Total progeny in a subcritical branching process with two types of immigration

M. N. BOJKOVA, P. BECKER-KERN, K. MITOV

Institute of Mathematics and Informatics, Sofia University of Dortmund, Germany Air Force Academy, Pleven
\qquad

Definitions and

Basic equations

Moments of $n^{*}(t)$
Results
References

Home Page

Title Page

Page 1 of 27

Go Back

Full Screen

Close

Quit

Total progeny in a subcritical branching process with two types of immigration

M. N. BOJKOVA, P. BECKER-KERN, K. MITOV

Institute of Mathematics and Informatics, Sofia University of Dortmund, Germany Air Force Academy, Pleven
\qquad

Definitions and

Basic equations

Moments of $n^{*}(t)$
Results
References

Home Page

Title Page

Page 1 of 27

Go Back

Full Screen

Close

Quit

1. Definitions and notations

Results

References

Home Page

Title Page

Page 2 of 27

Go Back

Full Screen

Close

Quit

1. Definitions and notations

- $\{Y(t)\}_{t \geq 0}$ be a Bellman-Harris branching process with immigration only in the state zero (BHBPIO)

Definitions and

Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 2 of 27

Go Back

Full Screen

Close

Quit

1. Definitions and notations

- $\{Y(t)\}_{t \geq 0}$ be a Bellman-Harris branching process with immigration only in the state zero (BHBPIO)
- in addition a random number of immigrants enters the population at the event times $\tau_{0} \equiv 0, \tau_{1}, \tau_{2}, \ldots, \tau_{n}, \ldots$ of a given renewal process

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 2 of 27

Go Back

Full Screen

Close

Quit

1. Definitions and notations

- $\{Y(t)\}_{t \geq 0}$ be a Bellman-Harris branching process with immigration only in the state zero (BHBPIO)
- in addition a random number of immigrants enters the population at the event times $\tau_{0} \equiv 0, \tau_{1}, \tau_{2}, \ldots, \tau_{n}, \ldots$ of a given renewal process
- interarrival times $T_{1}=\tau_{1}-\tau_{0}=\tau_{1}, T_{2}=\tau_{2}-\tau_{1}, \ldots$ are independent identically distributed random variables (iid r.v.) with cumulative distribution function (cdf) $G_{0}(t)$.

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 2 of 27

Go Back

Full Screen

Close

Quit

1. Definitions and notations

- $\{Y(t)\}_{t \geq 0}$ be a Bellman-Harris branching process with immigration only in the state zero (BHBPIO)
- in addition a random number of immigrants enters the population at the event times $\tau_{0} \equiv 0, \tau_{1}, \tau_{2}, \ldots, \tau_{n}, \ldots$ of a given renewal process
- interarrival times $T_{1}=\tau_{1}-\tau_{0}=\tau_{1}, T_{2}=\tau_{2}-\tau_{1}, \ldots$ are independent identically distributed random variables (iid r.v.) with cumulative distribution function (cdf) $G_{0}(t)$.
- The numbers of immigrants I_{i} are assumed to be iid r.v.'s with probability generating function (pgf) $f_{0}(s)=E s^{I_{i}},|s| \leq 1$.

Definitions and
Basic equations
Moments of $n^{*}(t)$
Results
References

Home Page

Title Page

Page 2 of 27

Go Back

Full Screen

Close

Quit

1. Definitions and notations

- $\{Y(t)\}_{t \geq 0}$ be a Bellman-Harris branching process with immigration only in the state zero (BHBPIO)
- in addition a random number of immigrants enters the population at the event times $\tau_{0} \equiv 0, \tau_{1}, \tau_{2}, \ldots, \tau_{n}, \ldots$ of a given renewal process
- interarrival times $T_{1}=\tau_{1}-\tau_{0}=\tau_{1}, T_{2}=\tau_{2}-\tau_{1}, \ldots$ are independent identically distributed random variables (iid r.v.) with cumulative distribution function (cdf) $G_{0}(t)$.
- The numbers of immigrants I_{i} are assumed to be iid r.v.'s with probability generating function (pgf) $f_{0}(s)=E s^{I_{i}},|s| \leq 1$.

$$
n(t)=\max \left\{n: \tau_{n} \leq t\right\}
$$

the number of renewal events in the sequence $\tau_{n}, n=1,2, \ldots$ during the time interval $[0, t]$.

Definitions and
Basic equations
Moments of $n^{*}(t)$
Results
References

Home Page

Title Page

ge 2 of 27

Go Back

Full Screen

Close

Quit

- BHIO process $\{Y(t)\}_{t \geq 0}$ is constructed by a sequence of iid classical Bellman-Harris branching processes $Z(t), t \geq 0)$.

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 3 of 27

Go Back

Full Screen

Close

Quit

- BHIO process $\{Y(t)\}_{t \geq 0}$ is constructed by a sequence of iid classical Bellman-Harris branching processes $Z(t), t \geq 0)$.
- life time θ of one particle with $\operatorname{cdf} G(t), t \geq 0$, the offspring of one particle ξ with pgf $h(s)$,

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 3 of 27

Go Back

Full Screen

Close

Quit

- BHIO process $\{Y(t)\}_{t \geq 0}$ is constructed by a sequence of iid classical Bellman-Harris branching processes $Z(t), t \geq 0)$.
- life time θ of one particle with $\operatorname{cdf} G(t), t \geq 0$, the offspring of one particle ξ with pgf $h(s)$,
- the pgf $f(s)$ of the random number ν_{i} of immigrants in the state zero and the cdf $K(t)$ of the duration X_{i} of the stay in the state zero.

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 3 of 27

Go Back

Full Screen

Close

Quit

- The construction is as follows (see e.g. Mitov and Yanev (1985)): Let σ_{i} be the life period of the process $Z_{i}(t)$.

Definitions and

Basic equations

Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 4 of 27

Go Back

Full Screen

Close

Quit

- The construction is as follows (see e.g. Mitov and Yanev (1985)): Let σ_{i} be the life period of the process $Z_{i}(t)$.
- Then the sequence $U_{i}=X_{i}+\sigma_{i}, \quad i=1,2, \ldots$ defines

$$
\begin{equation*}
S_{0}=0, \quad S_{n}=S_{n-1}+U_{n}, n=1,2, \ldots \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
N(t)=\max \left\{n: S_{n} \leq t\right\} \tag{2}
\end{equation*}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 4 of 27

Go Back

Full Screen

Close

Quit

- The construction is as follows (see e.g. Mitov and Yanev (1985)): Let σ_{i} be the life period of the process $Z_{i}(t)$.
- Then the sequence $U_{i}=X_{i}+\sigma_{i}, \quad i=1,2, \ldots$ defines

$$
\begin{equation*}
S_{0}=0, \quad S_{n}=S_{n-1}+U_{n}, n=1,2, \ldots \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
N(t)=\max \left\{n: S_{n} \leq t\right\} \tag{2}
\end{equation*}
$$

- The BHIO process $Y(t)$ is defined by

$$
Y(t)=Z_{N(t)+1}\left(t-S_{N(t)}-X_{N(t)+1}\right) \mathbb{I}_{\left\{S_{N(t)}+X_{N(t)+1} \leq t\right\}}
$$

where \mathbb{I}_{A} denotes the indicator of the event A.

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 4 of 27

Go Back

Full Screen

Close

Quit

- Now the process $X(t)$ can be defined as follows (taking into account that $\tau_{0} \equiv 0$ is the first renewal event when the I_{0} independent BHIO processes start)

$$
X(t)=\sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} Y^{(i, k)}\left(t-\tau_{i}\right), \quad t \geq 0
$$

where $Y^{(i, k)}(t), t \geq 0$ are independent copies of $Y(t)$.

- The process $X(t)$ is studied by $\operatorname{Weiner(1991)}$ in the critical case, and by Slavchova-Bojkova (1996) in the non-critical cases.

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 5 of 27

Go Back

Full Screen

Close

Quit

- Now the process $X(t)$ can be defined as follows (taking into account that $\tau_{0} \equiv 0$ is the first renewal event when the I_{0} independent BHIO processes start)

$$
X(t)=\sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} Y^{(i, k)}\left(t-\tau_{i}\right), \quad t \geq 0
$$

where $Y^{(i, k)}(t), t \geq 0$ are independent copies of $Y(t)$.

- The process $X(t)$ is studied by $\operatorname{Weiner(1991)}$ in the critical case, and by Slavchova-Bojkova (1996) in the non-critical cases.

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 5 of 27

Go Back

Full Screen

Close

Quit

In the present paper we will consider the total number of particles in the process $X(t)$.

Definitions and

Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 7 of 27

Go Back

Full Screen

Close

Quit

In the present paper we will consider the total number of particles in the process $X(t)$.

Definitions and

Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 7 of 27

Go Back

Full Screen

Close

Quit

Comment 1 The total progeny is studied for different classes of branching processes in two settings. For Galton-Watson processes the sum of the particles in the first n-generations is investigated. (See for example Pakes(1971) for simple Galton-Watson branching processes and Kulkarni and Pakes (1983) for Galton-Watson branching processes with immigration in the state 0.)

For continuous time branching processes, which is our case $(Z(t)$, $X(t)$ or $Y(t)$), one can count the total number of particles up to the instant t or consider the following continuous time characteristic of the process, (e.g. for $Z(t)$),

$$
\int_{0}^{t} Z(u) d u, t \geq 0
$$

which is analogous to the total number of particles up to the instant t. More comments and discussions on this characteristic can be found in Pakes (1972) or in Jagers (1975).

Home Page

Title Page

4

Page 8 of 27

Go Back

Full Screen

Close

Quit

Comment 1 The total progeny is studied for different classes of branching processes in two settings. For Galton-Watson processes the sum of the particles in the first n-generations is investigated. (See for example Pakes(1971) for simple Galton-Watson branching processes and Kulkarni and Pakes (1983) for Galton-Watson branching processes with immigration in the state 0.)

For continuous time branching processes, which is our case $(Z(t)$, $X(t)$ or $Y(t)$), one can count the total number of particles up to the instant t or consider the following continuous time characteristic of the process, (e.g. for $Z(t)$),

$$
\int_{0}^{t} Z(u) d u, t \geq 0
$$

which is analogous to the total number of particles up to the instant t. More comments and discussions on this characteristic can be found in Pakes (1972) or in Jagers (1975).

Home Page

Title Page

4

Page 8 of 27

Go Back

Full Screen

Close

Quit

Let us denote by $\zeta(t)$, the total number of particles which are born up to the moment t in the process $Z(t)$, and by ζ the total number of particles which are born in the process $Z(t)$ during its life period σ.

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 9 of 27

Go Back

Full Screen

Close

Quit

Let us denote by $\zeta(t)$, the total number of particles which are born up to the moment t in the process $Z(t)$, and by ζ the total number of particles which are born in the process $Z(t)$ during its life period σ.
r.v. ζ is proper in the sense that $P(\zeta<\infty)=1$, provided that the process $Z(t)$ is not supercritical.

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 9 of 27

Go Back

Full Screen

Close

Quit

Let us denote by $\zeta(t)$, the total number of particles which are born up to the moment t in the process $Z(t)$, and by ζ the total number of particles which are born in the process $Z(t)$ during its life period σ.
r.v. ζ is proper in the sense that $P(\zeta<\infty)=1$, provided that the process $Z(t)$ is not supercritical.

Let us denote by $V(t)$ the total number of particles up to the moment t in the process $Y(t)$.

Then

$$
V(t)=\sum_{i=1}^{N(t)} \zeta_{i}+\zeta_{N(t)+1}\left(t-S_{N(t)}-X_{N(t)+1}\right) \mathbb{I}_{\left\{S_{N(t)}+X_{N(t)+1} \leq t\right\}}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 9 of 27

Go Back

Full Screen

Close

Quit

Let us denote by $\zeta(t)$, the total number of particles which are born up to the moment t in the process $Z(t)$, and by ζ the total number of particles which are born in the process $Z(t)$ during its life period σ.
r.v. ζ is proper in the sense that $P(\zeta<\infty)=1$, provided that the process $Z(t)$ is not supercritical.

Let us denote by $V(t)$ the total number of particles up to the moment t in the process $Y(t)$.

Then

$$
V(t)=\sum_{i=1}^{N(t)} \zeta_{i}+\zeta_{N(t)+1}\left(t-S_{N(t)}-X_{N(t)+1}\right) \mathbb{I}_{\left\{S_{N(t)}+X_{N(t)+1} \leq t\right\}}
$$

Comment 2 Kulkarni and Pakes (1983) have studied the corresponding quantity to $V(t)$ for Galton-Watson branching processes. In the recent paper of Glynn and Whitt (2001) the problem is solved in a more general setting. They have obtained necessary and sufficient conditions for LLN and CLT for an integral of a delayed regenerative process, i.e.

Home Page

Title Page
Definitions and
Basic equations
Moments of $n^{*}(t)$
Results
References

4

Page 9 of 27

Go Back

Full Screen

Close $\int_{0}^{t} Y(u) d u$ in our notations.

Finally, denote by $W(t)$ the total number of particles in the process $X(t)$, i.e.

$$
\begin{align*}
& W(t)=\sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} V^{(i, k)}\left(t-\tau_{i}\right) \tag{3}\\
&= \sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} \sum_{l=0}^{N^{(i, k)}\left(t-\tau_{i}\right)} \zeta_{l}^{(i, k)} \\
&+ \sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} \zeta_{N^{(i, k)}\left(t-\tau_{i}\right)+1}^{(i, k)}\left(t-S_{N^{(i, k)}\left(t-\tau_{i}\right)}^{(i, k)}-X_{N^{(i, k)}\left(t-\tau_{i}\right)+1}^{(i, k)}\right) \\
&\left.\times \quad \mathbb{I}_{\left\{S_{N}^{(i, k)}(i, k)\left(t-\tau_{i}\right)\right.}+X_{N^{(i, k)}\left(t-\tau_{i}\right)+1}^{(i, k)} \leq t\right\}
\end{align*}
$$

Definitions and

Basic equations

Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 10 of 27

Go Back

Full Screen

Close

Finally, denote by $W(t)$ the total number of particles in the process $X(t)$, i.e.

$$
\begin{align*}
& W(t)=\sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} V^{(i, k)}\left(t-\tau_{i}\right) \tag{3}\\
&= \sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} \sum_{l=0}^{N^{(i, k, k}\left(t-\tau_{i}\right)} \zeta_{l}^{(i, k)} \\
&+ \sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} \zeta_{N^{(i, k)}\left(t-\tau_{i}\right)+1}^{(i, k)}\left(t-S_{N(i, k)}^{(i, k)}\left(t-\tau_{i}\right)\right. \\
& \times \mathbb{I}_{\left\{S_{N(i, k)}^{(i, k)}\left(t-\tau_{i}\right)\right.}+X_{N^{\prime}}^{(i, k, k)}\left(t-\tau_{i}\right)+1 \\
&(i, k t\}
\end{align*},
$$

Results

Home Page

Title Page
where $V^{(i, k)}(t), t \geq 0$ are independent copies of $V(t), t \geq 0$.
Page 10 of 27
Comment 3 The process $W(t)$ is partially investigated in Weiner (1991)
Go Back in the critical case.

We will investigate the limiting behaviour of the process $W(t), t \geq$ 0 , assuming the following basic conditions:

Close

1. For the processes $Z(t)$:

$$
\begin{align*}
& 0<A=E \xi=h^{\prime}(1)<1, \quad 0<B=\operatorname{Var} \xi<\infty \tag{4}\\
& r_{1}=E \theta=\int_{0}^{\infty} x d G(x)<\infty, \quad r_{2}=\operatorname{Var} \theta<\infty \tag{5}
\end{align*}
$$

Definitions and

Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 11 of 27

Go Back

Full Screen

Close

1. For the processes $Z(t)$:

$$
\begin{align*}
& 0<A=E \xi=h^{\prime}(1)<1, \quad 0<B=\operatorname{Var} \xi<\infty \tag{4}\\
& r_{1}=E \theta=\int_{0}^{\infty} x d G(x)<\infty, \quad r_{2}=\operatorname{Var} \theta<\infty \tag{5}
\end{align*}
$$

2. For the processes $Y(t)$:

$$
\begin{align*}
& m_{1}=E \nu=f^{\prime}(1)<\infty, \quad 0<m_{2}=\operatorname{Var} \nu<\infty \tag{6}\\
& a_{1}=E X_{i}=\int_{0}^{\infty} x d K(x)<\infty, \quad a_{2}=\operatorname{Var} X_{i}<\infty \tag{7}
\end{align*}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 11 of 27

Go Back

Full Screen

Close

1. For the processes $Z(t)$:

$$
\begin{align*}
& 0<A=E \xi=h^{\prime}(1)<1, \quad 0<B=\operatorname{Var} \xi<\infty \tag{4}\\
& r_{1}=E \theta=\int_{0}^{\infty} x d G(x)<\infty, \quad r_{2}=\operatorname{Var} \theta<\infty \tag{5}
\end{align*}
$$

2. For the processes $Y(t)$:

$$
\begin{align*}
& m_{1}=E \nu=f^{\prime}(1)<\infty, \quad 0<m_{2}=\operatorname{Var} \nu<\infty \tag{6}\\
& a_{1}=E X_{i}=\int_{0}^{\infty} x d K(x)<\infty, \quad a_{2}=\operatorname{Var} X_{i}<\infty \tag{7}
\end{align*}
$$

3. For the characteristics of the sequence $\left\{\tau_{n}, n=0,1,2, \ldots\right\}$, we assume

Definitions and

Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 11 of 27

Go Back

Full Screen

Close

Quit

1. For the processes $Z(t)$:

$$
\begin{align*}
& 0<A=E \xi=h^{\prime}(1)<1, \quad 0<B=\operatorname{Var} \xi<\infty \tag{4}\\
& r_{1}=E \theta=\int_{0}^{\infty} x d G(x)<\infty, \quad r_{2}=\operatorname{Var} \theta<\infty \tag{5}
\end{align*}
$$

2. For the processes $Y(t)$:

$$
\begin{align*}
& m_{1}=E \nu=f^{\prime}(1)<\infty, \quad 0<m_{2}=\operatorname{Var} \nu<\infty \tag{6}\\
& a_{1}=E X_{i}=\int_{0}^{\infty} x d K(x)<\infty, \quad a_{2}=\operatorname{Var} X_{i}<\infty \tag{7}
\end{align*}
$$

3. For the characteristics of the sequence $\left\{\tau_{n}, n=0,1,2, \ldots\right\}$, we assume

$$
\begin{align*}
& c_{1}=E I_{i}=f_{0}^{\prime}(1)<\infty, \quad c_{2}=f_{0}^{\prime \prime}(1)<\infty, \quad c_{3}=\operatorname{Var} I_{i}<\infty,(8) \\
& \mu_{0}=E \tau_{1}=\int_{0}^{\infty} x d G_{0}(x)<\infty, \quad \beta_{0}=\operatorname{Var}_{1}<\infty \tag{9}
\end{align*}
$$

Definitions and

Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 11 of 27

Go Back

For the moments of the total number of particles ζ in the process $(Z(t), 0 \leq t \leq \sigma)$,

$$
\begin{align*}
& v_{1}=E \zeta=\frac{E \nu}{1-E \xi}=\frac{m_{1}}{1-A}, \tag{10}\\
& v_{2}=\operatorname{Var} \zeta=\frac{E(\nu) B}{(1-A)^{3}}+\frac{\operatorname{Var}(\nu)}{(1-A)^{2}}=\frac{m_{1} B}{(1-A)^{3}}+\frac{m_{2}}{(1-A)^{2}}(11)
\end{align*}
$$

Under the conditions (4) and (5),

$$
P(\sigma>t)=P(Z(t)>0) \sim C \exp (\alpha t)
$$

where C is a positive constant and α is a Malthusian parameter defined by

$$
A \int_{0}^{\infty} e^{-\alpha t} d G(t)=1
$$

We always assume that a Malthusian parameter exists. Hence σ has finite moments of all orders. Therefore, for the moments of $U_{i}=X_{i}+\sigma_{i}$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 12 of 27

Go Back

$$
\begin{equation*}
\mu_{1}=E U_{i}=E X_{i}+E \sigma_{i}<\infty, \quad \beta_{1}=\operatorname{Var} U_{i}<\infty \tag{12}
\end{equation*}
$$

For the moments of the total number of particles ζ in the process $(Z(t), 0 \leq t \leq \sigma)$,

$$
\begin{align*}
& v_{1}=E \zeta=\frac{E \nu}{1-E \xi}=\frac{m_{1}}{1-A}, \tag{10}\\
& v_{2}=\operatorname{Var} \zeta=\frac{E(\nu) B}{(1-A)^{3}}+\frac{\operatorname{Var}(\nu)}{(1-A)^{2}}=\frac{m_{1} B}{(1-A)^{3}}+\frac{m_{2}}{(1-A)^{2}}(11)
\end{align*}
$$

Under the conditions (4) and (5),

$$
P(\sigma>t)=P(Z(t)>0) \sim C \exp (\alpha t)
$$

where C is a positive constant and α is a Malthusian parameter defined by

$$
A \int_{0}^{\infty} e^{-\alpha t} d G(t)=1
$$

We always assume that a Malthusian parameter exists. Hence σ has finite moments of all orders. Therefore, for the moments of $U_{i}=X_{i}+\sigma_{i}$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 12 of 27

Go Back

$$
\begin{equation*}
\mu_{1}=E U_{i}=E X_{i}+E \sigma_{i}<\infty, \quad \beta_{1}=\operatorname{Var} U_{i}<\infty \tag{12}
\end{equation*}
$$

2. Basic equations and inequalities

The following inequalities are fulfilled almost surely:

$$
\begin{equation*}
\sum_{i=1}^{N(t)} \zeta_{i} \leq V(t) \leq \sum_{i=1}^{N(t)+1} \zeta_{i} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} \sum_{j=1}^{N^{(i, k)}\left(t-\tau_{i}\right)} \zeta_{j}^{(i, k)} \leq W(t) \leq \sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} \sum_{j=1}^{N^{(i, k)}\left(t-\tau_{i}\right)+1} \zeta_{j}^{(i, k)} \tag{14}
\end{equation*}
$$

Definitions and

Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 13 of 27

Go Back

Full Screen

Close

Quit

2. Basic equations and inequalities

The following inequalities are fulfilled almost surely:

$$
\begin{equation*}
\sum_{i=1}^{N(t)} \zeta_{i} \leq V(t) \leq \sum_{i=1}^{N(t)+1} \zeta_{i} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} \sum_{j=1}^{N^{(i, k)}\left(t-\tau_{i}\right)} \zeta_{j}^{(i, k)} \leq W(t) \leq \sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} \sum_{j=1}^{N^{(i, k)}\left(t-\tau_{i}\right)+1} \zeta_{j}^{(i, k)} \tag{14}
\end{equation*}
$$

Definitions and

Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 13 of 27

Go Back

Full Screen

Close

Quit

$$
\begin{equation*}
n^{*}(t)=\sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} N^{(i, k)}\left(t-\tau_{i}\right) \tag{15}
\end{equation*}
$$

the number of the cycles in all the renewal processes S_{n} governing the processes $Z^{i, k}\left(t-\tau_{i}\right), \quad t \geq 0$ which are completely finished up to the moment t and

$$
\begin{equation*}
n^{* *}(t)=\sum_{i=0}^{n(t)} I_{i} \tag{16}
\end{equation*}
$$

the number of BHIO processes starting at the moments $\tau_{0}, \tau_{1}, \ldots, \tau_{n(t)}$ during the interval $[0, t]$. In other words, $n^{* *}(t)$ is the number of the cycles unfinished at the instant t.

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 14 of 27

Go Back

Full Screen

Close

Quit

$$
\begin{equation*}
n^{*}(t)=\sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} N^{(i, k)}\left(t-\tau_{i}\right) \tag{15}
\end{equation*}
$$

the number of the cycles in all the renewal processes S_{n} governing the processes $Z^{i, k}\left(t-\tau_{i}\right), \quad t \geq 0$ which are completely finished up to the moment t and

$$
\begin{equation*}
n^{* *}(t)=\sum_{i=0}^{n(t)} I_{i} \tag{16}
\end{equation*}
$$

the number of BHIO processes starting at the moments $\tau_{0}, \tau_{1}, \ldots, \tau_{n(t)}$ during the interval $[0, t]$. In other words, $n^{* *}(t)$ is the number of the cycles unfinished at the instant t.

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 14 of 27

Go Back

Full Screen

Close

Quit

If we enumerate the iid r.v.'s $\zeta_{j}^{(i, k)}$ by one index (in some order) then by (15), (16) and (14) we can write:

$$
\begin{equation*}
\sum_{l=1}^{n^{*}(t)} \zeta_{l} \leq W(t) \leq \sum_{l=1}^{n^{*}(t)+n^{* *}(t)} \zeta_{l} \tag{17}
\end{equation*}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 15 of 27

Go Back

Full Screen

Close

Quit

If we enumerate the iid r.v.'s $\zeta_{j}^{(i, k)}$ by one index (in some order) then by (15), (16) and (14) we can write:

$$
\begin{equation*}
\sum_{l=1}^{n^{*}(t)} \zeta_{l} \leq W(t) \leq \sum_{l=1}^{n^{*}(t)+n^{* *}(t)} \zeta_{l} \tag{17}
\end{equation*}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 15 of 27

Go Back

Full Screen

Close

Quit
3. Moments of $n^{*}(t)$ and $n^{* *}(t)$
$M_{1}^{*}(t)=E n^{*}(t) \quad M_{2}^{*}(t)=E n^{*}(t)\left[n^{*}(t)-1\right], \quad D^{*}(t)=\operatorname{Var}\left(n^{*}(t)\right)$,
and
$M_{1}^{* *}(t)=E n^{* *}(t) \quad M_{2}^{* *}(t)=E n^{* *}(t)\left[n^{* *}(t)-1\right], \quad D^{* *}(t)=\operatorname{Var}\left(n^{* *}(t)\right)$.
Basic equations
Moments of $n^{*}(t)$

Results

References
Lemma 1 The moments of $n^{*}(t)$ satisfy:

Home Page

$$
\begin{align*}
M_{1}^{*}(t) & \sim \frac{c_{1} t^{2}}{2 \mu_{0} \mu_{1}}, \quad t \rightarrow \infty \tag{18}\\
M_{2}^{*}(t) & \sim \frac{c_{1}^{2} t^{4}}{4 \mu_{0}^{2} \mu_{1}^{2}}, \quad t \rightarrow \infty \tag{19}\\
D^{*}(t) & =o\left(t^{4}\right), \quad t \rightarrow \infty \tag{20}
\end{align*}
$$

Page 16 of 27

Go Back

Full Screen

Close
3. Moments of $n^{*}(t)$ and $n^{* *}(t)$
$M_{1}^{*}(t)=E n^{*}(t) \quad M_{2}^{*}(t)=E n^{*}(t)\left[n^{*}(t)-1\right], \quad D^{*}(t)=\operatorname{Var}\left(n^{*}(t)\right)$,
and
$M_{1}^{* *}(t)=E n^{* *}(t) \quad M_{2}^{* *}(t)=E n^{* *}(t)\left[n^{* *}(t)-1\right], \quad D^{* *}(t)=\operatorname{Var}\left(n^{* *}(t)\right)$.
Basic equations
Moments of $n^{*}(t)$

Results

References
Lemma 1 The moments of $n^{*}(t)$ satisfy:

Home Page

$$
\begin{align*}
M_{1}^{*}(t) & \sim \frac{c_{1} t^{2}}{2 \mu_{0} \mu_{1}}, \quad t \rightarrow \infty \tag{18}\\
M_{2}^{*}(t) & \sim \frac{c_{1}^{2} t^{4}}{4 \mu_{0}^{2} \mu_{1}^{2}}, \quad t \rightarrow \infty \tag{19}\\
D^{*}(t) & =o\left(t^{4}\right), \quad t \rightarrow \infty \tag{20}
\end{align*}
$$

Page 16 of 27

Go Back

Full Screen

Close

Lemma 2 The moments of $n^{* *}(t)$ satisfy:

$$
\begin{gather*}
M_{1}^{* *}(t)=\frac{c_{1}}{\mu_{0}} t+o(t), \quad t \rightarrow \infty \tag{21}\\
M_{2}^{* *}(t)=\frac{c_{1}^{2}}{\mu_{0}^{2}} t^{2}+o\left(t^{2}\right), \quad t \rightarrow \infty \\
D^{* *}(t)=o\left(t^{2}\right), \quad t \rightarrow \infty
\end{gather*}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 17 of 27

Go Back

Full Screen

Close

Lemma 2 The moments of $n^{* *}(t)$ satisfy:

$$
\begin{gather*}
M_{1}^{* *}(t)=\frac{c_{1}}{\mu_{0}} t+o(t), \quad t \rightarrow \infty \tag{21}\\
M_{2}^{* *}(t)=\frac{c_{1}^{2}}{\mu_{0}^{2}} t^{2}+o\left(t^{2}\right), \quad t \rightarrow \infty \\
D^{* *}(t)=o\left(t^{2}\right), \quad t \rightarrow \infty
\end{gather*}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 17 of 27

Go Back

Full Screen

Close

Lemma 3 The following limits take place:

$$
\begin{equation*}
\frac{n^{*}(t)}{M_{1}^{*}(t)} \xrightarrow{p} 1, \quad t \rightarrow \infty \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{n^{* *}(t)}{M_{1}^{* *}(t)} \xrightarrow{p} 1, \quad t \rightarrow \infty . \tag{25}
\end{equation*}
$$

Definitions and

Basic equations

Moments of $n^{*}(t)$

Results

Home Page

Title Page

Page 18 of 27

Go Back

Full Screen

Close

Lemma 3 The following limits take place:

$$
\begin{equation*}
\frac{n^{*}(t)}{M_{1}^{*}(t)} \xrightarrow{p} 1, \quad t \rightarrow \infty \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{n^{* *}(t)}{M_{1}^{* *}(t)} \xrightarrow{p} 1, \quad t \rightarrow \infty . \tag{25}
\end{equation*}
$$

Definitions and

Basic equations

Moments of $n^{*}(t)$

Results

Home Page

Title Page

Page 18 of 27

Go Back

Full Screen

Close

Lemma 4 Under the conditions above

$$
\begin{equation*}
\frac{n^{* *}(t)}{n^{*}(t)} \stackrel{p}{\rightarrow} 0, \quad t \rightarrow \infty \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{n^{* *}(t)}{\sqrt{n^{*}(t)}} \stackrel{p}{\rightarrow} \sqrt{\frac{2 c_{1} \mu_{1}}{\mu_{0}}}, \quad t \rightarrow \infty . \tag{27}
\end{equation*}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$
Results
References

Home Page

Title Page

Page 19 of 27

Go Back

Full Screen

Close

Quit

Lemma 4 Under the conditions above

$$
\begin{equation*}
\frac{n^{* *}(t)}{n^{*}(t)} \stackrel{p}{\rightarrow} 0, \quad t \rightarrow \infty \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{n^{* *}(t)}{\sqrt{n^{*}(t)}} \stackrel{p}{\rightarrow} \sqrt{\frac{2 c_{1} \mu_{1}}{\mu_{0}}}, \quad t \rightarrow \infty . \tag{27}
\end{equation*}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$
Results
References

Home Page

Title Page

Page 19 of 27

Go Back

Full Screen

Close

Quit

Lemma 5 We even have a stronger convergence in (26):

$$
\begin{equation*}
\frac{n^{* *}(t)}{n^{*}(t)} \xrightarrow{\text { a.s. }} 0, \quad t \rightarrow \infty . \tag{28}
\end{equation*}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 20 of 27

Go Back

Full Screen

Close

Quit

Lemma 5 We even have a stronger convergence in (26):

$$
\begin{equation*}
\frac{n^{* *}(t)}{n^{*}(t)} \xrightarrow{\text { a.s. }} 0, \quad t \rightarrow \infty . \tag{28}
\end{equation*}
$$

Definitions and
Basic equations
Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 20 of 27

Go Back

Full Screen

Close

Quit

4. Results

Theorem 1 Under the conditions (4)-(9), as $t \rightarrow \infty$,

$$
\begin{gather*}
\frac{W(t)}{n^{*}(t)} \xrightarrow{p} v_{1}, \tag{29}\\
\frac{W(t)}{n^{*}(t)+n^{* *}(t)} \xrightarrow{p} v_{1}, \\
\frac{W(t)}{t^{2}} \xrightarrow[\rightarrow]{p} \frac{c_{1} v_{1}}{2 \mu_{0} \mu_{1}} \\
E W(t) \sim \frac{v_{1} c_{1} t^{2}}{2 \mu_{0} \mu_{1}} .
\end{gather*}
$$

Definitions and

Basic equations
Moments of $n^{*}(t)$
Results
References

Home Page

Title Page

Full Screen

Close

4. Results

Theorem 1 Under the conditions (4)-(9), as $t \rightarrow \infty$,

$$
\begin{gather*}
\frac{W(t)}{n^{*}(t)} \xrightarrow{p} v_{1}, \tag{29}\\
\frac{W(t)}{n^{*}(t)+n^{* *}(t)} \xrightarrow{p} v_{1}, \\
\frac{W(t)}{t^{2}} \xrightarrow[\rightarrow]{p} \frac{c_{1} v_{1}}{2 \mu_{0} \mu_{1}} \\
E W(t) \sim \frac{v_{1} c_{1} t^{2}}{2 \mu_{0} \mu_{1}} .
\end{gather*}
$$

Definitions and

Basic equations
Moments of $n^{*}(t)$
Results
References

Home Page

Title Page

Full Screen

Close

Theorem 2 Under the conditions (4)-(9),

$$
\begin{equation*}
\frac{\sum_{i=1}^{n^{*}(t)} \zeta_{i}-v_{1} n^{*}(t)}{\sqrt{v_{2} n^{*}(t)}} \xrightarrow{d} N(0,1), \quad t \rightarrow \infty, \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sum_{i=1}^{n^{*}(t)+n^{* *}(t)} \zeta_{i}-v_{1}\left[n^{*}(t)+n^{* *}(t)\right]}{\sqrt{v_{2} n^{*}(t)}} \xrightarrow{d} N(0,1), \quad t \rightarrow \infty . \tag{34}
\end{equation*}
$$

Definitions and

Basic equations
Moments of $n^{*}(t)$
Results
References

Home Page

Title Page

Page 22 of 27

Go Back

Full Screen

Close

Theorem 2 Under the conditions (4)-(9),

$$
\begin{equation*}
\frac{\sum_{i=1}^{n^{*}(t)} \zeta_{i}-v_{1} n^{*}(t)}{\sqrt{v_{2} n^{*}(t)}} \xrightarrow{d} N(0,1), \quad t \rightarrow \infty, \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sum_{i=1}^{n^{*}(t)+n^{* *}(t)} \zeta_{i}-v_{1}\left[n^{*}(t)+n^{* *}(t)\right]}{\sqrt{v_{2} n^{*}(t)}} \xrightarrow{d} N(0,1), \quad t \rightarrow \infty . \tag{34}
\end{equation*}
$$

Definitions and

Basic equations
Moments of $n^{*}(t)$
Results
References

Home Page

Title Page

Page 22 of 27

Go Back

Full Screen

Close

Theorem 3 Under the conditions (4)-(9),

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} P\left(\frac{W(t)-v_{1} n^{*}(t)}{\sqrt{v_{2} n^{*}(t)}} \leq x\right) \leq \Phi(x) \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} P\left(\frac{W(t)-v_{1}\left[n^{*}(t)+n^{* *}(t)\right]}{\sqrt{v_{2} n^{*}(t)}} \leq x\right) \geq \Phi(x) \tag{36}
\end{equation*}
$$

Basic equations

Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 23 of 27

Go Back

Full Screen

Close

Theorem 3 Under the conditions (4)-(9),

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} P\left(\frac{W(t)-v_{1} n^{*}(t)}{\sqrt{v_{2} n^{*}(t)}} \leq x\right) \leq \Phi(x) \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} P\left(\frac{W(t)-v_{1}\left[n^{*}(t)+n^{* *}(t)\right]}{\sqrt{v_{2} n^{*}(t)}} \leq x\right) \geq \Phi(x) \tag{36}
\end{equation*}
$$

Basic equations

Moments of $n^{*}(t)$

Results

References

Home Page

Title Page

Page 23 of 27

Go Back

Full Screen

Close

Comment 4 It is evident from the last theorem that the random elements used for centering are not appropriate to obtain a CLT. Let us consider the second sum in the definition (3):

$$
\begin{aligned}
& S(t)=\sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} \zeta_{N^{(i, k)}\left(t-\tau_{i}\right)+1}^{(i, k)}\left(t-S_{N^{(i, k)}\left(t-\tau_{i}\right)}^{(i, k)}-X_{N^{(i, k)}\left(t-\tau_{i}\right)+1}^{(i, k)}\right) \\
& \times \mathbb{I}_{\left\{S_{N(i, k)}^{(i, k)}\left(t-T_{i}\right)\right.}+X_{N^{(i, i, k)}\left(t-T_{i}\right)+1}^{(i, k)},
\end{aligned}
$$

We can enumerate the summands in some order by one index to write

$$
S(t)=\sum_{p=1}^{n^{* *}(t)} \bar{\zeta}_{p}(t) .
$$

Definitions and

Results

Home Page

Title Page

Go Back

Comment 4 It is evident from the last theorem that the random elements used for centering are not appropriate to obtain a CLT. Let us consider the second sum in the definition (3):

$$
\begin{aligned}
& S(t)=\sum_{i=0}^{n(t)} \sum_{k=1}^{I_{i}} \zeta_{N^{(i, k)}\left(t-\tau_{i}\right)+1}^{(i, k)}\left(t-S_{N^{(i, k)}\left(t-\tau_{i}\right)}^{(i, k)}-X_{N^{(i, k)}\left(t-\tau_{i}\right)+1}^{(i, k)}\right) \\
& \times \mathbb{I}_{\left\{S_{N(i, k)}^{(i, k)}\left(t-T_{i}\right)\right.}+X_{N^{(i, i, k)}\left(t-T_{i}\right)+1}^{(i, k)},
\end{aligned}
$$

We can enumerate the summands in some order by one index to write

$$
S(t)=\sum_{p=1}^{n^{* *}(t)} \bar{\zeta}_{p}(t) .
$$

Definitions and

Results

Home Page

Title Page

Go Back

Note that the random variables $\bar{\zeta}_{l}(t)$ are neither independent nor identically distributed. Clearly

$$
W(t)=\sum_{l=1}^{n^{*}(t)} \zeta_{l}+\sum_{p=1}^{n^{* *}(t)} \bar{\zeta}_{p}(t),
$$

It seems that the right centering for $W(t)$ must be $v_{1} n^{*}(t)+\sum_{p=1}^{n^{* *}(t)} E \bar{\zeta}_{p}(t)$ and the following CLT must be true

$$
\frac{W(t)-\left(v_{1} n^{*}(t)+\sum_{p=1}^{n^{* *}(t)} E \bar{\zeta}_{p}(t)\right)}{\sqrt{v_{2} n^{*}(t)}} \xrightarrow{d} N(0,1)
$$

Home Page

Title Page

Go Back

Full Screen

Close

Note that the random variables $\bar{\zeta}_{l}(t)$ are neither independent nor identically distributed. Clearly

$$
W(t)=\sum_{l=1}^{n^{*}(t)} \zeta_{l}+\sum_{p=1}^{n^{* *}(t)} \bar{\zeta}_{p}(t),
$$

It seems that the right centering for $W(t)$ must be $v_{1} n^{*}(t)+\sum_{p=1}^{n^{* *}(t)} E \bar{\zeta}_{p}(t)$ and the following CLT must be true

$$
\frac{W(t)-\left(v_{1} n^{*}(t)+\sum_{p=1}^{n^{* *}(t)} E \bar{\zeta}_{p}(t)\right)}{\sqrt{v_{2} n^{*}(t)}} \xrightarrow{d} N(0,1)
$$

Home Page

Title Page

Go Back

Full Screen

Close

5. References

1. P.W. Glynn and W. Whitt, Necessary conditions in limit theorems for cumulative processes, http://www.stanford.edu/~ glynn/pdf/clt21.pdf
2. W. Feller, An Introduction to Probability Theory and its Application, vol. 2, 2nd edition, Wiley, New York, 1971.
3. P. Jagers, Branching Processes with Biological Applications, Wiley, New York, 1975.
4. A. G. Pakes, Some limit theorems for the total progeny of a branching process, Adv. Appl. Prob., 3, 176-192,1971.
5. A. G. Pakes, A limit theorem for the integral of a critical agedependent branching process, Math. Biosci., 13, 109-112, 1972.
6. H. Weiner, Age dependent branching processes with two types of immigration, J. Information Theory, 2, 207-218, 1991.
7. M. Slavtchova-Bojkova, Multi-type age-dependent branching processes with state-dependent immigration, In: Proc. of Athens Conf. on Applied Prob. and Time series, Edts: C.C.Heyde, Yu.

Home Page

Title Page

Page 26 of 27

Go Back

Full Screen

5. References

1. P.W. Glynn and W. Whitt, Necessary conditions in limit theorems for cumulative processes, http://www.stanford.edu/~ glynn/pdf/clt21.pdf
2. W. Feller, An Introduction to Probability Theory and its Application, vol. 2, 2nd edition, Wiley, New York, 1971.
3. P. Jagers, Branching Processes with Biological Applications, Wiley, New York, 1975.
4. A. G. Pakes, Some limit theorems for the total progeny of a branching process, Adv. Appl. Prob., 3, 176-192,1971.
5. A. G. Pakes, A limit theorem for the integral of a critical agedependent branching process, Math. Biosci., 13, 109-112, 1972.
6. H. Weiner, Age dependent branching processes with two types of immigration, J. Information Theory, 2, 207-218, 1991.
7. M. Slavtchova-Bojkova, Multi-type age-dependent branching processes with state-dependent immigration, In: Proc. of Athens Conf. on Applied Prob. and Time series, Edts: C.C.Heyde, Yu.

Home Page

Title Page

Page 26 of 27

Go Back

Full Screen

Prohorov, R. Pyke and S. Rachev, Lecture Notes in Statistics, Springer, Berlin, 1996.
8. M.V. Kulkarni, A.G.Pakes, Total progeny of a simple branching process with state dependent immigration, J. Appl. Prob., 20, 472-482, 1983.
9. Y.S. Chow, H. Teicher, Probability Theory, Springer-Verlag, New York, 1978.
10. K. B. Erickson, Strong renewal theorem in the infinite mean case, Trans. Amer. Math. Soc., 151, 263-291, 1970.
11. K. Mitov, N.M. Yanev, Bellman-Harris branching processes with state-dependent immigration, J.Appl. Probab., 22, 757-765, 1985.

Definitions and
Basic equations
Moments of $n^{*}(t)$
Results

References

Home Page

Title Page

Page 27 of 27

Go Back

Full Screen

Close

Prohorov, R. Pyke and S. Rachev, Lecture Notes in Statistics, Springer, Berlin, 1996.
8. M.V. Kulkarni, A.G.Pakes, Total progeny of a simple branching process with state dependent immigration, J. Appl. Prob., 20, 472-482, 1983.
9. Y.S. Chow, H. Teicher, Probability Theory, Springer-Verlag, New York, 1978.
10. K. B. Erickson, Strong renewal theorem in the infinite mean case, Trans. Amer. Math. Soc., 151, 263-291, 1970.
11. K. Mitov, N.M. Yanev, Bellman-Harris branching processes with state-dependent immigration, J.Appl. Probab., 22, 757-765, 1985.

Definitions and
Basic equations
Moments of $n^{*}(t)$
Results

References

Home Page

Title Page

Page 27 of 27

Go Back

Full Screen

Close

