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Extinction Time: Definition

Let {Z(t)}t≥0 be an Age-Dependent Branching Process defined

by:

• Reproduction law: {pk}k≥0 f(s) m = f ′(1)

• Life-length distribution: G(t)

Extinction Time: T = sup{t ≥ 0: inf0≤s≤t Z(s) > 0}

Distribution Function of T : u(t) = P (T ≤ t), t ≥ 0.

u(t) =
∫ t

0

f(u(t− x))dG(x)
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Extinction Time: Definition

• If m ≤ 1, then q = P (T < ∞) = 1 and u(t) is a probability

distribution function.
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Extinction Time: Definition

• If m ≤ 1, then q = P (T < ∞) = 1 and u(t) is a probability

distribution function.

• If m > 1, then q = P (T < ∞) < 1 and u(t) is the distribution

function of an improper random variable.
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Extinction Time: Definition

The main tool to know the properties of u(t) will be integral equation

u(t) =
∫ t

0

f(u(t− x))dG(x)

Define the integral operator

Hh(t) =
∫ t

0

f(h(t− x))dG(x)

u(t) =
∫ t

0

f(u(t− x))dG(x) becomes u(t) = Hu(t)

Iterations of the integral operator:

H1h = Hh, Hn+1h = H(Hnh), n = 1, 2, . . .
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Extinction Time: Basic Properties

Proposition 1. If G(t) is absolutely continuous, then u(t) is also

absolutely continuous

Proof.

u(t) =
∫ t

0

f(u(t− x))dG(t)

= f(0)G(t) + (1− f(0))
∫ t

0

f(u(t− x))− f(0)
1− f(0)

dG(t)

= f(0)G(t) + (1− f(0))(F ∗G)(t)

F (x) =
f(u(x))− f(0)

1− f(0)
, x ≥ 0
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u(t) = lim
n→∞

Hnh(t) , t ≥ 0
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Extinction Time: Basic Properties

Proposition 2. For each h : [0,∞) → [0, 1]

u(t) = lim
n→∞

Hnh(t) , t ≥ 0

Proof. Remember... Hh(t) =
∫ t

0
f(h(t− x))dG(x)

• G∗(t) = f(0)G(t) ≤ Hh(t) ≤ G(t) f(0) ≤ f(s) ≤ 1.

• H is a non-decreasing operator:

if h ≤ h∗, then Hh(t) ≤ Hh∗(t), t ≥ 0
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Extinction Time: Basic Properties

Proposition 2. For each h : [0,∞) → [0, 1]

u(t) = lim
n→∞

Hnh(t) , t ≥ 0

Proof.

v(t) = lim
n→∞

HnG(t)

v∗(t) = lim
n→∞

HnG∗(t)
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Extinction Time: Basic Properties

Proposition 2. For each h : [0,∞) → [0, 1]

u(t) = lim
n→∞

Hnh(t) , t ≥ 0

Proof.

v(t) = lim
n→∞

HnG(t)

v∗(t) = lim
n→∞

HnG∗(t)

v(t) = v∗(t) = u(t) , t ≥ 0
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Extinction Time: Our Problems

Let {Zf(t)}t≥0 be an Age-Dependent Branching Process defined by a

reproduction law given by the p.g.f. f (mf = f ′(1)) and a life-length

distribution G(t)

For each of these processes we consider its extinction time, Tf ,

denoting by uf(t) its distribution function and by Hf its associated

integral operator
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Extinction Time: Our Problems

Let {Zf(t)}t≥0 be an Age-Dependent Branching Process defined by a

reproduction law given by the p.g.f. f (mf = f ′(1)) and a life-length

distribution G(t)

For each of these processes we consider its extinction time, Tf ,

denoting by uf(t) its distribution function and by Hf its associated

integral operator

The problems we want to solve are:

• Stochastic Monotony: f ≤ g implies uf ≤ ug?

• Continuity property: f , g close implies uf , ug close?
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Theorem 1. If f, g are p.g.f. such that f(s) ≤ g(s), 0 ≤ s ≤ 1,

then uf(t) ≤ ug(t), t ≥ 0

ISCPS & SDA 2006



Extinction Time: Stochastic Monotony

Theorem 1. If f, g are p.g.f. such that f(s) ≤ g(s), 0 ≤ s ≤ 1,

then uf(t) ≤ ug(t), t ≥ 0

• f ≤ g means that the reproduction law of {Zf(t)}t≥0 is

stochastically greater than that of {Zg(t)}t≥0

• uf ≤ ug means that the extinction time of {Zf(t)}t≥0 is

stochastically greater than that of {Zg(t)}t≥0
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Extinction Time: Stochastic Monotony

Theorem 1. If f, g are p.g.f. such that f(s) ≤ g(s), 0 ≤ s ≤ 1,

then uf(t) ≤ ug(t), t ≥ 0

Proof.

Remember again... Hfh(t) =
∫ t

0
f(h(t− x))dG(x)

• Hfh(t) ≤ Hgh(t), t ≥ 0, h because f ≤ g

• uf(t) = Hfuf(t) ≤ Hguf(t), t ≥ 0 ⇒ uf(t) ≤ Hn
g uf(t), t ≥ 0,

n = 1, 2, . . .

• uf(t) ≤ limn→∞Hn
g uf(t) = ug(t), t ≥ 0.
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Extinction Time: Continuity

Theorem 2. Let f be a p.g.f. such that mf = f ′(1) < 1. For each

ε > 0, there exists δ = δ(ε, f) > 0 such that, if g is a p.g.f. with

sup0≤s≤1 |f(s)− g(s)| ≤ δ, then supt≥0 |uf(t)− ug(t)| ≤ ε
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Extinction Time: Continuity

Theorem 2. Let f be a p.g.f. such that mf = f ′(1) < 1. For each

ε > 0, there exists δ = δ(ε, f) > 0 such that, if g is a p.g.f. with

sup0≤s≤1 |f(s)− g(s)| ≤ δ, then supt≥0 |uf(t)− ug(t)| ≤ ε

Proof.

For ε, f , let δ = ε(1−mf).

For each p.g.f. g such that sup0≤s≤1 |f(s) − g(s)| ≤ δ, it is

verified

sup
t≥0

|Hn
f G(t)−Hn

g G(t)| ≤ ε(1−mn
f )
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Epidemic Modelling: Model

• Epidemic Modelling is a very important topic in the scientific

literature. Some monographs on it are Daley and Gani (1999),

Diekmann and Heersterbeek (2000) or Mode and Sleeman (2000).

• Different types of stochastic models have been used to model the

evolution of an infectious disease into a population: branching

processes.

• Branching processes approach is appropriate when the number of

infected individuals is small in relation to the total population size

(see Ball (1997)).

• We shall use age-dependent branching processes because allow us

to control the extinction time more accurately than discrete-time

processes.
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Epidemic Modelling: Model

To model the spread of the disease by using age-dependent

branching processes, we consider the following scheme:

• Let us assume that three types of individuals may exist in the

population: infected; healthy but susceptible to catch the infection

(susceptible individuals); healthy and immune to the disease

• The disease is spreading when an infected individual is in contact

with susceptible individuals.

• We denote by pk the probability that one infected individual

contacts k healthy individuals, k ≥ 0, and by α (0 ≤ α ≤ 1) the

proportion of immune individuals in the population.

ISCPS & SDA 2006



Epidemic Modelling: Model

• We assume that the population size is fixed and large enough so

that α and the contact distribution law, {pk}k≥0 (with p.g.f. f

and mean m), can be considered stable along time.
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Epidemic Modelling: Model

• We assume that the population size is fixed and large enough so

that α and the contact distribution law, {pk}k≥0 (with p.g.f. f

and mean m), can be considered stable along time.

• The probability that an infected individual transmits the disease to

k susceptible individuals when the proportion of immune individuals

in the population is α, is given by

pα,k =
∞∑

j=k

(
j

k

)
αj−k(1− α)kpj.

• We call {pα,k}k≥0 the infection distribution law when the

proportion of immune individuals in the population is α. Its

p.g.f. is fα(s) = f(α + (1− α)s).
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Epidemic Modelling: Model

Following this spreading scheme along time, infected individuals pass

on the disease to other susceptible individuals and so on. We

model the number of infected individuals in the population by an

age-dependent branching process: {Zα(t)}t≥0
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Epidemic Modelling: Model

Following this spreading scheme along time, infected individuals pass

on the disease to other susceptible individuals and so on. We

model the number of infected individuals in the population by an

age-dependent branching process: {Zα(t)}t≥0

• Reproduction law: fα(s) = f(α + (1− α)s), mα = (1− α)m.

• Life-length: G(t)

Intuitively: By life-length we mean the period (measured in real

time) till one infected individual infects susceptible individuals or

the disease disappears in this individual
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Epidemic Modelling: Model

Our goals:

1) To investigate the distribution of the extinction time of the

infection depending on the proportion of immune individuals into

the population.
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Epidemic Modelling: Model

Our goals:

1) To investigate the distribution of the extinction time of the

infection depending on the proportion of immune individuals into

the population.

2) From the previous study, to suggest vaccination policies based on

the quantiles on the infection extinction time.
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Epidemic Modelling: Infection Extinction Time

Extinction Time: Tα uα(t) = P (Tα ≤ t), t ≥ 0

Intuitively: Tα is the maximal time that the infection survives into

the population when the proportion of immune individuals is α
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Epidemic Modelling: Infection Extinction Time

Stochastic Monotony: If α1 < α2, then uα1(t) ≤ uα2(t), t ≥ 0.
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Epidemic Modelling: Infection Extinction Time

Stochastic Monotony: If α1 < α2, then uα1(t) ≤ uα2(t), t ≥ 0.

Intuitively, it is clear that the greater is the proportion of the immune

individuals, the more probable is that the infectious disease disappears

faster
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Epidemic Modelling: Infection Extinction Time

Stochastic Monotony: If α1 < α2, then uα1(t) ≤ uα2(t), t ≥ 0.
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Epidemic Modelling: Infection Extinction Time

Continuity property: Let α be such that mα < mαinf
. For each

ε > 0 there exist δ = δ(ε, α) > 0 such that if |α − α∗| ≤ δ, then

supt≥0 |uα(t)− uα∗(t)| ≤ ε.

• f is uniformly continuous

• |α + (1− α)s− α∗ + (1− α∗)s| ≤ |α− α∗|
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Epidemic Modelling: Infection Extinction Time

Quantiles of the infection extinction time Tα

0 < p < 1 tαp = inf{t : uα(t) ≥ p}
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Epidemic Modelling: Infection Extinction Time

• If α1 < α2, then tα2
p ≤ tα1

p
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• If α1 < α2, then tα2
p ≤ tα1
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Epidemic Modelling: Infection Extinction Time

• If α1 < α2, then tα2
p ≤ tα1

p

• If uα(t) is an increasing and absolutely continuous function, then

lim
α∗→α

tα
∗

p = tαp .
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Epidemic Modelling: Vaccination policies

• It is of interest to eliminate the disease (almost surely) as fast as

possible.

• We try to control the spread of the disease by immunizing some

proportion of susceptible individuals.

• This proportion of susceptible individuals to be vaccinated depends

on the time that we allow the infectious disease to survive after

vaccination.
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Epidemic Modelling: Vaccination policies

Assume:

• Before vaccination, every healthy individual which is in contact

with an infected individual is not immune, i.e. the contact always

produces the infection. Then, with probability pk an infected

individual passes the disease on k susceptible individuals.
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Epidemic Modelling: Vaccination policies

Assume:

• Before vaccination, every healthy individual which is in contact

with an infected individual is not immune, i.e. the contact always

produces the infection. Then, with probability pk an infected

individual passes the disease on k susceptible individuals.

• At an arbitrary time t0 after the infection occurred, we vaccinate

a proportion α of susceptible individuals. We suppose that

the vaccination process is instantaneous and every vaccinated

individual is immune to the infectious disease from this time on.

• After vaccination, with probability pα,k an infected individual

transmits the disease to k susceptible individuals.
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Epidemic Modelling: Vaccination policies

• To guarantee the extinction of the disease, α must be at least

αinf .
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Epidemic Modelling: Vaccination policies

• To guarantee the extinction of the disease, α must be at least

αinf .

• Optimal proportion of vaccinated individuals:

Fixed p, 0 < p < 1, and t > 0, we are looking for vaccination

policies, i.e. α-values, such that it can be guaranteed the

extinction of the disease, with probability greater than or

equal to p, no later than time t after vaccination
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Epidemic Modelling: Vaccination policies

P (Zα(t) = 0|Zα(0) = z) = P (Tα ≤ t)z = uα(t)z
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Epidemic Modelling: Vaccination policies

P (Zα(t) = 0|Zα(0) = z) = P (Tα ≤ t)z = uα(t)z

α : uα(t)z ≥ p (⇐⇒ uα(t) ≥ p(z) = p1/z)
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Epidemic Modelling: Vaccination policies

P (Zα(t) = 0|Zα(0) = z) = P (Tα ≤ t)z = uα(t)z

α : uα(t)z ≥ p (⇐⇒ uα(t) ≥ p(z) = p1/z)

αq = αq(p, t, z) = inf{α : αinf ≤ α ≤ 1, uα(t) ≥ p(z)}
= inf{α : αinf ≤ α ≤ 1, tα

p(z) ≤ t}

ISCPS & SDA 2006
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Epidemic Modelling: Open questions for further research

1) How it can be chosen t0?

Establishing a threshold in terms of the total progeny

of infected individuals.

2) How to model the vaccination period?

By age-dependent branching processes in varying

environment.

ISCPS & SDA 2006
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