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1. Definitions and notations
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1. Definitions and notations

• {Y (t)}t≥0 be a Bellman-Harris branching process with immigration
only in the state zero (BHBPIO)
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1. Definitions and notations

• {Y (t)}t≥0 be a Bellman-Harris branching process with immigration
only in the state zero (BHBPIO)

• in addition a random number of immigrants enters the population
at the event times τ0 ≡ 0, τ1, τ2, . . . , τn, . . . of a given renewal
process
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1. Definitions and notations

• {Y (t)}t≥0 be a Bellman-Harris branching process with immigration
only in the state zero (BHBPIO)

• in addition a random number of immigrants enters the population
at the event times τ0 ≡ 0, τ1, τ2, . . . , τn, . . . of a given renewal
process

• interarrival times T1 = τ1 − τ0 = τ1, T2 = τ2 − τ1, . . . are in-
dependent identically distributed random variables (iid r.v.) with
cumulative distribution function (cdf) G0(t).
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1. Definitions and notations

• {Y (t)}t≥0 be a Bellman-Harris branching process with immigration
only in the state zero (BHBPIO)

• in addition a random number of immigrants enters the population
at the event times τ0 ≡ 0, τ1, τ2, . . . , τn, . . . of a given renewal
process

• interarrival times T1 = τ1 − τ0 = τ1, T2 = τ2 − τ1, . . . are in-
dependent identically distributed random variables (iid r.v.) with
cumulative distribution function (cdf) G0(t).

• The numbers of immigrants Ii are assumed to be iid r.v.’s with
probability generating function (pgf) f0(s) = EsIi, |s| ≤ 1.
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1. Definitions and notations

• {Y (t)}t≥0 be a Bellman-Harris branching process with immigration
only in the state zero (BHBPIO)

• in addition a random number of immigrants enters the population
at the event times τ0 ≡ 0, τ1, τ2, . . . , τn, . . . of a given renewal
process

• interarrival times T1 = τ1 − τ0 = τ1, T2 = τ2 − τ1, . . . are in-
dependent identically distributed random variables (iid r.v.) with
cumulative distribution function (cdf) G0(t).

• The numbers of immigrants Ii are assumed to be iid r.v.’s with
probability generating function (pgf) f0(s) = EsIi, |s| ≤ 1.

•
n(t) = max{n : τn ≤ t}

the number of renewal events in the sequence τn, n = 1, 2, . . .
during the time interval [0, t].
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• BHIO process {Y (t)}t≥0 is constructed by a sequence of iid clas-
sical Bellman-Harris branching processes Z(t), t ≥ 0).
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• BHIO process {Y (t)}t≥0 is constructed by a sequence of iid clas-
sical Bellman-Harris branching processes Z(t), t ≥ 0).

• life time θ of one particle with cdf G(t), t ≥ 0, the offspring of
one particle ξ with pgf h(s),
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• BHIO process {Y (t)}t≥0 is constructed by a sequence of iid clas-
sical Bellman-Harris branching processes Z(t), t ≥ 0).

• life time θ of one particle with cdf G(t), t ≥ 0, the offspring of
one particle ξ with pgf h(s),

• the pgf f(s) of the random number νi of immigrants in the state
zero and the cdf K(t) of the duration Xi of the stay in the state
zero.
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• The construction is as follows (see e.g. Mitov and Yanev (1985)):

Let σi be the life period of the process Zi(t).
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• The construction is as follows (see e.g. Mitov and Yanev (1985)):

Let σi be the life period of the process Zi(t).

• Then the sequence Ui = Xi + σi, i = 1, 2, . . . defines

S0 = 0, Sn = Sn−1 + Un, n = 1, 2, . . . (1)

and

N(t) = max{n : Sn ≤ t}. (2)
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• The construction is as follows (see e.g. Mitov and Yanev (1985)):

Let σi be the life period of the process Zi(t).

• Then the sequence Ui = Xi + σi, i = 1, 2, . . . defines

S0 = 0, Sn = Sn−1 + Un, n = 1, 2, . . . (1)

and

N(t) = max{n : Sn ≤ t}. (2)

• The BHIO process Y (t) is defined by

Y (t) = ZN(t)+1(t− SN(t) −XN(t)+1)I{SN(t)+XN(t)+1≤t},

where IA denotes the indicator of the event A.
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• Now the process X(t) can be defined as follows (taking into ac-
count that τ0 ≡ 0 is the first renewal event when the I0 indepen-
dent BHIO processes start)

X(t) =

n(t)∑
i=0

Ii∑
k=1

Y (i,k)(t− τi), t ≥ 0,

where Y (i,k)(t), t ≥ 0 are independent copies of Y (t).

• The process X(t) is studied by Weiner(1991) in the critical case,
and by Slavchova-Bojkova (1996) in the non-critical cases.
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In the present paper we will consider the total number of particles
in the process X(t).
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In the present paper we will consider the total number of particles
in the process X(t).
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Comment 1 The total progeny is studied for different classes of branch-
ing processes in two settings. For Galton-Watson processes the sum of
the particles in the first n−generations is investigated. (See for ex-
ample Pakes(1971) for simple Galton-Watson branching processes and
Kulkarni and Pakes (1983) for Galton-Watson branching processes with
immigration in the state 0.)

For continuous time branching processes, which is our case (Z(t),
X(t) or Y (t)), one can count the total number of particles up to the
instant t or consider the following continuous time characteristic of the
process, (e.g. for Z(t)), ∫ t

0
Z(u)du, t ≥ 0,

which is analogous to the total number of particles up to the instant t.

More comments and discussions on this characteristic can be found in
Pakes (1972) or in Jagers (1975).
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the particles in the first n−generations is investigated. (See for ex-
ample Pakes(1971) for simple Galton-Watson branching processes and
Kulkarni and Pakes (1983) for Galton-Watson branching processes with
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For continuous time branching processes, which is our case (Z(t),
X(t) or Y (t)), one can count the total number of particles up to the
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process, (e.g. for Z(t)), ∫ t
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Let us denote by ζ(t), the total number of particles which are born
up to the moment t in the process Z(t), and by ζ the total number of
particles which are born in the process Z(t) during its life period σ.
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Let us denote by ζ(t), the total number of particles which are born
up to the moment t in the process Z(t), and by ζ the total number of
particles which are born in the process Z(t) during its life period σ.

r.v. ζ is proper in the sense that P (ζ < ∞) = 1, provided that the
process Z(t) is not supercritical.
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Let us denote by ζ(t), the total number of particles which are born
up to the moment t in the process Z(t), and by ζ the total number of
particles which are born in the process Z(t) during its life period σ.

r.v. ζ is proper in the sense that P (ζ < ∞) = 1, provided that the
process Z(t) is not supercritical.

Let us denote by V (t) the total number of particles up to the moment
t in the process Y (t).

Then

V (t) =

N(t)∑
i=1

ζi + ζN(t)+1(t− SN(t) −XN(t)+1)I{SN(t)+XN(t)+1≤t}.
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Let us denote by ζ(t), the total number of particles which are born
up to the moment t in the process Z(t), and by ζ the total number of
particles which are born in the process Z(t) during its life period σ.

r.v. ζ is proper in the sense that P (ζ < ∞) = 1, provided that the
process Z(t) is not supercritical.

Let us denote by V (t) the total number of particles up to the moment
t in the process Y (t).

Then

V (t) =

N(t)∑
i=1

ζi + ζN(t)+1(t− SN(t) −XN(t)+1)I{SN(t)+XN(t)+1≤t}.

Comment 2 Kulkarni and Pakes (1983) have studied the correspond-
ing quantity to V (t) for Galton-Watson branching processes. In the
recent paper of Glynn and Whitt (2001) the problem is solved in a more
general setting. They have obtained necessary and sufficient conditions
for LLN and CLT for an integral of a delayed regenerative process, i.e.∫ t

0 Y (u)du in our notations.
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Finally, denote by W (t) the total number of particles in the process
X(t), i.e.

W (t) =

n(t)∑
i=0

Ii∑
k=1

V (i,k)(t− τi) (3)

=

n(t)∑
i=0

Ii∑
k=1

N (i,k)(t−τi)∑
l=0

ζ
(i,k)
l

+

n(t)∑
i=0

Ii∑
k=1

ζ
(i,k)
N (i,k)(t−τi)+1(t− S

(i,k)
N (i,k)(t−τi)

−X
(i,k)
N (i,k)(t−τi)+1)

× I{S(i,k)

N(i,k)(t−τi)
+X

(i,k)

N(i,k)(t−τi)+1
≤t},

where V (i,k)(t), t ≥ 0 are independent copies of V (t), t ≥ 0.

Comment 3 The process W (t) is partially investigated in Weiner (1991)
in the critical case.
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Finally, denote by W (t) the total number of particles in the process
X(t), i.e.

W (t) =

n(t)∑
i=0

Ii∑
k=1

V (i,k)(t− τi) (3)

=

n(t)∑
i=0

Ii∑
k=1

N (i,k)(t−τi)∑
l=0

ζ
(i,k)
l

+

n(t)∑
i=0

Ii∑
k=1

ζ
(i,k)
N (i,k)(t−τi)+1(t− S

(i,k)
N (i,k)(t−τi)

−X
(i,k)
N (i,k)(t−τi)+1)

× I{S(i,k)

N(i,k)(t−τi)
+X

(i,k)

N(i,k)(t−τi)+1
≤t},

where V (i,k)(t), t ≥ 0 are independent copies of V (t), t ≥ 0.

Comment 3 The process W (t) is partially investigated in Weiner (1991)
in the critical case.

We will investigate the limiting behaviour of the process W (t), t ≥
0, assuming the following basic conditions:
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1. For the processes Z(t) :

0 < A = Eξ = h′(1) < 1, 0 < B = V arξ < ∞, (4)

r1 = Eθ =

∫ ∞

0
xdG(x) < ∞, r2 = V arθ < ∞; (5)

X-th ISCPS Sozopol-2003

http://www.fmi.uni-sofia.bg


Definitions and . . .

Basic equations . . .

Moments of n∗(t) . . .

Results

References

Home Page

Title Page

JJ II

J I

Page 11 of 27

Go Back

Full Screen

Close

Quit

1. For the processes Z(t) :

0 < A = Eξ = h′(1) < 1, 0 < B = V arξ < ∞, (4)

r1 = Eθ =

∫ ∞

0
xdG(x) < ∞, r2 = V arθ < ∞; (5)

2. For the processes Y (t) :

m1 = Eν = f ′(1) < ∞, 0 < m2 = V arν < ∞, (6)

a1 = EXi =

∫ ∞

0
xdK(x) < ∞, a2 = V arXi < ∞. (7)
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1. For the processes Z(t) :

0 < A = Eξ = h′(1) < 1, 0 < B = V arξ < ∞, (4)

r1 = Eθ =

∫ ∞

0
xdG(x) < ∞, r2 = V arθ < ∞; (5)

2. For the processes Y (t) :

m1 = Eν = f ′(1) < ∞, 0 < m2 = V arν < ∞, (6)

a1 = EXi =

∫ ∞

0
xdK(x) < ∞, a2 = V arXi < ∞. (7)

3. For the characteristics of the sequence {τn, n = 0, 1, 2, . . . }, we
assume
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1. For the processes Z(t) :

0 < A = Eξ = h′(1) < 1, 0 < B = V arξ < ∞, (4)

r1 = Eθ =

∫ ∞

0
xdG(x) < ∞, r2 = V arθ < ∞; (5)

2. For the processes Y (t) :

m1 = Eν = f ′(1) < ∞, 0 < m2 = V arν < ∞, (6)

a1 = EXi =

∫ ∞

0
xdK(x) < ∞, a2 = V arXi < ∞. (7)

3. For the characteristics of the sequence {τn, n = 0, 1, 2, . . . }, we
assume

c1 = EIi = f ′0(1) < ∞, c2 = f ′′0 (1) < ∞, c3 = V arIi < ∞,(8)

µ0 = Eτ1 =

∫ ∞

0
xdG0(x) < ∞, β0 = V arτ1 < ∞. (9)
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For the moments of the total number of particles ζ in the process
(Z(t), 0 ≤ t ≤ σ),

v1 = Eζ =
Eν

1− Eξ
=

m1

1− A
, (10)

v2 = V arζ =
E(ν)B

(1− A)3 +
V ar(ν)

(1− A)2 =
m1B

(1− A)3 +
m2

(1− A)2 .(11)

Under the conditions (4) and (5),

P (σ > t) = P (Z(t) > 0) ∼ C exp(αt)

where C is a positive constant and α is a Malthusian parameter defined
by

A

∫ ∞

0
e−αtdG(t) = 1.

We always assume that a Malthusian parameter exists. Hence σ has
finite moments of all orders. Therefore, for the moments of Ui = Xi+σi

we get

µ1 = EUi = EXi + Eσi < ∞, β1 = V arUi < ∞. (12)
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∫ ∞

0
e−αtdG(t) = 1.

We always assume that a Malthusian parameter exists. Hence σ has
finite moments of all orders. Therefore, for the moments of Ui = Xi+σi

we get

µ1 = EUi = EXi + Eσi < ∞, β1 = V arUi < ∞. (12)
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2. Basic equations and inequalities

The following inequalities are fulfilled almost surely:

N(t)∑
i=1

ζi ≤ V (t) ≤
N(t)+1∑

i=1

ζi, (13)

and

n(t)∑
i=0

Ii∑
k=1

N (i,k)(t−τi)∑
j=1

ζ
(i,k)
j ≤ W (t) ≤

n(t)∑
i=0

Ii∑
k=1

N (i,k)(t−τi)+1∑
j=1

ζ
(i,k)
j . (14)
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n∗(t) =

n(t)∑
i=0

Ii∑
k=1

N (i,k)(t− τi) (15)

the number of the cycles in all the renewal processes Sn governing the
processes Z i,k(t − τi), t ≥ 0 which are completely finished up to the
moment t and

n∗∗(t) =

n(t)∑
i=0

Ii (16)

the number of BHIO processes starting at the moments τ0, τ1, . . . , τn(t)

during the interval [0, t]. In other words, n∗∗(t) is the number of the
cycles unfinished at the instant t.
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If we enumerate the iid r.v.’s ζ
(i,k)
j by one index (in some order) then

by (15), (16) and (14) we can write:

n∗(t)∑
l=1

ζl ≤ W (t) ≤
n∗(t)+n∗∗(t)∑

l=1

ζl. (17)

We will use these inequalities together with the definition (3) to inves-
tigate the limiting behaviour of W (t).
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3. Moments of n∗(t) and n∗∗(t)

M ∗
1 (t) = En∗(t) M ∗

2 (t) = En∗(t)[n∗(t)− 1], D∗(t) = V ar(n∗(t)),

and

M ∗∗
1 (t) = En∗∗(t) M ∗∗

2 (t) = En∗∗(t)[n∗∗(t)−1], D∗∗(t) = V ar(n∗∗(t)).

Lemma 1 The moments of n∗(t) satisfy:

M ∗
1 (t) ∼ c1t

2

2µ0µ1
, t →∞, (18)

M ∗
2 (t) ∼ c2

1t
4

4µ2
0µ

2
1
, t →∞, (19)

D∗(t) = o(t4), t →∞. (20)
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Lemma 2 The moments of n∗∗(t) satisfy:

M ∗∗
1 (t) =

c1

µ0
t + o(t), t →∞, (21)

M ∗∗
2 (t) =

c2
1

µ2
0
t2 + o(t2), t →∞, (22)

D∗∗(t) = o(t2), t →∞. (23)
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Lemma 3 The following limits take place:

n∗(t)

M ∗
1 (t)

p→ 1, t →∞ (24)

and

n∗∗(t)

M ∗∗
1 (t)

p→ 1, t →∞. (25)
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Lemma 4 Under the conditions above

n∗∗(t)

n∗(t)

p→ 0, t →∞ (26)

and

n∗∗(t)√
n∗(t)

p→
√

2c1µ1

µ0
, t →∞. (27)
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Lemma 5 We even have a stronger convergence in (26):

n∗∗(t)

n∗(t)

a.s.→ 0, t →∞. (28)
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4. Results

Theorem 1 Under the conditions (4)-(9), as t →∞,

W (t)

n∗(t)

p→ v1, (29)

W (t)

n∗(t) + n∗∗(t)

p→ v1, (30)

W (t)

t2
p→ c1v1

2µ0µ1
, (31)

EW (t) ∼ v1c1t
2

2µ0µ1
. (32)
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Theorem 2 Under the conditions (4)-(9),∑n∗(t)
i=1 ζi − v1n

∗(t)√
v2n∗(t)

d→ N(0, 1), t →∞, (33)

and ∑n∗(t)+n∗∗(t)
i=1 ζi − v1[n

∗(t) + n∗∗(t)]√
v2n∗(t)

d→ N(0, 1), t →∞. (34)
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Theorem 3 Under the conditions (4)-(9),

lim sup
t→∞

P

(
W (t)− v1n

∗(t)√
v2n∗(t)

≤ x

)
≤ Φ(x), (35)

lim inf
t→∞

P

(
W (t)− v1[n

∗(t) + n∗∗(t)]√
v2n∗(t)

≤ x

)
≥ Φ(x). (36)
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Comment 4 It is evident from the last theorem that the random ele-
ments used for centering are not appropriate to obtain a CLT. Let us
consider the second sum in the definition (3):

S(t) =

n(t)∑
i=0

Ii∑
k=1

ζ
(i,k)
N (i,k)(t−τi)+1(t− S

(i,k)
N (i,k)(t−τi)

−X
(i,k)
N (i,k)(t−τi)+1)

× I{S(i,k)

N(i,k)(t−τi)
+X

(i,k)

N(i,k)(t−τi)+1
≤t}.

We can enumerate the summands in some order by one index to write

S(t) =

n∗∗(t)∑
p=1

ζ̄p(t).
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Note that the random variables ζ̄l(t) are neither independent nor
identically distributed. Clearly

W (t) =

n∗(t)∑
l=1

ζl +

n∗∗(t)∑
p=1

ζ̄p(t),

It seems that the right centering for W (t) must be v1n
∗(t)+

∑n∗∗(t)
p=1 Eζ̄p(t)

and the following CLT must be true

W (t)− (v1n
∗(t) +

∑n∗∗(t)
p=1 Eζ̄p(t))√

v2n∗(t)

d→ N(0, 1),

but we have not proved it by now.
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