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The main idea of the branching stochastic models with immigration for modeling popu-
lation and re-population and wastewater experiments originates from the problem of estimating
the waiting time to the successful experiment in a series of population and re-population ex-
periments with different species, which have disappeared for some reason. It is worth mention
here that by “waiting time to a successful experiment” we understand the time before the
beginning of that newly introduced population which survives in this environment. Previous
works, exploring Bienaymé-Galton-Watson and Bellman-Harris branching processes, are gen-
eralized in this paper for Sevast’ynov’s age-dependent processes. To estimate the probability
density functions of the life cycle and the waiting time to the successful experiment, software
which allows input of a mortality density and a special form of reproduction law was developed.
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1. Introduction

Strongly motivated by the need of models to accurately design, study and
predict the development of biological populations, concerning a variety of prob-
lems arising, for example in population and re-population experiments, waste-
water treatment, evolution of resistance to antibiotics, etc., we focus our efforts
to the age-dependent branching models with immigration as a suitable tool in
doing such analysis. Specifically, one of the problems of applied ecology is what
to do, when to do it, and how to assess and improve the actions taken, when par-
ticular species disappear. These are, for example population and re-population
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experiments with trout, birds, and other species [1], or wastewater treatment
experiments [14]. In the context of this general concern we propose a tech-
nique, motivated by the above mentioned diversity of problems which can be
modeled with Sevast’yanov’s age-dependent branching processes allowing immi-
gration. Another important motivation for this work is the challenge of natural
incorporation of some biological characteristics into a model and their proper
interpretation, when applied in biology, ecology, environmental studies, decision
making, etc. In this work the stress is on the improvement of the approach ap-
plied in [1] and [14] towards the incorporation of the dependence of the particle
reproduction on the particle’s age. Sevast’yanov’s model describes better real
life cases (see [13]).

The problem of inference from expected waiting times and expected
progeny on fertility rates was proposed for the first time in the context of popu-
lation and re-population experiments with different types of species in [1]. The
classical Bienaymé-Galton-Watson branching process (BGWBP) with immigra-
tion in zero state was used as a model describing the population development
and exact answers were obtained when all newly introduced populations behave
like independent identically distributed (i.i.d.) BGWBP. In [14] similar results
were generalized for the distribution of the life-cycle, waiting time to a suc-
cessful experiment and the estimated total progeny, all conditioned on ultimate
extinction, using the so called age-dependent branching model or Bellman-Harris
branching process (BHBP) with immigration in zero. In this case the process
is called “age-dependent” in sense that the probability for an individual living
at time ¢ to die in the interval (¢,t -+ dt) is, in general, a non-constant function
of ¢, but the reproduction is still one and the same random variable, which dis-
tribution does not depend on the particle’s age. The motivation of paper [14]
has arisen in the context of wastewater treatment by bacterial cultures. As it
was found in [12] the lifespan of bacteria-like organisms follows a gamma distri-
bution, and reproduction at death is characteristic of bacteria-like organisms,
so age-dependent processes can be used as more adequate mathematical models
for such real phenomena.

In the discrete-time case the theoretical and simulation results for the
life-cycle distribution and the similar characteristics, which appear naturally in
the context of bisexual BGWBP, were obtained in [4]. It should be emphasized
that all sample paths of the resurrection model are positive.

We would like to point out that in the disctere-time case, the problem
concerning the total progeny was investigated in [6], [7]. However, the main
interest is focused on the questions of rates of growth, and this conditioned on
survival. Some authors, see for example [8], studied the asymptotic behavior of
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the probabilities of hitting the absorbing states, the times needed to hit these
states, and the conditional distributions of the number of particles (for models
allowing catastrophes).

On the other hand, however, it is important to pay consideration here to
another aspect in the theory of Markov branching processes with instantaneous
immigration (MBPII) or resurrection, considered in pertinent literature. In
[11] it is shown that a realistic model can be constructed, if the state-space is
restricted to the natural numbers. The problem of constructing a version of
the MBPI which allows instantaneous resurrection from zero have been tackled
in [2]. The authors promote their models as realistic descriptions of situations
where populations are quickly restored from extinction, by reintroduction, or
rapid migration, as in island biogeography.

The last advancements towards modeling of biological phenomena by
branching processes have been recently published in the monograph [5] with
lots of real world examples and problems.

The main goal of the present paper is to generalize the results for the life-
cycle length and total waiting time for the Sevast’ynov’s age-dependent branch-
ing model, where not only cell generation times differ between particles, but the
offspring distribution may depend on the age of each particle. Such processes in
general are not Markovian. However, the analogous results remain valid in that
case, and, we are aware that this is still a simplification of a real world problem
but an explicit solution (see Section 3) can be given in terms of Laplace-Stieltjes
transforms and generating functions.

2. Model formulation.

Consider a population branching process (Z; : t > 0) having as state-
space the non-negative integers with zero as an absorbing state. Let Zy = 1,
and T = inf{t : Z; = 0} < co. Next, let {(Z¢(n)) : n =1,2,...} be independent
identically distributed (i.i.d.) copies of Z; with Zy(n) = 1. Let Top = Hp = 0 and
foralln > 1let T;, = inf{t : Zy(n) = 0} and H, = 3} y<;<,, T}, (n > 1). Note that
{T,} are i.i.d. random variables. Thus H,, is the time of the n—th extinction
event, provided it is finite, and the convention Hy = 0 implies the entire process
begins with an extinction at t = 0. Hence N = sup{n : T}, = oo} is the number
of the index of the first infinite cycle. In addition, let us suppose that (Z; : t > 0)
is Sevast’yanov’s age-dependent branching process, starting at time 0 with a
single progenitor of age 0, whose life-length 7 has distribution G(t) = P(r < t),
G(0%) = 0. With probability h:(k), t > 0, £ > 0 it produces at the end of
its life k£ similar individuals of age 0, with the same life-length distribution as
that of 7 and reproduction distribution {h¢(k)}, where hy(k) = P(§ = k|t = t),
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[e.e]
Z hi(k) =1, for every t > 0. Let us denote the probability generating function
k=0

([_).g.f.) of the number of offspring £ generated at age t by
h(t;s) = Z he(k)s®, |s| < 1.
k=0

Then, the process we are interested in is
Zi=2Ziy, (n) if H, <t<H, (n=1,...,N).

The discrete version, i.e. BGWBP with immigration in zero state was
first studied (in the critical case) in the papers [3], [9], [10] .

Life cycles

For the branching process (Zt)tzo we shall call life cycles the intervals
(Hn-1,Hyp),n=1,2,...,N —1. Thus (Z) may have several life cycles, the last
one always being infinite, provided the process is super-critical. If the process
is sub-critical it will have a.s. infinitely many life cycles.

Lifetime of the process (Z)tzo before escaping from extinction.

Lifetime of the process (Z)Qo before escaping from extinction will be
defined as L = H,_1, i.e. the “birth time” of the first infinite life cycle. We
shall also study the expectation of the lifetime L. Finally, we shall analyze
the total progeny during the lifetime of the process (Zt)tzo and shall obtain its
expectation and variance.

Criticality and extinction

Let ¢ = tlim Py(t), where Py(t) = P(Z; = 0). It is known that ¢ is the
— 00

smallest root of the equation

/mMuQﬂﬂﬂzs
0

(see e.g. [3]).
Then the criticality parameter of the process Z; turns out to be

m:/wm@MW%
0
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where m(t) = h(¢;1) and ¢ = 1 iff m < 1. The parameter m is called the repro-
duction mean, and the super-critical, critical and sub-critical cases correspond
to the relations m > 1, m = 1 and m < 1, respectively. So, if Zyp = 1 we have
P{L =0} = P{first process does not die out} =1 —gq.

3. Results

Suppose ¢ = P(T < c0) < 1, so that 7(8) = E(e T satisfies 7(0) = q.
Thus L = 0 if the initial population is immortal, i.e. T} = co.
Let

t
(1) ()= P(T < t)— / hu; F(t — u))dG (u).
0
Proposition The Laplace-Stieltjes transform \(6) := E(e=%), is:

AO) = 11__739)

P r o o f. It follows by

AO) = E(e ") =3 B(e " Ty =00)=(1-¢q) ) 7(0) = 11_739)
n>0 n>0

O
The total progeny of a life cycle

We are interested in the total progeny V of a life cycle and its expectation,
in order to make some inferences on the fertility rates of the particles. So, let
g(s;t) = E(sV;T < t).

Proposition
The expected total progeny V' of a life cycle satisfies the following equa-
tion:

@ O=BVT<0=FO+ [ vle— )l Fe—)iGw)
where F(t) is defined by (1).

In the case m # 1 (i.e. non-critical cases) the expected total progeny of
a life cycle is:
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q

(3) (VT < ) = = .
Al

P r oo f Itis obvious from the branching property that the p.g.f.
g(s;t) of the total progeny of a life cycle satisfies the recurrence relation

(4) (s;t) =s /Ot h(y; g(sit —y))dG(y).

Since g(1;t) = F(t), after differentiating (4) we obtain (2).

JFrom ¢ = F(o0) and v(t) T v := E(V;T < 00), dominated convergence
yields (3).

O

4. Simulation results

In general, one of the best features of branching processes is that the
exact theoretical results have a natural interpretation and can be directly used
for numerical and simulation studies.

When using Bellman-Harris branching model allowing immigration, the
computation procedure was implemented by recursive equations to compute the
probability of extinction by certain epoch (see [14]). It was illustrated how
the duality between sub-critical and super-critical branching processes given
extinction can make decision - makers take the wrong decision.

However, as it does not look easy to derive analogous results for the Sev-
ast’yanov’s population models, we develop a code for a simulation system of
different branching models with immigration, including BGWBP, BHBP and
Sevast’yanov’s ones. No programming is necessary and all input data can be
entered in user-friendly dialog boxes and graphics and (numerical) results can be
easily and quickly obtained. The results can be stored in the database table and
may be analyzed easily. The code can be used for actual design, prediction and
estimation of the parameters of different classes of branching processes, both in
discrete and continuous time. The simulation system is a simple professional
tool that might be used by biologists, engineers and decision-makers for simula-
tion of the processes which could appear to be suitable for modeling of some real
world problems related to population and re-population experiments. Moreover,
the simulation software system allows input of a mortality density and a spe-
cial form of the reproduction law with particle’s age dependence. Up to now
exponential, logarithmic and polynomial functions are proposed to model the
age-dependency. We apply the Monte-Carlo method to approach the behaviour
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of the variables T'|T" < oo and L. For the variable T|T < oo, we simulate the
process (Z; : t > 0) whereas the process (Z; : ¢t > 0) is considered to study
the variable L. All runs are with I'(6, 1) life-time distribution of each particle
and Poisson reproduction distribution, depending in logarithmic way from the
particle’s age.

As an example we have simulated 100 000 paths of each process. In
Figure 1 and Figure 2 we show the estimate density functions for the variables
T|T < oo and L. From the simulation we estimate the probability of extinction
of the process (Z; : t > 0) by 0.1447. Moreover, the sample mean for T'|T" < oo
is 6.6650 and for L the sample mean is 1.1255.

5. Conclusions

In population experiments it is usually easier to see if a new introduction
has been successful than to know whether, and when, extinction has occurred.
In many cases statistical data are only provided by interest groups, hunters,
photographers, etc. Independent control studies to assess the prior probability
of extinction are likely to be environment-biased. On the other hand, it is not
always possible to reduce the prior probability of extinction by releasing a large
numbers of individuals. The point is that extinction involves a very strong bias.
The discrete mass in the origin for the density function of L is the consequence
of P(L =0) = 1—gq. Indeed, the estimated extinction probability of the process
(Z : t > 0) equals to 0.1447.

To generalize the inference results on fertility rates and illustrate how the
duality between sub-critical and super-critical branching processes given extinc-
tion can mislead decision-makers, the study of the behaviour of the extinction
probability by given time when using Sevast’yanov’s model, will be reserved for
future research.
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Figure 1: Histogram of probability densities of a life cycle T'|T' < oo with I'(6, 1)
life-time of each particle and Poisson reproduction distribution, depending log-
arithmic from the particle’s age.
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Figure 2: Histogram of probability densities of a total waiting time L with
I'(6,1) life-time of each particle and Poisson reproduction distribution, depend-
ing logarithmic from the particle’s age.
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