
essary to remember that sli
ing binds more tightlythan sele
ting (see
hapter 10 for a detailed explanation). Thus the �rst
hara
ter of the surname ofstudent would be a

essed by writing(surname OF student)[1℄whi
h would have mode CHAR. The parentheses ensure that the sele
tion is elaborated before the sli
ing.Similarly, the �rst �ve
hara
ters of the forename of person would be a

essed as(forename OF person)[:5℄with mode REF[℄CHAR.Consider the following program:

7.5. MULTIPLES IN STRUCTURES 83PROGRAM t1 CONTEXT VOIDBEGINMODE AMODE = STRUCT([4℄CHAR a,INT b);AMODE a = ("ab
de",3);AMODE b:=a;SKIPENDFINISHIn the identity de
laration for a, the mode required is a formal-de
larer. In this
ase, the Ctrans
ompilerwill ignore the bounds in the de
laration of AMODE giving the modeSTRUCT([℄CHAR a,INT b)whi
h explains why the stru
ture-display on the right is a

epted ("ab
de" has bounds [1:5℄). However,although the program
ompiles without errors, when it is run, it fails with the error messageRun time fault (aborting):ASSIGN2: bounds do not mat
h in [℄ assignmentbe
ause the mode used in the de
laration of the name b is an a
tual-de
larer (it
ontains the boundsgiven in the mode de
laration) and you
annot assign a [℄CHAR with bounds [1:5℄ to a REF[℄CHAR withbounds [1:4℄.With more
ompli
ated stru
tures, it is better to use a mode de
laration. For example, we
ouldde
lareMODE EMPLOYEE =STRUCT(STRING name,[2℄STRING address,STRING dept,ni
ode,tax
ode,REAL basi
,overtime rate,[52℄REAL net pay,tax);EMPLOYEE empand then read spe
i�
 values from the keyboard (
hapter 9
overs reading data from �les):read((name OF emp,newline,(address OF emp)[1℄,newline,(address OF emp)[2℄,newline,...The modes ofname OF empaddress OF empnet pay OF empare REF STRINGREF[℄STRINGREF[℄REALrespe
tively. The phrase(net pay OF emp)[:10℄has the mode REF[℄REAL with bounds [1:10℄ and represents the net pay of emp for the �rst 10 weeks.Note that although the monetary values are held as REAL values, the a

ura
y with whi
h a REAL numberis stored is su
h that no rounding errors will ensue. See se
tion 12.1.5 whi
h des
ribes whi
h modes aresuitable for storing monetary values.

84 CONTENTSExer
ises7.11 Given the de
laration of emp in the text, what would be the mode of ea
h of the following:(a) address OF emp(b) basi
 OF emp(
) (tax OF emp)[12℄(d) (net pay OF emp)[10:12℄7.12 What are the bounds of the name in (d) above?
7.6 Rows of stru
turesIn the last se
tion, we
onsidered multiples in stru
tures. What happens if we have a multiple ea
h ofwhose elements is a stru
ture? No problem. If we had de
lared[10℄COMPL z4then the sele
tion re OF z4 would yield a name with mode REF[℄REAL and bounds [1:10℄.1 It wouldbe possible, be
ause it is a name, to assign to it:re OF z4:=(1,2,3,4,5,6,7,8,9,10)Sele
ting the �eld of a sli
ed multiple of a stru
ture is straightforward. Sin
e the multiple is sli
edbefore the �eld is sele
ted, no parentheses are ne
essary. Thus the real part of the third COMPL of z4above is given by the expressionre OF z4[3℄Now
onsider a multiple of a stru
ture whi
h
ontains a multiple. Here is its de
laration:[100℄STRUCT(CHAR
,[5℄INT i)sThen the fourth integer in the 25th stru
ture of s is given by(i OF s[25℄)[4℄and all the
hara
ters are given by the sele
tion
 OF swith mode REF[℄CHAR and bounds [1:100℄.2
Exer
ises7.13 Suppose a �rm had 20 employees, and in writing one of the programs in their payroll system, themodes of se
tion 7.5 were used. Suppose now that we have the de
laration[20℄EMPLOYEE employee;What would be the mode of ea
h of the following:(a) (dept OF employee[3℄)[3℄(b) dept OF employee[10:12℄(
) ni
ode OF employee[1℄(d) net pay OF employee[15℄(e) (tax OF employee[2℄)[50:51℄
7.7 Transput of stru
turesThe following program fragment will print the details of the name emp de
lared in se
tion 7.5:print((emp,newline))For details of how this works, see the remarks on \straightening" in se
tion 9.2. However, the individualstrings would be printed together and so, in this
ase, it would be better to write the following:1Unfortunately, there is a bug in the Ctrans
ompiler whereby this sele
tion (and similar sele
tions) aredisallowed.2But this is disallowed by the Ctrans
ompiler.

7.8. SUMMARY 85print((name OF emp,newline));FOR i TO UPB address OF empDO print((address OF emp)[i℄,newline))OD;print((dept OF emp,newline,ni
ode OF emp,newline,tax
ode OF emp,basi
 OF emp,overtime OF emp,net pay OF emp,tax OF emp,newline))In pra
ti
e, it would be sensible to de
lare a pro
edure or an operator whi
h would print the stru
tureand then
all it as required.
7.8 SummaryThis
hapter has signi�
antly in
reased the number of di�erent modes we
an
onstru
t. Stru
turesare
onstru
ted using the mode
onstru
tor STRUCT. Compli
ated stru
tures are best de
lared using themode de
laration (using MODE). Stru
tures
an have any number of �elds from one up, and the �elds
anhave any mode, in
luding the same modes. The mode COMPL has been de
lared in the standard preludetogether with the ne
essary operators to manipulate
omplex numbers.Stru
tures
an
ontain pro
edures and multiples and multiples of stru
tures
an be de
lared. Althoughstru
tures
ontaining referen
e modes
an be de
lared, they are
overed in
hapter 11. Operators andpro
edures whi
h have stru
ture parameters or yield
an be de
lared.Here are some exer
ises to
he
k what you have learned.
Exer
ises7.14 Write a suitable mode for a football team whi
h
ontains the names of its 11 members, the nameof the team (ordinary name, not the Algol 68 meaning), the number of games played, won anddrawn, and the number of goals s
ored for and against.7.15 Given the de
larationSTRUCT(INT i,[3℄REAL r)sexplain why parentheses are needed in the phrase(r OF s)[2℄7.16 Given the de
laration[3℄STRUCT(INT i,REAL r)sexplain why parentheses are not needed in the phraser OF s[2℄7.17 Given the de
larationsMODE S2,S1 = STRUCT([3℄CHAR n,PROC S2 p),S2 = STRUCT([3℄CHAR m,PROC(S1)S2 p);S1 s1; S2 s2;what are the modes of ea
h of the following:(a) p OF s1(b) p OF s2(
) (n OF s1)[2:℄

86 CONTENTS

Chapter 8
Unions
From time to time, you have been using the pro
edure print to display values on your s
reen. You musthave noti
ed that it seems to be able to take a large variety of values of di�erent modes and that it
anpro
ess more than one value in one
all. You may therefore be wondering how the parameter of printis spe
i�ed. It
annot be a stru
ture be
ause a stru
ture has a �xed number of �elds, but if it is a row,how
an a row have di�erent modes for its elements? Although the elements of a row must ea
h have thesame mode, the explanation is that print takes one parameter whi
h is a row of a united mode.This very short
hapter introdu
es the �nal mode
onstru
tor available in Algol 68. It shows theprin
iples behind the
onstru
tion and use of united modes. It does not and
annot show all the possibleusages.
8.1 United mode de
larationsUNION is used to
reate a united mode. Here is a de
laration for a simple united mode:UNION(INT,STRING) u = (random < .5|4|"ab
")The �rst thing to noti
e is that, unlike stru
tures, there are no �eld sele
tors. This is be
ause a unitedmode does not
onsist of
onstituent parts. The se
ond thing to noti
e is that the above mode
ould wellhave been writtenUNION(STRING,INT) u = (random < .5|4|"ab
")The order of the modes in the union is irrelevant.1 What is important is the a
tual modes present in theunion. Moreover, a
onstituent mode
an be repeated, as inUNION(STRING,INT,STRING,INT) u =(random < .5|4|"ab
")This is equivalent to the previous de
larations.2Like stru
tured modes, united modes are often de
lared with the mode de
laration. Here is a suitablede
laration of a united mode
ontaining the
onstituent modes STRING and INT:MODE STRINT = UNION(STRING,INT)We
ould
reate another mode STRINTR in two ways:MODE STRINTR = UNION(STRINT,REAL)or MODE STRINTR = UNION(STRING,INT,REAL)Using the above de
laration for STRINT, we
ould de
lare u bySTRINT u = (random < .5|4|"ab
")1Unfortunately, for the Ctrans
ompiler, this is not true.2But not for the Ctrans
ompiler. 87

88 CONTENTSIn this identity de
laration, the mode yielded by the right-hand side is either INT or STRING, but themode required is UNION(STRING,INT). The value on the right-hand side is
oer
ed to the required modeby uniting.The united mode STRINT is a mode whose values either have mode INT or mode STRING. It was statedin
hapter 1 that the number of values in the set of values de�ned by a mode
an be zero. Any valueof a united mode a
tually has a mode whi
h is one of the
onstituent modes of the union. So thereare no new values for a united mode. u identi�es a value whi
h is either an INT or a STRING. Be
auserandom yields a pseudo-random number, it is not possible to determine when the program is
ompiled(that is, at
ompile-time) whi
h mode the
onditional
lause yields. As a result, all we
an say is thatthe underlying mode of u is either INT or STRING. We shall see later how to determine that underlyingmode.3Be
ause a united mode does not introdu
e new values, there are no denotations for united modes,although denotations may well exist for the
onstituent modes.Almost any mode
an be a
onstituent of a united mode. For example, here is a united mode
ontaininga pro
edure mode and VOID:MODE PROID = UNION(PROC(REAL)REAL,VOID)and here is a de
laration using it:PROID pd = EMPTYThe only limitation on united modes is that none of the
onstituent modes may be �rmly related (seethe se
tion 6.2.1) and a united mode
annot appear in its own de
laration. The following de
laration iswrong be
ause a value of one of the
onstituent modes
an be depro
edured in a �rm
ontext to yield avalue of the united mode:MODE WRONG = UNION(PROC WRONG,INT)Names for values with united modes are de
lared in exa
tly the same way as before. Here is ade
laration for su
h a name using a lo
al generator:REF UNION(BOOL,INT) un = LOC UNION(BOOL,INT);The abbreviated de
laration givesUNION(BOOL,INT) un;Likewise, we
ould de
lare a name for the mode STRINT:STRINT sn;In other words, obje
ts of united modes
an be de
lared in the same way as other obje
ts.
Exer
ises8.1 Write a mode de
laration for the united mode BINT whose
onstituent modes are BOOL and INT.8.2 Write an identity de
laration for a value of mode BINT.8.3 What is wrong with the mode de
larationMODE UB = UNION(REF UB,INT,BOOL)8.4 De
lare a name for a mode united from INT, [℄INT and [,℄INT.

3Note that an Algol 68 union is quite di�erent from a C union. The latter is simply a remapping of a pie
e ofmemory. In an Algol 68 union, where the underlying value is kept is the business of the
ompiler and it
annotbe remapped by the programmer.

8.2. UNITED MODES IN PROCEDURES 898.2 United modes in pro
eduresWe
an now partly address the problem of the parameters for print and read. If we extend the answer tothe last exer
ise, we should be able to
onstru
t a united mode whi
h will a

ept all the modes a

eptedby those two pro
edures. In fa
t, the united modes used are almost the same as the two followingde
larations:MODE SIMPLOUT = UNION(CHAR, [℄CHAR,INT, [℄INT,REAL, [℄REAL,COMPL,[℄COMPL,BOOL, [℄BOOL,),SIMPLIN = UNION(REF CHAR, REF[℄CHAR,REF INT, REF[℄INT,REF REAL, REF[℄REAL,REF COMPL,REF[℄COMPL,REF BOOL, REF[℄BOOL,);As you
an see, the mode SIMPLIN used for read is united from modes of names.The modes SIMPLOUT and SIMPLIN are a little more
ompli
ated than this be
ause they in
lude modeswe have not yet met (see
hapters 9 and 11), but you now have the basi
 idea.The uniting
oer
ion is available in a �rm
ontext. This means that operators whi
h a

ept operandswith united modes will also a

ept operands whose modes are any of the
onstituent modes. We shallreturn to this in the next se
tion.Here is an example of the uniting
oer
ion in a
all of the pro
edure print. If a has mode REF INT,b has mode [℄CHAR and
 has mode PROC REAL, then the
allprint((a,b,
))
auses the following to happen:1. a is dereferen
ed to mode INT and then united to mode SIMPLOUT.2. b is united to mode SIMPLOUT.3.
 is depro
edured to produ
e a value of mode REAL and then united to mode SIMPLOUT.4. The three elements are regarded as a row-display for a [℄SIMPLOUT.5. print is
alled with its single parameter.print uses a
onformity
lause (see next se
tion) to extra
t the a
tual value from ea
h element in therow.In se
tion 6.3.2, we gave the de
laration of a pro
edure identi�ed as
har in string. The header ofthat pro
edure wasPROC
har in string=(CHAR
h,REF INT pos,[℄CHAR s)BOOL:The pro
edure yielded TRUE if
h was present in s, in whi
h
ase pos
ontained the position. Otherwise,the pro
edure yielded FALSE. The same pro
edure
ould be written to yield the position of
h in s if itis present, and VOID if not:PROC u
is = (CHAR
h,[℄CHAR s)UNION(INT,VOID):The body of the pro
edure has been left as an exer
ise.

90 CONTENTSExer
ises8.5 A pro
edure has the headerPROC pu = ([℄UNION(CHAR,[℄CHAR) up)VOID:Explain what happens to the parameters if it is
alled by the phrasepu((CHAR: REPR(ABS"a"+1),LOC[4℄CHAR))8.6 Write the body of the pro
edure u
is given in the text.
8.3 Conformity
lausesIn the last se
tion, we dis
ussed the
onsequen
es of the uniting
oer
ion; that is, how values of variousmodes
an be united to values of united modes. This raises the question of how a value of a unitedmode
an be extra
ted sin
e its
onstituent mode
annot be determined at
ompile-time. There is node-uniting
oer
ion in Algol 68. The
onstituent mode or the value, or both,
an be determined using avariant of the
ase
lause dis
ussed in
hapter 4 (see se
tion 4.6). It is
alled a
onformity
lause. Forour dis
ussion, we shall use the de
laration of u in se
tion 8.1 (u has mode STRINT).The
onstituent mode of u
an be determined by the following:CASE u IN(INT): print("u is an integer"),(STRING): print("u is a string")ESACIf the
onstituent mode of u is INT, the �rst
ase will be sele
ted. Noti
e that the mode sele
tor isen
losed in parentheses and followed by a
olon. Otherwise, the
onformity
lause is just like the
ase
lause (in fa
t, it is sometimes
alled a
onformity
ase
lause). This parti
ular example
ould also havebeen writtenCASE uIN (STRING): print("u is a string")OUTprint("u is an integer")ESACThis is the only
ir
umstan
e when a CASE
lause
an have one
hoi
e. Usually, however, we want toextra
t the value. A slight modi�
ation is required:CASE u IN(INT i):print(("u identifies the value",i)),(STRING s):print(("u identifies the value ",s))ESACIn this example, the mode sele
tor and identi�er a
t as the left-hand side of an identity de
laration. Theidenti�er
an be used in the following unit (or en
losed
lause).The two kinds of
onformity
lause
an be mixed. For example, here is one way of using the pro
edureu
is:CASE u
is(
,s) IN(VOID):print("The
hara
ter was not found"),(INT p):print(("The position was",p))ESAC

8.4. SUMMARY 91We mentioned in the last se
tion that operators with united-mode operands
an be de
lared. Here isone su
h:MODE IC = UNION(INT,CHAR);OP * = (IC a,b)IC:CASE a IN(INT ai):(b|(INT bi): ai*bi,(CHAR b
): ai*b
),(CHAR a
):(b|(INT bi): a
*bi,(CHAR b
): ABS a
*ABS b
)ESACIn ea
h of the four
ases, the resulting produ
t is united to the mode IC.You
an have more than one mode in a parti
ular
ase. For example:MODE ICS = UNION(INT,CHAR,STRING);OP * = (ICS a,INT b)ICS:CASE aIN (UNION(STRING,CHAR) i
):(i
|(CHAR
):
*b,(STRING s): s*b),(INT n): n*bESACNote that
onformity
lauses do not usually have an OUT
lause be
ause the only way of extra
ting a valueis by using the (MODE id):
onstru
tion. However, they do have their uses. See the standard prelude formore examples of
onformity
lauses.Although read and print use united modes in their
all, you
annot read a value of a united modeor print a value of a united mode (remember that united modes do not introdu
e new values). You haveto read a value of a
onstituent mode and then unite it, or extra
t the value of a
onstituent mode andprint it.
Exer
ises8.7 The modesMODE IRC = UNION(INT,REAL,COMPL),MIRC= UNION([℄INT,[℄REAL,[℄COMPL)are used in this and the following exer
ises.Write a pro
edure whi
h takes a single parameter of mode MIRC and whi
h yields the sum of allthe elements of its parameter as a value with mode IRC.8.8 Write the body of the operator * whose header is de
lared asOP * = (IRC a,b)IRC:Use nested
onformity
lauses. Remember that there are 9 separate
ases.
8.4 SummaryUnited modes introdu
e no new values. A united mode
an have any mode as one of its
onstituentsex
ept a mode whi
h
an be �rmly
oer
ed to itself. The uniting
oer
ion is available in �rm
ontexts.Be
ause the values supplied to print or read are united, the
ontext of the parameter of those pro
eduresis �rm. A
onformity
lause is used to extra
t the
onstituent mode or value. The mode VOID
an beone of the
onstituents of a united mode and is useful to signal an ex
eptional yield from a pro
edure.United modes are used in a variety of ways.

92 CONTENTSExer
ises8.9 Write a de
laration for the united mode CRIB whose
onstituent modes are CHAR, REAL, INT andBOOL.8.10 Write a de
laration for the operator UABS whi
h has a single operand of mode CRIB and whi
hyields the absolute value of its operand.8.11 Write four formul� whi
h use UABS and a denotation for ea
h of the
onstituent modes of CRIB.

Chapter 9
Transput
At various points you have been reading external values from the keyboard and displaying internal valueson the s
reen. This
hapter addresses the means whereby an Algol 68 program
an obtain external valuesfrom other sour
es and send internal values to pla
es other than the s
reen. straightening is the onlynew language
onstru
t involved and all the matters dis
ussed are available in the standard prelude.Algol 68 transput gives the �rst taste of \event-driven programming". In e�e
t, all programs areevent-driven, but simple programs are driven only by the originating event: that is, the initiation ofthe program. In other words, simple programs, on
e started, run to
ompletion, unless, of
ourse, they
ontain errors. Event-driven programs, however, are dependent on the o

urren
e of events whi
h areoutwith the
ontrol of the program. We shall be examining later the kinds of event whi
h
an a�e
t yourprograms if they read or write data.
9.1 Books,
hannels and �lesIn Algol 68 terms, external values are held in a book. Books have various properties. They usually havean identi�
ation string. Some books
an be read, some written to and some permit both reading andwriting. Some books allow you to browse: that is, they allow you to start anywhere and read (or write)from that point on. If browsing is allowed, you
an restart at the beginning. Some books allow you tostore external values in text form (human-readable form) only, while others allow you to store values ina
ompa
t internal form known as binary. In the latter form, values are stored more or less in the sameform as they are held in the program. The values will not usually be human-readable, being more suitedto fast a

ess by
omputer programs.In operating-system terms, Algol 68 books are
alled \�les" (just to
onfuse you, of
ourse), but a bookhas a wider meaning than an operating-system �le.1 When reading external values from the keyboard,your program is reading data from a read-only book. When printing data, your program is writing datato a write-only book. When a

essing a devi
e, su
h as /dev/ttyS2, to whi
h you
an atta
h a modem,your program
an both read from and write to the book, but it
annot browse in it.The data (as external values are
alled) in a book, or the data to be put in a book, travels between thebook and your program via a
hannel. Three prin
ipal
hannels are provided in the standard prelude:stand in
hannel, stand out
hannel and stand ba
k
hannel. The �rst is used for books whi
h
an only be read (they are \read-only"), the se
ond for books whi
h
an only be written to (they are\write-only") and the last for books whi
h permit both reading and writing. This
lassi�
ation is a littleover-simpli�ed. Many books permit both reading and writing, but you may only want your programto read it. The three standard
hannels mentioned are all \bu�ered". This means that when you, forexample, write data to a book, the data is
olle
ted in memory until a �xed amount has been transput,when the
olle
tion is written to the book in its entirety. The standard
hannels use a bu�er of 4096bytes. The mode of a
hannel is CHANNEL and is de
lared in the standard prelude.Your program keeps tra
k of where you are in a book, whi
h book is being a

essed and whether youhave
ome to the end of the book by means of a spe
ial stru
ture whi
h has the mode FILE. This is a
ompli
ated stru
ture de
lared in the standard prelude. The internals of values of mode FILE are likelyto
hange from time to time, but the methods of using them will remain the same.
9.2 Reading booksBefore you
an read the
ontents of an existing book, you need to
onne
t the book to your program.The pro
edure open with the header1In Linux, a �le has the mode, more-or-less, REF BOOK.93

94 CONTENTSPROC open = (REF FILE f,STRING idf,CHANNEL
han)INT:performs that fun
tion. open yields zero if the
onne
tion is established and non-zero otherwise. Hereis a program fragment whi
h establishes
ommuni
ation with a read-only book whose identi�
ation istestdata:FILE inf;IF open(inf,"testdata",stand in
hannel)/=0THENprint(("Cannot open book testdata",newline));exit(1)FINoti
e that the program displays a short message on the s
reen if for any reason the book
annot beopened and then terminates with a suitable error number. The pro
edure exit is not standard Algol 68,but is provided by a system routine whose de
laration is in the standard prelude issued with the Ctrans
ompiler.After a book has been opened, data
an be read from the book using the pro
edure get whi
htransforms external values into internal values like read (you will meet read again shortly). It has theheaderPROC get=(REF FILE f,[℄SIMPLIN items)VOID:The mode SIMPLIN is de
lared in the standard prelude asMODE SIMPLIN=UNION(REF CHAR, REF[℄CHAR, REF STRING,REF BOOL, REF[℄BOOL,REF LONG BITS, REF[℄LONG BITS,REF BITS, REF[℄BITS,REF SHORT BITS, REF[℄SHORT BITS,REF SHORT SHORT BITS,REF[℄SHORT SHORT BITS,REF LONG INT, REF[℄LONG INT,REF INT, REF[℄INT,REF SHORT INT, REF[℄SHORT INT,REF SHORT SHORT INT,REF[℄SHORT SHORT INT,REF REAL, REF[℄REAL,REF SHORT REAL, REF[℄SHORT REAL,REF COMPL, REF[℄COMPL,REF SHORT COMPL, REF[℄SHORT COMPL,STRAIGHT SIMPLIN),The mode BITS is
overed in
hapter 11 together with LONG and SHORT modes. As you
an see, allthe
onstituent modes of the union are the modes of names, ex
ept for the STRAIGHT SIMPLIN and thePROC(REF FILE)VOID. The PROC mode lets you use routines like newpage and newline as one of theparameters. The a
tual header of newline isPROC newline = (REF FILE f)VOID:

9.3. WRITING TO BOOKS 95and you
an
all it outwith get if you want. On input, the rest of the
urrent line is skipped and a newline started. The position in the book is at the start of the new line, just before the �rst
hara
ter of thatline. Here is a program fragment whi
h opens a book and then reads the �rst line and makes a name ofmode REF STRING to refer to it. After reading the string, newline is
alled expli
itly:FILE inf;open(inf,"book",stand in
hannel);STRING line; get(inf,line); newline(inf)This
ould equally well have been writtenFILE inf;open(inf,"book",stand in
hannel);STRING line; get(inf,(line,newline))There is no reason why you should not de
lare your own pro
edures with mode PROC(REF FILE)VOID.Here is an example:PROC nl3 = (REF FILE f)VOID:TO 3 DO newline(f) OD;This pro
edure
ould then be used in get, for example:STRING line1, line2;get(inf,(line1,nl3,line2))where line2 would be separated by 2 skipped lines from line1.The STRAIGHT operator
onverts any stru
ture or multiple into a row of values of the
onstituent �eldsor elements. This means that get
an read dire
tly any stru
ture or multiple (or even rows of stru
turesor multiples).There are four names of mode REF FILE de
lared in the standard prelude. One of these is identi�edby stand in. The pro
edure read whi
h you have already used is de
lared asPROC read=([℄SIMPLIN items)VOID:get(stand in,items)in the standard prelude. As you
an see, it gets data from stand in. If you want to, you
an use getwith stand in instead of read. The �le stand in is already open when your program starts and shouldnot be
losed2. Note that input from stand in is unbu�ered, that is, it does not use the
hannel standin
hannel.When you have �nished reading data from a book, you should sever the
onne
tion between the bookand your program by
alling the pro
edure
lose. This
loses the book. Its header isPROC
lose=(REF FILE f)VOID:
Exer
ises9.1 Write a program
alled list whi
h will read lines from a text book until a zero length line is read.The program should display ea
h line on the s
reen on separate lines.9.2 Write a program whi
h will read a positive integer from a text book and whi
h will then read thatnumber of numbers (integer or real) from the book and display their total.
9.3 Writing to booksYou should use the establish pro
edure to
reate a new book. Here is a program fragment whi
h
reatesa new book
alled results:FILE outf;IF establish(outf, "results", stand out
hannel, 0,0,0) /= 0THENprint(("Cannot establish book results", newline));exit(1)FI2Unless you know what you are doing!

96 CONTENTSAs you
an see, establish has a similar header to open. What are the integers used for? The headerfor establish isPROC establish = (REF FILE f,STRING idf,CHANNEL
hann,INT p,l,
)INT:The p, l and
 in establish determine the maximum number of pages, lines and
hara
ters in the bookwhi
h is being
reated. Values of 0 for all three integers mean that the �le should be established with zerolength. However, they are ignored by the stand out
hannel in the QAD standard prelude providedwith the Ctrans
ompiler.The pro
edure used to write data to a book is put. Its header isPROC put=(REF FILE f,[℄SIMPLOUT items)VOID:You
an examine the sour
e of the standard prelude to see how the mode SIMPLOUT is de
lared.Again, newline and newpage
an be used independently of put as in the following fragment:FILE outf;IF establish(outf,"newbook",stand out
hannel,0,0,0)/=0THENput(stand err,("Cannot establish newbook",newline));exit(2)ELSEput(outf,("Data for newbook",newline));FOR i TO 1000 DO put(outf,i) OD;newline(outf);
lose(outf)FIOn output, the newline
hara
ter is written to the book.newpage behaves just like newline ex
ept that a form feed
hara
ter is sear
hed for on input, andwritten on output.The pro
edure establish
an fail if the disk you are writing to is full or you do not have write a

ess(in a network, for example) in whi
h
ase it will return a non-zero value.When you have
ompleted sending data to a book, you must
lose it with the
lose pro
edure. Thisis parti
ularly important with books you write to be
ause the
hannel is bu�ered as explained above.Using
lose ensures that any remaining data in the bu�er is
ushed to the book.The pro
edure print uses the REF FILE name stand out. Soprint(("Your name",newline))is equivalent toput(stand out,("Your name",newline))Again, stand out is open when your program is started and it should not be
losed. Transput viastand out is unbu�ered. You
annot read from stand out, nor write to stand in. The pro
edurewrite is synonymous with print.
Exer
ises9.3 Change the se
ond program in the last set of exer
ises to put its total into a newly-
reated bookwhose identi�
ation is result.9.4 Adapt Eratosthenes' Sieve (see se
tion 5.4.1) to output all the prime numbers less than 10,000 intoa book
alled primes.

9.4. STRING TERMINATORS 979.4 String terminatorsOne of the really useful fa
ilities available for reading data from books is that of being able to spe
ifywhen the reading of a string should terminate. Usually, this is set as the end of the line only. However,using the pro
edure make term, the string terminator
an be a single
hara
ter or any one of a set of
hara
ters. The header of make term isPROC make term=(REF FILE f,STRING term)VOID:so if you want to read a line word by word, de�ning a word as any sequen
e of non-spa
e
hara
ters, you
an make the string terminator a spa
e by writingmake term(inf,blank)be
ause blank (synonymous with " ") is rowed in the strong
ontext of a parameter to [℄CHAR. However,this would remove the end-of-line as a terminator. A better
all would bemake term(inf,blank+lf)where the se
ond parameter is a value of mode STRING. Here, inf is the identi�er for your FILE. Youshould remember that when a string is read, the string terminator is available for the next read|it hasnot been read by the previous read.
Exer
ises9.5 Write a program
alled
opy whi
h
opies its input text book to its output text book, stoppingwhen a blank line is read (all blanks or zero length). The input book is
alled inbook and theoutput book outbook.9.6 Rewrite the program in exer
ise A using make term. The data should be read from a book
alledlines and written to a book
alled words. Write one word to a line. Terminate the lines withan asterisk (*) on a line by itself.
9.5 EventsAlgol 68 transput is
hara
terised by its use of events. In the limited transput supplied with the Ctrans
ompiler, only four kinds of events are dete
ted. These are:1. The end of the �le when reading. This is
alled the \logi
al �le end".2. The end of the �le when writing. This is
alled the \physi
al �le end".3. A value error.4. A
hara
ter error.The default a
tion when an event o

urs depends on the event. However, the default a
tion
an berepla
ed by a programmer-de�ned a
tion using one of the \on"-pro
edures.9.5.1 Logi
al �le endWhen the logi
al end of a �le has been dete
ted, the default a
tion is to terminate the program imme-diately. All open �les will be
losed by the operating system, but any bu�ered output �les will lose anydata in the bu�er. A programmer-supplied a
tion must be a pro
edure with the header(REF FILE f)BOOL:The yield should be TRUE if some a
tion has been taken to remedy the end of the �le, in whi
h
asetransput is re-attempted, or FALSE, when the default a
tion will be taken.The pro
edure on logi
al file end has the headerPROC on logi
al file end=(REF FILE f,PROC(REF FILE)BOOL p)VOID:

98 CONTENTSand an example will help explain its use. Here is a program whi
h will display the
ontents of its textinput �le and print a message at its end.PROGRAM readfile CONTEXT VOIDUSE standardIF FILE inf; [℄CHAR infn="textbook";open(inf,infn,stand in
hannel)/=0THENput(stand err,("Cannot open ",infn,newline));exit(1)ELSEon logi
al file end(inf,(REF FILE f)BOOL:(write(("End of ",idf(f)," read",newline));
lose(f); FALSE));STRING line;DO get(inf,(line,newline));write((line,newline))ODFIFINISHThe anonymous pro
edure provided as the se
ond parameter to on logi
al file end prints an in-formative message and
loses the book before yielding FALSE. Sin
e in this
ase all we want is for theprogram to end when the input has been read, the default a
tion is �ne. Noti
e also that the DO loopsimply repeats the reading of a line until the logi
al file end pro
edure is
alled. The pro
edure idfis des
ribed in se
tion 9.11.You should be
areful if you do any transput on the parameter f in the anonymous routine otherwiseyou
ould get an in�nite loop (a loop whi
h never ends). Also, be
ause the on logi
al file endpro
edure assigns its pro
edure parameter to its REF FILE parameter, you should be wary of usingon logi
al file end in limited ranges. The way out of this problem is to make a lo
al
opy of theREF FILE parameter as in:BEGINFILE lo
 f:=stand in;on logi
al file end(f,(REF FILE f)BOOL: ...);...ENDAny pie
e of program whi
h will yield an obje
t of mode PROC(REF FILE)BOOL in a strong
ontext issuitable as the se
ond parameter of on logi
al file end.If you want to reset the a
tion to the default a
tion, use the phraseon logi
al file end(f,no file end)
9.5.2 Physi
al �le endThe physi
al end of a �le is met on writing if, for example, the disk is full. It
an also o

ur when usingthe mem
hannel (see se
tion 9.10). The default a
tion
loses all open �les (but the bu�ers of bu�ered�les will not be
ushed to disk) and terminates the program with an exit value of 255.A repla
ement pro
edure should have the modePROC(REF FILE)BOOL

9.5. EVENTS 99and it should yield TRUE if the event has been remedied in some way, in whi
h
ase transput will bere-attempted, and FALSE otherwise (when the default a
tion will be elaborated).The default pro
edure
an be repla
ed with a pro
edure de�ned by the programmer using the pro
e-dure on physi
al file end whi
h has the header:PROC on physi
al file end =(REF FILE f,PROC(REF FILE)BOOL p)VOID:9.5.3 Value errorThis event is
aused by the following
ir
umstan
es:1. If an integer is expe
ted, then the value read ex
eeds max int.2. If a real number is expe
ted, then the value read ex
eeds max real.3. If a
omplex number is expe
ted, then the value read for either the real part or the imaginary partex
eeds max real.The pro
edure on value error lets the programmer provide a programmer-defined pro
edure whoseheader must be(REF FILE f)BOOL:although any identi�er
ould repla
e the f. Transput on the �le f within the pro
edure should be avoided(but see ba
kspa
e below), but any other transput is allowable, but try to ensure that a value error won'to

ur!If the programmer-supplied routine yields TRUE, transput
ontinues, otherwise an error message isissued to stand err and the program aborted with an exit value of 247.9.5.4 Char errorThis event
an o

ur when reading a number if the number is entirely absent so that the �rst
hara
teris neither a sign nor a digit. In this
ase a default pro
edure is
alled having the header(REF FILE f,REF CHAR
)BOOL:The default pro
edure
an be repla
ed with a programmer-defned pro
edure using the pro
edureon
har error.The
har error pro
edure is
alled with the
 referring to a suggested value for the next
hara
ter.The repla
ement
hara
ter must be a member of a parti
ular set of
hara
ters. The default value is 0. Ifthe pro
edure returns FALSE the default suggested
hara
ter will be used, otherwise the value referred toby
 will be used. Thus the programmer-supplied pro
edure
an not only
hange the default suggested
hara
ter, but
an also perform su
h other a
tions as are deemed ne
essary (su
h as logging the error).The event
an also o

ur when reading the digits before a possible "." for real numbers and the digitsafter the ".". For
omplex numbers, after the real part, an i or I is expe
ted and its non-appearan
ewill
ause the
har error pro
edure to be exe
uted. The default suggestion is i, but
an be repla
edby another
hara
ter and optional a
tions.For a BITS3 value, whenever a
hara
ter whi
h is neither flip nor flop is met, the
har errorpro
edure is
alled with flop as the suggested value. Thus the available suggested
hara
ter sets are:1. For digits: 0 : : : 92. For exponent: e E n3. For plus i times: i I4. For
ip or
op: FT (upper
ase only) respe
tively
3This mode is des
ribed in se
tion 11.2

100 CONTENTSExer
ises9.7 Write a program whose input book has the identi�
ation inbook and whi
h
ontains lines ofdi�ering length. Use on logi
al file end to spe
ify a pro
edure whi
h establishes the outputbook outbook, writes the average length and
loses it and then yields FALSE.
9.6 The
ommand lineWhen you exe
ute a program at the
ommand prompt, you type the identi�
ation of the program andthen press return. You
an spe
ify parameters (sometimes
alled arguments) for the program after theprogram identi�
ation. These
an then be a

essed by the program to modify its a
tivities.Hitherto, the identi�
ations of books have always been written into the a
tual
ode. In the lastexer
ise, the input book was
alled inbook and the output book outbook. If your program
ould begiven the identi�
ations of the books whenever you exe
uted the program, then it
ould have a mu
hwider appli
ability.The
ommand line is available to the program via the
hannel arg
hannel. Here is a small programwhi
h reads its �rst argument and prints it on the s
reen:PROGRAM arg1 CONTEXT VOIDUSE standardIF FILE args; open(args,"",arg
hannel)/=0THENput(stand err,("Cannot a

ess the
ommand line",newline));stopELSEon logi
al file end(arg,(REF FILE f)BOOL:(put(stand err,("No parameters",newline));FALSE));STRING id;get(arg,id); write((id,newline))FIFINISHSome points to note:1. stand err is an output FILE whi
h is usually used for error messages.2. The identi�
ation �eld in the
all to open is ignored by arg
hannel. In the example, it is writtenas the empty string.3. stop is equivalent to exit(0).4. In Linux, the �rst parameter is always the full path of the identi�
ation of the program.You
an only read via the arg
hannel (using get). make term has already been set to make thestring terminator blank (the last argument is always followed by a spa
e) so you
an read the individualparameters from the
ommand line by reading strings. However, you should note that when you haveread a string, the next
hara
ter will be the terminator of the string. So when you have read a string,you will need to skip all
hara
ters whi
h
ould possibly terminate the reading of a string (known asterminators) otherwise the next read of a string will yield the null string (denoted by ""). The pro
edureskip terminators with headerPROC skip terminators=(REF FILE f)VOID:is used for this purpose.

9.7. ENVIRONMENT STRINGS 101Exer
ises9.8 Modify exer
ise ex9 4 1 (see A) to get the identi�ers of its input and output books from the
ommand line (remember that the �rst argument is always the program id, so use a LOC STRINGfor it). Remember to
ater for the end of the input �le.9.9 Write a program to repla
e all the spa
es in its input book with the asterisk and write out theresulting lines to its output book, the book identi�ers being given on the
ommand line.
9.7 Environment stringsIn Linux, if, at the
ommand prompt in a Bash shell, you key set followed by return, you will get alisting of the values of all the environment strings de�ned in your session. The value of the environmentstring PATH gives all the paths that the operating system will sear
h when you try to exe
ute a program.Ea
h string is identi�ed by what is
alled an environment variable whi
h behaves rather like aname of mode REF STRING ex
ept that ea
h string is terminated with a null
h. You
an open a book
ontaining the environment string using env
hannel. For example:FILE p; open(p,"PATH",env
hannel)The open will fail if PATH has not been de�ned, so a plain open (as shown in the above example) wouldbe better repla
ed byFILE p;IF open(p,"PATH",env
hannel)/=0THEN #
ode to take emergen
y a
tion#ELSE #
ode to perform the usual a
tions#FIIf you now use make term to make the
olon : the string terminator, you
an get the individual pathsusing get:make term(p,":"+nul
h);STRING path;on logi
al file end(p,(REF FILE f)BOOL:(GOTO eof; SKIP));DO get(p,(skip terminators,path));IF UPB path >= LWB pathTHEN write((path,newline))FIOD;eof:
lose(p);You should
lose the book after using it. Noti
e the use of a GOTO. It is pre
eded by a label whi
h looksjust like an identi�er followed by a
olon.
Exer
ises9.10 Write a program whi
h will display the individual paths in the PATH environment string, one to aline, on the s
reen.9.11 Write a program whi
h will read some arguments from its
ommand line, ea
h argument
onsistingof the identi�er of an environment string terminated by "/" followed by a non-blank terminator.Using this data, read the environment string and display its
onstituent parts on the s
reen, one toa line. Allow for the possibility that the string might not end with the terminator (the
ode givenin the answer
aters for that possibility). Try an environment string whi
h exists and one whi
hdoesn't.

102 CONTENTS9.12 At the
ommand line, by using the
ommandABC="12 14 16"you
reate (using bash) an environment string identi�ed by ABC. Now write a program whi
h willread the individual numbers from ABC and print their total. Try
hanging the value of ABC to givedi�erent numbers (not in the program). In
lude a test in your program to determine whether ABCis present in the environment (verb|open| will fail if it isn't) and terminate your program witha useful message if not.
9.8 Writing reportsOne of the problems of using the rather primitive fa
ilities given so far for the output of real and integernumbers is that although they allow numbers to be printed in
olumns, the
olumn widths are �xed. Youmight not always want 18 de
imal pla
es. To print reports where numbers must be neatly tabulated, itis ne
essary to have some other means of
ontrolling the size of the resulting strings. The pro
edureswhole, fixed and float provide this
apability.The pro
edure whole has the headerPROC whole = (NUMBER v, INT width)STRING:and takes two parameters. The �rst is a real or integer value (modes REAL or INT)4 and the se
ond is aninteger whi
h tells whole the �eld width of the output number (the spa
e in your output book requiredto a

ommodate a value is often
alled a �eld). If width is zero, then the number is printed with theminimum possible width and this will be wider for larger numbers. A positive value for width will givenumbers pre
eded by a "+" if positive and a "-" if negative and the number output right-justi�ed withinthe �eld with spa
es before the sign. A negative value for width will only provide a minus sign fornegative numbers and the width will be ABS width.Try writing a program with the following fragment in
luded:[℄INT ri = (0,99,-99,9 999,99 999);[℄CHAR wh pr = "Parameter for whole is";OP B = (INT n)INT: n;FOR wi FROM -6 BY B 3 TO 6DO print((wh pr,wi,newline));FOR i TO UPB riDO write((whole(ri[i℄,wi),newline))ODODNoti
e that where the integer is wider than the available spa
e, the output �eld is �lled with the
hara
terdenoted by error
har (whi
h is de
lared in the standard prelude as the asterisk (*) with mode CHAR),so it is wise to ensure that your output �eld is large enough to a

ommodate the largest number youmight want to print.If you give a real number to whole, it
alls the pro
edure fixed with parameters width and 0.The pro
edure fixed has the headerPROC fixed = (NUMBER v,INT width, after)STRING:and takes three parameters. The �rst two are the same as those for whole and the third spe
i�es thenumber of de
imal pla
es required. The rules for width are the same as the rules for width for whole.When you want to print numbers in s
ienti�
 format (that is, with an exponent), you should usefloat whi
h takes four parameters and has the headerPROC float = (NUMBER v,INT width, after, exp)STRING:4NUMBER is de�ned for more modes than REAL and INT whi
h you will meet in
hapter 11.

9.9. BINARY BOOKS 103The �rst three are the same as the parameters for fixed, while the fourth is the width of the exponent�eld. The version of float supplied in the transput library uses e to separate the exponent from the restof the number. Thus the
allprint(("[",float(pi*10,8,2,-2),"℄"))produ
es the output [+3.14e 1℄. The parameter exp obeys the same rules as width.Note that the transput of data in Algol 68 is so organised that values output by an Algol 68 program
an be input by another (or the same) program.Here are some exer
ises whi
h test you on your understanding of whole, fixed and float.
Exer
ises9.13 The monthly rainfall for a parti
ular lo
ation is given by the following �gures:6.54 12.3 10.1 13.83 5.04 9.1514.34 16.38 13.84 10.45 8.49 7.57Write a program whi
h will print the �gures verti
ally, ea
h pre
eded by the name of the month.The months and the �gures should line up verti
ally, the months left-justi�ed, the �gures withde
imal points aligned.9.14 Write a program whi
h will print the square roots of all the integers from 1 to 100 to 4 de
imalpla
es. Ea
h number should be pre
eded by the
orresponding integer. So, for example, theprogram should print 2 1.4142 as a
olumn-pair. Print the whole table in four
olumns with25 entries in ea
h
olumn, the numbers 1{25 being in the �rst
olumn.9.15 Write a program whi
h will list the terms in the series �, �2, �3, : : :, �10. Ea
h value should bewritten in s
ienti�
 notation with 6 de
imal pla
es, and should be pre
eded by the value of thepower (i.e., the numbers 1 to 10). Use a �eld width of 12.
9.9 Binary booksIn se
tion 9.1, it was mentioned that some books
ontain data in a
ompa
t form whi
h is not usuallyhuman-readable. Most large books, espe
ially those
ontaining design �gures in the engineering s
ien
esas well as books
ontaining the payroll data for a number of employees, will be stored in this form. Theyare
alled binary books.Algol 68 allows you to write anything to binary books, just as for text books. Indeed, you
an writean integer and a
hara
ter to a binary book and then read ba
k the data as a
hara
ter followed by aninteger. The results may not be parti
ularly meaningful, but you
an do it.The only di�eren
e between transput to, or from, binary books is that instead of using the pro
eduresput and get, you use the pro
edures put bin and get bin. The modes a

epted by these pro
edures areidenti
al with those a

epted by put and get respe
tively ex
ept that you
annot transput pro
edureswith modePROC(REF FILE)BOOLHere is a program whi
h will output the data produ
ed by the program in the last exer
ise:PROGRAM binary CONTEXT VOIDUSE standardBEGINFILE f;IF establish(f, "pipowers", stand out
hannel)/=0THENput(stand err, ("Cannot
reate pipowers", newline));stopFI;FOR i TO 10 DO put bin(f,(i,pi**i)) OD;
lose(f)ENDFINISH

104 CONTENTSRun the program and then look at the book it has produ
ed. Compare it with the data produ
ed by theprogram in the last exer
ise.Another aspe
t of binary books is that of being able to browse. The prin
ipal pro
edure provided forthis purpose is set whi
h has the headerPROC set=(REF FILE f,INT p,l,
)VOID:The last three parameters spe
ify the position in the book where you want to start browsing, whetherreading or writing. The QAD transput provided with the Ctrans
ompiler ignores the p and l parametersbe
ause it regards a �le as
onsisting of one page of one line. The start of a book in the QAD transputis zero.There are two other related pro
edures. One is reset whi
h has the headerPROC reset=(REF FILE f)VOID:and is equivalent to set(f,0). One possible use of this pro
edure is to output data to a book, thenuse reset followed by get to read the data from the book. The sort of book used in this way is often
alled a work �le (in operating system terms). Su
h a book
ontains data of use while a program isbeing elaborated, but is deleted at the end of the program. In fa
t, every program has su
h a book whose
ontrolling FILE is
alled stand ba
k. It uses the stand ba
k
hannel and is deleted when the programhas �nished. However, you
an write to it, reset it, then read the
ontents and
opy them to anotherbook. Note that the pro
edure read bin is equivalent to get bin(stand ba
k,...) and the pro
edurewrite bin is equivalent to put bin(standba
k,...).The other related pro
edure is logi
al end whi
h has the headerPROC logi
al end = (REF FILE f)INT:and yields the value of the position at the end of the book, whi
h is the size of the book. The position
an be set to the end of the book by writingset(f,logi
al end(f))Here is a pro
edure whi
h opens an existing book and sets the writing position to its end, then writesdata to the end of the book:PROC debug=(REF FILE dbg,[℄SIMPLOUT st)VOID:(open(dbg,idf(dbg),stand ba
k
hannel);set(dbg,logi
al end(dbg));put(dbg,st);
lose(dbg))We shall use this pro
edure in
hapter 12 to store data about the running of a program while we aredeveloping it. Noti
e that textual data is written to the book even though the pro
edures set andlogi
al end are used. The point is that binary and textual data
an be mixed in any book whi
h allowsbinary transput.In the QAD standard prelude, the
urrent position in a book
an be obtained from the pro
edure
urrent pos whi
h has the headerPROC
urrent pos = (REF FILE f)POS:This parti
ular pro
edure is very useful if you want to store the book position of the beginning of agroup of data in a book (su
h a group is often
alled a re
ord). In the QAD standard prelude, POS is asynonym for INT.
Exer
ises9.16 Write a program whi
h
reates a binary book
ontaining the �rst 1000 whole numbers. Use set toread every 17th number and display them on the s
reen, one to a line.9.17 Write a program to read a book
ontaining text and write ea
h individual word to one book, andthe position of the start of ea
h word and the length of the word to another book. Both outputbooks should be written using put bin.

9.10. INTERNAL BOOKS 1059.10 Internal booksSometimes it is desirable to
onvert information from binary to text forms and then manipulate theresulting values. Conversely, when performing data entry (that is, reading data from the keyboard), it isusually better to perform the a
tual data entry in
hara
ter format and then
onvert to internal valuesrather than
onverting the external data to internal values dire
tly. The means of a

omplishing this sortof spe
ialised transput is provided by internal books.Unfortunately, the QAD transput provided with the Ctrans
ompiler does not provide the usualAlgol 68 me
hanism for internal books. However, a book
onsisting of a single line
an be establishedusing the mem
hannel. Here is an example:PROGRAM mem
h CONTEXT VOIDUSE standardBEGINFILE mf;establish(mf,"",mem
hannel,1,1,36);FOR i TO 3 DO put(mf,i**3) OD;print((file buffer(mf)[:
urrent pos(mf)℄,newline));
lose(mf)ENDFINISHWhen establishing a memory book using the mem
hannel, both the p and the l parameters should be1 and the
 parameter should be positive indi
ating the length of the line. All the transput pro
eduresmentioned may be used on memory books. The pro
edure file buffer yields the internal bu�er of a �le,but uses a mode we have not yet met (see
hapter 13: Standard Prelude). The pro
edure
urrent posgives the
urrent position of its REF FILE parameter. For examples of �les opened using the mem
hannel,see the example program lf des
ribed in se
tions 12.3 to 12.3.3.
9.11 Other transput pro
eduresThe pro
edure idf has the headerPROC idf=(REF FILE f)[℄CHAR:and yields the identi�
ation of the book handled by the �le f.There are two other ways of
losing a �le. One is s
rat
h and the other is lo
k. Here are theirheaders:PROC s
rat
h=(REF FILE f)VOID:PROC lo
k=(REF FILE f)VOID:The pro
edure s
rat
h deletes the �le on
e it is
losed. It is often used with work �les. The pro
edurelo
k
loses its �le and then lo
ks it so that it
annot be opened without some system a
tion. In theQAD transput supplied with the Ctrans
ompiler, lo
k removes all permissions from the �le so that it
annot be a

essed without �rst using the program
hmod.
Exer
ises9.18 Write a program to print the rainfall �gures given in an earlier exer
ise. Start your report with asuitable heading.9.19 Write a program whi
h will read a text �le and print ea
h line pre
eded by a line number.
9.12 SummaryExternal values (usually
alled data) are stored in books. A program uses an internal stru
ture,
alled a�le (of mode FILE), to keep tra
k of the pro
ess of transferring data to or from books. The link betweenthem is
ontrolled by a
hannel.A number of pro
edures are provided in the standard prelude to fa
ilitate the transfer of data to andfrom books, as well as
hanging the position re
orded by a �le within a book.

106 CONTENTSBooks
an be
reated and written to, or opened and read from, or both read from and written to. A�le should be
losed to sever the link between itself and its
orresponding book, and to ensure that anydata storage areas (usually
alled bu�ers) are
ushed to the storage medium.Formatting of numbers
an be performed with the pro
edures whole, fixed and float. This fa
ilitatesthe produ
tion of reports.String terminators make it easier to read values of mode STRING. They are set with the pro
eduremake term.The
ommand line
an be read just like any other book (text only) and environment variables
an beread.
Exer
ises9.20 Write a program to read real numbers from the keyboard, and write them to the s
reen in s
ienti�
notation and 3 de
imal pla
es. Continue until zero is read.9.21 Using the mode EMPLOYEE de
lared in se
tion 7.5, write a program to read the employee re
ordsfrom a binary book, and write a report of the name of ea
h employee, her or his net pay for the
urrent week and the total net pay and number of employees read. In the binary book, ea
h stringis pre
eded by the length of that string as an integer. Get the book idf and the week number fromthe
ommand line.

Chapter 10
Units
The aim of this
hapter is to des
ribe the grammar of units in a fairly rigorous manner. The
hapter
overs units,
ontexts and
oer
ions, as well as a number of lesser, but still important, ideas su
h as
astsand balan
ing. In des
ribing some of the grammati
al aspe
ts of the language in previous
hapters, ithas been ne
essary to gloss over or distort some of the fa
ts. The de�nitive truth about su
h matters isin this
hapter.An Algol 68 program
onsists of a
losed VOID
lause whi
h means that any value yielded by the
losed
lause will be voided. Any
losed
lause
an be used in
luding
onditional and loop
lauses. Itis unusual to write a program whi
h starts other than with BEGIN (and ends other than with END), butthere is nothing in the de�nition of the language to pre
lude it. On our round tour of units, we shallstart at the bottom and work up.
10.1 PhrasesA phrase is a de
laration or a unit. De
larations yield no value, even if they in
lude an initial assignment.Units are the parts of the language whi
h a
tually manipulate values. There are 22 di�erent kinds ofunit whi
h
an be subdivided into 5
lasses arranged in a hierar
hy:QuaternariesTertiariesSe
ondariesPrimariesEn
losed
lauseswhere ea
h
lass in
ludes the lower
lass. For example, all en
losed
lauses are primaries, but not allprimaries are en
losed
lauses.The distin
tions between di�erent
lasses of units prevent the writing of ambiguous programs andhelp to provide the meaning you might expe
t.The units in ea
h
lass are as follows:� Quaternaries{ assignments{ identity relations{ routine denotations{ SKIP� Tertiaries{ formul�{ NIL� Se
ondaries{ generators{ sele
tions

107

108 CONTENTS� Primaries{ applied-identi�ers{
alls{
asts{ denotations (ex
ept routine denotations){ sli
es� En
losed
lauses{
ase
lauses{
losed
lauses{
ollateral
lauses{
onditional
lauses{
onformity
lauses{ loop
lauses{ parallel
lauses{ row-displays{ stru
ture-displays
10.2 ContextsThe
ir
umstan
es whi
h allow
ertain
oer
ions are
alled
ontexts. Ea
h
ontext has an intrinsi
strength. There are �ve
ontexts
alled strong, �rm, meek, weak and soft. The pla
es in a programwhi
h have these
ontexts are:� Strong
ontexts{ The a
tual-parameters of
alls{ The en
losed
lauses of
asts{ The right-hand side of assignments{ The right-hand side of identity de
larations{ The right-hand side of initialised name de
larations{ The units of routine denotations{ VOID units{ All
onstituents ex
ept one of a balan
ed
lause{ One side of an identity relation� Firm
ontexts{ Operands of formul�{ The a
tual parameters of transput
alls� Meek
ontexts{ Enquiry-
lauses (in
luding WHILE){ Primaries of
alls{ The units following FROM, BY and TO in a loop
lause{ Trimmers, subs
ripts and bounds (must yield an INT)� Weak
ontexts{ Primaries of sli
es{ Se
ondaries of sele
tions� Soft
ontexts{ The left-hand side of assignments{ The other side of an identity relation (see strong
ontext)

10.3. COERCIONS 10910.3 Coer
ionsThere are seven
oer
ions in the language, namely� voiding� rowing� widening� uniting,� depro
eduring� dereferen
ing� weakly-dereferen
ingRoughly speaking, the
oer
ions
an be arranged in a hierar
hy within the hierar
hy of
ontexts thus:� Strong
ontext{ depro
eduring{ rowing{ voiding{ widening� Firm
ontext{ uniting� Meek
ontext{ dereferen
ing� Weak
ontext{ weakly-dereferen
ing� Soft
ontext{ depro
eduringThe only
oer
ion not yet met is weakly-dereferen
ing. However, it is useful to des
ribe all the
oer
ions here. Before we do so, it should be noted that one of the limitations of the language is that you
annot spe
ify the kind of
ontext. Thus if you have a weak
ontext and you would like a �rm
ontext,you
annot spe
ify it. However, in any
ontext, you
an use a
ast (see the se
tion on primaries below)whi
h will always make a
ontext strong and be
ause all
oer
ions are available in a strong
ontext, you
an use the
ast to spe
ify the mode you require.10.3.1 Depro
eduringThis
oer
ion is available in all
ontexts. Depro
eduring is the pro
ess by whi
h a parameterless pro
edureis
alled. For example, the pro
edure random, de
lared in the standard prelude as having mode PROC REAL,when
alled yields a REAL. We
an represent the
oer
ion byPROC REAL =) REALThe PROC is \removed", whi
h is why it is
alled depro
eduring.There are o

asions when the identi�er of a pro
edure
an be written without the pro
edure being
alled. In the program fragmentPROC REAL rnd:=randomthe right-hand side of the assignment requires the mode PROC REAL be
ause the mode of the nameidenti�ed by rnd is REF PROC REAL. Clearly, random is not
alled here.The only possible ambiguities with depro
eduring are those of assignments and
asts. For example,having de
lared rnd above, the subsequent assignment

110 CONTENTSrnd:=random;yields a value of mode REF PROC REAL, be
ause the value of an assignment is the value of the left-handside (see se
tion 10.8). However, the following \go-on symbol" indi
ates that the assignment should nowbe voided. It is a rule of the language that voiding takes pla
e before depro
eduring if the unit beingvoided is an assignment. If, however, rnd had been used on its own, as inrnd;then it would have been dereferen
ed, then depro
edured and the resulting REAL value voided. This wouldensure that any side-e�e
ts (see se
tions 6.1.6 and 6.2.3) would take e�e
t.Similarly, in the unitPROC REAL(rnd);rnd (with mode REF PROC REAL) will be dereferen
ed, but the resulting value of mode PROC REAL willbe voided immediately sin
e it is
lear that a REAL value is not required. Note that all the
ode examplesusing a go-on symbol
ould have been written with END or FI et
, provided that the resulting
ontextwould have resulted in voiding.When writing a program, it is
ommon to make mistakes1, and one mistake is to write the identi�erof a pro
edure without its parameters (the primary of a
all). This is not, stri
tly speaking, an error. Atleast, not a grammati
al error. However, in su
h a
ase, the Ctrans
ompiler will issue a warning:Pro
 with parameters voided,parameters of
all forgotten perhapsin whi
h
ase the mistake should be obvious. Suppose you write the identi�er of a pro
edure in a formulawithout its parameters, as inPROC p1 = (INT n)INT: n**2+3;INT a:=4; a:=4+p1;then the Ctrans
ompiler will issue the messageop + not de
lared for INT and PROC (INT)INTThe error message for a pro
edure identi�er on the right-hand side of an assignment isPROC (INT)INT
annot be
oer
ed to INTDepro
eduring only o

urs with parameterless pro
edures.10.3.2 Dereferen
ingThis is the pro
ess of moving from a name to the value to whi
h it refers (whi
h
ould also be a name|see
hapter 11). For example, if x has mode REF REAL, then in the formulax * 3.5the name x will be dereferen
ed to yield a new instan
e of the REAL referred to by x. The
oer
ion
anbe represented by REF REAL =) REALIf rx has mode REF REF REAL (that is, rx
an refer to a name of mode REF REAL), then the formularx * 3.5will result in rx being dereferen
ed twi
e. In this
ase, the
oer
ion
ould be represented asREF REF REAL =) REALDereferen
ing is available in all
ontexts ex
ept soft.When a name, su
h as rx, is dereferen
ed twi
e, new instan
es of both the values referred to (in the
ase of rx, the REF REAL and the REAL values) are
reated. However, the new instan
e of the REF REALvalue is dis
arded after the
reation of the REAL value. This has no e�e
t on the elaboration of theprogram.1You should expe
t to make one mistake every 20 lines. Congratulate yourself if you do better!

10.3. COERCIONS 11110.3.3 Weakly-dereferen
ingThis is a variant of the dereferen
ing
oer
ion in whi
h any number of REFs
an be removed ex
ept thelast. Thus, in the
ase of rx above, weakly-dereferen
ing would yield a mode of REF REAL and
ould berepresented by REF REF REAL =) REF REALThis
oer
ion is only available in weak
ontexts. It is parti
ularly useful in the sele
tion of se
ondariesof stru
ture modes whi
h
ontain �elds whose mode starts with REF (see se
tion 10.6 and
hapter 11).10.3.4 UnitingIn this
oer
ion, the mode of a value be
omes a united-mode. For example, if OO is an operator both ofwhose operands are UNION(INT,REAL), then in the formula3.0 OO -2both operands will be united to UNION(INT,REAL) before the operator is elaborated. These
oer
ions
anbe represented by INTREAL � =) UNION(INT,REAL)Uniting is available in �rm and strong
ontexts and must pre
ede rowing.10.3.5 WideningIn a strong
ontext, an integer
an be repla
ed by a real number and a real number repla
ed by a
omplexnumber, depending on the mode required. This
an be represented byINT =) REALREAL =) COMPLWidening is not available in formul� (�rm
ontexts).10.3.6 RowingIf, in a strong
ontext, a multiple is required and a value is provided whose mode is the base mode of themultiple, then the value will be rowed to provide the required multiple. There are two
ases to
onsider:1. If the mode required is not a name and the base-mode of the multiple is the mode of the valuegiven, then the value will be rowed to give [℄base-mode. For example, if the required mode is[℄INT, then the base-mode is INT. In the identity de
laration[℄INT i = 3the value yielded by the right-hand side (an integer) will be rowed and the
oer
ion
an be expressedas INT =) [℄INTIf the value given is a row mode, su
h as [℄INT, then there are two possible rowings that
an o

ur.(a) In the identity de
laration[,℄INT a = iwhere i was de
lared above with mode [℄INT, the
oer
ion
an be expressed as[℄INT =) [,℄INTIn this
ase, an extra dimension is added to the multiple.(b) If the required mode is [℄[℄INT as in[℄[℄INT r = i

112 CONTENTSthen the value on the right-hand side is rowed to yield a one-dimensional multiple whosebase-mode is [℄INT. This
oer
ion
an be represented as[℄INT =) [℄[℄INT2. If the multiple required is a name, then a name of a non-multiple
an be supplied. For example,if the value supplied is a name with mode REF INT, then a name with mode REF[℄INT will be
reated. In this identity de
larationREF[℄INT ni = LOC INTthe lo
al generator yields a name with mode REF INT and the rowing
oer
ion yields a name withmode REF[℄INT and bounds [1:1℄. The
oer
ion
an be represented byREF INT =) REF[℄INTThe �rst kind of rowing
ould also o

ur. The identity-de
laration[℄REF INT rri = LOC INTprodu
es the
oer
ion represented byREF INT =) [℄REF INTLikewise, a name of mode REF[℄INT
an be rowed to a name with mode REF[,℄INT or a non-namewith mode [℄REF[℄INT, depending on the mode required. Although INT has been taken as anexample, any mode
ould have been used.10.3.7 VoidingIn a strong
ontext, a value
an be thrown away, either be
ause the mode VOID is expli
itly stated, asin a pro
edure yielding VOID, or be
ause the
ontext demands it, as in the
ase of a semi
olon (thego-on symbol). In this
ase, there are two ex
eptions to the rule that the value yielded depends only onthe
ontext. Casts and assignments are voided after the elaboration of the unit, but all other units aresubje
ted to the usual
oer
ions in a strong
ontext. The following program illustrates this:PROGRAM tpro
 CONTEXT VOIDUSE standardBEGINPROC INT p;PROC pp = INT:(INT i=random int(6);print(i);i);p:=pp;print((" p:=pp",newline));pp;print((" pp",newline));p;print((" p",newline));PROC INT(p);print((" PROC INT(p)",newline))ENDFINISHThe output isp:=pp +6 pp+1 pPROC INT(p)

10.4. ENCLOSED CLAUSES 113In the assignment p:=pp, the mode required on the right-hand side is PROC INT so pp is not depro
edured,and p is neither dereferen
ed nor depro
edured after the assignment has been elaborated. The
astPROC INT(p) is elaborated (that is, p is dereferen
ed) and then voided without the pro
edure p (or pp)being
alled.10.3.8 Legal
oer
ionsIn any
ontext, you have a unit whi
h has, or yields, a value of some mode; and in that
ontext you havea mode whi
h you need. If the value of the mode you have
an be
oer
ed to a value of the mode youneed (assuming that the two modes di�er), then the
oer
ion is legal.For example, suppose you have a value of mode PROC REF INT in a strong
ontext and the mode youwant is [℄COMPL. The required mode
an be got via� depro
eduring to mode REF INT� dereferen
ing to mode INT� widening to mode REAL� widening to mode COMPL� rowing to mode [℄COMPLIn pra
ti
e,
oer
ions are not usually as
ompli
ated as this.Noti
e that depro
eduring
an take pla
e before or after dereferen
ing, that widening must o

urbefore rowing and that voiding
an only take pla
e after all other
oer
ions. For example, you
annot
oer
e [℄INT to [℄REAL.
Exer
ises10.1 Whi
h
oer
ions are available in a meek
ontext?10.2 Whi
h
oer
ions are not available in a strong
ontext?10.3 For ea
h of the following, state whether the given mode
an be
oer
ed to the mode to the rightof the arrow:(a) Weak
ontext: REF REF BOOL =) REF BOOL(b) Firm
ontext:PROC INT =) UNION(REAL,COMPL)(
) Soft
ontext: REF PROC CHAR =) CHAR(d) Meek
ontext: PROC REF REAL =) [℄REAL(e) Weak
ontext: PROC REF BOOL =) BOOL(f) Strong
ontext:PROC INT =) UNION([℄INT,[℄REAL)
10.4 En
losed
lausesThere are nine kinds of en
losed
lause, most of whi
h we have already met.21. The simplest is the
losed
lause whi
h
onsists of a serial
lause en
losed in parentheses (or BEGINand END). The range of any identi�ers de
lared in the
losed
lause is limited to the
losed
lause.The Ctrans
ompiler limits the use of any identi�ers de
lared in the
losed
lause to the
losed
lause at and after their de
laration. Here are some examples of
losed
lauses:(3)BEGIN p + 3 END(INT s; read(s); s)(REAL q:=i+2; sqrt(q))2Note that a serial
lause is not an en
losed
lause.

114 CONTENTS2. Collateral
lauses look like row-displays: there must be at least two units. Remember that de
la-rations are not units. The units are elaborated
ollaterally. This means that the order is unde�nedand may well be in parallel. Examples of
ollateral
lauses are3(m:=3, n:=-2)((INT m:=2; m),(CHAR a=REPR i; a))The se
ond
ollateral
lause has two units ea
h of whi
h is a
losed
lause.A parallel
lause looks exa
tly like a
ollateral
lause pre
eded by PAR. The
onstituent units (theremust be at least two) are exe
uted in parallel.4The other en
losed
lauses have already been dis
ussed:3. row-display in se
tion 3.1.14. loop
lause in se
tion 3.75.
onditional
lause in se
tion 4.56.
ase
lause in se
tion 4.67. stru
ture-display in se
tion 7.18.
onformity
lause in se
tion 8.3It should be noted that the enquiry
lause (in a
onditional- or
ase-
lause) is in a meek
ontext whateverthe
ontext of the whole
lause. Thus, the
ontext of the
lause is passed on only to the �nal phrase (itmust be a unit) in the THEN, ELSE, IN or OUT
lauses.
Exer
ises10.4 What kind of en
losed
lause
ould ea
h of the following be?(a) ((INT p:=ENTIER-4.7; p),37.5)(b) PAR BEGIN 3, 15 END(
) (i|3,-3|4)(d) (si|(INT i): i,(STRING i): i)(e) (a < 3|4|5)(f) (a:=2; b:=-a)
10.5 PrimariesPrimaries are denotations, applied identi�ers,
asts,
alls and sli
es. We have met denotations in
hapters1, 4 and 6. Only plain values, routines and a spe
ial name (NIL) have a denotation. NIL is dealt with inthe se
tion on tertiaries and the mode BITS is
overed in
hapter 11. Applied-identi�ers means identi�ersbeing used in a
ontext, rather than in their de
larations. We have met numerous examples of these.Routine denotations are not primaries.A
ast
onsists of a mode indi
ant followed by an en
losed
lause, usually a
losed
lause. Here is aformula with a
ast:3.4 * REAL (i)where i has mode INT. The
ast puts the en
losed
lause in a strong
ontext. Thus, in the above formula,the normal
ontext of an operand is �rm (see
hapter 2), but the
ast
auses the value of i to be widenedto a REAL. Casts are usually used in formul� and identity relations (see se
tions 10.8 and 11.6). Casts aresometimes used to
oer
e a
onditional or
ase
lause where balan
ing is insuÆ
ient to provide the moderequired (see se
tion 10.9 later in this
hapter). The mode indi
ant
an be any mode and
an
ontainany of the mode-
onstru
tors su
h as REF or PROC or [℄ (but it should not be a generator, whi
h is nota mode indi
ant). Care should be taken when using a stru
tured mode. For example, in this formula,3The Ctrans
ompiler does not provide
ollateral
lauses other than row- and stru
ture-displays.4The Ctrans
ompiler does not provide parallel
lauses.

10.6. SECONDARIES 1153 * STRUCT(INT k)(4)assuming that the operator has been de
lared for operands of modes INT and STRUCT(INT k), the
astmust in
lude the �eld sele
tor be
ause it is part of the mode.Calls were dis
ussed in se
tions 6.3.1 and 6.3.2. Here is a simple example:sqrt(0.7)In this
all, sqrt is itself a primary (it is an applied-identi�er). In se
tion 10.2, it was mentioned thatthe primary of a
all is in a meek
ontext. This applies even if the
all itself (as a whole) is in a strong
ontext. The primary of a
all
an be an en
losed
lause. For example,(a>4|sqrt|sin)(x)whi
h yields sqrt(x) if a > 4 and sin(x) otherwise. In this
ase, the primary is(a>4|sqrt|sin)We dis
ussed sli
es in se
tion 3.2. They in
lude simple subs
ripting. For example, given the de
laration[,℄INT r = ((1,2,3),(4,5,6))the units r[1,℄ and r[2,3℄ are both sli
es. Whatever the
ontext of the sli
e, the
ontext of the primaryof the sli
e (r in these examples) is always weak. This means that only weak-dereferen
ing is allowed.Thus, given the phrases[2,3℄INT s:=r; INT p:=s[2,1℄the sli
e s[2,1℄ is in a strong
ontext, but the s is in a weak
ontext, so the name that s identi�es, whi
hhas the mode REF[,℄INT will not be dereferen
ed, though the sli
e, whi
h has mode REF INT, will be.There is another
onsequen
e of the weak
ontext of the primary of a sli
e: row-displays
an only beused in a strong
ontext. So if you want to
hange the bounds of a row-display, be
ause the sli
er willprodu
e a weak
ontext, the row-display must be en
losed in a
ast.The
ontext of subs
ripts and bounds in trimmers is meek and they must be units.All en
losed
lauses are primaries, but not all primaries are en
losed
lauses.
Exer
ises10.5 What are the
ontexts of(a) p (mode REF[℄REAL) in [℄REAL (p[3℄)(b) q (mode PROC(REAL)INT) in REAL(q(0.5))10.6 How many primaries are there in ea
h of the following units:(a) 3 * (1.4 + r)/2**6(b) p:=sqrt(r) - 6(
) num:=x[3,ENTIER r℄(d) i * [℄CHAR("e")
10.6 Se
ondariesWe have dis
ussed both kinds of se
ondary (sele
tions and generators), but there are other points whi
hneed mentioning.There are two kinds of generator (see se
tion 5.1). O

asionally, when a pro
edure has a nameparameter, the name may not be needed. Instead, therefore, of using an identi�er of a name whi
h isused for another purpose, whi
h would be
onfusing, or de
laring a name just for this purpose, whi
hwould be unne
essary, an anonymous name
an be used. For example, a possible
all of the pro
edure
har in string
ould be
har in string(
h,LOC INT,str)

116 CONTENTSif you are only interested in whether the
hara
ter is in the string and not in its position.Another
ase where an anonymous name is useful is in the
reation of odd-shaped multiples. Considerthe program fragment:[10℄REF[℄INT ri; INT j;FOR i TO UPB riDO read(j);ri[i℄:=LOC[j℄INT; read(ri[i℄)ODSin
e there are no de
larations in the loop
lause, the s
ope of the name
reated by the generator is theen
losed
lause surrounding the loop
lause, whi
h in
ludes the de
larations for ri and j. The mode ofthe sli
e ri[i℄ is REF REF[℄INT. Thus the value of ri[i℄ is a name with two REFs in its mode, and itis made to refer to a name of mode REF[℄INT, whi
h has one REF less. Assignments of this type will be
onsidered in detail in the next
hapter. Note that the
ontext of a parameter to read is �rm so theparameter is dereferen
ed on
e before a value is read.When dis
ussing sele
tions in se
tion 7.2, you may have wondered about the pe
uliar rules of pla
ingparentheses when talking about rows in stru
tures, rows of stru
tures and rows in rows of stru
tures.Firstly, it should be mentioned that in the se
ondaryim OF zwhere z has mode COMPL or REF COMPL, the z itself is not only a se
ondary, it is also a primary (it is anapplied-identi�er). This means that using the de
larationsMODE AM = STRUCT(INT i,CHAR
),BM = STRUCT(INT i,AM a);BM bthe sele
tion
 OF a OF bis valid be
ausea OF bis also a se
ondary. We shall meet extended sele
tions like this in
hapter 11.Se
ondly, a primary is a se
ondary, but not ne
essarily the other way round. Consider these de
lara-tions:STRUCT(INT i,[3℄REAL r)s1;[3℄STRUCT(INT i,REAL r)s2The sele
tion r OF s1 has the mode REF[℄REAL. If you want to sli
e it, to get one of the
onstituentnames of mode REF REAL say, you
annot do so dire
tly. The reason is that in a sli
e, as mentioned inthe previous se
tion, what is sli
ed must be a primary. To
onvert the se
ondary into a primary youhave to en
lose it in parentheses thus
onverting it into an en
losed
lause; and en
losed
lauses are alsoprimaries (in se
tion 10.1, it was said that the four
lasses of units are arranged in a hierar
hy in whi
hea
h
lass in
ludes the lower
lasses). So the se
ond name of r OF s1 is yielded by (r OF s1)[2℄.On the other hand,
onsidering the name identi�ed by s2, the sele
tionr OF s2[2℄
an be written without parentheses be
ause s2 is not only a se
ondary, it is also a primary (an applied-identi�er) with mode REF[℄STRUCT.... The phrase s2[2℄ is perfe
tly valid, it having mode REF STRUCT(...).The sele
tion r OF s2 has the mode REF[℄REAL and so it too
an be sli
ed by writing (r OF s2)[2℄.The e�e
t is the same for both of the
ases involving s2. Note that the Ctrans
ompiler does not permitsele
tion of a �eld from a row of stru
tures. Doing so will yield the following error message:OPERATORS - sele
t: [℄stru
t not implementedFATAL ERROR (661) Compiler error:ENVIRONMENT (ASSERT) - assertion failureTo summarise, any primary
an be regarded as a se
ondary, but not vi
e-versa.

10.7. TERTIARIES 117Exer
ises10.7 Give an example of a primary whi
h is also a se
ondary.10.8 Give an example of a se
ondary whi
h is not a primary.10.9 In this exer
ise, the following de
larations hold:MODE AM = STRUCT(CHAR a,b),BM = STRUCT(AM a,STRUCT(CHAR a,AM b)
,REF BM d);BM pHow many se
ondaries are there in ea
h of the following units?(a) a OF p(b) a OF a OF p(
) a OF
 OF p(d) a OF a OF d OF p
10.7 TertiariesTertiaries are formul� and NIL. Formul� were
overed in
hapter two. All that needs to be said here isthat a formula
an
onsist solely of a single se
ondary or primary or en
losed
lause although this is notusual. If a formula,
ontaining at least one operator, is to be used as a primary or a se
ondary, it mustbe en
losed in parentheses (or BEGIN and END). For example, in the formula x * (3 + q), the se
ondoperand of the * is a
losed
lause.The only name having a denotation is NIL. Its mode is REF whatever. In other words, it
an have anymode whi
h starts with REF. It does not refer to any value and, although it must only o

ur in a strong
ontext, it
annot be
oer
ed. Its uses are des
ribed in the next
hapter.
10.8 QuaternariesQuaternaries are assignments, routine denotations, identity relations and SKIP. Of the four, the assign-ment is the most
ommon. An assignment
onsists of three parts. The left-hand side must be a tertiary.It is usually an applied identi�er or, less
ommonly, an en
losed
lause. Its value must be a name. Its
ontext is soft, so no dereferen
ing is allowed unless a
ast is used (see the next
hapter), but depro
edur-ing is allowed. The se
ond part is the assignment token. The right-hand side (the third part)
an be anyquaternary (in
luding, of
ourse, another assignment). Its
ontext is strong so any
oer
ion is permitted.The mode of its value must
ontain one less REF than the mode of the left-hand side.The right-hand side of an assignment is, most
ommonly, a formula whi
h is a tertiary (all tertiariesare quaternaries, but not vi
e-versa). The left-hand side
an also be a formula provided that the valueyielded is a name (whi
h is the
ase with the assigning operators|see se
tion 5.1.2). If an assignment isto be used as a primary, a se
ondary or a tertiary, then it must be en
losed in parentheses(or BEGIN andEND). The value of an assignment is the value of the left-hand side: that is, it is a name. Assignmentswere dis
ussed in
hapter 5.Routine denotations were dis
ussed in
hapter 6.SKIP yields an unde�ned value of any mode and
an only o

ur in a strong
ontext. It is parti
ularlyuseful in the following
ase. Consider the pro
edurePROC p=(REAL a,b)REAL:IF b=0THEN print(("Division by zero",newline)):stop; SKIPELSE a/bFI

118 CONTENTSSin
e the yield has mode REAL, and the ELSE part of the
onditional
lause yields a value of mode REAL,by the prin
iple of balan
ing (see below) the THEN part also must yield a value of mode REAL. Now the
onstru
t stop yields a value of mode VOID whi
h
annot be
oer
ed to REAL in any
ontext. If thepro
edure is going to
ompile su

essfully, the THEN part must yield REAL (or, at least, a value whi
h
an be
oer
ed to REAL in the
ontext of the body of the pro
edure whi
h is strong) even though thevalue yielded will never be used (be
ause the stop will terminate the program). The SKIP will yield anunde�ned value of mode REAL. Although SKIP must o

ur in a strong
ontext, it
annot be
oer
ed.Another use for SKIP is in row- or stru
ture-displays where not all the units are known at the time ofa de
laration. For example:[3℄INT ii:=(4,?,5)Before the multiple ii is used, the se
ond element should be given a value. If no su
h value is assigned,and you try to print the value of ii[2℄ the Ctrans
ompiler will generate
ode whi
h will print whatevervalue was there at the time the multiple was generated, whi
h may well be rubbish.The identity relation is dis
ussed in the next
hapter, but its grammar has important
onsequen
es.The identity relation
onsists of two tertiaries separated by an identity relator (one of :=: or :/=:).Sin
e a formula is a tertiary, it
an safely be in
luded in an identity relation. For example, given thede
larationsINT x:=3, y:=1;PROC x or y = (REAL r)REF INT: (r<0.5|x|y)the identity relationx or y(random) :=: xis legal. However, if you want to in
lude an identity relation in a formula then you must surround it withparentheses to make it into a tertiary, as inIF (x or y(random) :=: x) AND x*y > 0THENSin
e one side of an identity relation is in a soft
ontext while the other is in a strong
ontext, onlyone side of an identity relation
an be strongly-dereferen
ed. The soft side
an be weakly-dereferen
edwhi
h means that one REF will always be left on that side. Balan
ing applies to identity relations (seethe dis
ussion in se
tion 11.6).This
ompletes the general dis
ussion of units.
Exer
ises10.10 What kind of units are ea
h of the following:(a) A
ast.(b) An applied-identi�er.(
) A sele
tion.(d) A multiple.(e) A name.(f) A formula.(g) A loop
lause.(h) An assignment.(i) A de
laration.(j) A pro
edure denotation.10.11 Whi
h units are to be found in ea
h of the following:(a) 3.5 * (a - 2 * x)(b) p OR q AND a = 4(
) sin(x)(d) a[3,2:4℄(e) x:=(
<"e"|2.4|-y)(f) (i|x,y,z):=(p|2|-4)(g) PAR(x:=1.2,y:=3.6)

10.9. BALANCING 11910.9 Balan
ingIn se
tion 6.1, it was pointed out that the
ontext of a routine denotation is passed on to the last unit inthe denotation. In the example given, the body of the routine denotation was a
losed
lause. The yieldof the routine was a value of mode INT, but the yield of the last unit was a name with mode REF INT.Sin
e the
ontext of the body of a routine denotation is strong, the name is dereferen
ed to get an INT.This prin
iple is appli
able to all en
losed
lauses.Now
onditional
lauses,
ase
lauses and
onformity
lauses
an yield one of a number of units, andso it is quite possible for the units to yield di�erent values of di�erent modes. The prin
iple of balan
ingallows the
ontext of all these units, ex
ept one, to be promoted to strong whatever the
ontext of theen
losed
lause. Balan
ing is also invoked for identity relations whi
h are dealt with in the next
hapter.Considering, for example, the formulax * (a > 0|3.0|2)the
ontext of the
onditional
lause is �rm whi
h means that widening is not allowed. Without balan
ing,the
onditional
lause
ould yield a REAL or an INT. In this example, the prin
iple of balan
ing wouldpromote the
ontext of the INT to strong and widen it to REAL. Balan
ing thus means \making the modesthe same".In a balan
ed
lause, one of the yielded units is in the
ontext of the whole
lause and all the othersare in a strong
ontext, irrespe
tive of the a
tual
ontext of the
lause. Here is an example of a balan
ed
ase
lauseINT i:=3,j:=4,a:=2;PROC ij = REF INT: (random < 0.5|i|j);print(2 + (a|i,ij|random))where the a yields an INT in a meek
ontext (that of the enquiry
lause). In this example, the modes ofthe values that
an be yielded by the
ase
lause are REF INT (i), PROC REF INT (ij) and PROC REAL(random). In a �rm
ontext, the modes be
ome INT, INT and REAL. Thus the
ontext of random is takento be �rm, and the
ontext of i and ij is promoted to strong and they are both dereferen
ed and widenedto REAL. The result is that the
ase
lause will yield a REAL value even though the
lause as a whole is ina �rm
ontext (it is an operand of the operator +).If instead, we hadPROC REAL r:=random;(a|i,ij|j):=ENTIER rusing the de
laration of ij in the previous example, then balan
ing would not be needed to produ
e therequired mode. The modes of the yielded units are REF INT, PROC REF INT and REF INT respe
tively. Ina soft
ontext, these modes would yield REF INT (no dereferen
ing allowed), REF INT (depro
eduring isallowed) and REF INT. Thus the
ase
lause would yield REF INT on the left-hand side of the assignment.Here is an example of a
onditional
lause whi
h
annot be balan
ed:INT i:=2, REAL a:=3.0;(random > 0.5|i|r):=randomIn this
ase, the two parts of the
onditional
lause yield REF INT and REF REAL. There is no
oer
ionwhi
h will
onvert a REF INT into a REF REAL. When you try to
ompile this, the Ctrans
ompiler givesthe following error message:lhs of assignment must be a referen
eThe balan
ing means that one of the yields is in a strong
ontext and so is dereferen
ed whi
h yields avalue whi
h is not a name.The method of determining whether balan
ing is possible is as follows:1. Determine the
ontext of the
hoi
e
lause.2. In the
ontext found in step 1, determine the mode yielded by ea
h unit in the
hoi
e
lause.3. If there is a mode su
h that all the modes but that one
an be strongly
oer
ed to that mode, the
lause
an be balan
ed.

120 CONTENTSExer
ises10.12 In ea
h of the following
lauses, state whether balan
ing is possible, and if so, the mode yieldedby the balan
ed
lause. These de
larations are in for
e:INT i,j, REAL a,b:=random;PROC ij = REF INT: (b>0.5|i|j);PROC r = REAL: random * random;UNION(INT,REAL) ri:=(random>0.6|i|b)(a) a:=2.0*(random<0.3|i|b)(b) (j<2|ij|b):=r(
) a:=((ri|(INT r):r,(REAL r):r)<1|2|3)(d) b:=2.0*(j>3|4|SKIP)
10.10 Well-formed modesIn
hapter 6, the mode de
laration was presented and it was pointed out that not all possible mode de
-larations are allowed. The rules for determining whether a mode de
laration is well-formed are straight-forward.There are two reasons why a mode might not be well-formed:1. the elaboration of a de
laration using that mode would need an in�nite amount of memory2. the mode
an be strongly
oer
ed to a related modeLet us look at some examples of modes whi
h are not well-formed. Firstly, in the mode de
larationMODE WRONG = STRUCT(CHAR
,WRONG w)the WRONG within the STRUCT would expand to a further STRUCT and so on ad in�nitum. Even thisde
larationMODE WRONGAGAIN = STRUCT(WRONGAGAIN wa)will not work for the same reason. However, if the mode within the STRUCT is shielded by REF or PROC,then the mode de
laration is legal:MODE ALRIGHT = STRUCT(CHAR
,REF ALRIGHT a);In the de
larationALRIGHT ar = ("A",LOC ALRIGHT)the se
ond �eld of the stru
ture is a name whi
h is quite di�erent from a stru
ture. Likewise, thede
larationMODE OKP = STRUCT(CHAR
,PROC OKP po)is well-formed be
ause in any de
laration, the se
ond �eld is a pro
edure (or a name referring to su
h apro
edure) whi
h is not the original stru
ture and so does not require an in�nite amount of storage. Itshould be noted, however, that a UNION does not shield the mode suÆ
iently. Thus, the mode de
larationsMODE MW1 = UNION(INT,MW1);MODE MW2 = STRUCT(UNION(CHAR,MW2) u,CHAR
)are not well-formed. In fa
t, the mode de
laration of MW1 fails on reason 2 above.Se
ondly, a mode whi
h
ould be strongly
oer
ed to a related mode would lead to ambiguity in
oer
ions. Thus the mode de
larationsMODE WINT = PROC WINT;MODE WREF = REF WREF;MODE WROW = [5℄WROW

10.10. WELL-FORMED MODES 121are not well-formed.All the above de
larations have been re
ursive, but not mutually re
ursive. Is it possible to de
lareMODE WA = STRUCT(WB wb,INT i),WB = STRUCT(WA wa,CHAR
)Again, the elaboration of de
larations using either mode would require an in�nite amount of storage, sothe modes are not well-formed. The following pair of mode de
larations are all right:MODE RA = STRUCT(REF RB rb,INT i),RB = STRUCT(PROC RA pra,CHAR
)All non-re
ursive mode de
larations are well-formed. It is only in re
ursive and mutually-re
ursivemodes that we have to apply a test for well-formedness.Determination of well-formednessIn any mutually-re
ursive mode de
larations, or any re
ursive mode de
laration, to get from a parti
ularmode on the left-hand side of a mode de
laration to the same mode indi
ant written on the right-handside of a mode de
laration, it is ne
essary to traverse various mode
onstru
tors su
h as REF, PROC orUNION. Above ea
h STRUCT or set of pro
edure parameters write \yang". Above ea
h REF or PROC write\yin". Now tra
e the path from the mode in question on the left-hand side of the mode de
laration untilyou arrive at the same mode indi
ant on the right-hand side. If you have at least one \yin" and at leastone \yang", the mode is well-formed.Let us try this method on the re
ursive mode de
larations given in this se
tion. In the mode de
larationfor WRONG, write \yang" above the STRUCT. Thus to get from WRONG on the left to WRONG on the right, asingle \yang" is traversed. Thus WRONG is not well-formed. Likewise, WRONGAGAIN is not well-formed. Inmode ALRIGHT, you have to traverse a \yang" (STRUCT) and a \yin" (REF), so ALRIGHT is well-formed.Try it with the mode OKP.Conversely, to get from MW1 to MW1 requires neither \yin" nor \yang", so MW1 is not well-formed. Toget from MW2 to MW2, only a STRUCT is traversed (the UNION does not
ount) so MW2 is also not well-formed.Similar arguments hold for WINT, WREF and WROW.Now
onsider the mutually-re
ursive mode de
larations of WA and WB. At whi
hever mode we start,getting ba
k to that mode means traversing two \yangs" (both STRUCT). Two \yangs" are all right, butthere should be at least one \yin", so the modes are not well-formed. On the other hand, from RA to RAtraverses a STRUCT and a REF and, via RB, a STRUCT and a PROC giving \yang-yin-yang-yin", so both RAand RB are well-formed.Remember that if you want to de
lare modes whi
h are mutually-re
ursive, the Ctrans
ompilerrequires that one of the modes should �rst be de
lared with a stub de
laration.
Exer
ises10.13 For ea
h of the following mode de
larations, determine whether the modes are well-formed:(a) MODE MA = INT(b) MODE MB = PROC(MB)VOID(
) MODE MC =[3,2℄MC(d) MODE MD = STRUCT(BOOL p,MD m)(e) MODE ME = STRUCT(STRING s,REF ME m)(f) MODE MF2,MF1 = STRUCT(REF MF2 f),MF2 = PROC(INT)MF1(g) MODE MGB,MGA = PROC(MGB)VOID,MGB = STRUCT(MGA a)

122 CONTENTS(h) MODE B, C,MODE A = PROC(B)A,MODE B = STRUCT(PROC C
,STRUCT(B b,INT i)d),MODE C = UNION(A,B)(i) C = PROC(C)C
10.11 Flexible namesFlexible names were introdu
ed in se
tion 5.5, but only one-dimensional names. What has not beenmade apparent in the text hitherto is that a multiple
onsists of two parts: a des
riptor and the a
tualelements. The des
riptor
ontains the lower and upper bounds of ea
h dimension, the \stride" (that is, thenumber of bytes between two su

essive elements of the dimension in question), the address in memoryof the �rst element of that dimension and whether the dimension is
exible. Consider the de
larationFLEX[1:0℄[1:3℄INT flexfixBe
ause the mode of flexfix is REF FLEX[℄[℄INT, when it is subs
ripted, the mode of ea
h element isREF[℄INT with bounds of [1:3℄. Clearly, after the de
laration, flexfix has no elements. In pra
ti
e,be
ause the �rst (and only) dimension is
exible, there must be some way of referring to a \ghost" elementwhose des
riptor (it is a one-dimensional multiple) will give its properties. flexfix is quite di�erent fromFLEX[1:0℄FLEX[1:3℄INT flexflexea
h of whose elements (when it has any) have the mode REF FLEX[℄INT with initial bounds [1:3℄.If the de
laration of flexfix is followed by the assignment and sli
eflexfix:=LOC[1:1℄[1:3℄INT;flexfix[1℄:=(1,2,3)then it is
lear that the mode of flexfix[1℄ is REF[℄INT. Note that afterflexfix:=LOC[1:4℄[1:3℄INTflexfix refers to a multiple of whi
h ea
h element has the mode [℄INT. However, the single dimensionof flexfix[1℄is not
exible, whi
h is why the assignmentflexfix:=LOC[1:4℄[1:4℄REAL #this is wrong#will fail5.
10.12 OrthogonalityWe have
ome a long way and introdu
ed many new ideas, yet all these ideas are based on the primitive
on
epts of value, mode,
ontext,
oer
ion and phrase. These
on
epts are independent of ea
h other,but their
ombination provides Algol 68 with a
exibility that few programming languages possess. Forexample, if a value of mode INT is required, su
h as in a trimmer or the bounds of the de
laration of amultiple, then any unit whi
h will yield an integer in that
ontext will suÆ
e. The
onsequen
e is thatAlgol 68 programs
an be written in a wide variety of styles. Here is a simple example: given the problemof printing the sum of two numbers read from the keyboard, it
ould be programmed in two
ompletelydi�erent ways. The
onventional solution would be something likeINT a,b; read((a,b));print((a+b,newline))5The Ctrans
ompiler will wrongly allow this last assignment both at
ompile-time and run-time.

10.13. SUMMARY 123but an equally valid solution isprint(((INT a,b;read((a,b));a+b),newline))Provided that what you write is legal Algol 68, you
an adopt any approa
h you please. Orthogonalityrefers to the independen
e of the basi

on
epts in that you
an
ombine them without side-e�e
ts.Another
onsequen
e of that independen
e is that there are very few ex
eptions to the rules of thelanguage. This makes the language mu
h easier to learn.
10.13 SummaryThe grammar of Algol 68 is expressed in terms of a few primitive
on
epts: value, mode,
ontext,
oer
ionand phrase. A phrase is either a de
laration or a unit. There are 5
ontexts, 7
oer
ions, 22 di�erent kindsof unit and potentially an in�nite number of values and modes. The
oer
ions available in ea
h
ontexthave been des
ribed. Balan
ing is the means by whi
h alternatives in
onditional,
ase and
onformity
lauses and the two sides of an identity relation are
oer
ed to a
ommon mode, possibly making
oer
ionsavailable whi
h would not normally be so in the
ontext of the
onstru
t
on
erned.No exer
ises are provided at this point.

124 CONTENTS

Chapter 11
Advan
ed
onstru
ts
We have now
overed most of Algol 68. All that remains is the identity relation, the parallel
lause, themode BITS,
ompleters, di�erent pre
isions of numbers and means of a

essing operating system fa
ilities.Most of these are de
eptively simple. The identity relation is used with modes
ontaining multiple REFswhi
h take up the greater part of this
hapter. The BITS mode and the parallel
lause are introdu
ed inlater se
tions. Di�erent numeri
al pre
isions and a

ess to operating system fa
ilities is mainly
overedin
hapter 12. We start with a

ess to the ma
hine word.
11.1 Bits, bytes and wordsIn our dis
ussion of plain values (values of modes CHAR, INT, REAL, and BOOL), we have omitted sayinghow these values are stored in
omputer memory for one important reason: Algol 68 is a high-levelprogramming language. A high-level programming language is one in whi
h the
on
epts of
omputerprogramming are not expressed in terms of a
omputer, its instru
tions and its memory, but in termsof high-level
on
epts su
h as values and modes. Basi
ally, the manner in whi
h integers and
hara
tersand so on are stored in the
omputer are not our business. However, sin
e programs written in Algol 68need to a

ess the operating system, it is useful to know something about memory, whether the mainmemory of the
omputer or the storage memory found on hard disks and other devi
es.Computer memory
onsists of millions of bits (short for binary digits) whi
h are grouped together asbytes or words. A bit
an take two values: 0 and 1. A word is 16, 24, 32, 36, 60, 64 or 72 bits \wide",and a byte is 6, 8 or 9 bits \wide". Almost all mi
ro
omputers use 8-bit bytes. Mi
ro
omputers using theIntel Pentium pro
essor (or
ompatibles) or later
hips, use a 32-bit word and an 8-bit byte. Generallyspeaking, a byte is used to store a
hara
ter and a word is used to store an integer. Real numbers aremu
h more
ompli
ated than integers and we shall not des
ribe how they are stored in memory. Beforewe
an understand about the equivalen
es of values of mode CHAR and bytes, and values of mode INTand words, we need to say something about radix arithmeti
. If this is something you already know,please skip the next se
tion.
11.1.1 Radix arithmeti
Our ordinary arithmeti
 uses the ten digits 0, 1, : : :, 9 and expresses numbers in powers of ten. Thus thenumber 1896
onsists of 1 thousand, 8 hundreds, 9 tens and 6 units. This
ould be written1896 = 1� 1000 + 8� 100 + 9� 10 + 6� 1Remembering that 100 is ten squared (102) and 1000 is ten
ubed (103), we
ould rewrite this equationas 1896 = 1� 103 + 8� 102 + 9� 101 + 6� 100As you
an see, the powers of ten involved are 3, 2, 1 and 0. When we write whole numbers, we understandthat the digits we use represent powers of ten. We say that the base, or radix, of our arithmeti
 is ten,whi
h is why it is frequently referred to as \de
imal arithmeti
" (de
imal is derived from the Latin wordfor ten).Now it is quite meaningful to develop an arithmeti
 having a di�erent radix. For example, supposewe use two as the radix. We should express our numbers in terms of powers of two and they would be125

126 CONTENTSwritten using the digits 0 and 1 only. In an arithmeti
 of radix two, when we write a number, ea
h digitwould represent a power of two. For example, the number 101 would mean101 = 1� 22 + 0� 21 + 1� 20in an exa
tly analogous way to the number 1896 in de
imal arithmeti
. In fa
t, the de
imal equivalentof 101 would be 4 + 0 + 1 = 5 (in de
imal). Here is another example:1101 = 1� 23 + 1� 22 + 0� 21 + 1� 20= 8 + 4 + 0 + 1= 13 (thirteen, in de
imal)We
ould then
onstru
t addition and multipli
ation tables as follows:+ 0 10 0 11 1 10 � 0 10 0 01 0 1As you
an see from the addition table, 1 + 1 = 10 (take row 2 and
olumn 2). When you read thisequation, you must say \one-zero" for the number after the equals symbol. \Ten" means ten+zero unitswhi
h this number de�nitely is not. The number 10 in radix 2 means \two+0 units" whi
h is what youwould expe
t for the sum of 1 and 1.Two radi
es of parti
ular use with
omputers are sixteen and two. Arithmeti
 with a radix of sixteenis
alled hexade
imal and arithmeti
 with a radix of two is
alled binary.In hexade
imal arithmeti
, the digits 0 to 9 are used, but digits are also required for the numbers tento �fteen. The �rst six letters of the alphabet are used for the latter six numbers. They are
ommonlywritten in upper-
ase, but in Algol 68 they are written in lower-
ase for a reason whi
h will be
omeapparent in a later se
tion. Thus the \digits" used for hexade
imal arithmeti
 are0,1,2,3,4,5,6,7,8,9,a,b,
,d,e,fAddition and multipli
ation tables
ould be
onstru
ted for hexade
imal arithmeti
 on the same linesas those for radix two arithmeti
. You should note that when writing a number
ontaining more thanone digit with a radix other than ten, the radix is
ommonly written (in de
imal) as follows:2� 3 = 124Thus, in hexade
imal arithmeti
, we
ould write7� 9 = 3f16and there are some exer
ises at the end of this se
tion in whi
h you
an try your hand at hexade
imaland other arithmeti
s. Writing numbers in hexade
imal is sometimes
alled \hexade
imal notation".A byte
onsists of eight binary digits and
an take any value from 000000002 to 111111112. Theequivalent de
imal value
an be obtained by rewriting it as the sum of des
ending powers of two:100110112 = 1� 27 + 1� 24 + 1� 23 + 1� 21 + 1� 20= 128 + 16 + 8 + 2 + 1 (in de
imal)= 15510The exer
ises at the end of this se
tion will give you some pra
ti
e in this kind of
onversion.If you
ompare the number of digits used to express the same number, you will �nd that hexade
imalarithmeti
 uses the least. For example, the de
imal number 135
an be written135 = 8716= 20134= 100001112When
onverting numbers written in binary to hexade
imal, the simplest way is to split the binary numberinto two groups of 4 bits and then
onvert ea
h group into one hexade
imal digit. Thus 00101011
an besplit into 0010 and 1011, and their hexade
imal equivalents are 2 and b. If you intend a

essing ma
hinewords, it would
ertainly be a good idea to learn the binary equivalents of the 16 hexade
imal digits 0-f.To help you, here is the pro
edure itostr whi
h
onverts a positive value of mode INT to a value of modeSTRING (with minimum width) using any radix from 2 to 16:

11.2. THE MODE BITS 127[℄CHAR digits="0123456789ab
def"[�0℄;PROC itostr=(INT n#umber#,r#adix#)STRING:IF n < rTHEN digits[n℄ELSE itostr(n%r,r)+digits[n MOD r℄FINoti
e how its re
ursive de�nition simpli�es the
ode.
Exer
ises11.1 Using the pro
edure itostr, write a program whi
h will display the 16 integers between 0 and 15(de
imal) in de
imal, hexade
imal and binary (the binary equivalent should be displayed as 4 bits)in three
olumns.11.2 For ea
h of the following, rewrite the number in the given radix:(a) 9410) 16(b) 1310) 2(
) 1111 10012) 16(d) 3e116) 10(e) 2
16) 2(f) 101012) 1011.3 Express the value of ea
h of the following using the radix of that exer
ise:(a) 1012 + 1102(b) 3516 + ae16(
) 178 + 378
11.2 The mode BITSA value o

upying a ma
hine word has the mode BITS. The number of binary digits in one ma
hine wordis given by the environment enquiry (see se
tion 13.2) bits width whi
h, for the Ctrans
ompiler is 32.A BITS value
an be denoted in four di�erent ways using denotations written with radi
es of 2, 4, 8 or 16.Thus the de
larationsBITS a = 2r 0000 0000 0000 00000000 0010 1110 1101BITS b = 4r 0000 0000 0002 3231BITS
 = 8r 000 0000 1355BITS d = 16r 0000 02edare all equivalent be
ause they all denote the same value. Noti
e that the radix pre
edes the r and iswritten in de
imal. Noti
e also that the numbers
an be written with spa
es, or newlines, in the middleof the number. However, you
annot put a
omment in the middle of the number. Sin
e a ma
hine word
ontains 32 bits, ea
h denotation should
ontain 32 digits in radix 2, 16 digits in radix 4, 11 digits inradix 8 and 8 digits in radix 16, but it is
ommon pra
ti
e to omit digits on the left of the denotationwhose value is zero. Thus the de
laration for d
ould have been writtenBITS d = 16r2edWhen dis
ussing values of mode BITS where the values of more signi�
ant bits is important, full denota-tions like the above may be more appropriate.

128 CONTENTSMonadi
 operators for BITSThere are many operators for BITS values. Firstly, the monadi
 operator BIN takes an INT operand andyields the equivalent value with mode BITS. The operator ABS
onverts a BITS value to its equivalentwith mode INT. The NOT operator whi
h you �rst met in
hapter 4 (se
tion 4.2) takes a BITS operandand yields a BITS value where every bit in the operand is reversed. ThusNOT 2r 1000 1110 0110 01010010 1111 0010 1101yields 2r 0111 0001 1001 10101101 0000 1101 0010Noti
e that spa
es have been used to make these binary denotations more
omprehensible. NOT is said tobe a bit-wise operator be
ause its a
tion on ea
h bit is independent of the value of other bits.
Dyadi
 operators for BITSAND and OR (both of whi
h you also met in
hapter 4) both take two BITS operands and yield a BITSvalue. They are both bit-wise operators and their a
tions are summarised as follows:Left Operand Right Operand AND OR0 0 0 00 1 0 11 0 0 11 1 1 1For OR, the yield of2r 100110 OR 2r 10101is 2r 110111. The priority of AND is 3 and the priority of OR is 2.The AND operator is parti
ularly useful for extra
ting parts of a ma
hine word. For example, supposeyou have a BITS value where the least-signi�
ant 8 bits are equivalent to a
hara
ter. You
ould writeCHAR
 = REPR ABS (b AND 16rff)Here, the operators REPR and ABS do not generate ma
hine-
ode instru
tions, but merely satisfy the
ompiler that the modes are
orre
t. This sort of formula is, in fa
t, very eÆ
ient in Algol 68.It is possible to extra
t a single bit from a word using the operator ELEM whi
h has the header(INT n,BITS t)BOOL:For example, given the de
larationBITS bi = 16r 394a 2716then ea
h hexade
imal digit represents 4 bits: the 3 o

upies bit positions 1{4, the 9 o

upies bit positions5{8, the 4, bit positions 9{12, and so on. Suppose we want the third bit (the leftmost bit is bit-1). Thefollowing de
laration is valid:BOOL bit3 = 3 ELEM biThus, if the third bit is a 1, the de
laration will give the value TRUE for bit 3. In fa
t, 3 written in binaryis 00112, so bit 3 is 1. Thus2 ELEM bi

11.2. THE MODE BITS 129would yield FALSE. The priority of ELEM is 7.In
identally, noti
e that in Algol 68 the most signi�
ant bit in a ma
hine word is bit-1 and theleast signi�
ant bit is bit-32. This strongly suggests that
omputers in the 1960's were \big-endian".Intel mi
ropro
essors and other
ompatible pro
essors are \little-endian"1. Be
ause the Ctrans
ompilertranslates Algol 68 programs into C programs, it is quite possible for the Ctrans system to be implementedon a \big-endian" mi
ropro
essor, su
h as the Motorola 68000-series. A \big-endian" pro
essor stores ama
hine word as four bytes (ea
h of 8-bits) with the most signi�
ant byte at the lowest memory address.\Little-endian" pro
essors store the least signi�
ant byte at the lowest memory address. Whatever kindof mi
ropro
essor is used to elaborate your programs, the most signi�
ant bit of the word is bit-1 andthe least signi�
ant bit is bit-32 in Algol 68.The dyadi
 operators SHL and SHR shift a ma
hine word to the left or to the right respe
tively by thenumber of bits spe
i�ed by their right operand. To illustrate their a
tion we shall suppose that they alloperate on the BITS value 16r 89ab
def. Both the shifts are by four bits whi
h is equivalent to onehexade
imal digit (4 bits is half a byte and is
ommonly
alled a nibble: yes,
omputer experts do possessa sense of humour!).The result of shifting the above value by 4 bits is given by the following table:Original value = 16r 89ab
defOperator Bits shifted YieldSHL 4 9ab
 def0SHL -4 089a b
deSHR 4 089a b
deSHR -4 9ab
 def0When shifting left (SHL), bits shifted beyond the most signi�
ant part of the word are lost. New bitsshifted in from the right are always zero. When shifting right (SHR), the reverse happens. Note that thenumber of bits shifted should be in the range [�32;+32℄. For SHL, if the number of bits to be shifted isnegative, the BITS value is shifted to the right and likewise for SHR. The header for SHL isOP SHL = (BITS b,INT i)BITS:and
orrespondingly for SHR. The value b is the value to be shifted and the integer i is the number ofbits to shift. UP and DOWN are synonyms for SHL and SHR respe
tively.As well as the operators = and /= (whi
h have the usual meaning), the operators <= and >= are alsode�ned for mode BITS. The formulas >= tyields TRUE only if for all bits in t that are 1, the
orresponding bits in s are also 1. This is sometimesregarded as \s implies t". Contrariwise, the formulas <= tyields TRUE only if for all bits in t whi
h are 0, the
orresponding bits in s are also 0. Likewise, this issometimes regarded as \NOT t implies s".
Exer
ises11.4 Given the de
larationsBITS a = 16r 1111 1111,b = 16r 89ab
defwhat is the value of ea
h of the following:(a) a AND b(b) a OR b(
) NOT a OR b [Hint:
onvert ea
h value to radix 2 and then
ombine℄(d) a = b1These terms
ome from the book by Jonathan Swift entitled \Gulliver's Travels" and they refer to the habitof some people of eating boiled eggs at the \big" end or the \little" end!

130 CONTENTS11.5 What is the value of(a) 16rab SHL 3(b) 16rba SHR 3
11.3 Overlapping sli
esWhathappens if two trimmed multiples overlap? For example,
onsider the programPROGRAM sli
es CONTEXT VOIDUSE standardBEGINOP B=(INT n)INT: n;[4℄INT r;PROC res = VOID:FOR n FROM LWB r TO UPB rDO r[n℄:=n OD;PROC mpr = ([℄INT m)VOID:(FOR i FROM LWB m TO UPB mDO print((whole(m[i℄,0),blank))OD;print(newline)); #mpr#res;print("Original
ontents:"); mpr(r);r[:UPB r-1℄:=r[1+LWB r:℄;print((newline,"r[:3℄:=r[2:℄",newline,"Compiler does it: ")); mpr(r);res;FOR i FROM LWB r TO UPB r-1DO r[i℄:=r[i+1℄ OD;print("Forwards loop: "); mpr(r);res;FOR i FROM UPB r-1 BY B-1 TO LWB rDO r[i℄:=r[i+1℄ OD;print("Ba
kwards loop: "); mpr(r);res; r[1+LWB r:℄:=r[:UPB r-1℄;print((newline,"r[2:℄:=r[:3℄",newline,"Compiler does it: ")); mpr(r);res;FOR i FROM 1+LWB r TO UPB rDO r[i℄:=r[i-1℄ OD;print("Forwards loop: "); mpr(r);res;FOR i FROM UPB r BY B-1 TO 1+LWB rDO r[i℄:=r[i-1℄ OD;print("Ba
kwards loop: "); mpr(r)ENDFINISH

11.4. COMPLETERS 131When
ompiled and exe
uted, the program gives the following output:Original
ontents:1 2 3 4r[:3℄:=r[2:℄Compiler does it: 2 3 4 4Forwards loop: 2 3 4 4Ba
kwards loop: 4 4 4 4r[2:℄:=r[:3℄Compiler does it: 1 1 2 3Forwards loop: 1 1 1 1Ba
kwards loop: 1 1 2 3Noti
e that lines 5 and 8 of the results are de�nitely wrong, but that the
ompiler gets it right both times.The lesson is, do not worry about overlapping multiples: the
ompiler will ensure you get the e�e
t youwant.A di�erent matter is when you want to repla
e a
olumn of a square multiple with a row. Here, theoverlap is more of a \
rossoverlap". In this
ase you need to be
areful|see the next exer
ise.
Exer
ises11.6 Given a square two-dimensional multiple of integers, write a pro
edure whi
h uses trimmers (notne
essarily overlapping) to
onvert its
olumns to rows and its rows to
olumns. For example:((1,2,3), ((1,4,7),(4,5,6), => (2,5,8),(7,8,9)) (3,6,9))Your pro
edure should
ater for any size of square multiple.
11.4 CompletersSometimes it is desirable to have more than one possible end-point of a serial
lause. This often happenswhen a loop needs to be prematurely terminated so that a surrounding serial
lause
an yield a valuewhi
h is unexpe
ted. A
ompleter is so-
alled be
ause it provides a
ompletion point for a serial
lause.A
ompleter
an be pla
ed wherever a semi
olon (the go-on symbol)
an appear ex
ept in enquiry
lauses(whether BOOL enquiry
lauses or INT enquiry
lauses). It
onsists of the
onstru
t EXIT followed by alabel and a
olon (:). A label is formed with the same rules as for an identi�er and should not be thesame as any identi�er in the
urrent range. Here is an example of a
ompleter:EXIT label:The label must be referen
ed by a GOTO
lause within the same serial
lause in whi
h the
ompletero

urs, or in an inner
lause (not ne
essarily serial). Here is an example of su
h a
ompleter:a:=(INT i; read((i,newline));IF i < 0 THEN GOTO negative FI;sqrt(i) EXITnegative:sqrt(-i))The example is arti�
ial, but serves to illustrate the use of a
ompleter.A
ompleter
an sometimes save the de
laration of a boolean name. For example, here is a pro
edurewithout a
ompleter:

132 CONTENTSPROC is in str = (STRING t, CHAR
)BOOL:(BOOL found := FALSE;FOR n FROM LWB t TO UPB tWHILE ~foundDO found:=
 = t[n℄OD;found);Here is the pro
edure with a
ompleter:PROC is in str = (STRING t,CHAR
)BOOL:(FOR n FROM LWB t TO UPB tDO IF
 = t[n℄ THEN GOTO foundOD;FALSE EXITfound:TRUE)In fa
t, GOTO
lauses are valid almost anywhere in Algol 68. They are parti
ularly useful when it isrequired to jump out of nested
lauses. Let us re
onsider the program e
ho in se
tion 9.5.1 with a GOTO
lause:PROGRAM e
ho CONTEXT VOIDUSE standardBEGINFILE args;IF open(args,"",arg
hannel)/=0THENput(stand err,("Cannot a

ess the arguments",newline));stopELSEFILE ff:=args;on logi
al file end(ff,(REF FILE f)BOOL:
lose(f); GOTO end; FALSE));DO STRING arg;get(ff,(skip terminators,arg));print((arg,newline))OD;end:print(("End of arguments",newline))FIENDFINISHUse of GOTO
lauses should be
on�ned to ex
eptions be
ause otherwise they
an destroy the naturalstru
ture of your programs making them mu
h more diÆ
ult to understand and maintain.

11.5. REFERENCES TO NAMES 13311.5 Referen
es to namesThe idea that a mode
an
ontain more than one REF, or that a mode might be REF[℄REF[℄CHAR wasbroa
hed at the start of
hapter 5 and mentioned in se
tion 10.3.2. The time has now
ome to addressthis topi
 fully.Any mode whi
h starts with REF is the mode of a name. The value to whi
h a name refers has a modewith one REF less. Sin
e names are values in their own right, there is no reason at all why a name shouldnot refer to a name. For example, suppose we de
lareINT x,ythen the mode of both x and y is REF INT. We
ould also de
lareREF INT xx, yyso that xx and yy both have the mode REF REF INT.Now, a

ording to the de�nition of an assignment (see se
tion 10.8), it is perfe
tly legitimate to writexx:=xwithout any dereferen
ing be
ause the identi�er on the left has mode REF REF INT and the identi�eron the right has mode REF INT. Leaving aside for the moment of how useful su
h de
larations andassignments might be (and they are very useful, essential even), let us give our attention to the me
hani
s.We
ould assign y to xx and a value to y with the double assignmentxx:=y:=3Again, no dereferen
ing is involved. Now, given that xx refers to y whi
h refers to 3, how
ould we makey refer to 4, say? Simple. Assign 4 dire
tly to y. However, if the assignment to xx wasxx:=(random>0.8|x|y)we should not know whi
h name xx referred to. Finding out whi
h name xx refers to is the subje
t ofthe next se
tion.You may remember that the
ontext of the left-hand side of an assignment is soft so no dereferen
ingis allowed. The way to
oer
e a name of mode REF REF INT to a name of mode REF INT is to use a
ast:REF INT(xx):=4Note that the unitprint(xx)will yield 4 with xx being dereferen
ed twi
e. There is nothing to stop us writingREF REF INT xxx:=xxwith assignments likeREF REF INT(xxx):=xREF INT(xxx):=-2and we shall see in a later se
tion that names with modes REF REF REF some-mode have a use. Althoughyou
an use as many REFs as you like, there does not seem to be any need for more than three.Now
onsider the assignmentsxx:=yy:=x:=4Both xx and yy refer to di�erent instan
es of the name x, but when those instan
es are dereferen
ed,they both yield 4. This means that if we assign 5 to x, when xx and yy are dereferen
ed twi
e, they willboth yield 5. We
an represent this relationship by the diagram

134 CONTENTS
xx yy

x
5

RRI RRI
RI

where RRI and RI stand for REF REF INT and REF INT respe
tively. Thus, although stri
tly speaking xxand yy refer to di�erent instan
es of the name identi�ed by x, we shall regard them as both referring tox.
Exer
ises11.7 Given the de
larationREF REAL xx:=LOC REALhow would you make the anonymous name refer to 120.5?11.8 Write a de
laration for rrq whi
h has the mode REF REF REF[℄CHAR and make it refer to ananonymous name whi
h refers to an anonymous name whi
h refers to a multiple of 10
hara
ters.11.9 Write the de
laration of a name whi
h
an refer to a
exible name whi
h
an refer to a row ofintegers. In a separate assignment, assign the row-display(3,-2,4) to your name.
11.6 Identity relationsConsider the de
larations of the last se
tion:INT x,y; REF INT xx,yyWe had assigned a name to xx with the assignmentxx:=(random > 0.8|x|y)and we wished to as
ertain whether xx referred to x or to y. Unfortunately, we
annot use the equalsoperator = for this purpose be
ause its operands would be
ompletely dereferen
ed and the underlyingintegers would be
ompared. Instead, we use an identity relationwhi
h is used ex
lusively for
omparingnames. The identity relationxx :=: xyields TRUE if xx refers to x. The alternative representation of :=: is IS. The identity relationxx :/=: xyields TRUE if xx does not refer to x. The alternative representation of :/=: is ISNT. Here is a shortprogram whi
h illustrates the di�eren
e between = and IS:PROGRAM test CONTEXT VOIDUSE standardBEGINREF INT xx, INT x:=2,y:=3;TO 3DO xx:=(random>0.5|x|y);

11.7. THE VALUE NIL 135print(("xx :=: x =",(xx :=: x|"TRUE"|"FALSE"),newline,"xx = ",xx,newline))ODENDFINISHIf you want to
ompare the names that both xx and yy refer to, it is no good writingxx IS yyThis always yields FALSE be
ause the names that xx and yy identify always di�er (they were
reatedusing two lo
al generators so the names are bound to be di�erent). The point is that no automati
dereferen
ing takes pla
e in an identity relation. To
ompare the names that both xx and yy refer to,you should pla
e one side or both sides in a
ast:REF INT(xx) IS yyThis will ensure that the right-hand side (in this
ase) is dereferen
ed to yield a name of the same modeas the left-hand side. This is be
ause an identity relation is subje
t to balan
ing: one side of the relationis in a soft
ontext and the other side is in a strong
ontext. Given the
ast on the left-hand side, the twosides of the identity relation would yield REF INT and REF REF INT. Sin
e no dereferen
ing is allowed ina soft
ontext, it
an be seen that the left-hand side is in the soft
ontext and the right-hand side is inthe strong
ontext.The IS and ISNT in the identity relation are not operators. Sin
e the identity relation is a quaternary(see se
tion 10.8), remember to en
lose it in parentheses if you want to use it in a formula:IF (field OF stru
t ISNT xx) & x>=-5THEN field OF stru
t = 0ELSE FALSEFI
Exer
ises11.10 The program fragmentREF STRING ff, ss; STRING f, s;f:="Joan of Ar
";s:="Robert Burns";ff:=(random<0.1|f|s);ss:=(ff IS f|s|f)applies to this and the following exer
ises.What are the modes of f and ss?11.11 What does f refer to?11.12 Write a formula whi
h
ompares the 3rd and 4th
hara
ters of the multiple f refers to with the 7thand 8th
hara
ters of the multiple s refers to. What are the modes of the operands of the operator?11.13 Write an expression whi
h
ompares the name referred to by ff with the name referred to by ss.
11.7 The value NILSometimes it is desirable that a name of mode REF REF whatever should not refer to a de�nite name(see, for example, the dis
ussion of queues below). This
an be arranged by making it refer to NIL whi
his the only denotation of a name. The mode of NIL is REF whatever. For example,
onsiderREF[℄CHAR r
=NIL;REF INT ri=NILThe �rst NIL has the mode REF[℄CHAR and the se
ond has the mode REF INT.Given the de
larationREF INT xx:=NIL

136 CONTENTSthe mode of NIL is REF INT. However, although NIL is a name, you
annot assign to it. That is, theassignmentREF INT(xx):=4would
ause the run-time errorSegmentation faultand, very likely, a
ore dump, when using the Ctrans
ompiler.Nor
an you use NIL in a formula if that would involve dereferen
ing. The only use of NIL is fordetermining, by using an identity relation, that a name refers to it. However, we shall see in the se
tionson queues and trees that this is a vital fun
tion.Now
onsider the de
larationREF REF INT rrri;where the mode of rrri is REF REF REF INT. We
ould make rrri refer to NIL dire
tly using theassignmentrrri:=NILwhen
e the mode of NIL is REF REF INT. Or we
ould use a NIL of mode REF INT by using an anonymousname:rrri:=LOC REF INT:=NILwhen
e the mode of the anonymous name is REF REF INT. In the identity relationrrri IS NILhow
an we tell whi
h NIL is in use? Of
ourse, we
ould use a
ast for rrri, but there is a simpler andmore useful way. First we de
lareREF INT nil ri = NILthen balan
ing will ensure that the identity relationrrri IS nil rigives the required answer with rrri being dereferen
ed twi
e. Alternatively, with the de
larationREF REF INT nil rri = NILwe
an ensure that the identity relationrrri IS nil rriwill also be elaborated
orre
tly. We shall see in the se
tions on queues and trees that the de
laration ofnil ri is more useful.Now
onsider the de
larationsINT x:=ENTIER(random * 6), y;REF INT xx,yy;PROC x or y = REF INT: (random>0.8|x|y)and the identity relationCASE randint(3) IN xx,x or y, NIL ESACISCASE y IN x, SKIP, yy ESACThe balan
ing of the identity relation in
ludes balan
ing of the
ase
lauses. The modes yielded are

11.8. QUEUES 137xx REF REF INTx or y PROC REF INTNIL REF whateverx REF INTSKIP who knows?yy REF REF INTIn a soft
ontext, these modes be
ome:REF REF INT REF INTREF whateverREF INTwho knows?REF REF INTThus the left-hand side is the soft
ontext and the right-hand side (of the identity relation) is the strong
ontext (remember that SKIP is only allowed in a strong
ontext), and the �nal modes are all REF INT.In pra
ti
e, it is rare that identity relations are so
ompli
ated.
Exer
ises11.14 Given the de
larationsFILE f1:=stand in, f2;REF FILE
ur file:=f2;PROC p = REF FILE:(
ur file IS f1|f1|f2)what is the value of(a)
ur file:=f2(b)
ur file :/=: stand in(
) p:=f1(d) p:=:f111.15 Given the de
larations of exer
ise 1, what is the mode of NIL in(a)
ur file:=NIL(b) REF REF FILE ff:=NIL
11.8 QueuesConsider the problem of representing a queue. We shall suppose that the queue is at a football mat
hand that ea
h fan in the queue has a name, in the ordinary sense, and a ti
ket number. Rather than justpresent the solution to this problem, we shall dis
uss the problem in detail and show why the solution iswhat it is.A suitable mode for the fan would beFAN:MODE FAN = STRUCT(STRING name,INT ti
ket)but what would be a suitable de
laration for a queue? At �rst sight, it would appear that a
exible namewhi
h
an refer to a multiple of fans would be suitable:MODE QUEUE = FLEX[1:0℄FANbut there are diÆ
ulties. Firstly, the only way a new fan
ould be added to the queue would be to assigna whole new multiple to a name (in the Algol 68 sense) referring to the queue:QUEUE q; q:=q+FAN("Jim",1)

138 CONTENTSassuming that the operator + has been de
lared with the headerOP + = ([℄QUEUE a,FAN b)[℄QUEUE:If the queue were long, this would be very ineÆ
ient. Se
ondly, given a parti
ular fan, how would we �ndthe fan behind him or her? Knowing the subs
ript of the fan would seem to be the answer, but whathappens if someone joins the queue somewhere in front of the fan in question? Given that there mightbe several fans under
onsideration, the program would have to update all the relevant subs
ripts andkeep a re
ord of whi
h subs
ripts would be relevant.The solution is to represent a queue as a re
ursive stru
ture:MODE QUEUE=STRUCT(FAN fan,REF QUEUE next)Then a queue with two fans in it
ould be represented by the diagramQF RQfan next FQ RQfan next
where the mode of ea
h box is QUEUE and F and RQ stand for FAN and REF QUEUE respe
tively. Noti
ethat the next �eld of the �rst stru
ture refers to the stru
ture on its right. The next �eld of the se
ondstru
ture does not refer to anything.From the de
laration of the mode QUEUE, we
an see that the next �eld of the stru
ture is a namewith mode REF QUEUE. It would appear that it is possible to
onstru
t a queue in the way depi
ted bythe last diagram: ea
h next �eld of ea
h stru
ture would refer to the next stru
ture (of mode QUEUE)and the last next �eld would have the mode REF QUEUE and value NIL.Now
onsider adding another QUEUE to the right-hand end of the queue. We immediately run intoa diÆ
ulty. The value of the next �eld of the last QUEUE is NIL with mode REF QUEUE. However, we
annot assign to NIL, nor
an we repla
e the name NIL with another name to make it refer to a newQUEUE. The reason is that a name of mode REF QUEUE
an only be repla
ed by another name of modeREF QUEUE if the �rst name is referred to by a name of mode REF REF QUEUE. In other words, insteadof making the stru
tures have mode QUEUE, we should make them have mode REF QUEUE. In se
tion 7.2,on �eld sele
tion, we pointed out that the modes of the �elds of a stru
ture name are all pre
eded bya REF. This also applies to a re
ursively-de�ned stru
ture. In this
ase, the mode of the next �eldbe
omes REF REF QUEUE and
ould refer to NIL (with mode REF QUEUE) or to another stru
ture of modeREF QUEUE. We
an depi
t this as

fan next fan nextRQRF RRQ RQRF RRQ NIL
where RQ, RRQ and RF represent the modes REF QUEUE, REF REF QUEUE and REF FAN respe
tively.Now let us
onsider how su
h a queue
ould be
reated. Sin
e the length of the queue at the timethe program is written is unknown (and will
hange as fans join or leave the queue), it is not possible tohave an identi�er for ea
h stru
ture forming the queue. Instead, we
an
reate anonymous names usinga generator. However, we must be able to refer to the queue in order to manipulate it. Let us de
lare aname, identi�ed by head, to refer to the beginning of the queue:REF QUEUE head:=NILWe have made it refer to NIL (with mode REF QUEUE) be
ause the queue is
urrently empty. Using thesuggestion of the last se
tion, we shall de
lareREF QUEUE nilq = NIL;REF QUEUE head:=nilqwhere head has the mode REF REF QUEUE.Let us assign the �rst fan to the queue:head:=LOC QUEUE:=(("Jim",1),nilq)We
an represent this by the diagram

11.8. QUEUES 139RRQ
fan
head

next
"Jim" 1 FAN

nilqRQ

We
an now assign another fan to the queue:next OF head:=LOC QUEUE:=(("Fred",2),nilq)Let us be quite
lear what is happening here. The mode of head is REF REF QUEUE. It is a name whi
hrefers to a name so it has no �elds. We
an sele
t �elds only from a QUEUE or a REF QUEUE. However, the
ontext of a sele
tion is weak(see se
tion 10.3) and so only weak-dereferen
ing is allowed. Thus innext OF headhead is dereferen
ed to mode REF QUEUE and the next �eld sele
ted (with mode REF REF QUEUE). Theanonymous name LOC QUEUE has mode REF QUEUE, so the stru
ture display (with mode QUEUE) is assignedto it, and it in turn is assigned to next OF head without dereferen
ing. This means that the nilq whi
hnext OF head referred to after the �rst fan ("Jim",1) was added to the queue has been repla
ed by these
ond LOC QUEUE whi
h is what we wanted. We
an now depi
t the queue byRRQ
fan
head

next
"Jim" 1 FAN

RQ nilqfan next RQ
FAN"Sam" 2We
ould now extend the queue by writingnext OF next OF queue:=LOC QUEUEbut sin
e we do not know how long the queue might be
ome,
learly we
annot go on writingnext OF next OF ...What we need is some way of referring to the tail of the queue without lots of sele
tions. Be
ause thetail of the queue always has mode REF REF QUEUE (it is the next �eld of a REF QUEUE), what we need isa name of mode REF REF REF QUEUE (yes, three REFs). Here it is:REF REF QUEUE tail;but again we run into a diÆ
ulty (the last one). When the queue is empty, head refers to nilq, butwhat does tail refer to sin
e we
annot sele
t from nilq (be
ause it is NIL)? The solution is to makehead have the mode REF REF REF QUEUE as well as tail and generate a name of mode REF REF QUEUEto refer to nilq! (bear with it, we're almost there):tail:=head:=LOC REF QUEUE:=nilqIn this triple assignment, only head is dereferen
ed. We
an depi
t this as

140 CONTENTS
head

nilq RQ
RRQ
RRRQ tail

Now we
an assign the �rst fan to the head of the queue:REF REF QUEUE(head):=LOC QUEUE:=(("Jim",1),nilq))and make tail refer to the tail of the queue withtail:=next OF headin whi
h head is dereferen
ed twi
e, but the sele
tion is not dereferen
ed at all. The queue
an now bedepi
ted as shown below.
head

RRQ
tailRRRQ

fan next nilqRQ
"Jim" 1 FAN

A queue is one example of what is
alled a linked-list.
Exer
ises11.16 Extend the queue by assigning another REF QUEUE to tail.11.17 Now make tail refer to the tail of the queue again.11.18 Has the name referred to by head
hanged after adding the new REF QUEUE?
11.9 The pro
edure add fanWe are now ready to develop a pro
edure to add a fan to the end of the queue. Clearly, there are twodi�erent situations: an empty queue and a non-empty queue. Although we only need tail to extend thequeue, we need head to determine whether the queue is empty. So here is the header:PROC add fan = (REF REF REF QUEUE head,tail,REF FAN fan)VOID:

11.10. MORE QUEUE PROCEDURES 141Firstly, we need to test whether the queue is empty:IF head IS nilqRemember that the mode of head is REF REF REF QUEUE, so in the identity relation head is dereferen
edtwi
e.Se
ondly, if the queue is empty, we assign an anonymous REF QUEUE to the name head refers to andassign (fan,nilq) to the REF QUEUE:THEN REF REF QUEUE(head):=LOC QUEUE:=(fan,nilq)but this will not work be
ause the s
ope of the LOC QUEUE is limited to the routine denotation. We mustuse a global generator:THEN REF REF QUEUE(head):=HEAP QUEUE:=(fan,nilq)Then we have to ensure that tail refers to the tail of the queue:tail:=next OF headIf the queue is not empty, we assign an anonymous REF QUEUE to the name that tail points to:ELSE REF REF QUEUE(tail):=HEAP QUEUE:=(fan,nilq)and make tail refer to the new tail:tail:=next OF tailHere is the
omplete pro
edure:PROC add fan = (REF REF REF QUEUE head,tail,REF FAN fan)VOID:IF head IS nilqTHEN #the queue is empty#REF REF QUEUE(head):=HEAP QUEUE:=(fan,nilq);tail:=next OF headELSEREF REF QUEUE(tail):=HEAP QUEUE:=(fan,nilq);tail:=next OF tailFI #add fan#
Exer
ises11.19 It looks as though add fan
ould be optimised. Rewrite the body of add fan so that the overallstru
ture istail:=next OF (REF REF QUEUECO IF ... FI plus two assignments CO)11.20 Write a program
ontaining the ne
essary de
larations and loop to
reate a queue
ontaining 1000fans|alternate the names of the fans between Iain and Fiona and in
rement the ti
ket numbersby 1. Compile and run the program to
he
k that there are no errors (no output will be produ
ed).
11.10 More queue pro
eduresWe
an now address three more pro
edures: how to insert a fan into a queue, how to remove a fan fromthe queue, and how to print the queue. Let us take the printing pro
edure �rst. Here it is:PROC print queue = (REF REF QUEUE head)VOID:IF head IS nilq THEN print(("NIL",newline))ELSE print((newline,"(",name OF fan OF head,",",whole(ti
ket OF fan OF head,0),")=>"));print queue(next OF head)FI

142 CONTENTSBy not using the triple REF name for the head of the queue, we
an use re
ursion to simplify thepro
edure. Re
ursion is
ommon in pro
edures for linked-lists.Inserting a fan is a little more diÆ
ult. There are several possibilities: the queue
an be empty ornon-empty. If it is non-empty, the fan
an be inserted at the head of the queue, or if there are at leasttwo fans in the queue, the fan
ould be inserted somewhere between the head and the tail. The questionis, how many parameters are required for the pro
edure? Clearly, we need head to determine whetherthe queue is empty, tail to be updated in
ase it is or if the fan is to be added to the end of the queue.Here is a possible header:PROC insert fan=(REF REF REF QUEUE head,tail,REF FAN fan)VOID:We need a
riterion for determining where in the queue a fan should be inserted. Here is one: the fansshould be inserted in the order of ti
ket number (using a queue is not an eÆ
ient way of doing this, butthis
riterion will do for our purposes). Here is insert fan with a diagram to help you understand it:PROC insert fan=(REF REF REF QUEUE head,tail,REF FAN fan)VOID:IF head IS nilqTHEN #the queue is empty#REF REF QUEUE(head):=HEAP QUEUE:=(fan,nilq);tail:=next OF headELIF ti
ket OF fan < ti
ket OF fan OF headTHEN#insert the fan at the head of the queue#REF REF QUEUE(head):=HEAP QUEUE:=(fan,head)ELIF next OF head IS nilqTHEN #add the fan after the head#REF REF QUEUE(tail):=HEAP QUEUE:=(fan,nilq);tail:=next OF tailELIF REF QUEUE marker:=head;WHILEIF (next OF marker ISNT nilq)THENti
ket OF fan>ti
ket OF fan OF next OF markerELSE FALSEFIDO marker:=next OF marker OD;next OF marker IS nilqTHEN#add the fan to the end of the queue#REF REF QUEUE(tail):=HEAP QUEUE:=(fan,nilq);tail:=next OF tailELSECO insert the fan between `marker'and `next of marker' COnext OF marker:=HEAP QUEUE:=(fan,next OF marker)FI

11.11. TREES 143

fan next fan next
fan next

Existing list ofREF QUEUEs
REF QUEUE to be inserted

RRQmarker

There are three lines where you need to look
arefully at the modes and values involved:� the line whi
h ends in (fan,head),� the line whi
h ends in (fan,next OF marker),� the line
ontaining the > operator.Dis
ussion of this pro
edure
ompletes our examination of queues.
Exer
ises11.21 In the pro
edure insert fan, explain the
ir
umstan
es in whi
h the loop will terminate.11.22 Using the pro
edure print queue,
on�rm that the pro
edure insert fan works.11.23 Write the pro
edure delete fan whi
h will delete a fan with a given ti
ket number from the queue.It should yield the fan if it has been deleted and FALSE if it
annot be found. This diagram shouldhelp you:

("Fiona", n-1)

("Fiona", n-1)

("Fiona", n+1

("Fiona", n+1

("Iain", n

("Iain", n

))

)
)garbage

In
lude the pro
edure in a program and test it.
11.11 TreesBoth queues and trees are examples of re
ursive stru
tures. Queues
ontain only one link betweenindividual stru
tures, trees
ontain at least two. Trees are another kind of linked-list and are interestingbe
ause they give more examples of how re
ursive pro
edures are used to manipulate re
ursively-de�neddata stru
tures.There are two prin
ipal kinds of trees in
ommon use: B-trees and binary trees. B-trees (sometimes
alled balan
ed trees) are too advan
ed to be des
ribed here.

144 CONTENTSA binary tree
onsists of a number of forks, usually
alled nodes, whi
h are linked with two links pernode.Here is an example of a small tree:
1there

1was1a
1lady 1young

1of
1Ryde

The topmost node is
alled the root (trees are usually depi
ted upside-down2). Ea
h node
onsists ofthree parts: the data whi
h ea
h node bears and left and right referen
es whi
h
an refer to other nodes.In the small tree shown above, there are seven nodes on �ve levels. There are 4 nodes on the left bran
hof the root and 2 on the right, so that the tree is unbalan
ed.A binary tree is parti
ularly suitable for the ordering of data: that is, for arranging data in a prede�nedorder3. In the previous se
tion, in pro
edure insert fan, we
onsidered inserting a fan into a queuein as
ending order of ti
ket number. This is an ineÆ
ient way of ordering data. For example, supposethere are 100 fans in the queue. Then, on average, we
an expe
t to insert a fan halfway down the queue;whi
h means 50
omparisons of ti
ket numbers. If the fans were stored as a balan
ed binary tree, themaximum number of
omparisons would be only 7 (be
ause 26 < 100 < 27). For larger numbers, thedi�eren
e between the two kinds of linked-list is even more marked. For 1000 fans, a queue would need500
omparisons on average, whereas a balan
ed binary tree would need 10 at most. While it is true thatthese �gures are minima (they assume that the tree is balan
ed, that is, that there are as many nodes tothe left of the root as to the right), nevertheless, on average, a binary tree is mu
h more eÆ
ient than aqueue for ordering data.Here is a typi
al mode de
laration for a binary tree:MODE WORD = STRUCT(STRING wd, INT
t, REAL fq),TREE = STRUCT(REF WORD w, REF TREE left,right);2The remainder of the intriguing limeri
k runs as follows:Who ate sour apples and died.The apples fermented inside the lamentedand made
ider inside 'er inside.3but only if the tree is reasonably balan
ed

11.12. PARALLEL PROGRAMMING 145The mode of the data in the de
laration of TREE is REF WORD so that if an item of data is moved around,it is only the referen
e whi
h is moved. This is more eÆ
ient than moving the data item itself.We shall give two example tree pro
edures: adding an item of data to the tree and printing the tree.We need to
he
k whether the tree at some node is empty. For this, we use the de
larationREF TREE leaf = NILHere is the pro
edure add word:PROC add word = (REF REF TREE root,REF WORD w)VOID:IF root IS leafTHEN root:=HEAP TREE:=(w,leaf,leaf)ELIF wd OF w < wd OF w OF rootTHEN add word(left OF root,w)ELIF wd OF w > wd OF w OF rootTHEN add word(right OF root,w)ELSE
t OF w OF root+:=1FIThe ordering relation in add word is the alphabeti
al ordering of the string in ea
h data item. Whenthe string in the data item to be added to the tree has been found in the tree, the o

urren
e number isin
remented by 1 (see the ELSE
lause above). Note the use of re
ursion.Printing the tree follows a similar pattern, but when the \root" under
onsideration is a leaf, nothinghappens:PROC print tree=(REF FILE f,REF REF TREE root)VOID:IF root ISNT leafTHEN print tree(f,left OF root);put(f,(wd OF w OF root,
t OF w OF root,newline));print tree(f,right OF root)FIAs you
an see, re
ursion is vital here. Although it is true that re
ursion
an be avoided by using a loop,re
ursion is better be
ause it
lari�es the logi
.The allo
ation and release of memory for linked-lists (in
luding trees) are quite transparent to theprogram. When a tree is read, and nodes possibly deleted, all the lost memory is
olle
ted every so oftenby a garbage
olle
tor. You do not have to worry about the details of memory maintenan
e|it is alldone for you by the
ompiler and the run-time system. If you write a program whi
h relies heavily onglobal generators, then you should allo
ate extra memory to the heap (see the on-line information fordetails of how to use the Algol 68
ompilation system).
Exer
ises11.24 Write a program whi
h reads a text book and
reates a binary tree
ontaining the number ofo

urren
es of ea
h of the letters A{Z and a{z (that is,
ase is signi�
ant). Print a report withthe frequen
y of o

urren
e represented by a per
entage of the total number of letters in the bookto 2 de
imal pla
es. You should print the letters going downwards with 13 lines for ea
h
olumn:�rst the upper
ase letters, then the lower
ase. Only print lines for those letters whi
h o

ur inthe book (use mem
hannel to build the
omplete table in memory before printing).
11.12 Parallel programmingUnfortunately, the Ctrans
ompiler does not provide parallel programming, so this se
tion has beenremoved for the third edition of this book. It will be reinstated when an Algol 68
ompiler is madeavailable in
orporating parallel programming.

146 CONTENTS11.13 SummaryA ma
hine word is a

essed using the mode BITS and a number of operators. A value of mode BITS
anbe denoted using binary, quaternary (radix 4), o
tal or hexade
imal digits. Names whi
h refer to namesform the basis of self-referential modes (via STRUCT and REF) from whi
h we
an
onstru
t queues andtrees. Some of the basi
 pro
edures were
overed whi
h manipulate these data stru
tures.

Chapter 12
Program development
Of
ourse, there is more to writing programs than learning a programming language. Although youwill �nd many books on programming languages, you will not �nd many on
omputer programming assu
h. That is be
ause it is very mu
h a
raft. Be aware that this book does not, and
annot, train youto be
ome a professional programmer. Only on-the-job training and experien
e
an do that|but afterworking through this
hapter, you will have an idea of some of the a
tivities a professional programmerdoes.In the
omputer industry, there is a widespread attitude that program maintenan
e helps build goodprogrammers. There are sound reasons for this. One is that reading other people's programs helps youlearn how to lay out programs, how to organise the sour
e, how to write stru
tured
ode and how tosolve the sort of problems that a programmer meets daily. Another reason is that program maintenan
eusually involves either removing errors (usually
alled bugs) or making small
hanges to the program toadapt it to
hanging requirements. You have to learn how a program works before you
hange it andreading someone else's program means that the philosophy of the program (the approa
h of the programto solving a problem) is already there|you do not have to
reate it.However, there is no substitute for writing your own programs. The �rst se
tion of this
hapter is
on
erned with how to write your own programs, from problem analysis to do
umentation. The nexttopi
 dis
usses how to a

ess operating system pro
edures. This introdu
es almost all those aspe
ts ofAlgol 68 whi
h involve dire
t ma
hine a

ess apart from the mode BITS and its asso
iated operatorswhi
h were
overed in
hapter 11.Next, we turn to the �rst aspe
t of program maintenan
e: how to understand a program. A smallutility (lf) is provided with the Ctrans
ompilation system do
umentation. This se
tion looks at lf andanalyses its fun
tioning.
12.1 Writing programsThe �rst stage in the development of a new program
onsists of analysing the problem that the programmust solve. Unfortunately, there is no known method or methodology whi
h will solve any kind ofproblem. However, a parti
ularly good book on problem solving was written by George P�olya(see theBibliography) and although the book is geared towards mathemati
al problems, it will help you solvemost te
hni
al problems.Problem analysis is not usually taught to beginners at
omputer programming be
ause, so far as weknow, it is mainly an intuitive a
tivity (it is a bran
h of Heuristi
s). Learning to analyse a problem withthe intention of writing a
omputer program is largely a

omplished by writing simple programs followedby programs of in
reasing sophisti
ation|this is sometimes
alled \learning by doing". When we startanalysing a
tual programs later in the
hapter, ea
h su
h analysis will be pre
eded by a problem analysis.You will be able to see how the program, as presented, a

ords with that analysis.Nevertheless, even though no de�nitive method
an be given, there are guidelines whi
h help you toappre
iate and analyse problems suitable for
omputer solution. In the �eld of systems analysis, youwill �nd various methodologies (su
h as SSADM). These are usually geared towards large-s
ale systemsand are designed to prevent systems designers from forgetting details. In the
ontext of program design,knowing the data to be used by the program and the data to be produ
ed by the program is the prin
ipalguide to knowing what manipulations the program must perform. Data knowledge spe
i�es the booksa

essed by the program and usually
onstitutes a substantial part of the program's do
umentation.On
e you know the data your program operates on, you
an determine the a
tual manipulations, or
al
ulations, required. At this stage, you should be able to determine whi
h data stru
tures are suitable147

148 CONTENTSfor the solution of your problem. The data stru
tures in turn lead you to the mode de
larations. The kindof data stru
ture also helps to determine the kind of pro
edures required. Some examples: if your datastru
tures in
lude a queue, then queue pro
edures will be needed; or, if you are using multiples (repeateddata), then you will almost invariably be using loops. Again, if an input book
ontains stru
tured data,su
h as an item whi
h is repeated many times, then again your program will
ontain a pro
essing loop.The Ja
kson programming methodology is a useful way of spe
ifying pro
edures given the data stru
turesto be manipulated (see the bibliography).
12.1.1 Top-down analysisAfter you have determined suitable modes and pro
edures, you need to analyse the problem in a top-downmanner. Basi
ally, top-down analysis
onsists of determining the prin
ipal a
tions needed to performa given a
tion, then analysing ea
h of the prin
ipal a
tions in the same way. For example, suppose wewished to write a program to
opy a book whose identi�er is given on the
ommand line. The topmoststatement of the problem
ould be
opy an identified bookThe next stage
ould beget the book identifieropen the bookestablish the output
opy book
opy the input book to output
lose both booksAt this stage, the pro
ess \
opy the input book to output" will depend on the stru
ture of the inputbook. If it is text, with lines of di�ering length, you
ould use a name of mode REF STRING. If thebook
ontains similar groupings of data,
alled re
ords, then it would be more appropriate to de
lare astru
tured mode and write appropriate input and output pro
edures:DO get re
ord from input bookput re
ord to output bookODThe analysis is
ontinued until ea
h a
tion
an be dire
tly
oded.
12.1.2 Program layoutBefore you start
oding the program (writing the a
tual Algol 68 sour
e program), you should be awareof various programming strategies besides the di�erent means of manipulating data stru
tures. The �rstto address is the matter of sour
e program layout.In the examples given in this book,
ode has been indented to re
e
t program stru
ture, but evenin this matter, there are
hoi
es. For example, some people indent the THEN and ELSE
lauses of an IF
lause:IF ...THEN ...ELSE ...FIinstead ofIF ...THEN ...ELSE ...FIOthers regard the parts of the IF
lause as some kind of bra
keting:

12.1. WRITING PROGRAMS 149IF ...THEN...ELSE...FISome people write a pro
edure as:PROC ...BEGIN...ENDOthers never use BEGIN and END, but only use parentheses.Another point is whether to put more than one phrase on the same line. And what about blank lines|these usually improve a program's legibility. Whatever you de
ide, keep to your de
ision throughout theprogram (or most of the program) otherwise the format of the
ode may prove
onfusing. Of
ourse, youwill learn by your mistakes and usually you will
hange your programming style over the years.12.1.3 De
larationsAnother matter is whether to group de
larations. Unlike many programming languages, Algol 68 allowsyou to pla
e de
larations wherever you wish. This does not mean that you should therefore sprinklede
larations throughout your program, although there is something to be said for de
larations beingas lo
al as possible. There are also advantages in grouping all your global de
larations so that they
an be found easily. Generally speaking, it is a good idea to group all global names together (those inthe outermost range) and within that grouping, to de
lare together all names whi
h use the same basemode (for example, group de
larations of modes CHAR, [℄CHAR and STRING). Some of the exer
ises in thisbook only de
lare names when they are immediately followed by related pro
edures. If your programneeds many global names, it makes sense to de
lare them near the beginning of the program, after modede
larations, so that if subsequent
hanges are required, you know that all the global name de
larationsare together and therefore you are unlikely to miss any.12.1.4 Pro
eduresThe next
onsideration is breaking your
ode into pro
edures. As you analyse the problem, you will �ndthat some of the pro
essing
an be spe
i�ed in a single line whi
h must be analysed further before it
anbe dire
tly
oded. Su
h a line is a good indi
ation that that pro
ess should be written as a pro
edure.Even a pro
edure whi
h is used on
e only is worth writing if the internal logi
 is more than a
ouple of
onditional
lauses, or more than one
onditional
lause even.You also have to de
ide between repeating a pro
edure in a loop, or pla
ing the loop in the pro
edure.De
iding the level at whi
h logi
 should be put in a pro
edure is largely the produ
t of experien
e|yoursand other people's|another reason for maintaining existing programs.When you have de
ided where to use pro
edures, you should then
onsider the interfa
e between thepro
edure and the
ode that
alls it. What parameters should it have, what yield, should you use a unitedmode for the yield, and so on. Try to have as few parameters as possible, but preferably use parametersrather than assign to names global to the pro
edure. The design of individual pro
edures is similar tothe design of a
omplete program.When you are
oding a pro
edure, be espe
ially
areful with
ompound Boolean formul�. Fromexperien
e, this is where most mistakes arise. If you are writing a pro
edure whi
h manipulates a linkedlist, draw a diagram of what you are trying to do. That is mu
h easier than trying to pi
ture the stru
turesin your head.12.1.5 Monetary valuesProblems
an arise when dealing with money in
omputer programs be
ause the value stored must beexa
t. For this reason, it is usually argued that only integers should be used. In fa
t, real numbers
anbe used provided that the pre
ision of the mantissa is not ex
eeded. Real numbers are stored in twoparts: the mantissa, whi
h
ontains the signi�
ant digits of the value, and the exponent, whi
h multiplies

150 CONTENTSthat value by a power of 2. In other words, using de
imal arithmeti
, the number 3 � 14159 � 10�43 has3 � 14159 as a mantissa and �43 as an exponent. Be
ause real numbers are stored in binary (radix 2),the mantissa is stored as a value in the range 1 � value < 2 with the exponent adjusted appropriately.There are a number of identi�ers de
lared in the standard prelude, known as environment enquiries,whi
h serve to determine the range and pre
ision of real numbers. The real pre
ision is the numberof bits used to store the mantissa, while the value max exp real is the maximum exponent whi
h
an bestored for a binary mantissa (not the number of bits, although it is a guide to that number). The realwidth and exp width say how many de
imal digits
an be written for the mantissa and the exponent.The values max real and min real are the maximum and minimum real numbers whi
h
an be stored inthe
omputer. All these values are spe
i�ed by the IEEE 754{1985 standard on \Binary Floating-PointArithmeti
" whi
h is implemented by most mi
ropro
essors today.The value of real width is 15 meaning that 15 de
imal digits
an be stored a

urately. Leaving amargin of safety, we
an say that an integer with 14 digits
an be stored a

urately, so that the maximumamount is 99; 999; 999; 999; 999units. If the unit of
urren
y is divided into smaller units, su
h as the sterling pound into pen
e, or thedollar into
ents, then the monetary value should be stored in the smaller unit unless it is known thatthe smaller unit is not required. Thus the greatest sterling amount that
an be handled would appear tobe $999,999,999,999.99.However, Algol 68 allows arithmeti
 values to be stored to a lesser or greater pre
ision. The modesINT, REAL, COMPL and BITS
an be pre
eded by any number of SHORTs or LONGs (but not both). ThusLONG LONG LONG REAL r;is a valid de
laration for a name whi
h
an refer to an ex
eptionally pre
ise real. When de
laringidenti�ers of other pre
isions, denotations of the required pre
ision
an be obtained by using a
ast withthe standard denotation of the value as inLONG REAL lr = LONG REAL(1);One alternative is to use LONG with the denotation:LONG REAL lr = LONG 1.0;Another is to use the LENG operator, whi
h
onverts a value of mode INT or REAL to a value of the nextlonger pre
ision, as inLONG REAL lr = LENG 1.0;SHORTEN goes the other way.SHORT SHORT INT ssi = SHORTEN SHORTEN 3;All the arithmeti
 operators are valid for all the LONG and SHORT modes. Although you
an write asmany LONGs or SHORTs as you like, any implementation of Algol 68 will provide only a limited number.The number of di�erent pre
isions available is given by some identi�ers in the standard prelude
alledenvironment enquiries. They are� int lengths� int shorths� real lengths� real shorths� bits lengths� bits shorthsThe values for
omplex numbers are the same as those for reals. For integers, where int lengthsis greater than 1, long max int and so on are also de
lared, and similarly for short max int. Ifint lengths is 1, then only the mode INT is available.For the Ctrans
ompiler

12.1. WRITING PROGRAMS 151int lengths=2int shorths=3Thus it is meaningful to writeLONG INT long int:=long max int;INT int:=max int;SHORT INT sh int:=short max int;SHORT SHORT INT sh sh int:=short short max int;The same applies to the mode BITS. Try writing a program whi
h prints out the values of the environmentenquiries mentioned in this se
tion. The transput pro
edures get, put, get bin and put bin all handlethe available LONG and SHORT modes.Although you
an still writeLONG LONG INT lli=LONG LONG 3;the a
tual value
reated may not di�er from LONG INT depending on the value of int lengths. Notethat you
annot transput a value whi
h is not
overed by the available lengths/shorths. Use LENG orSHORTEN before trying to transput.For monetary values, LONG INT is available with the value of long max int being9,223,372,036,854,775,807whi
h should be big enough for most amounts.12.1.6 OptimisationThere are two well-known rules about optimisation:1. Don't do it.2. Don't do it now.However, often there is a great temptation to optimise
ode, parti
ularly if two pro
edures are verysimilar. Using identity de
larations is a good form of optimisation be
ause not only do they save somewriting, they also lead to more eÆ
ient
ode. However, you should avoid pro
edure optimisation like theplague be
ause it usually leads to more
ompli
ated or obs
ure
ode. A good indi
ator of bad optimisationis the ne
essity of extra
onditional
lauses. In general, optimisation is never a primary
onsideration:you might save a few millise
onds of
omputer time at the expense of a few hours of programmer time.12.1.7 Testing and debuggingWhen writing a program, there is a strong tenden
y to write hundreds of lines of
ode and then testit all at on
e. Resist it. The a
tual writing of a program rarely o

upies more than 30% of the wholedevelopment time. If you write your overall logi
, test it and it works, you will progress mu
h fasterthan if you had written the whole program. On
e your overall logi
 works, you
an
ode
onstituentpro
edures, gradually re�ning your test data (see below) so that you are sure your program works atea
h stage. By the time you
omplete the writing of your program, most of it should already be working.You
an then test it thoroughly. The added advantage of step-wise testing is that you
an be sure ofexer
ising more of your
ode. Your test data will also be simpler.The idea behind devising test data is not just giving your program
orre
t data to see whether it willprodu
e the desired results. Almost every program is designed to deal with ex
eption
onditions. Forexample, the lf program has to be able to
ope with blank lines (usually, zero-length lines) so the testdata should
ontain not one blank line, but also two
onse
utive blank lines. It also has to be able to
ope with extra-long lines, so the test data should
ontain at least one of those. Programs whi
h
he
kinput data for validity need to be tested extensively with erroneous data.It is parti
ularly important that you test your programs with data designed to exer
ise boundary
onditions. For example, suppose the
reation of an output book fails due to a full hard disk. Have youtested it, and does your program terminate sensibly with a meaningful error message? You
ould trytesting your program with the output book being
reated on a
oppy disk whi
h is full.Sometimes a program will fault with a run-time error su
h as

152 CONTENTSRun time fault (aborting):Subs
ript out of boundsor errors asso
iated with sli
ing or trimming multiples. A good way of dis
overing what has gone wrongis to write a monitor pro
edure on the lines ofPROC monitor=(INT a,[℄UNION(SIMPLOUT,PROC(REF FILE)VOID)r)VOID:BEGINprint(("*** ",whole(a,0)));print(r)ENDand then
all monitor with an identifying number and string at various points in the program. Forexample, if you think a multiple subs
ript is suspe
t, you
ould writemonitor(20,("Subs
ript=",whole(subs
ript,0)))By pla
ing monitors at judi
ious points, you
an follow the a
tion of your program. This
an be parti
-ularly useful for a program that loops unexpe
tedly: monitors will tell you what has gone wrong. If youneed to
olle
t a large amount of monitors, it is best to send the output to a book. The disadvantage ofthis is that the operating system does not register a book as having a size until it has been
losed after
reating. This means that if your program
reates a monitoring book, writes a large amount of data to itand fails before the book is
losed, you will not be able to read any of the
ontents be
ause, a

ording tomost operating systems, there will not be any
ontents. A way round this problem is to open the bookwhenever you want to write to it, position the writing position at the end of the book, write your data toit and then
lose the book. This will ensure that the book will have all the exe
uted monitors (unless, of
ourse, it is a monitor whi
h has
aused the program to fail!). The pro
edure debug given in se
tion 9.9will do this.An alternative method of tra
ing the a
tion of a program at run-time is to use a sour
e-level debugger.The DDD program
an help you debug the C sour
e program produ
ed by the Ctrans
ompiler, but unlessyou understand the C programming language and the output of the Ctrans
ompiler, you will not �nd ituseful. Monitors, although an old-fashioned solution to program debugging, are still the best means ofgathering data about program exe
ution.Another proven method of debugging (the pro
ess of removing bugs) is dry-running. This involvesa
ting as though you are the
omputer and exe
uting a small portion of program a

ordingly. An examplewill be given in the analysis of the lf program later.Sometimes, no matter what you do, it just seems impossible to �nd out what has gone wrong. Thereare three ploys you
an try. The �rst, and easiest, is to imagine that you are explaining your program toa friend. The se
ond is to a
tually explain it to a friend! This �nds most errors. Finally, if all else fails,
onta
t the author.12.1.8 Compilation errorsYou
an trust the
ompiler to �nd grammati
al errors in your program if any are there. The
ompilerwill not display an error message for some weird, but legal,
onstru
tion. If your program is synta
ti
ally
orre
t (that is, it is legal a

ording to the rules of the language), then it will parse
orre
tly.When
ompiling a program of more than a hundred lines, say, you
an use the parsing option (-
he
k)whi
h will more than double the speed of
ompilation. When your program parses without error, thenit is worth doing a straight
ompilation (see the online do
umentation for program mm in the Ctrans
ompilation system).A de�nitive list of error messages
an be found in the �le
trans-1.0.0/
trans/a/message.a68You will �nd that most of the messages are easy to understand. O

asionally, you will get a messagewhi
h seems to make no sense at all. This is usually be
ause the a
tual error o

urs mu
h earlier inyour program. By the time the
ompiler has dis
overed something wrong, it may well have
ompiled (ortried to
ompile) several hundred lines of
ode. A typi
al error of this sort is starting a
omment andnot �nishing it, espe
ially if you start the
omment with an opening bra
e ({), whi
h gives rise to thefollowing error message:

12.1. WRITING PROGRAMS 153ERROR (112) end of file inside
omment or pragmatIf you start a
omment with a sharp (#) and forget to �nish it likewise, the next time a sharp appears atthe beginning of another
omment, the
ompiler will announ
e all sorts of weird errors.1Another kind of troublesome error is to insert an extra
losing parenthesis or END. This
an produ
elots of spurious errors. For example:ERROR (118) FI expe
ted here(at
hara
ter 48)ERROR (203) ELSE not expe
ted here(at
hara
ter 4)ERROR (140) BOOL, INT or UNION required here,not VOIDERROR (116) bra
kets mismat
h(at
hara
ter 2)ERROR (159) elements of in-partsmust be unitsERROR (117) FINISH expe
ted here(at
hara
ter 3)Omitting a semi
olon, or inadvertently inserting one will also
ause the appearan
e of
urious errormessages. Messages about UNIONs usually mean that you should use a
ast to ensure that the
ompilerknows whi
h mode you mean. If, for example, you have a pro
edure whi
h expe
ts a multiple of mode[℄UNION(STRING,[℄INT)and you present a parameter like((1,2),(4,2),(0,4))then the
ompiler will not know whether the display is a row-display or a stru
ture-display. Either youshould pre
ede it with a suitable mode, or modify your pro
edure to take a single [℄INT and loop throughit in twos. Having to modify your program be
ause the
ompiler does not like what you have written israre however.12.1.9 Arithmeti
 over
owSometimes your program will fail at the time of elaboration or \run-time" due to arithmeti
 over
ow. If,during a
al
ulation, an intermediate result ex
eeds the
apa
ity of an INT, normally, no indi
ation willbe given other than erroneous results. In the standard prelude that
omes with the Ctrans
ompiler, anumber of spe
ial arithmeti
 operators are provided whi
h
he
k for integer over
ow. These are PLUS,MINUS and TIMES. They are de�ned for LONG INT, INT, SHORT INT and SHORT SHORT INT (see se
tion13.6.1 for details).Over
ow of REAL numbers
an be dete
ted by the
oating-point unit. The standard prelude
ontainsthe value fpu
w algol 68 round of mode SHORT BITS and the pro
edurePROC set fpu
w = (SHORT BITS
w)VOID:The small test program testov (to be found with the Ctrans
ompilation system do
umentation) illus-trates testing for over
ow both with integers and real numbers.12.1.10 Do
umentationThe most tedious aspe
t of writing a program is do
umenting it. Even if you des
ribe what the programis going to do before you write it, but after you have designed it, do
umentation is not usually a vitallyinteresting task. Large programming teams often have the servi
es of a te
hni
al writer whose job it isto ensure that all program do
umentation is
ompleted.21One way of avoiding this sort of error is to use \lexi
al" highlighting with your favourite editor. A missingquote or sharp will
ause large amounts of your program to be displayed as a string denotation or a
omment.2Various s
hemes have been developed for do
umenting a program as it is written, They are often
alled\literate programming".

154 CONTENTSExisting programs are usually do
umented and there is no doubt that the best way of learning todo
ument a program is to see how others have done it. There are several do
umentation standards inuse, although most large
ompanies have their own. Generally speaking, the do
umentation for a programshould
ontain at least the following� the program name� the language used to write the program� a short des
ription of what the program does� the details of all books used by, or produ
ed by, the program, in
luding the s
reen and the printer� an analysis of how the program works, parti
ularly any spe
ial algorithms or data stru
tures (queuesand trees are examples)� who wrote the program, and when� the lo
ation of the sour
e
ode� the latest listing of the sour
e
odebut not ne
essarily in the order given above. The aim of program do
umentation is to make it easy toamend the program, or to use it for a subsequent rewrite.Lastly, it is worthwhile saying \don't be rigid in program design". If, as you rea
h the more detailedstages of designing your program, you dis
over that you have made a mistake in the high-level design, bewilling to ba
ktra
k and revise it. Design faults are usually attributable to faulty analysis of the problem.
12.2 Non-
anoni
al inputThe non
anon program provides a means of entering data via the keyboard without e
hoing it to thes
reen. This is known as non-
anoni
al input mode, the usual e
hoing of input being
anoni
al inputmode. The general details of terminal
ontrol are very
omplex, but simple a

ess has been providedwith the kbd
hannel.Here is a sample program whi
h may be used to test the e�e
t of kbd
hannel:PROGRAM non
anon CONTEXT VOIDUSE standardBEGINSTRING password;FILE kbd; open(kbd,"",kbd
hannel);WHILECHAR
h; get bin(kbd,
h);
h /= REPR lfDO password+:=
h;print("*")OD;
lose(kbd);print(("You entered [",password,"℄",newline))ENDFINISHNoti
e that the program
annot be aborted by pressing ^C. Ensure you
lose the FILE opened with thekbd
hannel after use otherwise you'll �nd all your
ommands at the
ommand prompt une
hoed. Ifthat happens, issue the following
ommand at the prompt:$ stty sanewhen normal e
hoing will be restored.

12.3. A SIMPLE UTILITY 15512.3 A simple utilityWhen you are writing
omputer programs, it is very useful to be able to
opy your Algol 68 sour
eprograms to a printer with line numbers. Many editors, in
luding vim, Ema
s and FTE, use line numbers.When the Algol 68
ompiler �nds an error in your program, it displays the o�ending line together withits number and a des
riptive message on the s
reen and the number of the
hara
ter in the line wherethe error o

urred. However, it is insuÆ
ient to merely
opy the
ontents of a �le to the printer (unlessyou are using the spooling fa
ility of a header �le) be
ause the output will not
ontain any identifyinginformation.What is required is a small program whi
h will optionally write line numbers and whi
h will writethe name of the �le being printed together with the date and time at whi
h the �le was last modi�ed. Apage number is another useful item as it prevents pages being lost when the listing is made on separatesheets of paper. It would also be very useful to be able to spe
ify where in a �le a listing should startand where it should �nish. Su
h a program is
alled a utility. Noti
e that the program must be able tohandle zero-length lines as well as lines whi
h are too long to be printed on one line alone. Lastly, someeditors allow you to insert tab
hara
ters into your do
ument, so the utility must be able to print the �lewith the
orre
t indentation.The pre
eding problem analysis shows that we
ould write su
h a program if we knew how toobtain the date and time of last modi�
ation of a �le from the operating system. In the dire
tory/usr/share/do
/
trans/pame, you will �nd the sour
e of the program lf whi
h solves the problemdes
ribed above for the Linux operating system. The sour
e of lf is 520 lines long. Compile it and runit with the argument -h. The help information displayed by the program should be displayed by everyprogram you write whi
h is used at the
ommand line: it prevents a

idental use from
ausing damageto your operating system �les or dire
tories.12.3.1 The sour
e
odeThere are many ways of ta
kling the understanding of a program, but here is a method whi
h does helpwith Algol 68 programs. In summary,1. See what the program does.2. Look at the prin
ipal pro
essing.3. Examine the mode de
larations.4. Examine the routines.5. Repeat steps 2{4 for ea
h routine.Stage one of examining a program is to see what it does. Examples of its output, and possibly itsinput, help you to identify the a
tions of various parts of the program. Do
umentation of the input andoutput would suÆ
e, but neither exists in this
ase be
ause the input is a plain text �le and the outputis better seen than des
ribed. Compile the Algol 68 example program lf in/usr/share/do
/
trans/examplesand use it to list the �le test.lf (in the same dire
tory) with line numbers on your printer using the
ommandlf -pg -n test.lf | lprto pipe the output to the printer unless you have a LaserJet 4 or 6L when you
an omit the -pg argument.Noti
e that the time and date the �le was last modi�ed appears at the top of ea
h page, together withthe identi�er of the �le and the page number. If you used the -n parameter to print the test �le, ea
hline will be pre
eded by a line number and a
olon. If you did not list the �le with line numbers, do sonow be
ause the line numbers will highlight another feature of the program. The �rst line in test.lf istoo long to be printed on one line, so the program breaks it into two parts. The se
ond part does nothave a line number sin
e it is part of the same line in the input.The se
ond stage in understanding a program is to look at the prin
ipal pro
essing. Sin
e pro
eduresand other values must be de
lared before use in the Ctrans
ompiler, the last part of the program
ontainsthe main pro
essing logi
. Now print (or display) the sour
e of lf.a68 using the
ommandlf -n /usr/share/do
/
trans/pame/lf.a68

156 CONTENTSIn the sour
e, the main pro
essing logi
 is on lines 427{517. Examine those lines now.Before pro
essing any
ommand line arguments, the program de�nes the a
tions to take when thelast argument has been read. In other words, what should be done when the logi
al end of �le has beenrea
hed for
omm line. The default a
tion is to terminate the program immediately with a suitable errormessage. In lf, no identi�
ation is given for
omm line in the open pro
edure, be
ause it isn't relevant,but if you insert su
h an identi�
ation, for example,
ommand line file, then any error message issuedby the transput system will in
lude it. Noti
e that although the anonymous pro
edure used as these
ond parameter for on logi
al file end on line 448 o

urs within the IF ... FI
lause, be
ause itis a denotation (a pro
edure denotation) it has global s
ope. That is one of the reasons why anonymouspro
edures are so useful. Also note the use of SKIP to yield a value of mode BOOL: in fa
t, it will neverbe used be
ause stop is a synonym for GOTO end of program.In lines 442{517, the program pro
esses the
ommand line argument by argument. If an argumentstarts with \-" it is assumed to be an option otherwise it is assumed to be a �lename. Note the useof skip terminators to skip spa
es in the
ommand line. Options that require a number (-s and -t)expe
t it to follow the option dire
tly (see lines 493 and 495). Lines 500{506 pro
ess a solitary - to mean\list the standard input". Lines 507{516 pro
ess a named �le. As you examine the
ode, underline theidenti�ers of all pro
edure
alls.The next stage in understanding a program is to look at all the mode de
larations. There are threein this program: PRINTER, SEC and STAT. You should s
an the program to see what identi�ers have thator a related mode and where they are used.12.3.2 RoutinesFinally, you need to examine the routines de
lared. It is a good idea, espe
ially in a more
ompli
atedprogram, to list the identi�ers of all pro
edures with nested de
larations of pro
edures indented undertheir parent pro
edure identi�ers. This helps to �x the stru
ture of the program in your mind. Then youshould examine the pro
edures used in the main pro
essing loop. In lf, they are:
har in string
losedisp error getget mtime get numeri
 argget se
tions helpopen printprint file pro
ess file namereset parameters skip terminatorsWhen you examine ea
h pro
edure, do the same as you did for the whole program: �rst the main logi
,then the modes, then the pro
edures and operators. You will need to ba
ktra
k several times in a largeprogram. If a lot of names are de
lared, prepare a list together with a des
ription of what ea
h name isused for, where it is de
lared and the pla
es where it is used. A
ross-referen
e program would be reallyuseful, but it is not a simple program to write for Algol 68.The prin
iple pro
essing is performed by the pro
edure print file on lines 258{322. Firstly, tabstops are set a

ording to the
urrent value of tabs, then lines is initialised and an initialisation stringoutput to the printer. If letter quality has been
hosen (option -q), a spe
ial string is sent to the printera

ordingly. Then the logi
al file end event pro
edure is set. Ea
h se
tion spe
i�ed on the
ommandline (or the default se
tion if no se
tions were spe
i�ed) is then printed using the pro
edure do line.Ea
h line is input using get line whose prin
ipal fun
tion is to expand tab
hara
ters to the requirednumber of spa
es (3 unless set by the -t option). Lines are not output until the beg OF ss line is rea
hed(1 unless set by the -s option). Noti
e the
ode following FROM in the preamble to the inner DO ... ODloop (on lines 313{316) whi
h ensures that the �le is reset if the se
tions to be printed are not ordered(the de�nition of ordered is in the pro
edure get se
tions (lines 381{425).Similar to your list of nested pro
edures, prepare a list of pro
edures where indented pro
eduresidentify pro
edures
alled by the parent pro
edure. Here is part of the list for lf:fstatlinux fstathelpexit, newline, putreset parameterslf print

12.3. A SIMPLE UTILITY 157ODD, printget mtimefstat, linux
timeget se
tions+:=add se
tion
har in stringget numeri
 arg
har in string12.3.3 Dry-running exampleThe pro
edure get line (lines 232{250) and its asso
iated pro
edures set tabs (lines 220{224) andtab pos (lines 226{227) are worth examining in detail. The best way to see how they work is to dry-runthem. Take a blank sheet of paper and make a verti
al list of all the names, both lo
al and global, usedby the pro
edures. Opposite in line, write a pie
e of text
ontaining tab
hara
ters (a pie
e of indentedprogram, for example). Then work your way through the pro
edure, marking the value referen
ed byea
h name as you
omplete ea
h step. You should also note the value of ea
h non-name; for example,the loop identi�er i. Here is what your list
ould look like after going 3 times round the outer loop (theinner loop is on lines 241{244):tabstops FFTFFTFFTFFTFFTFFTFFTFFT: : :line(ln) Tin line ! THEN
h:="A"op 6 1 6 2 6 3 6 4 6 5 6i 6 1 6 2 3
 6!6 TStru
k-out values have been super
eded and denotes a spa
e. Dry-running is a very useful method, iflaborious and time-
onsuming, of �nding bugs. tab
h is de
lared in the standard prelude.This utility program (lf) is quite short, but we have analysed its working in detail so that you
ansee how it is done.12.3.4 ALIEN pro
eduresThe utility lf uses some of the extensions provided by the Ctrans
ompiler, in parti
ular, the ALIEN
onstru
t whi
h provides a

ess to pro
edures
ompiled by other
ompilers. In this se
tion we shall lookat the get
wd and the fstat pro
edures.The pro
edure fstatThe pro
edure fstat is on lines 100{105. It depends on a
all of the linux fstat pro
edure whosese
ond parameter is a name referring to a value of mode STAT. The de
laration of STAT is on lines 24{41.If you investigate the �le /usr/in
lude/statbuf.h, you will �nd the C de�nition of the stat stru
turetherein. The STAT mode a

urately re
e
ts this stru
ture using LONG or SHORT as appropriate. Brie
y, aC unsigned int is equivalent to an Algol 68 BITS. For histori
al reasons, the C unsigned long int hasthe same meaning as an unsigned int so BITS
ould have been used for those �elds as well. However,be
ause the value is required as an integer (and is stored as a positive integer), it is possible to regardthem as having mode INT. Some of the C modes3 are hidden by further mode de
larations4, but if youhunt for __dev_t you will �nd it is a unsigned long long int whi
h is equivalent to the Algol 68LONG BITS or, as is used in STAT, LONG INT.Now look at the de
laration of linux fstat on lines 85{89. Most of this
onstru
tion is C sour
e
ode. The ALIEN
onstru
t may be written as<mode> <identifier> = ALIEN "<symbol>""<C sour
e
ode>";where the angle bra
kets denote items to be repla
ed. In the de
laration for linux fstat we have3C people
all them types.4typedefs

158 CONTENTS� <mode> = PROC(INT,REF STAT)INT� <identifier> = linux fstat� <symbol> = FSTATfollowed by three lines of C sour
e
ode. It is not my intention to delve into the mysteries of C. If youdon't understand that language,
onsult someone who does. However, the point of the de
laration is tomap the Algol 68 modes onto the C equivalents. The C pro
edure fstat takes two parameters: the �rsthas mode int (equivalent to INT) and the se
ond of mode stru
t stat* whi
h is equivalent to REF STAT.The
ast in C
onsists of a mode in parentheses (
ompare with the Algol 68
ast in se
tion 10.5) so thethird line of C
ode ensures that the se
ond parameter of the Algol 68 pro
edure linux fstat has theright mode. The A_int_INT(...)
onstru
t is a C language ma
ro5 for a
ast whi
h ensures that theyielded C integer is equivalent to the Algol 68 INT. If you want to see what the Ctrans
ompiler generates,look for FSTAT in the �le lf.
.Reverting to line 102, the �eld sys file OF f has the
orre
t mode for use as the \�le des
riptor"for fstat. You should
he
k the manual page of fstat (in se
tion 2 of the Linux Programming Manual)for details of its fun
tioning and yield.The pro
edure get
wdThe pro
edure get
wd is more
ompli
ated be
ause it uses several fa
ilities provided by the standardprelude as well as another extension provided by the Ctrans
ompiler. Firstly, look at the ALIEN de
-laration of linux get
wd on lines 91{93. The mode VECTOR[℄CHAR is similar to the mode [℄CHAR, butthe lower bound is always 1 and is omitted from the generated
onstru
t. In fa
t, Ctrans translates thismode into the C equivalent ofSTRUCT(REF CHAR data, INT g
, upb)The g
 �eld is an integer provided for the garbage-
olle
tor (the run-time memory management systemwhi
h looks after the heap). The data �eld is a referen
e to the a
tual data (in fa
t it is a memoryaddress)6.The C pro
edure get
wd requires two parameters: a referen
e to an area whi
h it
an use to returnthe full path of the
urrent working dire
tory and an integer whi
h states how big that area is. TheC sour
e
ode in the de
laration for linux get
wd
ontains the C ma
roA_VC_
harptr(buf)whi
h expands into buf.data (equivalent to the Algol 68 expression data OF buf) and the C ma
roA_INT_int whi
h
onverts an Algol 68 INT into a C int (dire
tly equivalent on Linux).The yield of linux get
wd is a referen
e to the area in whi
h the
urrent working dire
tory path hasbeen put. Stri
tly speaking, this is identi
al to the �rst parameter of the C pro
edure get
wd, but theGNU C
ompiler
omplains if it is used as su
h. To get around this, the author used the
ast (void *)whi
h e�e
tively
auses the referen
e to be a referen
e to an anonymous pie
e of memory. The Algol 68equivalent is CPTR whi
h is de�ned in the standard prelude as REF BITS.Now
omes the
lever bit. Look at line 98. The value of mode CPTR (REF BITS) is
onverted by the op-erator CPTRTOCSTR into a value of mode CSTR (de
lared in the standard prelude as REF STRUCT 16000000 CHAR).Now look at the de�nition of that operator (on line 95)! BIOP stands for \built-in operator" and BIOP 99is the only built-in operator implemented by the Ctrans translator. BIOP 99 maps its parameter (of onemode) onto its yield (of another mode). It e�e
tively a
ts as a
ast (in this
ase) from one REF mode toanother REF mode. Have a look at the C sour
e
ode in lf.
 if you are interested in the details. Thenthe value of mode CSTR is
onverted using the operator CSTRTORVC to a value of mode REF VECTOR[℄CHARwhi
h is dereferen
ed and then
oer
ed to a value of mode STRING. In fa
t, the Ctrans
ompiler will silently
oer
e values of mode REF STRUCT i MODE to mode REF VECTOR[℄MODE and then
e to REF[℄MODE. Noti
ethat you
annot
oer
e a value of mode REF VECTOR[℄MODE to REF FLEX[℄MODE. The mode STRING hasno
exibility (it is equivalent to [℄CHAR).Lastly, note that the parameter of linux get
wd is an anonymous VECTOR[℄CHAR whose s
ope islimited to the s
ope of get
wd (the Algol 68 pro
edure).If you want to examine the other ma
ros used for the translated C sour
e, have a look at the �les inthe dire
tories5A synonym for another pie
e of text whi
h is expanded by the C prepro
essor6The VECTOR mode is not limited to CHAR. You
an use it for any mode. See se
tion 13.5.1 for details

12.4. SUMMARY 159/usr/share/
trans/Linux/usr/share/
trans/in
lude
12.4 SummaryIn this
hapter, we have
overed most of the a
tivities relating to program development, whether it bethe maintenan
e of existing programs or the development of new programs. The
onstru
tor ALIEN isused to introdu
e pro
edures
ompiled by other
ompilation systems (su
h as C). We have des
ribed oneprogram and have shown how to analyse the workings of a program.

160 CONTENTS

Chapter 13
Standard Prelude
The fun
tion of this
hapter is to des
ribe all the fa
ilities in the standard prelude supplied with theLinux port of the Ctrans
ompiler. The standard prelude
ontains both impli
it de
larations (fa
ilitiesprovided by the
ompiler) and expli
it de
larations (those de�ned in, and made available by, the QADstandard prelude1). They are
lassi�ed and dealt with as follows:1. Standard modesThese are the modes de�ned by the Algol 68 Revised Report, whi
h de�nes the language, plusmodes required by the transput.2. Environment enquiriesSome of these are de�ned in the Revised Report.3. Standard operatorsThere are a large number of these, all de�ned in the Revised Report and
lassi�ed by the modesof their operands. They are pre
eded by a subse
tion giving their priorities.4. Other operatorsSome operators are provided whi
h are not in the Revised Report. They are des
ribed in thisse
tion. However, operators pe
uliar to the Ctrans implementation are des
ribed in the se
tion onCtrans extensions.5. Standard pro
eduresOnly those pro
edures not used in transput and pro
ess
ontrol are de�ned here. They all appearin the Revised Report.6. Other pro
eduresPro
edures whi
h appear neither in the Revised Report nor in any other se
tion appear here.7. Ctrans extensionsAll the extensions to the language are des
ribed in this se
tion in
luding modes,
onstru
ts, oper-ators and pro
edures.8. Pro
ess
ontrolThese de
larations provide
ontrol over the working of the
oating-point unit, integer over
ow andsignal handling. They in
lude de
larations for
ontrolling the Algol 68 garbage
olle
tor.9. TransputThis very large se
tion provides spe
i�
ations for all the transput de
larations available in theStandard Prelude, but omits those operators and pro
edures whi
h are intended for internal useonly.See the bibliography for details of the Revised Report.
13.1 Standard modesMany of the modes available in the standard prelude are built from the standard modes of the languagewhi
h are all de�ned in the Revised Report.1QAD stands for \qui
k-and-dirty" and was supposed to represent the provided standard prelude. While it isnot entirely standard (as far as Algol 68 is
on
erned), it was
ertainly not implemented qui
kly!161

162 CONTENTS1. VOIDThis mode has one value: EMPTY. It is mainly used as the yield of routines and in unions.2. BOOLThis mode has two values, namely TRUE and FALSE.3. INTThis is the basi
 arithmeti
 mode. Various pre
isions are available:(a) LONG INT 64-bit integer(b) INT 32-bit integer(
) SHORT INT 16-bit integer(d) SHORT SHORT INT 8-bit integer4. REALThis mode is used mainly for approximate
al
ulations although exa
t values
an be manipulatedprovided that the number of signi�
ant digits does not ex
eed the pre
ision of the mantissa (seese
tion 13.2.1). The following pre
isions are available:(a) REAL 64-bit real(b) SHORT REAL 32-bit real5. COMPLStri
tly speaking, this is not a fundamental mode be
ause it is regarded as a stru
ture with two�elds:MODE COMPL = STRUCT(REAL re,im)However, the widening
oer
ion will
onvert a REAL value into a COMPL value and COMPL values arenot straightened (see se
tion 13.7.6). Like REALs, the following pre
isions are available:(a) COMPL 128-bit(b) SHORT COMPL 64-bit6. CHARThis mode is used for most
hara
ter operations. See se
tion 13.2.2 for further details.7. BITSThis mode is equivalent to a
omputer word regarded as a group of bits (binary digits) numbered1 to bits width (see se
tion 13.2.1). Various pre
isions are available:(a) LONG BITS 64-bit(b) BITS 32-bit(
) SHORT BITS 16-bit(d) SHORT SHORT BITS 8-bit8. BYTESThe Revised Report des
ribes the mode, but the Ctrans
ompiler does not implement it.9. STRINGThis mode is de�ned asMODE STRING = FLEX[1:0℄CHARand is provided with a shorthand
onstru
t for denotations of su
h values (see se
tion 3.1).
13.2 Environment enquiriesAlgol 68 was the �rst programming language to
ontain de
larations whi
h enable a programmer todetermine the
hara
teristi
s of the implementation. The enquiries divide neatly into arithmeti
 and
hara
ter set enquiries. The a
tual values of the Linux port of the Ctrans
ompiler are pla
ed in squarebra
kets. Those de�ned in the Revised Report are marked with (RR).

13.2. ENVIRONMENT ENQUIRIES 16313.2.1 Arithmeti
 enquiriesThese enquiries are so numerous that they are further subdivided.Enquiries about pre
isionsAny number of LONG or SHORT
an be given in the mode spe
i�
ation of numbers, but only a few su
hmodes are distinguishable in any implementation. The following environment enquiries tell whik
h modesare distinguishable. Note parti
ularly that there are more distinguishable pre
isions available for INT andBITS than there are for REAL and COMPL in the Ctrans implementation.1. INT int lengths (RR) [2℄1+ the number of extra lengths of integers.2. INT int shorths (RR) [3℄1+ the number of short lengths of integers.3. INT real lengths (RR) [1℄1+ the number of extra lengths of real numbers.4. INT real shorths (RR) [2℄1+ the number of short lengths of real numbers.5. INT bits lengths (RR) [2℄1+ the number of extra lengths of BITS.6. INT bits shorths (RR) [3℄1+ the number of short lengths of BITS.7. INT bytes lengths (RR) [0℄Bytes are not implemented by the Ctrans
ompiler.8. INT bytes shorths (RR) [0℄Bytes are not implemented by the Ctrans
ompiler.Enquiries about ranges1. SHORT SHORT INT short short max int (RR) [127℄The maximum value of mode SHORT SHORT INT.2. SHORT INT short max int (RR) [32 767℄The maximum value of mode SHORT INT.3. INT max int (RR) [2 147 483 647℄The maximum value of mode INT.4. LONG INT long max int (RR)[9 223 372 036 854 775 807℄The maximum value of mode LONG INT.5. SHORT REAL short min real [0:117 55e� 37℄The smallest representable short real. It should not be
onfused with short small real.6. SHORT REAL short max real (RR) [0:340 28e+ 39℄The largest short real value storable.7. SHORT REAL short small real (RR)[1:192 09e� 7℄The smallest short real whi
h, when added to 1:0 makes a dis
ernible di�eren
e.8. REAL min real [0:197 626 258 336 50e� 322℄The smallest representable real. It should not be
onfused with small real.9. REAL max real (RR) [0:179 769 313 486 23e+ 309℄The largest real value storable.10. REAL small real (RR) [0:222 044 604 925 031e� 15℄The smallest real whi
h, when added to 1:0, makes a dis
ernible di�eren
e.

164 CONTENTSInternal sizes of modes1. INT short short int width [3℄The maximum number of de
imal digits expressible by a value of mode SHORT SHORT INT.2. INT short int width [5℄The maximum number of de
imal digits expressible by a value of mode SHORT INT.3. INT int width [10℄The maximum number of de
imal digits expressible by a value of mode INT.4. INT long int width [19℄The maximum number of de
imal digits expressible by a value of mode LONG INT.5. INT short short bits width (RR) [8℄The number of bits required to hold a value of mode SHORT SHORT BITS.6. INT short bits width (RR) [16℄The number of bits required to hold a value of mode SHORT BITS.7. INT bits width (RR) [32℄The number of bits required to hold a value of mode BITS.8. INT long bits width (RR) [64℄The number of bits required to hold a value of mode LONG BITS.9. INT bytes width (RR) [0℄The mode BYTES is not implemented.10. INT short real pre
ision [24℄The number of bits used for the mantissa of a short real.11. INT short real width [6℄The maximum number of signi�
ant de
imal digits in a small real.12. INT short min exp [�125℄The minimum exponent of a short real.13. INT short max exp [128℄The maximum exponent of a short real.14. INT short exp width [2℄The maximum number of de
imal digits in the exponent of a short real. This
an be less than thenumber of digits o

upied by short max exp be
ause any de
imal digit
an be represented. Forexample, 99 but not 999.15. INT real pre
ision [53℄The number of bits used for the mantissa of a real.16. INT real width [15℄The maximum number of signi�
ant de
imal digits in a real.17. INT min exp [�1021℄The minimum exponent of a real.18. INT max exp [1024℄The maximum exponent of a real.19. INT exp width [3℄The maximum number of de
imal digits in the exponent of a real. See also short exp width.Parti
ular arithmeti
 values1. SHORT REAL short pi [3:14159℄2. REAL pi [3:141 592 653 589 79℄3. REAL log2[0:301 029 995 663 981℄This is the value of log10 2.

13.3. STANDARD OPERATORS 16513.2.2 Chara
ter set enquiriesThe Ctrans implementation of Algol 68 is bedevilled by the pe
uliar limitations of the C programminglanguage in whi
h a
hara
ter is a
tually an integer and indistinguishable from su
h. Furthermore, a C`
hara
ter' is a signed integer, equivalent to a value of mode SHORT SHORT INT. Thus C `
hara
ters' rangefrom �128 to+127. Algol 68, on the other hand, has the mode CHAR whi
h, at a high level, is distin
tfrom values of both mode INT and mode SHORT SHORT INT. The absolute value of Algol 68
hara
tersrange from 0 to the value of max abs
har. Furthermore, the operator REPR will
onvert any INT uptomax abs
har to a
hara
ter. Be warned that the C value of REPR 225, for example, is �31! What
hara
ter is represented by REPR 225 will depend on the
hara
ter set used by the displaying devi
e. AnISO 8859-1
hara
ter set, for example, will display `�a'. The environment enquiries in this se
tion arelimited to a range enquiry and the values of
ommonly required
hara
ters.1. INT max abs
har (RR) [255℄The largest positive integer whi
h
an be represented as a
hara
ter. When Uni
ode is implementedin an Algol 68
ompiler (whether UCS2 or UCS4), this enquiry will
hange.2. CHAR null
hara
ter (RR) [REPR 0℄3. CHAR nul
h [REPR 0℄This is a synonym for null
hara
ter.4. CHAR blank (RR) [REPR 32℄This is a spa
e
hara
ter.5. CHAR error
har (RR) [�℄This
hara
ter is used by the
onversion routines for invalid values.6. CHAR flip (RR) [T℄This
hara
ter is used to represent TRUE as an external value.7. CHAR flop (RR) [F℄This
hara
ter is used to represent FALSE as an external value.8. CHAR
r [REPR 13℄This
hara
ter is sometimes used as a line terminator, usually in asso
iation with lf.9. CHAR lf [REPR 10℄This
hara
ter terminates lines on Linux.10. CHAR ff [REPR 12℄This
hara
ter is the \form-feed"
hara
ter often used for
ontinuous stationery.11. CHAR tab
h [REPR 9℄This
hara
ter is used to provide
rude formatting of text �les, parti
ularly those whi
h mimi
do
uments produ
ed by typewriters.12. CHAR es
 [REPR 27℄This
hara
ter is mainly used to introdu
e \es
ape sequen
es" whi
h
ontrol the format and
olourof output on Linux virtual terminals (VTs) and xterm windows.213. CHAR eof
har [REPR 26℄This
hara
ter was used to denote the end of a plain text �le in the MS-DOS operating system.
13.3 Standard operatorsThe number of distin
t operators is vastly in
reased by the availability of SHORT and LONG modes. Thusit is imperative that some kind of shorthand be used to des
ribe the operators. Following the subse
tionon the method of des
ription are se
tions devoted to operators with
lasses of operands. The end of thisse
tion
ontains tables of all the operators.2See the �le /usr/share/do
/xterm/
tlseqs.ms.gz for the latter.

166 CONTENTS13.3.1 Method of des
riptionWhere an operator has operands and yield whi
h may in
lude LONG or SHORT, the mode is written usingL. For example,OP + = (L INT, L INT)L INT:is a shorthand for the following operators:OP + = (LONG INT,LONG INT)LONG INT:OP + = (INT,INT)INT:OP + = (SHORT INT,SHORT INT)SHORT INT:OP + = (SHORT SHORT INT,SHORT SHORT INT)SHORT SHORT INT:Ensure that wherever L is repla
ed by SHORTs or LONGs, it should be repla
ed by the same number ofSHORTs or LONGs throughout the de�nition of that operator. This is known as \
onsistent substitution".Note that any number of SHORTs or LONGs
an be given in the mode of any value whose mode a

eptssu
h
onstru
ts (INT, REAL, COMPL and BITS), but the only modes whi
h
an be distinguished are thosespe
i�ed by the environment enquiries in se
tion 13.2.1. However, you should note that even though valuesof modes LONG REAL and LONG LONG REAL
annot be distinguished internally, the Algol 68
ompiler stillregards them as having unique modes and you will need to use the LENG operator to
onvert a value ofmode LONG REAL to a value of mode LONG LONG REAL.The priority of an operator is independent of the mode of the operator and so is given in a separatesubse
tion. Ea
h operator is a

ompanied by a short des
ription of its fun
tion.13.3.2 Standard prioritiesThe priority of de
larations of the standard operators
an be
hanged in subsidiary ranges using the PRIOde
laration (see se
tion 6.2.3). Ea
h of the following enumerated nine se
tions
ontains a list of thoseoperators whi
h have that priority. Operators in parentheses are not de�ned in the Revised Report. Seese
tion 13.6 for their details.1. +:=, -:=, *:=, /:=, %:=, %*:=, +=:PLUSAB, MINUSAB, TIMESAB, DIVAB, OVERAB, MODAB, PLUSTO2. OR3. &, AND4. =, /=, EQ, NE5. <, <=, >=, >LT, LE, GE, GT6. -, +, (PLUS, MINUS)7. *, /, %, %*,OVER, MOD, ELEM, (TIMES)8. **, UP, DOWN, SHL, SHR, LWB, UPB9. +*, I, (MIN, MAX)13.3.3 Operators with row operandsBoth monadi
 and dyadi
 forms are available. We shall use the mode ROW to denote the mode of anymultiple.1. Monadi
.OP LWB = (ROW)INT:OP UPB = (ROW)INT:Yields the lower or upper bound of the �rst or only dimension of its operand.2. Dyadi
.OP LWB = (INT n,ROW r)INT:OP UPB = (INT n,ROW r)INT:Yields the lower or upper bound of the n-th dimension of the multiple r.

13.3. STANDARD OPERATORS 16713.3.4 Operators with BOOL operands1. OP OR = (BOOL a,b)BOOL:Logi
al OR.2. OP & = (BOOL a,b)BOOL:Logi
al AND (synonym AND).3. OP NOT = (BOOL a)BOOL:Logi
al NOT: TRUE if a is FALSE and vi
e versa.4. OP = =(BOOL a,b)BOOL:TRUE if a equals b (synonym is EQ).5. OP /= =(BOOL a,b)BOOL:TRUE if a not equal to b (synonym is NE).6. OP ABS = (BOOL a)INT:ABS TRUE is 1 and ABS FALSE is 0.13.3.5 Operators with INT operandsMost of these operators take values of any pre
ision. The L shorthand is used for those that
an.Monadi
 operatorsConsistent substitution applies to all those operators in this se
tion whi
h use the L shorthand: apartfrom LENG and SHORTEN, the pre
ision of the yield is the same as the pre
i
ion of the operand.1. OP + = (L INT a)L INT:The identity operator. Does nothing.2. OP - = (L INT a)L INT:The negation operator.3. OP ABS = (L INT a)L INT:The absolute value. ABS -3 = +34. OP SIGN = (L INT a)INT:Yields �1 for a negative operand, +1 for a positive operand and 0 for a zero operand.5. OP ODD = (L INT a)BOOL:Yields TRUE if the operand is odd.6. OP LENG = (L INT a)LONG L INT:OP LENG = (SHORT L INT a)L INT:Converts its operand to the next longer pre
ision. Note that you
annot use both SHORT and LONGin the same mode.7. OP SHORTEN = (L INT a)SHORT L INT:OP SHORTEN = (LONG L INT a)L INT:Converts its operand to the next shorter pre
ision. If the value ex
eeds l max int for the nextshorter pre
ision, the value will be trun
ated. This
an lead to erroneous results. See also LENG.Dyadi
 operatorsIn this se
tion,
onsistent substitution is used wherever the L shorthand is used. For operators withmixed operands, see se
tion 13.3.8.1. OP + = (L INT a,L INT b)L INT:Arithmeti
 addition: a+ b. No
he
k is made for integer over
ow. See the operator PLUS in se
tion13.6.1 for addition with a
he
k for over
ow.2. OP - = (L INT a,L INT b)L INT:Arithmeti
 subtra
tion: a � b. No
he
k is made for integer over
ow. See the operator MINUS inse
tion 13.6.1 for subtra
tion with a
he
k for over
ow.

168 CONTENTS3. OP * = (L INT a,L INT b)L INT:Arithmeti
 multipli
ation: a� b. No
he
k is made for integer over
ow. See the operator TIMES inse
tion 13.6.1 for multipli
ation with a
he
k for over
ow.4. OP / = (L INT a,L INT b)L REAL:Arithmeti
 fra
tional division. Even if the result is a whole number (for example, 6=3), the yieldalways has mode L REAL. Where a result of mode L REAL needs to be output, but
annot beoutput due to the limitations built into the de�nition of the mode SIMPLOUT, the operators LENGor SHORTEN should be used. Floating-point over
ow
an be
he
ked (see se
tion 13.6.1).5. OP % = (L INT a,L INT b)L INT:Arithmeti
 integer division. Division by zero in the Ctrans implementation produ
es a
oating-point ex
eption paradoxi
ally (synonym OVER).6. OP ** = (L INT a,INT b)L INT:Computes ab for b � 0.7. OP %* = (L INT a,L INT b)L INT:Arithmeti
 modulo (synonym MOD). For example5 MOD 3 = 28. OP +* = (L INT a,L INT b)L COMPL:Converts two integers into a
omplex number of the same pre
ision (synonym I).9. OP < = (L INT a,L INT b)BOOL:Arithmeti
 \less than": a < b (synonym LT).10. OP <= = (L INT a,L INT b)BOOL:Arithmeti
 \less than or equals": a � b (synonym LE).11. OP >= = (L INT a,L INT b)BOOL:Arithmeti
 \greater than or equals": a � b (synonym GE).12. OP > = (L INT a,L INT b)BOOL:Arithmeti
 \greater than": a > b (synonym GT).13. OP = = (L INT a,L INT b)BOOL:Arithmeti
 equality: a = b (synonym EQ).14. OP /= = (L INT a,L INT b)BOOL:Arithmeti
 inequality: a 6= b (synonym NE).13.3.6 Operators with REAL operandsMost of these operators
an have operands of any pre
ision. The L shorthand is used for them.Monadi
 operators1. OP + = (L REAL a)L REAL:Arithmeti
 identity. Does nothing.2. OP - = (L REAL a)L REAL:Arithmeti
 negation: �a.3. OP ABS = (L REAL a)L REAL:The absolute value. ABS -3.0 = +3.04. OP SIGN = (L REAL a)INT:Yields �1 for negative operands, +1 for positive operands and 0 for a zero operand (0:0).5. OP ROUND = (REAL a)INT:Rounds its operand to the nearest integer. If the value ends with :5, it is rounded to the nearest evennumber. This is
ontrary to normal Linux C library pra
ti
e, but is an internationally a

eptedstandard whi
h ensures that rounding errors do not a

umulate. The operator
he
ks for integerover
ow (see se
tion 13.6.1 for details).

13.3. STANDARD OPERATORS 1696. OP ROUND = (L REAL a)L INT: (for any pre
ision ex
ept REAL)Rounds its operand to the nearest integer. Does not
he
k integer over
ow. If its operand ex
eedsl max int, an erroneous result will ensue. ROUND should be used for a REAL operand if you wantto
he
k for integer over
ow (see se
tion 13.6.1 for details of
oating-point over
ow
he
king).7. OP ENTIER = (REAL a)INT:Trun
ates its operand to the next lowest integer. The operator
he
ks for integer over
ow (seese
tion 13.6.1 for details).8. OP ENTIER = (L REAL a)L INT: (for any pre
ision ex
ept REAL)Trun
ates its operand to the next lowest integer. The operator does not
he
k integer over
ow.If its operand ex
eeds l max int, an erroneous result will ensue. Use ENTIER for a REAL operandif you want to
he
k for integer over
ow (see se
tion 13.6.1 for details of
oating-point over
ow
he
king).9. OP LENG = (L REAL a)LONG L REAL:OP LENG = (SHORT L REAL a)L REAL:Converts its operand to the next longer pre
ision. Note that you
annot use both SHORT and LONGin the same mode.10. OP SHORTEN = (L REAL a)SHORT L REAL:OP SHORTEN = (LONG L REAL a)L REAL:Converts its operand to the next shorter pre
ision. If a value ex
eeds l max real for the nextshorter pre
ision, the value will be trun
ated leading to an erroneous result. The mantissa willalways be trun
ated.Dyadi
 operatorsIn this se
tion,
onsistent substitution is used wherever the L shorthand appears. For operators withmixed operands, see se
tion 13.3.8.1. OP + = (L REAL a,L REAL b)L REAL:Floating-point addition: a + b. Floating-point over
ow will
ause a trappable signal (see se
-tion 13.6.1).2. OP - = (L REAL a,L REAL b)L REAL:Floating-point subtra
tion: a� b. Floating-point over
ow will
ause a signal whi
h
an be trapped(see se
tion 13.6.1).3. OP * = (L REAL a,L REAl b)L REAL:Floating-point multipli
ation: a � b. Floating-point over
ow will
ause a signal whi
h
an betrapped (see se
tion 13.6.1).4. OP / = (L REAL a,L REAL b)L REAL:Floating-point divison: a=b. Floating-point over
ow and divide-by-zero will
ause a trappablesignal (see se
tion 13.6.1). Where a result of mode L REAL needs to be output, but it
annot beoutput due to the limitations built into the de�nition of the mode SIMPLOUT, the operators LENGor SHORTEN should be used.5. OP +* = (L REAL a,L REAL b)L COMPL:Converts two reals into a
omplex number of the same pre
ision (synonym I).6. OP < = (L REAL a,L REAL b)BOOL:Floating-point \less than": a < b (synonym LT).7. OP <= = (L REAL a,L REAL b)BOOL:Floating-point \less than or equals": a � b (synonym LE).8. OP >= = (L REAL a,L REAL b)BOOL:(synonym GE)Floating-point \greater than or equals": a � b.9. |OP > = (L REAL a,L REAL b)BOOL:Floating-point \greater than": a > b (synonym GT).10. OP = = (L REAL a,L REAL b)BOOL:Floating-point equality: a = b (synonym EQ).

170 CONTENTS11. OP /= = (L REAL a,L REAL b)BOOL:Floating-point inequality: a 6= b (synonym NE).13.3.7 Operators with COMPL operandsAlgol 68 is one of the few programming languages whi
h have a built-in mode for
omplex numbers. Itis
omplemented by a ri
h set of operators, some of whi
h are only available for values of mode COMPL.Again,
onsistent substitution is appli
able to all operators using the L shorthand.Monadi
 operators1. OP RE = (L COMPL a)L REAL:Yields the real
omponent: re OF a.2. OP IM = (L COMPL a)L REAL:Yields the imaginary
omponent: im OF a.3. OP ABS = (L COMPL a)L REAL:Yields pRE a2 + IM b2.4. OP ARG = (L COMPL a)L REAL:Yields the argument of the
omplex number.5. OP CONJ = (L COMPL a)L COMPL:Yields the
onjugate
omplex number.6. OP + = (L COMPL a)L COMPL:Complex identity. Does nothing.7. OP - = (L COMPL a)L COMPL:Complex negation.8. OP LENG = (L COMPL a)LONG L COMPL:OP LENG = (SHORT L COMPL a)L COMPL:Converts its operand to the next longer pre
ision. Note that you
annot use both SHORT andLONG in the same mode. Unfortunately, although Ctrans will translate a program
ontaining thisoperator apparently without errors, the resulting C �le will not
ompile. The error produ
ed willbe \
onversion to non-s
alar type requested". You should use the following
ode instead:(LENG RE z,LENG IM z)9. OP SHORTEN = (L COMPL a)SHORT L COMPL:OP SHORTEN = (LONG L COMPL a)L COMPL:Converts its operand to the next shorter pre
ision. Note that you
annot use both SHORT and LONGin the same mode. Unfortunately, the Ctrans translator will generate in
orre
t
ode (see the notefor the operator LENG). Use the following
ode instead:(SHORTEN RE z,SHORTEN IM z)If either of the
omponents of the
omplex number ex
eeds l max real for the next shorter pre-
ision, an erroneous result will ensue, but no error will be generated.Dyadi
 operatorsThe remarks in se
tion 13.3.6
on
erning
oating-point over
ow apply doubly here.1. OP + = (L COMPL a,L COMPL b)L COMPL:Floating-point addition for both
omponents.2. OP - = (L COMPL a,L COMPL b)L COMPL:Floating-point subtra
tion for both
omponents.3. OP * = (L COMPL a,L COMPL b)L COMPL:Standard
omplex multipli
ation with
oating-point arithmeti
.4. OP / = (L COMPL a,L COMPL b)L COMPL:Standard
omplex division with
oating-point arithmeti
.

13.3. STANDARD OPERATORS 1715. OP = = (L COMPL a,L COMPL b)BOOL:Complex equality with
oating-point arithmeti
 (synonym EQ).6. OP /= = (L COMPL a,L COMPL b)BOOL:Complex inequality with
oating-point arithmeti
 (synonym NE).13.3.8 Operators with mixed operandsConsistent substitution is appli
able to all operators using the L shorthand. Additional shorthands areused as follows:� The shorthand P stands for +, -, * or /.� The shorthand R stands for <, <=, =, /=, >=, >,or LT, LE, EQ, NE, GE, GT.� The shorthand E stands for = /=,or EQ or NE.
1. OP P = (L INT a,L REAL b)L REAL:2. OP P = (L INT a,L COMPL b)L COMPL:3. OP P = (L REAL a,L COMPL b)L COMPL:4. OP P = (L REAL a,L INT b)L REAL:5. OP P = (L COMPL a,L INT b)L COMPL:6. OP P = (L COMPL a,L REAL b)L COMPL:7. OP R = (L INT a,L REAL b)BOOL:8. OP R = (L REAL a,L INT b)BOOL:9. OP E = (L INT a,L COMPL b)BOOL:10. OP E = (L REAL a,L COMPL b)BOOL:11. OP E = (L COMPL a,L INT b)BOOL:12. OP E = (L COMPL a,L REAL b)BOOL:13. OP ** = (L REAL a,INT b)L REAL:OP ** = (L COMPL a,INT b)L COMPL:Exponentiation: ab (synonym UP).14. OP +* = (L INT a,L REAL b)L COMPL:OP +* = (L REAL a,L INT b)L COMPL:(synonym I)13.3.9 Operators with BITS operandsConsistent substitution applies to all operators using the L shorthand.Monadi
 operators1. OP BIN = (L INT a)L BITS:Mode
onversion whi
h does not
hange the internal value.2. OP ABS = (L BITS a)L INT:Mode
onversion whi
h does not
hange the internal value.3. OP NOT = (L BITS a)L BITS:Yields the bits obtained by inverting ea
h bit in the operand. That is, 0 goes to 1, 1 goes to 0.4. OP LENG = (L BITS a)LONG L BITS:OP LENG = (SHORT L BITS a)L BITS:Converts a bits value to the next longer pre
ision by adding zero bits to the more signi�
ant end.Note that you
annot use both SHORT and LONG in the same mode.

172 CONTENTS5. OP SHORTEN = (L BITS a)SHORT L BITS:OP SHORTEN = (LONG L BITS a)L BITS:Trun
ates a bits value to a value of the next shorter pre
ision. The more signi�
ant bits are simplyignored.Dyadi
 operators1. OP & = (L BITS a,L BITS b)L BITS:(synonym AND)The logi
al \and" of ea
h pair of binary digits in a and b.2. OP OR = (L BITS a,L BITS b)L BITS:The logi
al \or" of ea
h pair of binary digits in a and b.3. OP SHL = (L BITS a,INT b)L BITS:The left operand shifted left by the number of bits spe
i�ed by the right operand. New bits shiftedin are all zero. If the right operand is negative, shifting is to the right (synonym UP).4. OP SHR = (L BITS a,INT b)L BITS:(synonym DOWN)5. OP ELEM = (INT a,L BITS b)BOOL:Yields TRUE if bit a is 1. Unfortunately, the Ctrans
ompiler generates du�
ode for any pre
isionother than BITS.6. OP = = (L BITS a,L BITS b)BOOL:Logi
al equality (synonym EQ).7. OP /= = (L BITS a,L BITS b)BOOL:Logi
al inequality (synonym NE).8. OP <= = (L BITS a,L BITS b)BOOL:Yields TRUE if ea
h bit in the left operand implies the
orresponding bit in the right operand(synonym LE).9. OP >= = (L BITS a,L BITS b)BOOL:Yields TRUE if ea
h bit in the right operand implies the
orresponding bit in the left operand(synonym GE).13.3.10 Operators with CHAR operandsThe shorthands in se
tion 13.3.8 apply here.1. OP ABS = (CHAR a)INT:The integer equivalent of a
hara
ter.2. OP REPR = (INT a)CHAR:The reverse of ABS. The operand should be in the range [0:max abs
har℄.3. OP + = (CHAR a,CHAR b)STRING:The
hara
ter b is appended to the
hara
ter a (
on
atenation).4. OP E = (CHAR a,CHAR b)BOOL:Comparison of the arithmeti
 equivalents of a and b.13.3.11 Operators with STRING operands1. OP + = (STRING a,STRING b)STRING:String b is appended to string a (
on
atenation).2. OP + = (CHAR a,STRING b)STRING:String b is appended to
hara
ter a.3. OP + = (STRING a,CHAR b)STRING:Chara
ter b is appended to string a.4. OP * = (INT a,STRING b)STRING:Yields a lots of string b
on
atenated.

13.3. STANDARD OPERATORS 1735. OP * = (STRING a,INT b)STRING:Yields b lots of string a
on
atenated.6. OP * = (INT a,CHAR b)STRING:Yields a lots of
hara
ter b
on
atenated.7. OP * = (CHAR a,INT b)STRING:Yields b lots of
hara
ter a
on
atenated.8. OP < = (STRING a,STRING b)BOOL:The absolute value of ea
h
hara
ter of a is
ompared with the absolute value of the
orresponding
hara
ter in b (for the purpose of the
omparison, the lower bounds of both strings are regardedas equal to 1). If the strings are equal upto the end of the shorter of the strings, then the longerstring is the greater (synonym LT).9. OP <= = (STRING a,STRING b)BOOL:(synonym LE)The text for the operator < in this se
tion applies.10. OP >= = (STRING a,STRING b)BOOL:(synonym GE)The text for the operator < in this se
tion applies.11. OP > = (STRING a,STRING b)BOOL:(synonym GT)The text for the operator < in this se
tion applies.12. OP = = (STRING a,STRING b)BOOL:If the strings di�er in length, they are unequal, else they are
ompared as for the operator < in thisse
tion (synonym EQ).13. OP /= = (STRING a,STRING b)BOOL(synonym NE)If the strings di�er in length, they are unequal, else they are
ompared as for the operator < in thisse
tion.14. OP E = (STRING a,CHAR b)BOOL:OP E = (CHAR a,STRING b)BOOL:The shorthand E as des
ribed in se
tion 13.3.8 applies for these
ases.13.3.12 Assigning operatorsConsistent substitution applies to all operators
ontaining the L shorthand.1. +:= (synonym PLUSAB)The operator is a shorthand for a:=a+b.Left operand Right operand YieldREF L INT L INT REF L INTREF L REAL L INT REF L REALREF L COMPL L INT REF L COMPLREF L REAL L REAL REF L REALREF L COMPL L REAL REF L COMPLREF L COMPL L COMPL REF L COMPLREF STRING CHAR REF STRINGREF STRING STRING REF STRING2. +=: (synonym PLUSTO)The operator is a shorthand for b:=a+b.Left operand Right operand YieldSTRING REF STRING REF STRINGCHAR REF STRING REF STRING

174 CONTENTS3. -:= (synonym MINUSAB)The operator is a shorthand for a:=a-b.Left operand Right operand YieldREF L INT L INT REF L INTREF L REAL L INT REF L REALREF L COMPL L INT REF L COMPLREF L REAL L REAL REF L REALREF L COMPL L REAL REF L COMPLREF L COMPL L COMPL REF L COMPL4. *:= (synonym TIMESAB)The operator is a shorthand for a:=a*b.Left operand Right operand YieldREF L INT L INT REF L INTREF L REAL L INT REF L REALREF L COMPL L INT REF L COMPLREF L REAL L REAL REF L REALREF L COMPL L REAL REF L COMPLREF L COMPL L COMPL REF L COMPLREF STRING INT REF L COMPL5. /:= (synonym DIVAB)The operator is a shorthand for a:=a/b.Left operand Right operand YieldREF L REAL L INT REF L REALREF L REAL L REAL REF L REALREF L COMPL L INT REF L COMPLREF L COMPL L REAL REF L COMPLREF L COMPL L COMPL REF L COMPL6. OP %:= = (REF L INT a,L INT b)REF L INT:(synonym OVERAB)The operator is a shorthand for a:=a%b.7. OP %*:= = (REF L INT a,L INT b)REF L INT:(synonym MODAB)The operator is a shorthand for a:=a%*b.13.3.13 Other operatorsThis se
tion
ontains those operators whi
h appear neither in the Revised Report nor in the se
tion
on
erning Ctrans extensions (se
tion 13.5).1. OP &* = (REAL r,INT e)REAL:Multiply r by 2e. The routine does not use multipli
ation, but simply in
rements the exponent ofr a

ordingly.2. OP ELEM = (INT a)BITS:The operator yields a value with all bits zero ex
ept the bit spe
i�ed by the operand.3. OP MIN = (L INT a,L INT b)L INT:OP MIN = (L REAL a,L REAL b)L REAL:OP MIN = (L INT a,L REAL b)L REAL:OP MIN = (L REAL a,L INT b)L REAL:The lesser of the two operands.4. OP MAX = (L INT a,L INT b)L INT:OP MAX = (L REAL a,L REAL b)L REAL:OP MAX = (L INT a,L REAL b)L REAL:OP MAX = (L REAL a,L INT b)L REAL:The greater of the two operands.5. OP VALID = (REAL r)BOOL:Whether the real value r is a valid real in terms of the IEEE standard.

13.4. STANDARD PROCEDURES 17513.4 Standard pro
eduresThese mainly
onsist of mathemati
al pro
edures. All the pro
edures asso
iated with interfa
ing withalien pro
edures appear in the Ctrans se
tion and all the transput pro
edures appear in the transputse
tion. Pro
edures asso
iated with
oating-point, pro
ess and garbage-
olle
tor
ontrol appear in se
-tion 13.6.
13.4.1 Mathemati
al pro
eduresStri
tly speaking, there are as many pre
isions of ea
h of the mathemati
al fun
tions as there are for realnumbers. However, in the standard prelude provided with the Ctrans
ompiler, the only extra pre
isionimplemented is that for short real. The L shorthand is used to simplify the list of pro
edures. All thesepro
edures depend on the
orresponding C library fun
tions, so
onsult the manual pages for details.1. PROC l sqrt = (L REAL x)L REAL:Yields the square root of x provided that x � 0.2. PROC l exp = (L REAL x)L REAL:Yields ex if su
h a value exists.3. PROC l ln = (L REAL x)L REAL:Yields the natural (or Napierian) logarithm of x provided that x > 0, otherwise the pro
edure failsand errno is set (see se
tion 13.6 for details).4. PROC l
os = (L REAL x)L REAL:Yields the
osine of x, where x is in radians.5. PROC l ar

os = (L REAL x)L REAL:Yields the inverse
osine of x as a value between L 0 and 2 l pi in
lusive. If ABS x > 1 then thepro
edure yields an erroneous result, but errno is set (see se
tion 13.6 for details).6. PROC l sin = (L REAL x)L REAL:Yields the sine of x, where x is in radians.7. PROC l ar
sin = (L REAL x)L REAL:Yields the inverse sine of x as a value between L 0 and 2 l pi in
lusive. If ABS x > 1 then thepro
edure yields an erroneous result, but errno is set (see se
tion 13.6 for details).8. PROC l tan = (L REAL x)L REAL:Yields the tangent of x, where x is in radians.9. PROC l ar
tan = (L REAL x)L REAL:Yields the inverse tangent of x as a value between L 0 and 2 l pi in
lusive.10. PROC next random = (REF INT a)REAL:The next INT value after a in a pseudo-random sequen
e uniformly distributed in the range L 0 tomax int is assigned to a. The yield x is in the range 0 � x < 1 obtained by a uniform mapping ofa.11. INT last randomLONG INT long last randomNames initialised to �xed values and used by other random pro
edures as a seed.12. PROC random = REAL:A
all of next random(last random).13. PROC short random = SHORT REAL:As for random with the yield shortened.14. PROC l random int = (L INT n)L INT:Yields a pseudo-random sequen
e of integers in the range 1 � x � n.

176 CONTENTS13.4.2 Other pro
eduresThe pro
edures whole, fixed and float are dealt with in the transput se
tion (13.7).1. PROC l bits pa
k = ([℄BOOL a)L BITS:Pa
ks l bits width booleans into a value of mode L BITS.2. PROC
har in string =(CHAR
,REF INT i,STRING s)BOOL:If the
hara
ter
 o

urs in the string s, the pro
edure yields TRUE and assigns the position of
 ins to i, otherwise it yields FALSE when no assignment to i takes pla
e.
13.5 Ctrans extensionsThe Ctrans manual des
ribes the language restri
tions of the translator. Chapter 3
ontains details ofthe FORALL
onstru
t. This se
tion is intended to do
ument those extensions used in the QAD standardprelude.13.5.1 Modes pe
uliar to CtransThe prin
ipal extensions to Algol 68 modes are the introdu
tion of multiple modes whose housekeepingoverhead is less than the standard row modes.1. STRUCT n MODEThis mode is
alled an \indexable stru
ture". The n, a non-negative integer, is built into themode and must be an integer denotation. The base mode
an be any mode. It is equivalent to aC language \array". Here is a list of modes used in the QAD standard prelude whi
h are eitherindexable stru
tures or referen
es to su
h:(a) CSTR=REF STRUCT 16000000 CHARThis is a referen
e mode and is equivalent to the C type
har *. It is used in the ALIEN (seese
tion 12.3.4) de�nitions of linux getenv, for example, to referen
e data.(b) CCHARPTRPTR=REF STRUCT 16000000 CSTRAgain, this is a referen
e mode and is equivalent to the C type
har **. It is used to a

essthe program's arguments.A
onsiderable number of operators use indexable stru
tures for
onverting values of one mode toanother using memory mapping (see se
tion 13.5.3. For example,OP(REAL)STRUCT 8 CHAR FLAT = BIOP 99;2. VECTOR[n℄MODEThe ve
tor mode has less overhead than a row mode be
ause its lower bound is always one. It is
ommonly used to provide strings to C pro
edures. The following modes are de�ned using VECTOR:(a) STR=VECTOR[0℄CHARDue to the way in whi
h C multiples are de�ned (without bounds), the mode STR
an be usedfor any length VECTOR.(b) RVC=REF STRThis mode is used in a number of operators, su
h asOP MAKERVC = ([℄CHAR s)RVC:It is also used to
onstru
t other modes su
h as BOOK (see se
tion 13.7).3. Coer
ions provided by CtransA value of mode STRUCT n MODE
an be
oer
ed dire
tly to a value of mode VECTOR[℄MODE. Likewise,a value of the latter mode
an be
oer
ed to a value of mode [℄MODE. Therefore, preferably use themode [℄MODE for a parameter to a pro
edure.4. Other modes used by CtransSome modes are provided to make interfa
ing with C library pro
edures easier. Here are the onesprovided by the QAD standard prelude:

13.5. CTRANS EXTENSIONS 177(a) CPTR=REF BITSThis mode is equivalent to the C type void *.(b) CINTPTR=REF INTEquivalent to the C type int *.(
) CCHARPTR=REF CHAREquivalent to the C type
har *.(d) GCPARAM=STRUCT(STR name,INT value)Used to a

ess parameters of the garbage-
olle
tor (see se
tion 13.6.3 below).(e) PDESC=STRUCT(CPTR
p,CSTR env)This represents the stru
ture
reated by Ctrans for every Algol 68 pro
edure. The �eld
p
ontains the a
tual memory address of the pro
edure and the �eld env
ontains data used bythe pro
edure.(f) VDESC=STRUCT(CCHARPTR data,BITS g
,INT upb)This mode represents the housekeeping overhead of a VECTOR. The data �eld is the a
tualmemory address of the start of the data and the upb �eld is the upper bound of the ve
tor.The g
 �eld is used by the garbage-
olle
tor (the heap manager).
13.5.2 Ctrans
onstru
tsThis se
tion des
ribes those
onstru
ts whi
h are either pe
uliar to Ctrans or whi
h are in some waydi�erent from standard Algol 68.1. FORALLFORALL is des
ribed in se
tion 3.10.2. ALIEN and CODEBoth ALIEN and CODE are des
ribed in the Ctrans manual. ALIEN is also des
ribed in se
tion12.3.4. All ALIEN de
larations used in the QAD standard prelude appear in the �le spaliens.a68whi
h you should
onsult for further details. You should note that the ALIEN de
larations wereestablished by trying various modes until a de�nition was found whi
h Ctrans translated to a
ompilable C sour
e �le. The de
larations for get fpu
w, set fpu
w and the like, use the__asm__
onstru
t of the GNU C
ompiler: this provides a means of in
orporating short sequen
esof assembler instru
tions into a C program. Consult the node Extended Asm in info �le g

.infofor details.As des
ribed in the Ctrans manual, sour
e �les may
ontain either a PROGRAM module or a DECSmodule. The latter may
ontain de
larations and CODE
lauses only. See the �le transput.a68,lines 1185{92, for an example of how to exe
ute
ode when a DECS module is being elaborated.3. USE listsThe USE list of a DECS or a PROGRAM module generates
alls to the relevant initialiser PROCs (seethe generated C �le for standard.a68 for an example) in the reverse order of the given modules.Therefore, if the order matters, ensure that the USE
lause mentions ea
h module in the properorder.4. The BY
onstru
t in a FOR loopUnfortunately, the BY
onstru
t in a FOR loop (see se
tion 3.7) generates an internal
ompiler errorif it is followed by a formula whose value
an be
omputed at
ompile-time. This is a de�nite bug.The remedy is to use a simple pro
edure or operator instead. For example, instead of writingFOR i BY 5 TO ...use the operatorOP B=(INT b)INT: b;and the phraseFOR i BY B 5 TO ...

178 CONTENTS5. The default
ase in a CASE
lauseIf in a CASE
lause, whether a simple CASE or a
onformity CASE
lause (one whi
h determines themode of the value in its enquiry
lause), the default
lause
an o

ur, then you must in
lude atleast OUT SKIP, otherwise you will get a run-time fault.6. BIOP 99In Algol 68, a UNION (see se
tion 8.1) is a well-de�ned mode
omposed of
onstituent modes. Avalue of one of the
onstituent modes may be assigned to a name of the united mode and only thatvalue (with its original mode)
an be extra
ted. In the C language, however, a \free union" orjust \union" is a pie
e of memory whi
h
an have di�erent interpretations. The BIOP 99
onstru
tenables the operand of an operator using it to be re-interpreted as a value of the mode given inthe yield. for example, the operator FLAT de
lared asOP(REAL)STRUCT 8 CHAR FLAT = BIOP 99;a

epts a REAL parameter whi
h, as the yield, is regarded as an indexable stru
ture of 8
hara
tersea
h of whi
h
an be a

essed separately. See se
tion 13.5.3 for operators using this
onstru
t.13.5.3 OperatorsThese are largely operators using the BIOP 99
onstru
t, but there are a number of other operators whi
hease the task of interfa
ing with C library pro
edures.Operators using BIOP 99Most of the operators used in the QAD standard prelude whi
h are de�ned using the BIOP 99
onstru
tare for internal use only. In the following list, the full de
larationOP(CPTR)CSTR TOCSTR = BIOP 99;is abbreviated toOP TOCSTR=(CPTR)CSTR:Here is a list of operators using the BIOP 99
onstru
t whi
h are made available by the QAD standardprelude:1. OP TOCPTR=(INT)CPTR:2. OP TOCSTR=(CPTR)CSTR:3. OP TOVDESC=(STR)VDESC:4. OP TOPDESC=(PROC(INT,CPTR)VOID)PDESC:This operator provides a means of getting the address of a pro
edure and is used to provide theidenti�er of an Algol 68 pro
edure whi
h must be elaborated by an ALIEN pro
edure (su
h asa C library routine). You
an de�ne as many TOPDESC operators as you wish with operands ofpro
edures you will need. You will
ertainly need more de�nitions of TOPDESC if you write wrapperpro
edures for X Window System pro
edures whi
h have pro
edural parameters. See the �letransput.a68 for details of how this operator is used.5. OP CCHARPTRTOCSTR=(CCHARPTR)CSTR: This operator is used to de�ne the on exit pro
edure.6. OP CSTRTOCCHARPTR=(CSTR)CCHARPTR:Other operatorsHere is a list of operators not using the BIOP 99
onstru
t:1. OP CPTRTORVC=(CPTR)RVC:Used to
ast the C type void * to the type
har *.2. OP CSTRTORVC=(CSTR)RVC:Converts a C string to a value of mode RVC using the standard RS Algol 68
oer
ionREF STRUCT n CHAR => REF VECTOR[℄CHAR

13.6. CONTROL ROUTINES 179It is mainly used to a

ess C strings yielded by C library routines. The perameter must beterminated by a null
hara
ter.3. OP MAKERVC=(CHAR)RVC:OP MAKERVC=(STR)RVC:OP MAKERVC=([℄CHAR)RVC:4. OP VCTOCHARPTR=(STR)CCHARPTR:Yields the C pointer from a Ctrans des
riptor. If a C string is expe
ted, a null
hara
ter mustbe appended to the data before the routine is
alled. This need not be done for string denotations.This routine may be used to yield a C pointer from an RVC, as the C representation is the same.5. OP STRTOCSTR=(STR)CSTR:The operator
ombines the a
tion of the operators CCHARPTRTOCSTR and VCTOCHARPTR.6. OP Z=(STR str)STR:Yields a null-terminated STR from a STR for use with the C library.
13.6 Control routinesThree groups of pro
edures and operators are provided to
ontrol various aspe
ts of the run-time envi-ronment. These are
oating-point
ontrol, pro
ess termination
ontrol and garbage-
olle
tor
ontrol.13.6.1 Floating-point unit
ontrolThe Intel Pentium mi
ropro
essors all have a
oating-point unit (FPU) as an integral part of the mi
ro-pro
essor. The a
tion of the FPU is determined by the
ontents of a 16-bit register
alled the \
ontrolword register". Details of the register
an be found in the �le/usr/in
lude/fpu_
ontrol.hDetails of the working of the FPU, as
ontrolled by the
ontrol word register
an be found in the threevolumes of the \Intel Ar
hite
ture Software Developer's Manual". The
ontrol word
ontains bits whi
h
ontrol rounding, pre
ision and whether
oating-point errors should
ause an ex
eption. The QADstandard prelude provides two pro
edures whi
h enable you to get and set the
ontrol word register:1. PROC get fpu
w = (REF SHORT BITS
w)VOID:After
alling get fpu
w, the
urrent value of the FPU
ontrol word will be assigned to theparameter.2. PROC set fpu
w = (SHORT BITS
w)VOID:After
alling set fpu
w, the
urrent value of the FPU
ontrol word will have been set to thevalue of the parameter.The QAD standard prelude provides three values of mode SHORT BITS whi
h enable you to
ontrol howrounding is performed. They are:1. fpu
w ieeeThis value enables you to reset the FPU
ontrol word to the standard value for the C library.2. fpu
w algol68 roundThis value ensures that the FPU will perform rounding to the nearest number. A REAL valueending in 0 � 5 will be rounded to the nearest even number. This ensures that rounding errors inrandom values will not a

umulate.3. fpu
w algol68 entierThis value ensures that the FPU will trun
ate REAL numbers towards �1 when
onverting to aninteger of the equivalent pre
ision.These values are used as masks. Here, for example, is the sour
e
ode for the operator ROUND:OP ROUND = (REAL r)INT:(INT n;SHORT BITS o
w; get fpu
w(o
w);set fpu
w(o
w & fpu
w algol68 round);

180 CONTENTSph round(r,n);set fpu
w(o
w);n)Noti
e how the FPU
ontrol word is reset to its original value before the end of the operator.The FPU
ontrol word is also used to
ontrol whether over
ow should be dete
table. The standardmode of operation is to ignore integer over
ow. The
ontrol word masks mentioned above ensure thatinteger over
ow
an be dete
ted using a signal. The pro
edure on signal is de
lared as follows:PROC on signal=(INT sig,PROC(INT)VOID handler)VOID:The example program testov.a68 shows how on signal
an be used. The Algol 68 identi�ers for allthe Linux signals are the same as the Linux signal identi�ers, but in lower
ase. For example, the signalused in FPU
ontrol is sigfpu. The signal generated by keying Ctrl-C (sometimes depi
ted as ^C) onprogram input is sigint. Here is a short program whi
h illustrates signal trapping:PROGRAM sig CONTEXT VOIDUSE standardBEGINon signal(sigint,(INT sig)VOID:(write(("sigint trapped",newline));exit(1)));write("Please key ^C: "); read(LOC CHAR);write(("No signal trapped",newline))ENDFINISHUsually, when you trap a signal su
h as sigint, your program will
lose down pro
essing in an orderlymanner: �les will be
losed properly, a message to the user will be issued, and so on. You
an do anythingyou want in the pro
edure provided as a parameter to on signal. You
an also prede
lare the pro
edureand simply provide its identi�er in the on signal
all.Normally, integer over
ow is ignored by the mi
ropro
essor. So the formula max int + 3 simply yieldsan in
orre
t value. If you want integer over
ow to generate a trappable signal, use the integer operatorsPLUS, MINUS and TIMES whi
h have the priorities asso
iated with +, � and � and have been de
lared forall the available distinguishable pre
isions of integers. Again, the example program testov.a68 showshow integer over
ow
an be dete
ted.The pro
edure linux raise will
ause any spe
i�ed signal to o

ur. For example, the de
laration forPLUS with SHORT INT operands isOP PLUS = (SHORT INT a,b)SHORT INT:IF INT res=LENG a+LENG b;ABS res > LENG short max intTHEN SHORTEN linux raise(sigfpe)ELSE SHORTEN resFI;Here is the mode of linux raise:PROC linux raise = (INT sig)INT:13.6.2 Terminating a pro
essAs well as raising and trapping signals, it is sometimes useful to spe
ify pro
edures to be elaborated whenyour program has �nished, for whatever reason. Four pro
edures are provided for pro
ess termination:1. PROC at exit=(PROC VOID p)INT:The pro
edure p is registered to be elaborated when the program terminates normally or when thepro
edure exit (see pro
edure 3) is
alled. Registered pro
edures are elaborated in the reverseorder of being registered, so that the pro
edure registered last is elaborated �rst. The pro
edureat exit yields 0 for su

ess, �1 for an error.

13.6. CONTROL ROUTINES 1812. PROC on exit=(PROC(INT,CPTR)VOID p,[℄CHAR arg)INT:Unlike the pro
edure at exit (see above), on exit allows you to register a pro
edure whi
h takestwo parameters. The �rst is the integer parameter given to the exit pro
edure (or 0 for normaltermination) and the se
ond is a [℄CHAR whi
h the pro
edure p
an use. on exit yields 0 forsu

ess and �1 for an error.3. PROC exit = (INT status)VOID:% This pro
edure terminates the program immediately. Any pro
edures registered using at exitor on exit will be elaborated in the reverse order of registration. Any open �les will be
losed,but Algol 68 bu�ers will not be
ushed. The value of status will be passed to the parent pro
essof the program.4. PROC stop = VOID:This is a synonym for exit(0).The example program testexit.a68 shows one way in whi
h at exit and on exit may be used.13.6.3 Garbage-
olle
tor
ontrolThe garbage-
olle
tor manages the run-time heap. The term \garbage" is used to designate memory onthe heap whi
h is no longer referen
ed. The garbage-
olle
tor
an be
alled expli
itly by an Algol 68program using the pro
edurePROC garbage_
olle
t = VOID:but usually the garbage-
olle
tor is
alled whenever spa
e on the heap is required and no spa
e is available.The heap is grown if garbage-
olle
tion does not yield suÆ
ient memory. Whether the heap is grown orwhether garbage-
olle
tion takes pla
e depends on the
urrent poli
y whi
h is usually spe
i�ed by theenvironment string A68_GC_POLICY. However, this
an be overridden by
alling the pro
eduresPROC disable_garbage_
olle
tor = VOID:PROC enable_garbage_
olle
tor = VOID:Finer
ontrol over the garbage-
olle
tor depends on a number of parameters whi
h
an be determinedusing the pro
edurePROC get_g
_param = (VECTOR[℄CHAR name)INT:or set using the pro
edurePROC set_g
_params =(VECTOR[℄GCPARAM g
par)VOID:The available names are1. MAX HEAP SIZE The maximum size of the heap in bytes.2. MIN HEAP SIZE The minimum size of the heap in bytes.3. MAX SEGMENT SIZE The maximum size of a memory segment a
quired for the heap.4. MIN SEGMENT SIZE The minimum size of a memory segment a
quired for the heap.5. HEAP INCREMENT The number of bytes by whi
h the heap should be in
reased in size whenever theheap is grown.6. POLICY The heap poli
y. Three values are provided for setting the heap poli
y:(a) INT always
olle
tThe garbage-
olle
tor will always be
alled if spa
e is required.(b) INT always grow heapThe garbage-
olle
tor will never be
alled even if spa
e is required.(
) INT default poli
yThe garbage-
olle
tor will be
alled if there is insuÆ
ient spa
e in the heap for the memoryrequired.7. COLLECTION THRESHOLD The number of bytes in use before the next garbage
olle
tion is allowed.For further details about the garbage-
olle
tor,
onsult the
ode in the library dire
tory in the Ctranssour
e tree.

182 CONTENTS13.7 TransputIf you are un
lear about the working of Algol 68 transput,
onsult
hapter 9. The fun
tion of this se
tionis to do
ument all the transput de
larations so that you
an use it as a referen
e manual.The de
larations will be
overed in the following order:1. Modes2. Standard
hannels3. Standard �les4. Opening �les5. Closing �les6. Transput routines7. Interrogating �les8. File properties9. Event routines10. Conversion routines11. Layout routinesIn the sequel, transput errors are mentioned using identi�ers whose values appear in the following table:physi
al file end not mended 255logi
al file end not mended 254stand in redire
ted 253environment string unset 252environment string estab err 251estab invalid parameters 250open invalid parameters 249no program args 248value error not mended 247Identi�ers for transput errors13.7.1 Transput modesOnly �ve modes are available:FILE A stru
ture
ontaining details of a a book a

essed by the program.CHANNEL A stru
ture
ontaining pro
edures for a

essing books.SIMPLIN A union of names of all plain modes, rows of plain modes, stru
tures of plain modes and their
ombinations.SIMPLOUT A union of all plain modes, rows of plain modes, stru
tures of plain modes and their
ombi-nations.BUFFER A synonym for RVC. It is used as the yield of the pro
edure file buffer (see se
tion 13.7.7).The mode NUMBER is used as a parameter of the pro
edures whole, fixed and float, but be
ause it isthe union of all number modes, it is unne
essary to spe
ify it and so has not been made available forgeneral use.13.7.2 Standard
hannelsFor ea
h
hannel in this se
tion, the general properties are �rst given, followed by a table giving theproperties of books opened on the
hannel and then a list of spe
i�
 properties for the following pro
edureswhere appli
able:

13.7. TRANSPUT 183establishopen
reate
loselo
ks
rat
hsetlogi
al endreidf1. CHANNEL stand in
hannelCHANNEL stand out
hannelCHANNEL stand ba
k
hannelThese three
hannels have similar properties be
ause they use the same a

ess pro
edures. Thestandard bu�ered input
hannel is stand in
hannel. Books on this
hannel have the followingproperties: stand in
hannelbin possible TRUEput possible FALSEget possible TRUEset possible TRUEreidf possible FALSEThe stand out
hannel is the standard bu�ered output
hannel. Books on this
hannel have thefollowing properties: stand out
hannelbin possible TRUEput possible TRUEget possible FALSEset possible TRUEreidf possible FALSEThe stand ba
k
hannel is the standard bu�ered input/output
hannel. Books on this
hannelhave the following properties: stand ba
k
hannelbin possible TRUEput possible TRUEget possible TRUEset possible TRUEreidf possible TRUEThe
hannels have the following properties:establish You must have write a

ess to the �le. If it already exists, it will be trun
ated to zerolength. The default mode is 8r644. If the �le
annot be established, the routine will returnthe value errno (the system error name) refers to.open the �le will be opened with a default mode of 8r444. If the �le
annot be opened, the routinewill return the value errno refers to.
reate A zero length �le with a unique identi�
ation will be
reated using the default mode of8r644.
lose The �le will be
losed. For the stand out
hannel and the stand ba
k
hannel, thebu�er will be
ushed.lo
k The �le will be
losed and then all permissions will be removed from the �le provided youhave write a

ess to the dire
tory
ontaining the �le.s
rat
h The �le will be
losed and then unlinked.

184 CONTENTSset The
urrent position will be set to any legal position in the book (non-negative positions only).If the position is set beyond the
urrent logi
al end, a sparse �le will be
reated.logi
al end The position will be set to just beyond the last byte in the �le.reidf For the stand ba
k
hannel only. When the �le is
losed, it will be renamed. If therename fails (an already existing �le with that name, for example), an error message will beoutput on the stand err �le giving a des
ription of the error and identifying the �le.2. CHANNEL arg
hannelThis
hannel gives a

ess to the program arguments in
luding the a
tual
all of the program whi
hpre
edes the program arguments. Arguments are separated by a single spa
e. A name of modeREF FILE opened with this
hannel has blank as the string terminator. The arguments, as a book,have the following properties: arg
hannelbin possible FALSEput possible FALSEget possible TRUEset possible TRUEreidf possible FALSEThe
hannel has the following properties:establish Same as open.open The program arguments will be made available. If the arguments are unavailable, the routinewill return no program args.
reate Same as open.
lose No a
tion.lo
k No a
tion.s
rat
h No a
tion.set Provided that the required position lies between the beginning and the end of the arguments,the position will be set a

ordingly.logi
al end The position will be set to just beyond the last
hara
ter of the last argument.reidf Inappli
able.The pro
edure make term
an be used to set the string delimiter to any required value to fa
ilitatesear
hing for quote-delimited or otherwise delimited arguments.3. CHANNEL env
hannelThis
hannel gives read-only a

ess to environment strings (referred to in Linux do
umentation as\environment variables"). The environment string, as a book, has the following properties:env
hannelbin possible FALSEput possible FALSEget possible TRUEset possible TRUEreidf possible FALSEThe
hannel has the following properties:establish Yields an error of valueenvironment string estab err.open If the environment string is the null string or is unset, open yields an error of valueenvironment string unset. Otherwise, the string is available as a book.
reate Yields an error of valueenvironment string estab err.
lose No a
tion.

13.7. TRANSPUT 185lo
k The routine will attempt to remove all permissions from a �le of the same identi�
ation asthe environment string identi�
ation.s
rat
h The routine will attempt to unlink a �le of the given identi�
ation.set Provided that the required position lies between the beginning and the end of the string, theposition will be set a

ordingly.logi
al end The position will be set to just beyond the last
hara
ter.reidf Inappli
able.The default string terminator is nul
h. You should set the string terminator using make term.4. CHANNEL kbd
hannelThis
hannel provides a

ess to une
hoed keystrokes (also referred to as \non-
anoni
al input").Be warned that if a �le opened with this
hannel is not
losed and the program ends prematurely,none of your keystrokes will be e
hoed! You
an reset to
anoni
al input using the
ommandstty saneThe keyboard is made available as a book having the following properties:kbd
hannelbin possible TRUEput possible FALSEget possible TRUEset possible FALSEreidf possible FALSEThe
hannel is usually used to a

ess the
hara
ters input by
ontrol and fun
tion keys as well asnormal keystrokes, so it is advisable to use get bin rather than get. The
hannel has the followingproperties:establish Same as open.open You should use the null string "" for the identi�
ation. The routine
he
ks to see whetherstand in has been redire
ted and yields the error stand in redire
ted if so. Otherwise,the
hara
teristi
s of stand in are
hanged to wait for a single
hara
ter with no minimumwaiting time and with no e
ho of the input.
reate Same as open.
lose The routine resets stand in to the
ondition it was in previously.lo
k Same as
lose.s
rat
h Same as
lose.set Inappli
able.logi
al end Inappli
able.reidf Inappli
able.5. CHANNEL mem
hannelThis
hannel provides a memory bu�er with a

ess to all transput fa
ilities. It is similar to thestandard Algol 68 asso
iate ex
ept that binary transput is also allowed. The bu�er behaves as abook with the following properties: mem
hannelbin possible TRUEput possible TRUEget possible TRUEset possible TRUEreidf possible FALSEThe
hannel has the following properties:

186 CONTENTSestablish If the values of p and l are both 1 and the value of
 is a positive integer then
 istaken to be the size of the bu�er. Otherwise, the routine yields estab invalid parametersas error value. The identi�
ation should be "".open The routine should be
alled with an identi�
ation of mode RVC (see se
tion 2b). Theidenti�
ation will be used as the memory bu�er.
reate The value estab invalid parameters will be returned.
lose No a
tion.lo
k Inappli
able.s
rat
h Inappli
able.set Provided the position lies in or just beyond the end of the bu�er, the position will be set.logi
al end The position will be set to just beyond the end of the bu�er.reidf Inappli
able.The
hannel
an be used to a

ess individual
hara
ters of integers and reals. make term
an alsobe used.6. CHANNEL
lient so
ket
hannelCHANNEL server so
ket
hannelThese two
hannels provide UNIX- or Internet-type so
kets in the form of standard Algol 68 �les.An extra pro
edure (a

ept) is provided whi
h mirrors the Linux C library routine. So
kets behaveas books with the following properties:
lient/server so
ket
hannelbin possible TRUEput possible TRUEget possible TRUEset possible FALSEreidf possible FALSEThe
hannels have the following properties:establish The p should be the family of so
ket (either af unix or af inet). If the latter, the lshould be the port. If p is neither af unix nor af inet, the routine returns estab invalidparameters as error value. The server so
ket should be established before the
lient so
ket.open Yields an error of open invalid parameters for both
hannels.
reate Inappli
able.
lose The bu�er is
ushed and the so
ket
losed.lo
k The bu�er is
ushed, the so
ket
losed and then all a

ess permissions removed (providedthat write a

ess is available to the dire
tory
ontaining the so
ket).s
rat
h The bu�er is
ushed, the so
ket
losed and then unlinked.set Inappli
able.logi
al end Inappli
able.reidf Inappli
able.The pro
edure a

ept has the following headerPROC a

ept = (REF FILE so
ket)REF FILE:and is used in the server to a

ept a
lient so
ket, thereby yielding a REF FILE name whi
h
an beused to
ommuni
ate with the
lient.The example programs
lient1, server1,
lient2 and server2 (whose sour
e
an be found inthe examples dire
tory) demonstrate simple use of so
kets.

13.7. TRANSPUT 18713.7.3 Standard �lesFour standard �les are provided:1. REF FILE stand inThis �le
orresponds to the C stdin. Books
onne
ted via stand in di�er from those
onne
tedvia the
hannel stand in
hannel: set possible returns FALSE. Thus this �le must be regardedas a simple stream of bytes. When the kbd
hannel is being used, stand in is unavailable.2. REF FILE stand outThis �le
orresponds to the C stdout. Books
onne
ted via stand out di�er from those
onne
tedvia the
hannel stand out
hannel: set possible returns FALSE. Thus this �le must be regardedas a simple stream of bytes.3. REF FILE stand errThis �le
orresponds to the C stderr and behaves like the �le stand out.4. REF FILE stand ba
kThis �le a

esses a workbook whi
h is deleted on termination of the program. All kinds of transputare allowed on this �le.13.7.4 Opening �lesThree pro
edures are available for opening �les:1. PROC establish=(REF FILE f,STRING idf,CHANNEL
hann,INT p,l,
)INT:In standard Algol 68, this pro
edure
reates a new �le with p pages, ea
h page
ontaining l lines,ea
h line
ontaining

hara
ters. In the QAD standard prelude, only the mem
hannel (see se
tion5) takes noti
e of p, l and
 and both p and l must be 1. For other
hannels, p, l and
 are ignoredother than the so
ket
hannels (see se
tion 6). The pro
edure yields zero on su

ess, otherwise aninteger denoting an error (see se
tion 13.7.2).2. PROC open=(REF FILE f,UNION(CHAR,STRING,RVC) idf,CHANNEL
hann)INTIn standard Algol 68, the se
ond parameter of this pro
edure has mode STRING. The above unionensures that an RVC parameter
an be used to open an existing memory bu�er with the memory
hannel. This is parti
ularly useful for performing transput on bu�ers obtained from C libraryroutines. The pro
edure yields zero on su

ess, otherwise an integer denoting an error (see se
tion13.7.2).3. PROC
reate=(REF FILE f,CHANNEL
hann)INT:Creates a work �le with a unique identi�
ation in the dire
tory /tmp using the given
hannel.
13.7.5 Closing �lesThree pro
edures are provided:1. PROC
lose=(REF FILE f)VOID:This is the standard pro
edure for
losing a �le. It is standard pra
ti
e to
lose every opened �le.The pro
edure
he
ks to see whether the �le is open. If the reidf pro
edure has been
alled, after
losing the �le, the pro
edure renames the �le to the identi�
ation given in the reidf �eld.2. PROC lo
k=(REF FILE f)VOID:The Algol 68 Revised Report requires that the �le be
losed in su
h a manner that some systema
tion is required before it
an be reopened. In this
ase, the �le is
losed and then all a

esspermissions removed. Before the �le
an be reopened, the user will have to use
hmod.3. PROC s
rat
h=(REF FILE f)VOID:The �le is
losed and then unlinked.13.7.6 Transput routinesThe pro
edures in this se
tion are responsible for the transput of a
tual values. Firstly, formatlesstransput is
overed and then binary transput. The Ctrans
ompiler does not support formatted transput.In ea
h se
tion, the shorthand L is used for the various pre
isions of numbers and bits values.

188 CONTENTSStraighteningThe term straightening is used in Algol 68 to mean the pro
ess whereby a
omplex mode is separatedinto its
onstituent modes. For example, the modeMODE X=STRUCT(INT a,CHAR b,UNION(REAL,VOID) u)would be straightened into values of the following modes:� INT� CHAR� UNION(REAL,VOID)The mode REF[℄X would be straightened into a number of values ea
h having the mode REF X, and thenea
h su
h value would be further straightened into values having the modes� REF INT� REF CHAR� REF UNION(REAL,VOID)However, a value of mode COMPL is not straightened into two values both of mode REAL. Instead, the realpart is transput, then an "I" read or written followed by the imaginary part.Formatless transputFormatless transput
onverts internal values into strings of
hara
ters or strings of
hara
ters into internalvalues.1. PROC write=([℄UNION(SIMPLOUT,PROC(REF FILE)VOID) x)VOID:This is equivalent to put(stand out,x) (synonym print).2. PROC put=(REF FILE f,[℄UNION(SIMPLOUT,PROC(REF FILE)VOID) x)VOID:The parameter x is straightened and the resulting values are output. Ea
h plain mode is outputas follows:CHAR Output a
hara
ter to the next logi
al position in the �le. For [℄CHAR, output all the
hara
ters on the
urrent line.BOOL Output flip or flop for TRUE or FALSE respe
tively. For [℄BOOL, output flip or flop forea
h BOOL.L BITS Output flip for ea
h bit equal to one and flop for ea
h bit equal to zero. l bits width
hara
ters are output in all. No newline or newpage is output. For [℄L BITS, ea
h BITSvalue is output as above with no intervening spa
es.L INT Output a spa
e
hara
ter if the logi
al position is not at the start of a line. Then outputthe integer using the
allwhole(i,1+l int width)whi
h will right-justify the integer in1+l int widthpositions with a pre
eding sign. For [℄L INT, ea
h integer is output as des
ribed above,pre
eded by a spa
e if it is not at the beginning of the line. No newlines or newpages areoutput.L REAL A spa
e is output if the logi
al position is not at the start of a line and then the numberis output spa
e-�lled right-justi�ed inl real width+l exp width+3

13.7. TRANSPUT 189positions in
oating-point format and pre
eded by a sign. For a value of mode [℄L REAL,ea
h REAL value is output as des
ribed above.L COMPL The
omplex value is output as two real numbers in
oating-point format separated by i . For [℄L COMPL, ea
h
omplex value is output as des
ribed above.PROC(REF FILE)VOID: An lf
hara
ter is output if the routine is newline and an ff
hara
ter ifthe routine is newpage. User-de�ned routines with this mode
an be used.3. PROC read=([℄UNION(SIMPLIN,PROC(REF FILE)VOID) x)VOID:This is equivalent to get(stand in,: : :).4. PROC get=(REF FILE f,[℄UNION(SIMPLIN,PROC(REF FILE)VOID x)VOID:This pro
edure
onverts strings of
hara
ters into internal values. Inputting data is
overed forea
h plain mode and REF STRING. In ea
h
ase, if the end of the �le is dete
ted while reading
hara
ters, the logi
al �le end pro
edure is
alled:REF CHARAny
hara
ters
 where
 < blank are skipped and the next
hara
ter is assigned to thename.If a REF[℄CHAR is given, then the above a
tion o

urs for ea
h of the required
hara
ters ofthe multiple.REF STRINGAll
hara
ters, in
luding any
ontrol
hara
ters, are assigned to the name until any
hara
terin the
hara
ter set spe
i�ed by the string term �eld of f is read. The �le is then ba
kspa
edso that the string terminator will be available for the next get.REF BOOLThe next non-spa
e
hara
ter is read and, if it is neither flip nor flop, the
har errorpro
edure is
alled with flop as the suggestion. For REF[℄BOOL, ea
h \texttt{REF BOOL}name is assigned a value as des
ribed above.REF L BITSThe a
tion for REF BOOL is repeated for ea
h bit in the name. For REF[℄L BITS, ea
h REF LBITS name is assigned a value as des
ribed above.REF L INTIf the next non-
ontrol
hara
ter (ie, a
hara
ter whi
h is neither a spa
e, a tab
hara
ter, anewline or newpage
hara
ter or other
ontrol
hara
ter) is not a de
imal digit, then the
harerror pro
edure is
alled with "0" as the suggestion. Reading of de
imal digits
ontinues untila
hara
ter whi
h is not a de
imal digit is en
ountered when the �le is ba
kspa
ed. If duringthe reading of de
imal digits, the value of l max int would be ex
eeded, reading
ontinues,but the input value is not in
reased. For REF[℄L INT, ea
h integer is read as des
ribed above.REF L REALA real number
onsists of 3 parts:� an optional sign possibly followed by spa
es� an optional integral part� a "." followed by any number of
ontrol
hara
ters (su
h as newline or tab
hara
ters)and the fra
tional part� an optional exponent pre
eded by a
hara
ter in the set "Ee\". The exponent may havea sign. Absen
e of a sign is taken to mean a positive exponentThe number may be pre
eded by any number of
ontrol
hara
ters or spa
es. For REF[℄L REAL,ea
h REAL value is read as des
ribed above.REF L COMPLTwo real numbers separated by "i" are read from the �le. Newlines or newpages or other
ontrol
hara
ters
an pre
ede ea
h real. The �rst number is regarded as the real part andthe se
ond the imaginary part. For REF[℄L COMPL, ea
h REF L COMPL is read as des
ribedabove.

190 CONTENTSBinary transputBinary transput performs no
onversion on internal values, thus providing a means of storing internalvalues in a
ompa
t form in books or reading su
h values into a program.1. PROC write bin=([℄SIMPLOUT x)VOID:This is equivalent to put bin(stand ba
k,x).2. PROC put bin=(REF FILE f,[℄SIMPLOUT x)VOID:This pro
edure outputs internal values in a
ompa
t form. Then external size is the same as theinternal size.3. PROC read bin=([℄SIMPLIN x)VOID:This pro
edure is equivalent toget bin(stand ba
k,x)4. PROC get bin=(REF FILE f,[℄SIMPLIN x)VOID:This pro
edure transfers external values in a
ompa
t form dire
tly into internal values.In all the above pro
edures, the transput is dire
t with no
ode
onversion. It should also be notedthat the pro
edure make term, although usually used with formatless transput,
an also be used withbinary transput in the QAD standard prelude for inputting a STRING terminated by any of a number of
hara
ters.
13.7.7 Interrogating �lesA number of pro
edures are available for interrogating the properties of �les:1. Properties of the book:(a) PROC bin possible=(REF FILE f)BOOL:Yields TRUE if binary transput is possible.(b) PROC put possible=(REF FILE f)BOOL:Yields TRUE if data
an be sent to the book.(
) PROC get possible=(REF FILE f)BOOL:Yields TRUE if data
an be got from the book.(d) PROC set possible=(REF FILE f)BOOL:Yields TRUE if the book
an be browsed: that is, if the position in the book for further transput
an be set.(e) PROC reidf possible=(REF FILE f)BOOL:Yields TRUE if the identi�
ation of the book
an be
hanged.2. PROC
urrent pos=(REF FILE f)INT:The standard Algol 68 pro
edure yields a triple giving the page, line and
hara
ter number. How-ever, the QAD standard prelude does not use pages, lines and
hara
ters, so this pro
edure yieldsthe
urrent
hara
ter position within the book for the next transput operation.3. PROC file buffer=(REF FILE f)BUFFER:Yields the memory bu�er asso
iated with the �le f.4. PROC idf=(REF FILE f)RVC:Yields the
urrent identi�
ation of the book.5. PROC logi
al end=(REF FILE f)INT:The
urrent length of the book
onne
ted to f.

13.7. TRANSPUT 19113.7.8 File propertiesThree pro
edures are provided for altering the properties of �les:1. PROC make term=(REF FILE f,STRING term)VOID:Makes term the
urrent string terminator.2. PROC reidf=(REF FILE f,STRING new idf)VOID:Changes the reidf �eld of f to the given value so that when the �le is
losed, the book will berenamed.3. PROC set flush after put=(REF FILE f)VOID:Ensures that the bu�er of a �le is
ushed whenever data is written to the �le.13.7.9 Event routinesFour event routines are provided. For ea
h routine, the default behaviour will be des
ribed. In ea
h
ase, if the user routine yields FALSE, the default a
tion will be elaborated. If it yields TRUE, the a
tiondepends on the event.1. PROC on
har error=(REF FILE f,PROC(REF FILE,REF CHAR)BOOL p)VOID:This pro
edure assigns the pro
edure p, whi
h may be an identi�er or an anonymous pro
edure,to the
har error mended �eld of f. The a
tions on
hara
ter error are:Default a
tion Use the default
hara
ter for the situation parti
ular situation.User a
tion A
hara
ter may be assigned to the REF CHAR parameter and will be used if it is inthe parti
ular
hara
ter set involved.The relevant situations are:(a) When reading an integer of any pre
ision, �rst
hara
ter, possibly following an optional signwith following spa
es, is not a digit. Any de
imal digit
an be substituted. The default is"0".(b) When reading a real of any pre
ision, the �rst non-spa
e
hara
ter, optionally pre
eded by ade
imal point ".", is not a digit. Any de
imal digit
an be substituted. The default is "0".(
) When reading a real of any pre
ision, an exponent is present (the
hara
ter "e" or "E" or"\" has been read), and the �rst non-spa
e
hara
ter is not a digit. Any de
imal digit
anbe substituted. The default is "0".(d) When reading a
omplex number, the �rst non-spa
e
hara
ter following the �rst real is notin the set iI. The default is "i".2. PROC on logi
al file end=(REF FILE f,PROC(REF FILE)BOOL p)VOID:This pro
edure assigns the pro
edure p, whi
h may be an identi�er or an anonymous pro
edure,to the logi
al file mended �eld of f. The a
tions on logi
al �le end are:Default a
tion On any
hannel, if the end of the �le has been rea
hed or, in unformatted
hara
-ter transput, an eof
har is read then the error message logi
al file end not mended willbe issued and the program terminated with the exit value logi
al file end not mended.User a
tion Any a
tion as spe
i�ed. Care should be taken if transput is performed on the �le inquestion as an in�nite loop
ould o

ur.3. PROC on physi
al file end=(REF FILE f,PROC(REF FILE)BOOL p)VOID:This pro
edure assigns the pro
edure p, whether an identi�er or an anonymous pro
edure, to thephysi
al file mended�eld of f. The a
tions on physi
al �le end are:

192 CONTENTSDefault a
tion On any
hannel, if there is no more room on the physi
al medium, the programissues the error messagephysi
al file end not mendedand then terminates the program with the exit value physi
al file end not mended.User a
tion Any a
tion as spe
i�ed. Care should be taken if transput is performed on the �le inquestion as an in�nite loop
ould o

ur.4. PROC on value error=(REF FILE f,PROC(REF FILE)BOOL p)VOID:This pro
edure assigns pro
edure p to the value error mended �eld of f. The a
tions taken on avalue error are:Default a
tion The program issues the error message value error not mended and then ter-minates with the same exit value.User a
tion Transput
ontinues.The error o

urs in the following situations:(a) When an integer on input ex
eeds max int for the pre
ision
on
erned.(b) The size of the exponent of a real number ex
eeds max int.(
) An input real number is �1 or greater than max real or is less than min real for thepre
ision
on
erned.13.7.10 Conversion routinesThe
onversion routines
onsist of three pro
edures
onversion of numbers to strings of
hara
ters, oneoperator and the pro
edure
har in string. All the pro
edures whole, fixed and float will return astring of error
har if the number to be
onverted is too large for the given width, or, if the number isa real, if it is in�nite or otherwise invalid.1. PROC
har in string=(CHAR
,REF INT p,STRING s)BOOL:If the
hara
ter
 o

urs in the string s, its index is assigned to p and the pro
edure yields TRUE,otherwise no value is assigned to p and the pro
edure yields FALSE.2. PROC whole=(NUMBER v,INT width)STRING:The pro
edure
onverts integer values. Leading zeros are repla
ed by spa
es and a sign is in
ludedif width>0. If width is zero, the shortest possible string is yielded. If a real number is supplied forthe parameter v, then the
all fixed(v, width, 0) is elaborated.3. PROC fixed=(NUMBER v,INT width,after)STRING:The pro
edure
onverts real numbers to �xed point form, that is, without an exponent. The totalnumber of
hara
ters in the
onverted value is given by the parameter width whose sign
ontrols thepresen
e of a sign in the
onverted value as for whole. The parameter after spe
i�es the numberof required digits after the de
imal point. From the values of width and after, the number ofdigits in front of the de
imal point
an be
al
ulated. If the spa
e left in front of the de
imal pointis insuÆ
ient to
ontain the integral part of the value being
onverted, digits after the de
imalpoint are sa
ri�
ed.4. PROC float=(NUMBER v,INT width,after,exp)STRING:The pro
edure
onverts reals to
oating-point form (\s
ienti�
 notation"). The total number of
hara
ters in the
onverted value is given by the parameter width whose sign
ontrols the presen
eof a sign in the
onverted value as for whole. Likewise, the sign of exp
ontrols the presen
e ofa pre
eding sign for the exponent. If exp is zero, then the exponent is expressed in a string ofminimum length. In this
ase, the value of width must not be zero. Note that float always leavesa position for the sign. If there is no sign, a blank is produ
ed instead. The values of width, afterand exp determine how many digits are available before the de
imal point and, therefore, the valueof the exponent. The latter value has to �t into the width spe
i�ed by exp and so, if it
annot�t, de
imal pla
es are sa
ri�
ed one by one until either it �ts or there are no more de
imal pla
es

13.8. SUMMARY 193(and no de
imal point). If it still doesn't �t, digits before the de
imal pla
e are also sa
ri�
ed. Ifno spa
e for digits remains, the whole string is �lled with error
har.5. OP HEX=(L BITS v)[℄CHAR:The operator
onverts a value of mode L BITS into a row of hexade
imal digits. The total numberof digits equals l bits width / 4. For example, HEX 4r3 yields 00000003.13.7.11 Layout routinesThese routines provide formatting
apability on both input and output.1. PROC spa
e=(REF FILE f)VOID:The pro
edure advan
es the position in �le f by 1 byte. It does not read or write a blank.2. PROC ba
kspa
e=(REF FILE f)VOID:The pro
edure advan
es the position in �le f by -1 bytes. It does not read or write a ba
kspa
e.Note that not every
hannel permits ba
kspa
ing more than on
e
onse
utively.3. PROC newline=(REF FILE f)VOID:On input, skips any remaining
hara
ters on the
urrent line and positions the �le at the beginningof the next line. This means that all
hara
ters on input are skipped until a linefeed
hara
ter lfis read. On output, emits a linefeed
hara
ter. This is non-standard behaviour.4. PROC newpage=(REF FILE f)VOID:On input, skips any remaining
hara
ters on the
urrent page and positions the �le at the beginningof the next page. This means that all
hara
ters on input are skipped until a formfeed
hara
ter ffis read. Note that if the
hara
ter following a number is a formfeed
hara
ter, then that
hara
terwill have been read during the read of the number. Hen
e, the skip to formfeed
hara
ter will skipthe whole of the following page. On output, a formfeed
hara
ter is emitted immediately.5. PROC skip terminators=(REF FILE f)VOID:Any STRING terminators are skipped on input and the �le positioned at the next non-terminating
hara
ter. The pro
edure is usually
alled after a STRING has been read.
13.8 SummaryThe whole of the standard prelude has been des
ribed in the above se
tions. Apart from the built-inoperators implemented by the Ctrans
ompiler, the whole of the standard prelude is implemented byAlgol 68 sour
e
ode. It
an be found in the
trans-1.0.0/stanprel/a dire
tory.

194 CONTENTS

Appendix A
Answers
A.1 Chapter 1Ex 1.1(a) Yes, it
ontains lower-
ase letters.(b) Yes, it starts with a digit.(
) No.(d) Yes, a spa
e is in
luded.(e) Yes, a full stop is in
luded.Ex 1.2 It starts with a
apital letter and
ontinues with
apital letters, digits or unders
ores with nointervening spa
es, tab
hara
ters or newline
hara
ters.Ex 1.3 33Ex 1.4(a) It
ontains
ommas.(b) It
ontains a de
imal point.(
) It is not a denotation: it is a formula (see
hapter 2).Ex 1.5(a) It is not an identi�er: it is a mode-indi
ant.(b) Nothing|it's all right.(
) It
ontains a minus symbol.(d) It
ontains upper-
ase letters.Ex 1.6(a) The > symbol should be =.(b) The integer denotation is larger than the largest integer that the
ompiler
an handle.Ex 1.7 INT max int = 2 147 483 647Ex 1.8 "." "," "8"Ex 1.9 CHAR question mark = "?"Ex 1.10 The 5. should be 5.0. Either the semi
olon should be repla
ed by a
omma, or z should bepre
eded by REAL or INT.Ex 1.11 REAL light year = 9.454 26 e15(assuming 365 days per year). 195

196 CONTENTSEx 1.12 The print phrase has one opening parenthesis and two
losing ones and there is no CONTEXTVOID USE standard pre
eding the BEGIN.Ex 1.13 The �rst displays 20 at the start of the line. The se
ond displays 20 48930767 on one line.Ex 1.14 It should display your name without quote symbols on the s
reen. Here is an example program:PROGRAM ex1 9 1 CONTEXT VOIDUSE standardBEGINCHAR s="S", i="i", a="a", n="n";CO Letters of my first name COprint(s); print(i);print(a); print(n)ENDFINISHwhi
h will display Sian on the s
reen.Ex 1.15(a) 1996(b) "e"(
) 0.142857Ex 1.16(a) Yes, it
ontains spa
es.(b) Yes, it
ontains a de
imal point.(
) No.(d) Yes, it starts with a digit.Ex 1.17(a) INT fifty five = 55(b) REAL three times two point seven = 8.1(
) CHAR
olon=":"Ex 1.18 Yes, you
annot guarantee that the de
laration for x will be elaborated before the de
larationof y. The de
larations should be writtenREAL x = 1.234;REAL y = xEx 1.19 0 denotes an integer with mode INT, 0.0 denotes a real number with mode REAL.Ex 1.20 PROGRAM ex1 11 6 CONTEXT VOIDUSE standardBEGINprint(0.5); print(blank);print("G"); print(1);print(blank);print(":");print(34 000 000)ENDFINISH

A.2. CHAPTER 2 197A.2 Chapter 2Ex 2.1 INT minus thirty five = -35Ex 2.2(a) 1(b) 1.0(
) 5.0(d) 0(e) 5Ex 2.3(a) 6(b) -6(
) 13.5(d) 4.5Ex 2.4(a) 5(b) -45.0(
) -61Ex 2.5(a) 20 INT(b) 1 INT(
) 1.25 REAL(d) 1 INT(e) 17.0 REALEx 2.6 Your answer should be something like this:PROGRAM ex2 4 2 CONTEXT VOIDUSE standardBEGINprint(-7 MOD 3);print(7 MOD -3);print(-7 MOD -3)ENDFINISHThis will display +2 +1 +2on your s
reen.Ex 2.7 REAL two pi = 2 * piEx 2.8(a) 4 INT(b) 3.25 REAL(
) 12 INTEx 2.9

198 CONTENTS(a) -3 INT(b) -9 REAL(
) 2.0 REALEx 2.10 1.5Ex 2.11(a) 5(b) 2(
) 345(d) 32(e) "1"(f) 8(g) 0.0Ex 2.12 The �rst print phrase displays0.0000000000000000(16 zeros) and the se
ond displays +infinity.Ex 2.13 The
ompiler dete
ts the error and reje
ts it.Ex 2.14(a) The bra
kets should be repla
ed with parentheses.(b) There are more opening than
losing parentheses. The �rst opening parenthesis should bedeleted.(
) The operator ROUND has not been de
lared to use an operand with mode CHAR.(d) The operator ENTIER has not been de
lared for use with an operand with mode INT.
A.3 Chapter 3Ex 3.1(a) Stri
tly speaking, the de�nition of Algol 68 allows parentheses wherever bra
kets ([and ℄)are allowed. Fortunately or unfortunately, the Ctrans
ompiler
ags this as an error.(b) The apostrophes should be repla
ed by quote symbols.(
) The value 2.0 in the row-display
annot be
oer
ed to a value of mode INT in a strong
ontext(or any
ontext, for that matter).Ex 3.2 [℄INT first 4 odd numbers = (1,3,5,7)Ex 3.3(a) 8(b) 1(
) 3Ex 3.4(a) 1 LWB a, 1 UPB a, 2 LWB a, 2 UPB a, 3 LWB a,3 UPB a(b) LWB b, UPB bEx 3.5

A.3. CHAPTER 3 199(a) 6(b) (9,10,11,12)(
) (4,8,12,16)Ex 3.6(a) r[3,2℄(b) r[2,℄(
) r[,3℄Ex 3.7 [℄[℄CHAR months=("January","February","Mar
h","April","May","June","July","August","September","O
tober","November","De
ember")Ex 3.8(a) 30(b) (0.0,-5.4)(
) 11.4(d) (6,7,8)(e) "pqrst"Ex 3.9 This exer
ise is self-marking, but here is a program to print the answer to the �rst exer
ise:PROGRAM ex3 2 1 CONTEXT VOIDUSE standardBEGIN[,℄INT m = ((1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16));print(("m[2,2℄=",m[2,2℄,newline,"m[3,℄=",m[3,℄,newline,"m[,2 UPB m℄=",m[,2 UPB m℄,newline))ENDFINISHEx 3.10(a) Man bites dog(b) bbbiiEx 3.11 PROGRAM ex3 7 1 CONTEXT VOIDUSE standardBEGINFOR num TO 25DO print((num^3,newline))ODENDFINISHEx 3.12

200 CONTENTSPROGRAM ex3 7 2 CONTEXT VOIDUSE standardBEGINFOR
 FROM ABS "Z" BY -1 TO ABS "A"DO print(REPR
)ODENDFINISHEx 3.13 The main diÆ
ulty lies in
omputing the letter to print. The �rst solution uses numbers andREPR:PROGRAM ex3 8 1a CONTEXT VOIDUSE standardBEGINFOR row TO 5DO FOR letter TO 4DO print((REPR((row-1)*5+letter+ABS"�"),",")OD;print((REPR(row*5 + ABS "�"),newline))ODENDFINISHThe se
ond solution uses an a
tual alphabet and a modi�ed inner loop. Note that the formul� inthe FROM and TO
onstru
ts are elaborated on
e only: before the inner loop is elaborated for the�rst time in ea
h elaboration of the outer loop:PROGRAM ex3 8 1b CONTEXT VOIDUSE standardBEGIN[℄CHAR alphabet ="ABCDEFGHIJKLMNOPQRSTUVWXYZ"[�1℄;FOR row TO 5DO INT row5 = row*5;FOR letter FROM row5-4 TO row5-1DO print((alphabet[letter℄,","))OD;print((alphabet[row5℄,newline))ODENDFINISHEx 3.14 The most diÆ
ult part is in de
laring the multiple. print will quite happily take the 3-dimensional multiple as its parameter:PROGRAM ex3 8 2 CONTEXT VOIDUSE standardBEGIN[,,℄REAL m=(((1e-7,1e-6),

A.4. CHAPTER 4 201(1e-5,1e-4)),((1e-3,1e-2),(1e-1,1.0)));print(m)ENDFINISHEx 3.15(a) The bra
kets for the row-display should be repla
ed by parentheses.(b) The number of integers in ea
h row should be the same.(
) Nothing. The denotation of an apostrophe is not doubled.Ex 3.16(a) [1:2,1:3℄(b) [1:3℄(
) [1:2℄Ex 3.17(a) (6,5,4) [℄INT(b) (8,5,2) [℄INT(
) (7,4) [℄INT(d) ((6,5),(3,2)) [,℄INTEx 3.18 "ab
ab
ab
defg"Ex 3.19 Noti
e the means of avoiding the use of BY:PROGRAM ex3 10 5 CONTEXT VOIDUSE standardBEGIN[℄CHAR alphabet ="ab
defghijklmnopqrstuvwxyz";[℄INT by = (1,6,11,16,21,26);FOR
 TO UPB byDO print(alphabet[by[
℄℄)ODENDFINISH
A.4 Chapter 4Ex 4.1(a) 0(b) 4.4(
) FALSE(d) TRUE(e) TRUEEx 4.2(a) TRUE(b) TRUE

202 CONTENTS(
) FALSE (the UPB t[2:℄ is 5Ex 4.3(a) TRUE(b) TRUE(
) TRUE(d) TRUE. It is inadvisable to
reated
ompuound
onditions with this sort of
omplexity simplybe
ause the
ondition is so diÆ
ult to understand. You should parti
ularly avoid
ompound
onditions with NOT in front of the various parts.(e) FALSEEx 4.4(a) TRUE(b) 4 <= 2(
) a <= b OR b <=
(d) x /= y AND x /= zEx 4.5 IF x < pi!THEN print("Yes")ELSE print("No")FIEx 4.6 FOR i TO 96DO print(i*3);IF i MOD 16 = 0THEN print(newline)FIODEx 4.7 The se
ond operand of OREL is only elaborated if the �rst yields FALSE.PROGRAM p CONTEXT VOIDUSE standardBEGININT a = 3, b = 5,
 = 4;IF IF a > bTHEN TRUEELSE b >
FITHEN print("Ok")ELSE print("Wrong")FIENDFINISHEx 4.8 The right-hand side of the identity de
laration is
learly an abbreviated
ase
lause, so p mustyield INT, not BOOL.Ex 4.9

A.5. CHAPTER 5 203PROGRAM ex4 6 2 CONTEXT VOIDUSE standardCASE SIGN x + 2IN print("x < 0.0"),print("x = 0.0"),print("x > 0.0")ESACFINISHEx 4.10 TRUE and FALSEEx 4.11(a) TRUE(b) TRUE(
) TRUE(d) FALSE(e) FALSE(f) FALSEEx 4.12 You
annot mix full and abbreviated
onditional
lauses. Repla
e the verti
al bar with THEN.Also repla
e the ESAC with FI.Ex 4.13 TFTFTFTFTFEx 4.14 IF m < 10THEN print("Units")ELIF m < 100THEN print("Tens")ELIF m < 1000THEN print("Hundreds")ELSE print("Too big")FIEx 4.15 print((
ard|"A
e","two","three","four","five","six","seven","eight","nine","ten","Ja
k","Queen","King"))
A.5 Chapter 5Ex 5.1 REF INTEx 5.2 REALEx 5.3 The right-hand side of the identity de
laration should yield a value of mode INT. Insert ENTIERor ROUND before the r.Ex 5.4 No value has been assigned to x when the se
ond assignment is elaborated.Ex 5.5(a) A name with mode REF REAL.(b) The real number denoted by 2.5 with mode REAL.Ex 5.6 1.166666: : :

204 CONTENTSEx 5.7 A name with mode REF[,℄REAL.Ex 5.8(a) The bounds of the sli
e on the left-hand side of the assignment are [-2:0℄, but the bounds ofn are [1:3℄. The assignment will
ause a run-time error.(b) You
ould write m[5,℄:=m[,-1℄, but it is unlikely that you would get what you wanted be
ausethe se
ond
olumn overlaps the third row. Here is a solution guaranteed to work:[℄INT temp = m[,-1℄;m[5,℄:=temp[�-2℄Ex 5.9 There is no known formula whi
h will tell you how big the sieve must be to �nd the 365th prime;you just have to guess. A sieve with size equal to 5000 suÆ
es. You need a
ounter for the primes.The
omplete program is:PROGRAM sieve CONTEXT VOIDUSE standardBEGININT size=5000;REF[℄BOOL flags = LOC[2:size℄BOOL;FOR i FROM LWB flags TO UPB flagsDO flags[i℄:=TRUEOD;FOR i FROM LWB flags TO UPB flagsDO IF flags[i℄THENFOR k FROM i*2 BY i TO UPB flagsDO flags[k℄:=FALSECO Remove multiples of i COODFIOD;REF INT
ount = LOC INT:=0;FOR i FROM LWB flags TO UPB flagsDO IF flags[i℄ ANDTH (
ount+:=1)=365THEN print(i)FIODENDFINISHEx 5.10(a) A name of mode REF FLEX[℄CHAR.(b) 1 and 5.Ex 5.11 PROGRAM ex5 7 11 CONTEXT VOIDUSE standardBEGINREF STRING ss = LOC STRING;

A.5. CHAPTER 5 205FOR
 FROM ABS "a" TO ABS "z"DO ss:="a"-REPR
; print((ss,newline))ODENDFINISHEx 5.12 REF FLEX[,℄REAL f=LOC FLEX[1:0,1:0℄REAL;f:=(5.0,10.0,15.0,20.0);print((1 LWB f,1 UPB f,2 LWB f,2 UPB f))Ex 5.13 PROGRAM ex5 8 1 CONTEXT VOIDUSE standardBEGINREF REAL a = LOC REAL,b = LOC REAL;print(Enter two real numbers->");read((a,b,newline));print(("Their sum is",a+b,newline,"Their produ
t is",a*b))ENDFINISHEx 5.14 PROGRAM ex5 8 2 CONTEXT VOIDUSE standardBEGINREF STRING line = LOC STRING;DOread((line,newline));IF UPB line = 0THEN stop #terminate the program#ELSEFOR iFROM UPB line BY -1 TO LWB lineDOprint(line[i℄)OD;print(newline)FIODENDFINISHEx 5.15REF[℄REAL r=LOC[(REF INT s=LOC INT; read(s); s)℄REALEx 5.16 PROGRAM ex5 9 2 CONTEXT VOIDUSE standard

206 CONTENTSBEGINREF INT number=LOC INT;read(number);REF[℄INT multiple=LOC[number℄INT;read(multiple);REF INT sum=LOC INT:=0;FOR i TO numberDOsum+:=multiple[i℄OD;print(sum)ENDFINISHEx 5.17 PROGRAM ex5 10 1 CONTEXT VOIDUSE standardBEGINREF INT neg = LOC INT:=0,pos = LOC INT:=0;WHILEREF INT i=LOC INT;read((i.newline));i /= 0DO (i < 0|neg|pos) +:= iOD;print(("Sum of negative integers =",neg,newline,"Sum of positive integers =",pos,newline))ENDFINISHEx 5.18 PROGRAM ex5 10 2 CONTEXT VOIDUSE standardBEGINREF STRING line = LOC STRING;WHILEread((line,newline));UPB line /= 0DOREF INT v=LOC INT:=0;FOR i TO UPB lineDOv+:=ABS line[i℄*iOD;print((line,v,newline))ODENDFINISH

A.5. CHAPTER 5 207Ex 5.19(a) [100℄CHAR r
(b) FLEX[1:0℄INT fi(
) BOOL b:=TRUEEx 5.20(a) REF INT a=LOC INT, b=LOC INT,
=LOC INT(b) REF REAL x=LOC REAL;REF[℄CHAR y=LOC[5℄CHAR;REF[,℄REAL z=LOC[3,3℄REAL(
) REF FLEX[℄CHAR s=LOC FLEX[1:0℄CHAREx 5.21 REF[℄INT m=LOC[1000℄INT; [1000℄INT mEx 5.22 PROGRAM ex5 12 2 CONTEXT VOIDUSE standardBEGINREAL sum:=0.0, salary, INT num:=0;WHILE read(salary); salary /= -1.00DOsum+:=salary; num+:=1OD;print(("Average salary=",sum/num))ENDFINISHEx 5.23 When writing a program as involved as this, do not expe
t to get it right �rst time. In pra
ti
e,a programmer adds �ne details to a program after she has designed the main stru
ture.PROGRAM ex5 12 3 CONTEXT VOIDUSE standardBEGINBOOL in word:=FALSE,STRING line;INT line start, line finish;INT word start, word finish;read((line,newline));line start:=LWB line;line finish:=UPB line;WHILE line[line start℄=blank&line start<=UPB lineDOline start+:=1OD;WHILE line[line finish℄=blank&line finish>=line startDOline finish-:=1OD;

208 CONTENTS
line:=line[line start:line finish℄+blank;FOR
 FROM LWB lineWHILE
 <= UPB lineDOCHAR l
 = line[
℄;IF l
 /= blank & NOT in wordTHEN word start:=
; in word:=TRUEELIF l
 = blank & NOT in wordTHEN SKIPELIF l
 /= blank & in wordTHEN SKIPELSE #l
 = blank & in word#word finish:=
-1;in word:=FALSE;print((line[word start:word finish℄,newline))FIODENDFINISHNoti
e that both word start and word finish are made to refer to new values before being used.This is a good
he
k that you are writing the program properly. Noti
e also that the four possiblestates of the
ompound
ondition on line 26 are
arefully spelled out on lines 28, 30 and 32.

A.6 Chapter 6Ex 6.1 An identity de
laration is<formal-mode-param> = <a
tual-mode-param>Ex 6.2 Be
ause it is an identi�er with a mode, but no asso
iated value.Ex 6.3(a) REAL(b) INT(
) Strong(d) -5Ex 6.4 Using a loop:([℄INT i)[℄CHAR:([LWB i:UPB i℄CHAR s;FOR n FROM LWB i TO UPB iDOs[n℄:=REPR iiOD;s)Ex 6.5 (REF REAL id)REAL:Ex 6.6 (REF CHAR a,b)REF CHAR:

A.6. CHAPTER 6 209Ex 6.7 (STRING s)[℄STRING:BEGINFLEX[1:0℄STRING r:="";#rowing
oer
ion#BOOL in word:=FALSE;INT st:=LWB s,fn:=UPB s;WHILE s[st℄=blank & st<=UPB lineDOst+:=1OD;WHILE s[fn℄=blank & fn>=stDOfn-:=1OD;STRING ss:=s[st:fn℄+blank;FOR
 FROM LWB ss UNTIL
 > UPB ssDO CHAR ss
=ss[
℄;IF ss
/=blank & NOT in wordTHEN st:=
; in word:=TRUEELIF ss
=blank & NOT in wordTHEN SKIPELIF ss
/=blank & in wordTHEN SKIPELSE #ss
=blank & in word#fn:=
-1; in word:=FALSE;[UPB r+1℄STRING rr;rr[:UPB r℄:=r;rr[UPB rr℄:=ss[st:fn℄;r:=rr#The word has been added to r#FIOD;r[2:℄ #Omit the null string#ENDEx 6.8 REAL:Ex 6.9 VOID: print("Hi, there")Ex 6.10 This table summaries the o

urren
es: O

urren
esLine Applied De�ning5 T p 25 T
 38 T 4 28 T q 710 T REPR 2 312 T
 312 T q 2Ex 6.11

210 CONTENTS(a) A name of mode REF INT.(b) The integer denoted by 16 of mode INT.(
) The integer nine of mode INT.(d) The integer four of mode INT.Ex 6.12 The two de
larations are �rmly related be
ause, in a �rm
ontext, a name of mode REF[℄INT
an be dereferen
ed to a multiple of mode [℄INT.Ex 6.13(a) 1.(b) 1.(
) 2.(d) 2.Ex 6.14 These reasons are the most important:1. Be
ause their a
tions are not
lear from the program
ode.2. They
an
ause indeterminate states to o

ur.Ex 6.15(a) You
annot mix letters and symbols.(b) The symbol should start with + whi
h has already been de
lared as a monadi
 operator.(
) This symbol is used for the identity relation (see se
tion 11.6) and is not an operator.Ex 6.16 OP PP = (REF INT a)REF INT: a+:=1Ex 6.17 PROC p = VOID: a:=3Ex 6.18 PROC p = INT:BEGIN[(INT i; read((i,newline)); i)℄INT a;read(a);INT sum:=0;FOR i TO UPB a DO sum+:=a[i℄ OD;sumENDEx 6.19 PROC p = REF[,℄CHAR:(HEAP[3,20℄CHAR n;read((n,newline));n)Ex 6.20 PROC p=(REF REAL r)REF REAL:r:=r/pi*180Ex 6.21

A.6. CHAPTER 6 211PROC p = (STRING s,INT i)VOID:(INT ii = IF i < 0THEN print(newline); ABS iELSE iFI;TO ii DO print(s) OD)Ex 6.22 PROC num in multiple=(INT i,[℄INT m,REF INT p)BOOL:(INT pos:=LWB m - 1;FOR j FROM LWB m TO UPB mWHILE pos < LWB mDO (i=m[j℄|pos:=j)OD;IF pos < LWB mTHEN FALSEELSE p:=pos; TRUEFI)Ex 6.23(a) 10.0(b) 0.3(
) 0.0.Ex 6.24 PROC reverse = ([℄CHAR s)[℄CHAR:(SIZE s=1|s|s[UPB s℄+reverse(s[:UPB s-1℄))Ex 6.25 PROC(INT)INT
ube;PROC square=(INT p)INT:(ODD p|
ube(p)|p^2);
ube:=(INT p)INT: (ODD p|p^3|square(p))Ex 6.26 They form the two sides of an identity de
laration.Ex 6.27 OP LARGEST = ([,℄REAL a)REAL:(REAL largest:=a[1 LWB a,2 LWB a℄;FOR i FROM 1 LWB a TO 1 UPB aDO FOR j FROM 2 LWB a TO 2 UPB aDO largest:=largest MAX a[i,j℄OD

212 CONTENTSOD;largest)Ex 6.28 PROC pr = (INT n)REF[℄INT: HEAP[n℄INTEx 6.29 PROC leng = INT:(STRING s;read((s,newline));UPB s)
A.7 Chapter 7Ex 7.1 STRUCT(INT i,j,k) s1 = (1,2,3)Ex 7.2 STRUCT(INT i,REAL r,BOOL b)s2Ex 7.3(a) REF STRUCT(CHAR a,INT b)(b) REF CHAR(
) REF CHAR(d) INT, provided that a pro
edure had been assigned to p OF st.(e) INT(f) REF STRUCT(CHAR a,INT b)Ex 7.4 PROC p1=(STRUCT(CHAR a,INT b)s)INT:ABS a OF s * b OF sEx 7.5 MODE EX_7_3_1=STRUCT(REAL r,PROC(REAL)REAL p)Ex 7.6 MODE EX_7_3_2=STRUCT(EX_7_3_1 e,PROC(EX_7_3_1)VOID p,CHAR
)Ex 7.7 One of the BMODE and AMODE stru
tures is insuÆ
iently shielded. You will get an error for BMODEsaying it is not a legal mode and another error for the de
laration of a REF AMODE saying that themode AMODE has not been de
lared.Ex 7.8(a) (2.0,3.0)(b) -12.0(
) Write a short program to get3.6055512754639891(d) 0.982 793 723 247 329 1Ex 7.9 The value denoted by (12.0,-10.0).

A.8. CHAPTER 8 213Ex 7.10(a) REF REAL, a name.(b) REAL -3.0(
) REAL 3.0(d) REAL 3.0Ex 7.11(a) REF[℄STRING(b) REF REAL(
) REF REAL(d) REF[℄REALEx 7.12 [1:3℄.Ex 7.13(a) REF CHAR(b) REF[℄STRING(
) REF STRING(d) REF[℄REAL(e) REF[℄REALEx 7.14 MODE TEAM=STRUCT([11℄STRING name,STRING team,INT played, won, drawn,for, against)Ex 7.15 Sli
ing binds more tightly than sele
ting, so the sele
tion must be en
losed in parentheses (seese
tion 10.6 for the full explanation).Ex 7.16 The sli
ing takes pla
e before the sele
tion so no parentheses are needed.Ex 7.17(a) REF PROC S2(b) REF PROC(S1)S2(
) REF[℄CHAR
A.8 Chapter 8Ex 8.1 MODE BINT = UNION(BOOL,INT)Ex 8.2 BINT b = TRUEEx 8.3 One of the
onstituent modes of the union is �rmly-related to the united mode. In other words,in a �rm
ontext, REF UB
an be dereferen
ed to UB.Ex 8.4 UNION(INT,[℄INT,[,℄INT) mintEx 8.5 The �rst parameter is depro
edured to mode CHAR before being united. The se
ond is deref-eren
ed to mode [℄CHAR and then united. The two values of the united mode are regarded as arow-display and the pro
edure is then
alled. The se
ond parameter is an example of an anonymousname|no identi�er is atta
hed.Ex 8.6

214 CONTENTSPROC u
is=(CHAR
h,[℄CHAR s)UNION(INT,VOID):IF INT p =
h FIND s; p >= LWB sTHEN pELSE EMPTYFIEx 8.7 PROC p = (MIRC m)IRC:CASE m IN([℄INT i): (INT sum:=0;FOR j FROM LWB i TO UPB iDO sum+:=i[j℄ OD;sum),([℄REAL r):(REAL sum:=0;FOR j FROM LWB r TO UPB rDO sum+:=r[j℄ OD;sum),([℄COMPL
):(COMPL sum:=0;FOR j FROM LWB
 TO UPB
DO sum+:=
[j℄ OD;sum)ESACEx 8.8 OP * = (IRC a,b)IRC:CASE a IN(INT i): CASE b IN(INT j): i*j,(REAL j): i*j,(COMPL j): i*jESAC,(REAL i): CASE b IN(INT j): i*j,(REAL j): i*j,(COMPL j): i*jESAC,(COMPL i):CASE b IN(INT j): i*j,(REAL j): i*j,(COMPL j): i*jESACESACEx 8.9 MODE CRIB = UNION(CHAR,REAL,INT,BOOL)Ex 8.10 OP UABS = (CRIB
)UNION(INT,REAL):CASE
 IN(CHAR a): ABS a,(REAL a): ABS a,(INT a): ABS a,(BOOL a): ABS aESACEx 8.11 UABS "
"; UABS -4.0; UABS -3; UABS TRUE

A.9. CHAPTER 9 215A.9 Chapter 9Ex 9.1 PROGRAM list CONTEXT VOIDUSE standardBEGINFILE f;IF open(f,"textbook",stand in
hannel)/=0THENprint("Cannot open textbook");exit(1)FI;STRING s;WHILE get(f,(s,newline)); UPB s /= 0DO print((s,newline))OD;
lose(f)ENDFINISHEx 9.2 PROGRAM ex9 2 2 CONTEXT VOIDUSE standardBEGINFILE f;IF open(f,"textbook",stand in
hannel)/=0THENprint("Cannot open textbook");exit(1)FI;REAL r, sum:=0, INT n; get(f,n);TO n DO get(f,r); sum+:=r OD;print(sum);
lose(f)ENDFINISHEx 9.3 PROGRAM ex9 3 1 CONTEXT VOIDUSE standardBEGINFILE inf,outf;IF open(inf,"textbook",stand in
hannel)/=0THENprint("
annot open textbook");exit(1)

216 CONTENTSELIF establish(outf,"result",stand out
hannel,0,0,0)/=0THENprint("Cannot
reate result");exit(2)FI;REAL sum:=0, r, INT n;get(inf,n);TO nDO get(inf,r); sum+:=rOD;put(outf,sum);
lose(inf);
lose(outf)ENDFINISHEx 9.4 Note that in this answer, you will have to �nd some means of obviating the Ctrans bug for theBY
onstru
t.PROGRAM ex9 3 2 CONTEXT VOIDUSE standardBEGININT size = 10 000;[2:size℄BOOL flags;FOR iFROM LWB flags TO UPB flagsDO flags[i℄:=TRUE OD;FOR iFROM LWB flags TO UPB flagsDO IF flags[i℄THENFOR kFROM i+i BY i TO UPB flagsDO flags[k℄:=FALSEODFIOD;#Now the file is needed#FILE f;IF establish(f,"primes",stand out
hannel,0,0,0)/=0THENprint("Cannot
reate primes");exit(1)FI;FOR i FROM LWB flags TO UPB flagsDO

A.9. CHAPTER 9 217IF flags[i℄THEN put(f,(i,newline))FIOD;
lose(f)ENDFINISHEx 9.5 Noti
e that the pro
essing of a line is done entirely within the WHILE
lause.PROGRAM ex9 4 1 CONTEXT VOIDUSE standardBEGINFILE inf, outf;IF open(inf,"inbook",stand in
hannel)/=0THENprint("Cannot open inbook");exit(1)ELIF establish(outf,"outbook",stand out
hannel,0,0,0)/=0THENprint("Cannot
reate outbook");exit(2)FI;STRING line;WHILEget(inf,(line,newline));put(outf,(line,newline));IF UPB line = 0THEN FALSEELSE line /= UPB line * blankFIDO SKIP OD;
lose(inf);
lose(outf)ENDFINISHEx 9.6 PROGRAM ex9 4 2 CONTEXT VOIDUSE transputBEGINFILE inf, outf;IF open(inf,"lines",stand in
hannel)/=0THENprint("Cannot open book lines");exit(1)ELIF establish(outf,"words",

218 CONTENTSstand out
hannel,0,0,0)/=0THENprint("Cannot
reate book words");exit(2)FI;[℄CHAR terminators=" *"+
r+lf;make term(inf,terminators);STRING word, CHAR
h:=blank;WHILEget(inf,word);IF
h/=blankTHEN
h PLUSTO wordFI;WHILEget(inf,
h);CO String terminator,but
r/lf ignored CO
h = blankDO SKIP OD; #Skip spa
es#put(outf,(word,newline));
h /= "*"DO SKIP OD;
lose(inf);
lose(outf)ENDFINISHEx 9.7 If the on logi
al file end pro
edure yieldsFALSE, the standard prelude
auses an error message to be displayed and the program itself exitswith an equivalent error number. Here is the
ode for the program:PROGRAM tt CONTEXT VOIDUSE standardIF FILE inf;STRING line; INT n,sum:=0;open(inf,"inbook",stand in
hannel)/=0THENprint(("Cannot open inbook",newline));exit(1)ELSEon logi
al file end(inf,(REF FILE f)BOOL:IF FILE ouf;establish(ouf,"outbook",stand out
hannel,0,0,0)/=0THENprint(("Cannot establish ","outbook",newline));exit(2); SKIPELSE

A.9. CHAPTER 9 219put(ouf,(sum/n,newline));
lose(ouf); FALSEFI);FOR iDO get(inf,(line,newline));n:=i; sum+:=UPB lineODFIFINISHEx 9.8 In the following solution, note how skip terminators is
alled immediately after reading the�rst argument (the full path of the program):PROGRAM ex9 6 1 CONTEXT VOIDUSE standardIF FILE arg, inf, ouf;STRING line, infn, oufn;INT n,sum:=0;open(arg,"",arg
hannel)/=0THENput(stand err,("Cannot a

ess the ","program arguments",newline));exit(1)ELIFon logi
al file end(arg,(REF FILE f)BOOL:(put(stand err,("Insuffi
ient arguments",newline));stop; SKIP));get(arg,(LOC STRING,skip terminators,infn,skip terminators,oufn));open(inf,infn,stand in
hannel)/=0THENprint(("Cannot open ",infn,newline));exit(2)ELSEon logi
al file end(inf,(REF FILE f)BOOL:IF establish(ouf,oufn,stand out
hannel,0,0,0)/=0THENprint(("Cannot establish ",oufn,newline));exit(3); SKIPELSEput(ouf,("Average=",sum/n,newline));
lose(ouf);FALSEFI);

220 CONTENTS
FOR iDO get(inf,(line,newline));n:=i; sum+:=UPB lineODFIFINISHEx 9.9 Noti
e that the physi
al �le end of the output �le has also been
overed:PROGRAM ex9 6 2 CONTEXT VOIDUSE standardIF FILE arg, inf, ouf;STRING line, infn, oufn;open(arg,"",arg
hannel)/=0THENput(stand err,("Cannot a

ess the arguments",newline));exit(1)ELIFon logi
al file end(arg,(REF FILE f)BOOL:(put(stand err,("Insuffi
ient arguments",newline)); stop; SKIP));get(arg,(LOC STRING,skip terminators,infn,skip terminators,oufn));open(inf,infn,stand in
hannel)/=0THENprint(("Cannot open ",infn,newline));exit(2)ELIFestablish(ouf,oufn,stand out
hannel,0,0,0)/=0THENprint(("Cannot establish ",oufn,newline));exit(3)ELSEon logi
al file end(inf,(REF FILE f)BOOL:(
lose(ouf);
lose(inf);stop; SKIP));on physi
al file end(ouf,(REF FILE f)BOOL:(put(stand err,("Write error on ",idf(ouf),newline));exit(4); SKIP));DO get(inf,(line,newline));FOR i FROM LWB line TO UPB lineDO REF CHAR li=line[i℄;IF li=blank THEN li:="*" FI

A.9. CHAPTER 9 221OD;put(ouf,(line,newline))ODFIFINISHEx 9.10 PROGRAM ex9 7 1 CONTEXT VOIDUSE standardIF FILE env;open(env,"PATH",env
hannel)=0THENon logi
al file end(env,(REF FILE e)BOOL: (stop; SKIP));make term(env,":"+nul
h);STRING s;DO get(env,s);IF UPB s >= LWB sTHEN print((s,newline))FI;skip delimiters(env)OD;
lose(env)FIFINISHEx 9.11 PROGRAM ex9 7 2 CONTEXT VOIDUSE standardIF FILE arg;open(arg,"",arg
hannel)/=0THENput(stand err,("Cannot a

ess arguments",newline));exit(1)ELSEon logi
al file end(arg,(REF FILE a)BOOL: (stop; SKIP));get(arg,(LOC STRING,LOC CHAR,skip terminators));DO make term(arg,"/");STRING env name;CHAR terminator:=nul
h;get(arg,(env name,skip terminators,terminator));IF FILE env;open(env,env name,env
hannel)/=0THENprint((env name," undefined",newline))ELSE

222 CONTENTSmake term(env,terminator+nul
h);STRING s;on logi
al file end(env,(REF FILE f)BOOL:(GOTO
ontinue; SKIP));DO get(env,s);IF UPB s >= LWB sTHEN print((s,newline))FI;skip terminators(env)OD;
ontinue:
lose(env)FI;make term(arg,blank);skip terminators(arg)ODFIFINISHNoti
e the addition of nul
h to
ater for the la
k of a spe
i�
 terminator in the environmentstring.Ex 9.12 PROGRAM ex9 7 3 CONTEXT VOIDUSE standardIF FILE ab
;open(ab
,"ABC",env
hannel)/=0THENprint(("Environment string ABC","is undefined",newline));stopELSEINT sum:=0, n;on logi
al file end(ab
,(REF FILE f)BOOL:(
lose(f);print(("Total=",sum,newline));stop; SKIP));DO get(ab
,n);sum+:=nODFIFINISHEx 9.13 Noti
e how the size of the month denotation is used to ensure that the rainfall is alignedappropriately.PROGRAM ex9 8 1 CONTEXT VOIDUSE standardBEGIN[℄STRING months=("January","February","Mar
h","April","May","June","July","August","September",

A.9. CHAPTER 9 223"O
tober","November","De
ember");[℄REAL rainfall=(6.54, 12.3, 10.1, 13.83,5.04, 9.15, 14.34, 16.38,13.84, 10.45, 8.49, 7.57);FOR m TO UPB monthsDO STRING mm=months[m℄;print((mm,(12-UPB mm)*blank,fixed(rainfall[m℄,-5,2),newline))ODENDFINISHEx 9.14 The diÆ
ult part is
al
ulating whi
h number to print at ea
h position.PROGRAM ex9 8 2 CONTEXT VOIDUSE standardBEGINprint(("Table of square roots ","1 to 100",newline,newline));FOR i TO 25DO FOR j TO 4DO INT number = (j-1)*25+i;print((whole(number,-6),fixed(sqrt(number),-8,4)))OD;print(newline)ODENDFINISHEx 9.15 PROGRAM ex9 8 3 CONTEXT VOIDUSE standardBEGINREAL pi power:=1;print(("Table of powers of pi"," 1 to 10",newline,newline));FOR i TO 10DOpi power*:=pi;print((whole(i,-3)," ",float(pi power,12,6,2),newline))ODENDFINISH

224 CONTENTSEx 9.16 To write this program, you need to know how many bytes Algol 68 uses to store an integer in abinary book. In the program below, that number is presumed to be identi�ed by int bin bytes.You will need to write a short program to output a
ouple of integers to a binary book and thensee how long it is (and you might �nd its
ontents of interest).PROGRAM ex9 9 1 CONTEXT VOIDUSE standardBEGINFILE work;IF establish(work,"ex9 9 1.tmp",stand ba
k
hannel,0,0,0)/=0THENprint("Cannot
reate workbook");exit(1)FI;FOR i TO 1000 DO put bin(work,i) OD;INT int bin bytes=?;CO Your value repla
es ? COPROC by=(INT n)INT: n;FOR i FROM 17 BY by(17) TO 1000DO set(work,0,0,(i-1)*int bin bytes);INT n; get bin(work,n);print((n,newline))OD;
lose(work)ENDFINISHEx 9.17 Reading the words should not present any problems to you. The only new bit is the output.However, for the sake of
ompleteness, here is the whole program.PROGRAM ex9 9 2 CONTEXT VOIDUSE standardBEGINFILE inf, out1, out2;IF open(inf,"inbook",stand in
hannel)/=0THENprint("Cannot open inbook");exit(1)ELIF establish(out1,"outbook1",stand out
hannel,0,0,0)/=0THENprint("Cannot
reate outbook1");exit(2)ELIF establish(out2,"outbook2",

A.9. CHAPTER 9 225stand out
hannel,0,0,0)/=0THENprint("Cannot
reate outbook2");exit(3)FI;make term(inf, blank+
r+lf);STRING word; CHAR
h:=blank;on logi
al file end(inf,(REF FILE f)BOOL:(
lose(out1);
lose(out2);
lose(f);stop; SKIP));DO get(inf,(word,skip terminators));IF UPB word > 0THENput bin(out2,(
urrent pos(out1),UPB word));put bin(out1,word)FIODENDFINISHEx 9.18 A useful wrinkle is to end your report with the words END OF REPORT so that your readerknows that there are no pages of the report whi
h
ould have been lost. In a professionally writtenprogram, you would put a page number and the date of the report, but we have not yet
overedhow that
an be done (see
hapter 12).PROGRAM ex9 11 1 CONTEXT VOIDUSE standardIF [℄STRINGmonths =("January","February","Mar
h","April","May","June","July","August","September","O
tober","November","De
ember");[℄REALrainfall =(6.54, 12.30, 10.10, 13,83,5.04, 9.15, 14.34, 16.38,13.84, 10.45, 8.49, 7.57);FILE prn;establish(prn,"rainfall.out",stand out
hannel,0,0,0)/=0THENput(stand err,("Cannot establish rainfall.out",newline)); stop

226 CONTENTSELSEput(prn,("Rainfall figures in 1995",newline,newline,"Month",7*blank,"Rainfall in mm",newline));FOR m TO UPB monthsDOSTRING mm = months[m℄;put(prn,(mm,(12-UPB mm)*blank,fixed(rainfall[m℄,-5,2),newline))OD;put(prn,(newline,"END OF REPORT",newline));
lose(prn)ENDFINISHEx 9.19 You will need to get the identi�
ation of the �le from the argument line.PROGRAM ex9 11 2 CONTEXT VOIDUSE standardIF STRING in idf; FILE arg, inf, prn;open(arg,"",arg
hannel)/=0THENput(stand err,("Cannot a

ess arguments",newline));exit(1)ELIFon logi
al file end(arg,(REF FILE f)BOOL:(put(stand err,("Usage: tt idf",newline));stop; SKIP));get(arg,(LOC STRING,skip terminators,in idf));
lose(arg);open(inf,in idf,stand in
hannel)/=0THENput(stand err,("Cannot open ",in idf,newline));exit(2)ELIFestablish(prn,"tt.out",stand out
hannel,0,0,0)/=0THENput(stand err,("Cannot establish tt.out",newline));exit(3)

A.9. CHAPTER 9 227ELSESTRING line;on logi
al file end(inf,(REF FILE f)BOOL:(
lose(f);
lose(prn);stop; SKIP));FOR iDO get(inf,(line,newline));put(prn,(whole(i,-6),": "));IF UPB line > 0THEN put(prn,line)FI;newline(prn)ODFIFINISHEx 9.20 PROGRAM ex9 12 1 CONTEXT VOIDUSE standardBEGINREAL r;WHILE read(r); r/=0.0DO print((float(r,-12,3,-2),newline))ODENDFINISHEx 9.21 This program is not all that diÆ
ult. Take it slowly, step by step. Although reading anemployee re
ord only appears on
e in the program, it is better to write it as a pro
edure so as notto obs
ure the main logi
. Likewise, printing ea
h line of the report is also de
lared as a pro
edure.Noti
e how the given solution
he
ks for errors.PROGRAM ex9 12 2 CONTEXT VOIDUSE standardBEGINFILE arg, emp, prn;STRING emp idf;INT week:=0;IF open(arg,"",arg
hannel)/=0THENput(stand err,("Cannot a

ess the arguments",newline));exit(1)ELIFon logi
al file end(arg,(REF FILE f)BOOL:(put(stand err,("Usage: tt emp-book week-no",newline));exit(2); SKIP));get(arg,(LOC STRING,LOC CHAR,emp idf,week));

228 CONTENTSweek < 1 OR week > 53THENput(stand err,("Invalid week number",newline));exit(3)ELIF open(emp,emp idf,stand in
hannel)/=0THENput(stand err,("Cannot open ",emp idf,newline));exit(4)ELIFestablish(prn,"report",stand out
hannel,0,0,0)/=0THENput(stand err,("Cannot establish report",newline));exit(5)FI;MODEEMPLOYEE=STRUCT(STRING name,[2℄STRING address,STRING dept,ni
ode,tax
ode,REAL basi
,overtime,[52℄REALnet pay,tax);PROC get emp=(REF FILE f,REF EMPLOYEE e)VOID:BEGIN[80℄CHAR s;PROC get str=[℄CHAR:(INT len; get bin(f,len);[len℄CHAR s;get bin(f,s);s); \#get str\#IF (name OF e:=get str) /= ""THENFOR i TO UPB address OF eDO(address OF e)[i℄:=get strOD;dept OF e:=get str;ni
ode OF e:=get str;tax
ode OF e:=get str;

A.9. CHAPTER 9 229get bin(f,(basi
 OF e,overtime OF e,net pay OF e,tax OF e))FIEND #get emp#;PROC put emp=(REF FILE f,REF EMPLOYEE e)VOID:put(f,(name OF e,(40-UPB name OF e)*blank,fixed((net pay OF e)[week℄,-8,2),newline));INT line:=60, page:=0;PROC heading = (REF FILE f)VOID:IF line = 60THEN line:=0; #reset the line
ount#put(f,(newpage,"Report of net pay for week ",whole(week,0),40*blank,"Page ",whole(page+:=1,0),newline,newline,"Employee name",28*blank,"Net pay",newline,newline))FI #heading#;EMPLOYEE employee;REAL total pay:=0; INT n:=0;on logi
al file end(emp,(REF FILE f)BOOL:(put(prn,("Total net pay for ",whole(n,0)," employees =",fixed(total pay,-11,2),newline,newline,"End of report",newline));
lose(f);
lose(prn); stop;SKIP));DO heading(prn);get emp(emp,employee);IF name OF employee /= ""THENtotal pay+:=(net pay OF employee)[week℄;n+:=1;#
ount of total employees#put emp(prn,employee);

230 CONTENTSline+:=1FIODENDFINISH
A.10 Chapter 10Ex 10.1 Depro
eduring and dereferen
ing (not weakly-dereferen
ing).Ex 10.2 None.Ex 10.3(a) Yes.(b) No (
annot widen).(
) No (
annot dereferen
e).(d) No (
annot row).(e) No (
annot dereferen
e).(f) No (
annot unite after rowing).Ex 10.4(a) Row-display, stru
ture-display,
ollateral
lause.(b) Parallel
lause.(
) Case
lause.(d) Conformity
lause.(e) Conditional
lause.(f) Closed
lause or en
losed
lause.Ex 10.5(a) Weak.(b) Meek.Ex 10.6(a) 6 (4 denotations, 1 applied-identi�er, 1
losed
lause).(b) 5 (1 denotation, 3 applied-identi�ers, 1
all).(
) 5 (1 denotation, 3 applied-identi�ers, 1 sli
e).(d) (1 denotation, 1
losed
lause, 1
ast, 1 applied-identi�er).Ex 10.7 The identi�er of a stru
ture or a name referring to a stru
ture.Ex 10.8 A sele
tion.Ex 10.9(a) 2.(b) 3.(
) 3.(d) 4.Ex 10.10(a) A primary.(b) A primary.

A.10. CHAPTER 10 231(
) A se
ondary.(d) A primary.(e) A primary.(f) Tertiary.(g) En
losed
lause.(h) A quaternary.(i) It is not a unit.(j) A quaternary.Ex 10.11(a) 2 denotations + 2 applied-identi�ers = 4 primaries. 1
losed
lause. 3 formul� = 3 tertiaries.(b) 1 denotation + 3 applied-identi�ers = 4 primaries. 3 formul� = 3 tertiaries.(
) 2 applied-identi�ers + 1
all = 3 primaries.(d) 3 denotations + 1 applied-identi�er + 1 sli
e = 5 primaries.(e) 2 denotations + 3 applied-identi�ers = 5 primaries; 1
onditional
lause = 1 en
losed
lause,2 formul� = 2 tertiaries, 1 assignment = 1 quaternary.(f) 2 denotations + 5 applied-identi�ers = 7 primaries, 1 formula = 1 tertiary, 1 assignation = 1quaternary, 1
ase
lause + 1
onditional
lause = 2 en
losed
lauses.(g) 2 denotations + 2 applied-identi�ers = 4 primaries, 2 assignments = 2 quaternaries, 1 parallel
lause = 1 en
losed
lause.Ex 10.12(a) The
onditional
lause
an yield a value of mode REF INT or REF REAL. In a �rm
ontext,these
an be
oer
ed to INT and REAL. Thus the INT is widened to REAL and the balan
ed
lause yields a value of mode REAL.(b) The
onditional
lause in a soft
ontext will yield REF INT or REF REAL. Neither
an be
oer
edto the other in a strong
ontext, so the
lause
annot be balan
ed. The error message from the
ompiler arises from the
oer
ions applied in a strong
ontext for the attempted balan
ing.(
) The
onformity
lause yields INT or REAL. In a strong
ontext, INT
an be widened to REAL.Thus the balan
ed
lause will yield REAL.(d) The
onditional
lause yields INT or whatever. In a strong
ontext, SKIP will yield INT. Thusthe balan
ed
lause yields INT. However, the result will be unde�ned if the SKIP is used inthe assignment.Ex 10.13(a) Yes.(b) Yes.(
) No.(d) No.(e) Yes.(f) Yes.(g) Yes.(h) No.(i) Yes! It's an example in the \Revised Report".

232 CONTENTSA.11 Chapter 11Ex 11.1 PROGRAM ex11 1 1 CONTEXT VOIDUSE standardBEGIN[℄CHAR digits ="0123456789ab
def"[�0℄;PROC itostr = (INT n,r#adix#)STRING:IF n<rTHEN digits[n℄ELSE itostr(n%r,r)+digits[n%*r℄FI;print(("Table of numbers 0--15",newline,newline,"De
. Hex. Binary",newline));FOR i FROM 0 TO 15DO STRING bin = itostr(i,2),de
 = itostr(i,10),hex = digits[i℄;#only one digit#print(((4-UPB de
)*blank,de
,3*blank,hex,4*blank,(4-UPB bin)*"0",bin,newline))ODENDFINISHEx 11.2(a) 9410 = 5� 161 + 14� 160= 5e16(b) 1310 = 1� 23 + 1� 22 + 0� 21 + 1� 20= 11012(
) 1111 10012 = f916(d) 3e116 = 3� 162 + e� 161 + 1� 160= 3� 256 + 14� 16 + 1= 768 + 224 + 1= 99310(e) 2
16 = 0010 11002.(f) 101012 = 1� 24 + 1� 22 + 1� 20= 16 + 4 + 1= 2110

A.11. CHAPTER 11 233Ex 11.3(a) 10112(b) e316(
) 568Ex 11.4(a) 16r 0101 0101(b) 16r 99bb ddff(
) 16r 6745 2301(d) FALSEEx 11.5(a) 16r 558(b) 16r 17Ex 11.6 PROC transpose=(REF[,℄INT m)VOID:IF 1 UPB m - 1 LWB m=2 UPB m - 2 LWB mTHEN #m is square#REF[,℄INT mm=m[�1,�1℄; #a pre
aution#FOR i TO 1 UPB mm - 1DO REF[℄INT mr=mm[i,i+1:℄,m
=mm[i+1:,i℄;[℄INT temp=mr;mr:=m
; m
:=tempODFIEx 11.7 Use a
ast: REF REAL(xx):=120.5Ex 11.8 REF REF[℄CHAR rrq;[℄CHAR m = "ABCDEFGHIJ";rrq:=LOC REF[℄CHAR:=LOC[10℄CHAR:=m[�1℄;Ex 11.9
REF FLEX[℄INT rfi;rfi:=FLEX[1:0℄INT:=(3,-2,4)Ex 11.10 f has the mode REF STRING and ss has the mode REF REF STRING.Ex 11.11 The multiple of mode STRING whose value is "Joan of Ar
".Ex 11.12 f[3:4℄=s[7:8℄. The modes are both STRING.Ex 11.13 Here are three possible answers:REF STRING(ff) IS ssff IS REF STRING(ss)REF STRING(ff) IS REF STRING(ss)You
ould also use ISNT, :=: or :/=:.Ex 11.14

234 CONTENTS(a) A name of mode REF REF FILE.(b) TRUE BOOL.(
) A name of mode REF FILE.(d) FALSE BOOL.Ex 11.15(a) REF FILE(b) REF REF FILEEx 11.16 REF REF QUEUE(tail):=LOC QUEUE:=(("Barbara",3),nilq)Ex 11.17 tail:=next OF tailEx 11.18 No.Ex 11.19PROC add fan=(REF REF REF QUEUEhead,tail,REF FAN fan)VOID:tail:=next OF (REF REF QUEUE(head IS nilq|head|tail):=HEAP QUEUE:=(fan,nilq))Ex 11.20PROGRAM ex11 9 2 CONTEXT VOIDUSE standardBEGINMODE FAN = STRUCT(STRING name,INT ti
ket),QUEUE = STRUCT(FAN fan,REF QUEUE next);REF QUEUE nilq = NIL;PROC add fan=(REF REF REF QUEUEhead,tail,REF FAN fan)VOID:tail:=next OF(REF REF QUEUE(head IS nilq|head|tail):=HEAP QUEUE:=(fan,nilq);REF REF QUEUE head,tail;head:=tail:=LOC REF QUEUE:=nilq;FOR q TO 1000DO add fan(head,tail,LOC FAN:=(IF ODD qTHEN "Iain"ELSE "Fiona"FI,q))ODENDFINISH

A.11. CHAPTER 11 235The generator LOC FAN is used be
ause add fan requires a parameter of mode REF FAN. The s
opeof the generated name is from the de
larations of head and tail to the end of the program be
ausethere are no identity de
larations in the FOR loop
lause (therefore it is not a range).Ex 11.21 Be
ause marker has mode REF REF QUEUE, it is made to refer to ea
h REF QUEUE name in thelinked-list. The
onditionnext OF marker ISNT nilqensures that marker is not
urrently referring to the last REF QUEUE in the list. The loop willterminate when marker refers to the last REF QUEUE in the list or the number of the ti
ket of thefan to be inserted in the queue does not ex
eed the number of the ti
ket of the fan referred to bymarker. If the operator AND had been used, both operands would have been elaborated before theoperator; in whi
h
ase, if the left operand had yielded FALSE, elaboration of the right operandwould have
aused the run-time error "Sele
tion from NIL".Ex 11.22 This
an best be done by writing a program. Here is a possible solution:PROGRAM ex11 10 2 CONTEXT VOIDUSE standardBEGINMODE FAN = STRUCT(STRING name,INT ti
ket),QUEUE = STRUCT(FAN fan,REF QUEUE next);REF QUEUE nilq = NIL;PROC insert fan =PROC print queue =REF REF QUEUE head,tail;head:=tail:=LOC REF QUEUE:=nilq;INT max ti
ket = 1000;INT ti
kets issued:=0;[max ti
ket℄BOOL ti
ket issued;FOR iFROM LWB ti
ket issuedTO UPB ti
ket issuedDO FALSE OD;WHILE ti
kets issued < max ti
ketDO INT i=random int(max ti
ket);IF REF BOOL ti=ti
ket issued[i℄;NOT tiTHENti:=TRUE;insert fan(head,tail,HEAP FAN:=((ODD i|"Iain"|"Fiona"),i));ti
kets issued+:=1FIOD #fans added to the queue#;print queue(head)END FINISH

236 CONTENTSInstead of sending the output to stand out, it would be better to dire
t it to an output book sothat the results
ould be examined at leisure. Alternatively,
ommand line redire
tion
ould beused. The use of ti
ket issued ensures that unique ti
ket numbers are added to the queue sin
einsert fan does not
ater expli
itly for dupli
ate ti
ket numbers.Ex 11.23 The pro
edure has to �nd the fan
on
erned and must keep tra
k of the referen
e to that fan.PROC delete fan=(REF REF QUEUE q,INT t#i
ket#)UNION(REF FAN,BOOL):IF q IS nilqTHEN FALSE #empty queue#ELIF next OF q IS nilqTHEN #last fan in the queue#IF ti
ket OF q = tTHEN REF FAN rf = q;q:=nilq; #delete last fan#rfELSE FALSEFIELIF ti
ket OF next OF q < tTHEN delete fan(next OF q,t)ELIF ti
ket OF next OF q > tTHEN #not found# FALSEELSE REF FAN rf = next OF q;next OF q:=next OF next OF q;rfFI #delete fan#;In the assignment, the mode of next OF q is REF REF QUEUE, so the mode of next OF next OF qmust be REF QUEUE. Look at the required dereferen
ing to see what is assigned to next OF q.Ex 11.24
PROGRAM ex11 11 1 CONTEXT VOIDUSE standardBEGINMODELETTER=STRUCT(CHAR
,INT o),TREE=STRUCT(REF LETTER l,REF TREE left,right);REF TREE leaf=NIL;REF TREE root:=leaf;PROC get letter=(REF FILE f)REF LETTER:IF CHAR
h; get(f,
h);
h>="A" &
h<="Z"OR
h>="a" &
h<="z"THEN HEAP LETTER:=(
h,1)ELSE get letter(f) #skip non-letters#FI #get letter#;PROC add letter=(REF REF TREE root,REF LETTER let)VOID:IF root IS leafTHEN root:=HEAP TREE:=(let,leaf,leaf)

A.11. CHAPTER 11 237ELIF
 OF l OF root >
 OF letTHEN add letter(left OF root,let)ELIF
 OF l OF root <
 OF letTHEN add letter(right OF root,let)ELSE o OF l OF root+:=1FI #add letter#;FILE inf, arg;STRING in bk;INT max row=13;[max row,81℄CHAR out page;INT row:=max row,
ol:=0;FOR i TO max rowDO out page[i,:80℄:=80*blank;out page[i,81℄:=lfOD #initialise out page#;INT num letters:=0;PROC put letter=(REF LETTER let)VOID:BEGINIF row=max rowTHEN
ol+:=1; row:=1ELSE row+:=1FI;FILE f;establish(f,"",mem
hannel,1,1,20);put(f,(
 OF let,fixed(o OF let/num letters*100,-7,2),blank*12));out page[row,(
ol-1)*20+1:
ol*20℄:=file buffer(f);
lose(f)END #put letter#;PROC print tree=(REF REF TREE root)VOID:IF root ISNT leafTHENprint tree(left OF root);IF o OF l OF root > 0THEN put letter(l OF root)FI;print tree(right OF root)FI #print tree#;IF open(arg,"",arg
hannel)/=0THENput(stand err,("Cannot a

ess arguments",newline));stop

238 CONTENTSELIFon logi
al file end(arg,(REF FILE f)BOOL:(put(stand err,("Usage: tt in-book",newline)); stop; SKIP));get(arg,(LOC STRING,LOC CHAR,in bk));open(inf,in bk,stand in
hannel)/=0THENput(stand err,("Cannot open book ",in bk,newline));stopELSEon logi
al file end(inf,(REF FILE f)BOOL:(print tree(root);print(("Frequen
y of o

urren
e ","of letters in the book ",idf(f),newline,newline,out page,newline,"Total letters read: ",whole(num letters,0),newline));stop; SKIP))FI;FOR i TO 26 #letters in the alphabet#DO add letter(root,HEAP LETTER:=(REPR(ABS("A")-1+i),0));add letter(root,HEAP LETTER:=(REPR(ABS("a")-1+i),0))OD #all letters are now in the tree#;DO add letter(root,get letter(inf));num letters+:=1ODENDFINISH

Bibliography
For a thorough treatment of the language from a more old-fashioned point of view, I
an re
ommend thisbook:� Lindsey, C. H. and van der Meulen, S. G., Informal Introdu
tion to Algol 68, North-Holland (1977).The original report is not for the faint-hearted, but it is the �nal arbiter of what
onstitutes Algol 68.Do not make the mistake of the many detra
tors of Algol 68 who
onfused the method of des
ription (atwo-level grammar) with the language itself. If you have read as far as here, you will know that Algol 68is easier to learn than to des
ribe:� van Wijngaarden, A., Mailloux, B. J., Pe
k, J. E. L., Koster, C. H. A., Sintzo�, S., Lindsey, C. H.,Meertens, L. G. L. T. and Fisker, R. G. (eds), Revised Report on the Algorithmi
 Language Algol68, Springer-Verlag (1976).This little book
ontains mu
h wisdom about solving problems. It is geared towards mathemati
alproblems, but you should not �nd it too diÆ
ult to apply to a whole range of other problems. It used tobe the set book for the Foundation Course in Mathemati
s at the Open University:� P�olya, G., How to Solve It, 2nd ed., Penguin Books (1985).Ja
kson's original book is well worth reading if you are
onsidering taking up programming seriously oreven if you are already a professional programmer:� Ja
kson, M. A., Prin
iples of Program Design, A
ademi
 Press (1975).Details of the
oating-point pro
essor within the Intel Pentium mi
ropro
essor were taken from thefollowing books:� Intel Ar
hite
ture Software Developer's Manual, Volume I, Basi
 Ar
hite
ture, Intel Corporation,1999.� Intel Ar
hite
ture Software Developer's Manual, Volume II, Instru
tion Set Referen
e, Intel Cor-poration, 1999.

239

Index
", 19%, see OVER%*, see MOD%*:=, see MODAB%:=, see OVERAB&, see AND&*, 174(, 15, 35), 15, 35*, 13, 16, 25, 166, 168, 169, 170STRING, 172**, 15, 80, 166, 168, 171*:=, see TIMESAB+, 16, 25, 51, 80, 166dyadi
, 12, 167, 169, 170, 171CHAR, 172monadi
, 11, 167, 168, 170STRING, 172+*, 168, 169, 171+*, see I+:=, see PLUSAB+=:, see PLUSTO,, see
omma-, 80, 166dyadi
, 12, 167, 169, 170monadi
, 11, 167, 168, 170-:=, see MINUSAB/, 14, 166, 168, 169, 170/:=, see DIVAB/=, 32, 80, 166, 167, 168, 170, 171, 172CHAR, 172STRING, 173:, 24, 101, 101:/=:, 118, 134:=:, 118, 134;, 4, 5, 7, 7, 26, 77, 112, 131<, 32, 166, 168, 169, 171CHAR, 172STRING, 173, 173<=, 32, 166, 168, 169, 171, 172CHAR, 172STRING, 173, 173=, 4, 32, 80, 166, 167, 168, 169, 171, 172CHAR, 172STRING, 173>, 32, 166, 168, 169, 171CHAR, 172STRING, 173, 173>=, 32, 166, 168, 169, 171, 172CHAR, 172

STRING, 173, 173�, see AT|, see
hoi
e
lause, abbreviated|:, 362's-
omplement binary, 41ABS, 11, 16, 31, 81, 128, 128, 167, 168, 170, 171CHAR, 172a
tual-de
larer, 45, 50, 54, 82, 83ALIEN, 177alternative representation, 14AND, 31, 36, 128, 166, 167, 172anonymous, 71anonymous name, 115, 134applied identi�er, 117ar

os, 72, 175ar
sin, 72, 175ar
tan, 72, 175ARG, 81, 170argument, 100, 155arithmeti
mixed, 15ASCII, 5, 16assigning operators, 117assignment, 42, 48, 113, 117, 119, 133initial, 107assignment operators, 44assignment token, 42, 117AT, 24, 47at exit, 180B-trees, 143ba
kspa
e, 193balan
ed trees, 143balan
ing, 35, 114, 118, 118, 119, 135, 136base mode, see modeBEGIN, 15, 20, 34, 38, 58, 113, 117BIN, 128, 171bin possible, 190binary, 93, 126, 128, 150binary transput, 104BIOP 99, 178bit-wise operator, 128BITS, 127, 128, 150, 162bits lengths, 150, 163bits pa
k, 176bits shorths, 150, 163bits width, 127, 164blank, 5, 100, 165blank lines, 149BODMAS, 13240

INDEX 241book, 93binary, 103internal, 105read-only, 93write-only, 93BOOL, 31, 162Boole, George, 31Boolean, 31boolean serial
lause, see
lause, booleanboundlower, 22upper, 22boundary
onditions, 151bounds, 29, 45, 47, 49, 50, 59interrogation, 22bounds interrogation, 59browsing, 93, 104bugs, 147bus, 22BY, 27, 177BYTES, 162bytes, 125bytes lengths, 163bytes shorths, 163bytes width, 164C ma
ro, 158
all, see pro
edure,
all
anoni
al input mode, 154CASE, 38
ase
lause, see
lause,
aseCASE default, 178
ast, 109, 114, 117, 135CCHARPTR, 177CCHARPTRPTR, 176CCHARPTRTOCSTR, 178CHANNEL, 93CHAR, 5, 162
har in string, 192
hara
ter set, 5
hara
ters, 5
hoi
e
lause, see
lause,
hoi
eCINTPTR, 177
lauseboolean, 34
ase, 38, 114, 119, 136
losed, 26, 113, 117, 119
ollateral, 114
onditional, 34, 35, 45, 48, 59, 62, 74, 114,119nested, 35short form, 35
onformity, 89, 90, 114en
losed, 20, 28, 34, 38, 45, 57, 58, 59, 90,113enquiry, 34, 35, 36, 38, 53GOTO, 131loop, 26, 27, 28, 46, 53, 58, 114, 116parallel, 114

serial, 34, 38, 58, 131
lose, 95, 96
losed
lause, see
lause,
losedCODE, 177
odeindentation, 148ma
hine, 7obje
t, 7sour
e, 7, 7
ode optimisation, see optimisation
oer
ion, 6, 13, 43, 122depro
eduring, 67, 89, 109, 109, 113, 117dereferen
ing, 43, 44, 46, 51, 52, 58, 62, 73,89, 109, 110, 113, 133, 133, 141rowing, 20, 32, 49, 109, 111uniting, 88, 90, 109voiding, 59, 68, 109, 112weakly-dereferen
ing, 109, 111, 115, 118, 139widening, 6, 13, 14, 16, 20, 32, 35, 43, 51,76, 77, 80, 109
ollateralelaboration, 58
ollateral
lause, see
lause
ollateral elaboration, see elaboration
olumns, 21
omma, 4, 6, 23, 29, 38dimensions, 21
ommand line, 1
ommand prompt, 100
omment, 7
ompiler, 4COMPL, 80, 81, 150, 162
ompleter, 131
omplex numbers, 80
ompound expression, 37
on
atenation, 25, 51
onditional
lause, see
lause,
onditional
onformity
ase
lause, 90
onformity
lause, see
lause,
onformityCONJ, 81, 170
onse
utive operators, 14
onstant, 43
onstituent mode, see mode,
onstituent
onstituent unit, see unit,
onstituent
ontext, 6, 122�rm, 13, 20, 44, 44, 51, 62, 63, 88, 89, 108,111meek, 24, 26, 27, 52, 53, 108, 114, 115, 115,119soft, 45, 67, 67, 108, 117, 118, 119, 133, 135strong, 6, 13, 13, 20, 20, 35, 43, 43, 58, 68,70, 74, 75, 80, 97, 108, 111, 112, 115,117, 118, 135ex
eption, 64weak, 108, 111, 115, 139
onverse
ondition, 33
os, 72, 175CPTR, 177CPTRTORVC, 178

242 INDEX
r, 165CSTR, 176CSTRTOCCHARPTR, 178CSTRTORVC, 178Ctrans, 44, 105, 129, 147, 187, 198ALIEN, 157balan
ing, 119bits width, 127BY, 27, 62, 216BYTES, 163
harset, 165
ollateral
lauses, 114
omments, 8debugger, 152de
larations, 5, 6, 155dimensions, 21, 25dire
tives, 6division by zero, 168ELSE SKIP, 35establish, 96events, 97FORALL, 29FSTAT, 158identi�er range, 113ignoring bounds, 83int lengths, 150int shorths, 150integer over
ow, 153LENG, 170lo
k, 105mm, 152mode de
laration, 121NIL, 136OP error, 110parallel
lauses, 114pre
isions, 163re
ursive modes, 79requirements, 1s
ope
he
king, 60, 74sele
tions, 84, 84, 116set, 104SHORTEN, 170standard prelude, 161test program, 153unassigned names, 118UNION, 87VECTOR, 158voiding error, 110
urrent pos, 104, 190data, 93knowledge, 147stru
ture, 147debug, 152debugging, 151, 152ploys, 152de
imal, 125de
laration, 4, 107abbreviated, 53, 88grouping, 149

identity, 3, 6, 11, 13, 20, 21, 45, 112[℄CHAR, 19, 20CASE, 90FLEX, 49formal de�nition, 57LOC, 41optimisation, 27REF, 50routine, 61routine
all, 65STRUCT, 75mode, 80, 83, 87, 120priority, 64stru
ture, 78, 82stub, 79, 121DECS, 177denotation, 2, 7, 9, 11, 60, 108, 114[℄CHAR, 19BITS, 127
hara
ter, 5integer, 2real, 5routine, 57, 59, 61, 71, 107, 117, 119depro
eduring, see
oer
iondereferen
ing, see
oer
iondes
riptor, 122dimensions, 20displaying values, see value, displayingDIVAB, 44, 80, 166, 174divisionreal, 14DO, see
lause, loopdo
umentation, 153DOWN, see SHRdry-running, 152, 157dyadi
, see operator, dyadi
dynami
 names, see name, dynami
elaboration, 113, 120
ollateral, 4, 29, 44, 65, 77order of, 11, 13, 64sequen
e of, 4sequential, 4ELEM, 128, 166, 172BITS, 174elements, 19ELIF, 36ELSE, 34ELSE IF, 36EMPTY, 59en
losed
lause, see
lause, en
loseden
losing range, 72END, 15, 20, 34, 38, 58, 113, 117end-of-line, 97enquiry
lause, see
lause, enquiryENTIER, 16, 169env
hannel, 101environment enquiry, 127, 150, 150environment string, 101

INDEX 243eof
har, 165EQ, see =Eratosthenes' Sieve, 46error
ompilation, 152run-time, 46, 50, 151error
har, 102, 165ESAC, 38es
, 165establish, 95event-driven programming, 93exe
ution, see elaborationEXIT, 131exit, 181exp, 72, 175exp width, 150, 164exponent, 149external values, see value, externalFALSE, 31, 162FAN, 137ff, 165FI, 34�eld, 102�eld sele
tion, 76, 139�eld sele
tor, 75, 76, 115�elds, 75FILE, 93file buffer, 190�le redire
tion, 17�les, 93�rm
ontext, see
ontext, �rm�rmly
oer
ible, 62�rmly related, 62, 63, 64, 88fixed, 102, 103, 192
at multiple, see multiple,
atFLEX, 49, 49, 50, 59
exibility, 122
exible, 49
exible name, see name,
exible 70, 134flip, 165float, 102, 103, 192
oating-point standard, 150flop, 165FOR loop, see
lause, loopFORALL loop, 29formal mode, see mode, formalformal parameter, see parameterformal-de
larer, 45, 48, 50, 57, 67, 82, 83formal-mode-de
larer, 57formula, 3, 20, 117, 118fpu
w algol68 entier, 179fpu
w algol68 round, 179fpu
w ieee, 179fra
tional part, 16free format, 7FROM, 27garbage
olle
tor, 145GCPARAM, 177

GE, see >=generator, 41, 114, 115, 138anonymous, 158global, 41, 60lo
al, 41, 60, 88, 112get, 94, 95, 95, 100, 101, 103, 189get bin, 103get fpu
w, 179get possible, 190globalgenerator, see generatorglobal names, 149go-on, 42go-on symbol, see ;grouping of de
larations, see de
laration, group-ingGT, see >header, 57HEAP, 60, 68Heuristi
s, 147hexade
imal, 126arithmeti
, 126notation, 126I, 81, 166, 168, 169identi�
ation, 93identi�er, 3, 26, 27, 57, 65, 90applied, 115, 116global, 61identityde
larationformal-de
larer, 82relation, 107, 108, 108, 114, 117, 118, 119,134, 135, 136, 141relator, 118identity de
laration, see de
larationidf, 105, 190IM, 81, 170IN, 29, 38indentation, see
odeindeterminate result, 65indexable stru
ture, 176initial assignment, 43, 58instan
e, 42, 133INT, 2, 3, 11, 12, 27, 150, 162int lengths, 150, 163int shorths, 150, 163int width, 164integer, 2largest negative, 2largest positive, 2integer denotation, see denotationinteger division, 14internal representation, 51internal value, see value, internalIS, 134ISNT, 134itostr, 126

244 INDEXJa
kson methodology, 148keyboard, 93label, 101, 131last random, 175LE, see <=leading zero, 3learning by doing, 147LENG, 150, 167, 169, 170, 171lf, 165linked-list, 140, 142, 143, 143linker, 7ln, 72, 175LOC, 41, 60lo
algenerator, see generatorname, 41lo
k, 105log2, 164logi
 level, 149logi
al end, 104, 190logi
al �le end, 97LONG, 150LONG BITS, 162long bits width, 164LONG INT, 162long int width, 164long last random, 175long max int, 150, 163loop
lause, see
lause, looplower bound, see bound, lower 48LT, see <LWB, 22, 27, 166dyadi
, 166monadi
, 166ma
hine
ode, see
ode, ma
hine 4ma
hine word, 127ma
ro, see C ma
romain pro
essing logi
, 155make term, 97, 100, 101, 191MAKERVC, 179mantissa, 149MAX, 16, 166, 174max abs
har, 16, 165max exp, 164max exp real, 150max int, 4, 9, 19, 163max real, 6, 9, 150, 163meek
ontext, see
ontext, meekmemory, 125memory
ontrol, 145MIN, 16, 166, 174min exp, 164min real, 150, 163MINUS, 166MINUSAB, 44, 80, 166, 174mixed modes, 32MOD, 14, 37, 166, 168

MODAB, 44, 166, 174mode, 2, 3, 19, 122base, 19, 21, 111
onstituent, 75, 90, 91formal, 71indi
ant, 4, 7, 11, 19, 50, 61, 78, 114, 121de�nition, 2INT, 11re
ursion, 120routine, 57sele
tor, 90shielding, 120united, 87well-formed, 120mode de
laration, 78mode de
larations, 148, 156mode indi
ant, see mode, indi
antmonadi
, see operator, monadi
monetary values, 149monitors, 152multiple, 19, 45
at, 20, 49re
tangular, 21square, 21multipli
ation, 13mutual re
ursion, 72, 79name, 41, 42, 60, 112, 117, 133, 138anonymous, 141dynami
, 52
exible, 51, 137global, 149NE, 32NE, see /=nested, 29nesting, 15newline, 17, 52, 94, 96, 193newpage, 17, 52, 94, 96, 193next random, 175nibble, 129NIL, 107, 135, 138, 138nodes, 144NOT, 31, 128, 167, 171nul
h, 165null
hara
ter, 165null string, 100obje
t
ode, see
odeo

urren
eapplied, 63de�ning, 63ODD, 31, 167OF, 76on
har error, 191on exit, 181on logi
al file end, 191on physi
al file end, 191on value error, 192OP, 61open, 93, 101

INDEX 245operand, 11, 12, 35, 61operating-system, 93operator, 11
ombining, 11dyadi
, 11, 15, 22, 31, 61, 64identi�
ation, 64exponentiation, see **mixed modes, 15mode, 61modulo, 14monadi
, 11, 15, 22, 61priority, 61, 64symbol, 61, 64, 66value, 61yield, 61optimisation, 27, 48, 141
ode, 151OR, 31, 33, 37, 128, 166, 167, 172order of elaboration, see elaboration, order of 15order of modes, 87ordering operators, 33OREL, 37orthogonality, 1, 122OUSE, 39OUT, 38OUT CASE, 39OUT
lause, 38OVER, 14, 166, 168OVERAB, 44, 166, 174over
owarithmeti
, 153integer, 12overlapping multiples, see multiplesoverloading, 62, 66parallel
lause, see
lausepro
essing, 4parameter, 17, 51, 57a
tual, 57, 59, 65, 69formal, 57, 59, 60, 64, 65, 70list, 69pro
edure, 71parentheses, 15, 20, 34, 38, 69, 77, 116, 117, 135nesting of, 15PDESC, 177phrase, 4, 5, 7, 26, 28, 34, 59, 107, 122physi
al �le end, 97pi, 6, 164plain value, see value, plainPLUS, 166PLUSAB, 44, 51, 80, 166, 173PLUSTO, 51, 166, 173P�olya, George, 147primary, 116, 117primitive
on
epts, 122prin
iple of value integrity, 44print, 7, 17, 24, 25, 31, 49, 51, 87, 89, 91, 96,188

PRIO, 64, 166priority, 13, 14, 15, 24, 25, 31, 32, 33, 44problem analysis, 147problem solving, 147PROC, 66pro
edure, 66, 148, 149
all, 67, 69, 115identi�er, 71interfa
e, 149mode, 66multiple, 73name, 73nesting, 73, 74parameterless, 68parameters, 69re
ursive, 143yield, 68PROGRAM, 26, 177program, 6design, 147do
umentation, 153layout, 148maintenan
e, 147running, 7stru
ture, 4, 6programming, 147pseudo-operator, 36put, 96, 103, 188put bin, 103put possible, 190quaternary, 135QUEUE, 138queue pro
edures, 141queues, 137, 143quote, see

