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The problem
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Maxwell equations

curl (1 'curle(x)) — ki € e(x) = 0, dive(x) =0, x € () (1)

'
|

Permittivity € complex and discontinuous.

Finite element discretization (Nédélec elements)


http://www.ethz.ch/

The problem [cnt’d]
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We want to compute a few interior eigenpairs of

Ax = Ax, (2)
or
Ax =ABx, 3B (3)
where both A and B are large, sparse and complex-symmetric.

Eq. (3) can be transformed into (2) if a symmetric factorization B = CC? exists.
(Analogous to the real-symmetric case).
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What'’s special about the complex-symmetric evp?

Every matrix is similar to a complex-symmetric matrix as(n = 4)

A

see Gantmacher, vol. 2 (1959) or Horn-Johnson (1985). Thus, it may be arbitrarily
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difficult to solve (2) or (3), respectively.

Nevertheless, there are some properties among the eigenvectors.

o Ax = \x
o Ax = )\x,

e If A is diagonalizable then the diagonalization can be realized by a complex-

—

Ay = ny,

xT'A = \x!.

AF

orthogonal matrix Q, Q71 Q = I.

1
A—

—

e Takagi's factorization (SVD): A = UXUT

+1

(x,y)r :=xly = 0.

(4)
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Iterative solvers for Ax = b exploiting the com-

plex symmetric structure

e Complex orthogonal cg method, COCG (van der Vorst & Melissen, 1990)

Construction of a basis for the m-th Krylov space {v, Av,..., A" v} by en-
forcing orthogonality w.r.t. the pseudo-inner product (x,y)r := x'y. This
yields a three-term recurrence among the basis (Lanczos) vectors,

AV = Vi Ton + vinel . T, tridiagonal. (5)
The approximate solution after m step of the procedure is V,,y.,, where
b— AVym L R(Vin) — VIV, Tnym = Vb, (6)

The Lanczos procedure may break down, as (x,x)r = 0 for x # 0 is possible.

We actually set vg = b = b — Ax( for xg = 0.

Note: This procedure can be interpreted as BiCG with initial ‘shadow vector’

Wo :\_70_
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e Complex-symmetric QMR, CSYMQMR (Freund, 1992)

Same Krylov space, but the approximate solution V,,,y,, at the m-th iteration

step is determined in a QMR fashion,
| T ym — Viii1b|| = minimal. (7)
Smoothed behavior of the residual norm.

e CSYM (Bunse-Gerstner & Stover, 1999)

Computation of a factorization of the form
QAQ! = complex symmetric tridiagonal (8)

where () is unitary. This is done column by column.

Note: Procedure can be considered a first step towards the Takaki factorization
of A.

Want to exploit these solvers in the context of Jacobi-Davidson.
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Jacobi-Davidson (JD), cook book review

(Sleijpen & van der Vorst, 1995)

Let V., = R(Vin) = R[v1, ..., Vvim]). We want to improve V,,, as our trial space for

solving Ax = ABx.

We proceed in two steps:

1. Extraction of a suitable vector from V/,,.

Compute a Ritzpair (A, q), q € V.

As m < n this is a very small complex symmetric subproblem.

2. Expansion of V,,, by a suitable vector.

Solve the so-called correction equation
(I-Baq' )(A—nB)t=—-%, (I-qd' B)t=t (9)

for t. Here, r = (A — S\B)q and 7 is some shift.
Finally, t is B-pseudo-orthogonalized against v{,...,v,, to yield v,,4+1 and

Vm_|_1 — R([Vl, e ,Vm_|_1]).
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Remarks

e If t is the exact solution of (9) then
q+t=v(A-nB)"'Bg, t'Bg=0.
Thus, solving the correction equation can be considered as executing one step

of inverse vector iteration.

e However, the shift 1 is fixed only in the beginning of the iteration. Close to
convergence 1 = )\ is set which amounts to Rayleigh quotient iteration. With
this shift, we have cubic convergence if we solve (9) exactly.

e However, (9) is solved iteratively (and approximatively). (Neither A nor B must
be factored.) Preconditioning possible (— Davidson). Loss of cubic convergence

rate. But quick solution of ‘approximate’ correction.
e |f several eigenpairs are desired then compute one at the time.
e Restart if m = jmax: extract j,,in, best Ritz vectors from search space.

e The V,, aren't Krylov subspaces.
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Computing interior eigenvalues

Want to compute a few eigenvalues close to some target 7. 9%
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Closer look at the spectrum close to the target.
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Harmonic Ritz approach

Difficult to extract interior eigenvalues with the straightforward Ritz-Galerkin ap-

proach.

We use the harmonic Ritz approach (Bai et al. 2000):

~ ~

(A—rB)'Bu—(0—-7)""algl, uwel. (10)

With U := B7Y(A — 7B)V,, and U = V,,c this condition becomes

~

VI(A—1BYVyue=(0—-71)"'V(A—-7B)B (A - rB)V,c. (11)

Complex-symmetric, but involves B!,

(One reason for selection JD as an eigensolver was that it does not need matrix

factorizations.)
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Make a Petrov-Galerkin approach. Replace

~ ~ ~

(A-7B)'Ba—- @0 —-7)"talgld, uel.
by

(A—rB) 'Ba—@—-7)""alyV, wel.
where i = V,, and V = (A — 7B)2V,,. This becomes

o~

VI(A—-7B)BVy,c= (0 —7)"'VI(A—-7B)*V,c.

This eigenvalue problem is not complex-symmetric!

(10)

(12)

(13)
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Preconditioners

Choose complex symmetric preconditioners of the form LDL” . s

e diagonal
e symmetric Gauss-Seidel
e incomplete complex-symmetric ‘Cholesky’

o LDL" factorization of A — 7B (after symmetric minimum-degree reordering)

(MATLAB: [L,U]=1u(A,0))
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Reordered matrix and triangular factor L

nnz(A — 7B) = 79833, nnz(L) = 94399.
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Convergence history with Jacobi-Davidson/csym QMR

residual norm
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A waveguide problem
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n = 32098, nnz(A) = 148436, nnz(B) = 411622.
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n = 32098, nnz(A — 7B) = 411622, nnz(L) = 2595054.
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Convergence history with Jacobi-Davidson/csym QMR
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Conclusions (open problems)

e We can solve our test problems (the shown and larger ones)

e But we use plain LU factorization as preconditioner. (Shift-and-invert Lanz-

cos/Arnoldi may be a better choice than JD.)
e Other preconditioners do not work.
Why?
— Inner iteration does not converge (in the permitted number of steps).

— Extraction of the harmonic Ritz pair? See (Sleijpen, van den Eshof, 2001).
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