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Abstract. The Euler operator δ = t
d

dt
is considered in the space C = C(R+) of the continuous

functions on R+ = (0,∞). Nonlocal operational calculi for it are developed and used for solving
nonlocal Cauchy boundary value problems for Euler differential equations of the form P(δ )y = f
with a polynomial P. A function f ∈C(R+) is said to be mean-periodic for the Euler operator with
respect to the linear functional Φ (or simply Φ-mean-periodic) if Φτ{ f (tτ)} = 0 identically on
R+. The solution of Euler differential equations in mean-periodic functions for δ with respect to an
arbitrary linear functional Φ reduces to non-local homogeneous Cauchy problems.

Denoting the algebraic equivalent of the Euler differential operator δ by S, the solution of an
Euler differential equation P(δ )y= f in Φ-mean-periodic functions reduces to the interpretation of

y=
1

P(S)
f as a function. This is done both in the non-resonance and in the resonance cases.

Keywords: Euler operator, mean-periodic function, resolvent operator, commutant, Euler convolu-
tion.
PACS: 02.30.Vv, 02.30.Hq

RESULTS FOR THE NON-RESONANCE CASE

The non-resonance case of solving Euler differential equations in mean-periodic func-
tions and some preliminary definitions and theorems were considered in previous papers
and will be briefly presented in this section.

Nonlocal operational calculi for the Euler operator

Let Φ be a non-zero linear functional on C =C(R+). The solution of the elementary
boundary value problem

δy−λy= t
dy

dt
−λy= f (t), Φ{y}= 0,

has the form

y= Lλ f (x) =
tλ

E(λ )
Φτ

{
τλ
∫ t

τ

f (σ)dσ
σλ+1

}
,
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where E(λ ) = Φτ{τλ} is the Euler indicatrix of the functional Φ. Lλ is said to be the
resolvent operator of δ with respect to Φ.
We begin with the following non-classical convolution related to the Euler operator,

which is considered in details in [3], [4], and [6]:

Theorem 1 Let Φ be a continuous non-zero linear functional on C(R+). Then the
operation

( f ∗g)(t) = Φτ

{∫ t

τ
f
(tτ

σ

)
g(σ)

dσ
σ

}
(1)

is a separately continuous, bilinear, commutative, and associative operation in C(R+),
such that

Lλ f (t) =

{
tλ

E(λ )

}
∗ f .

Lemma 1 If f ∈C1(R+), then

δ ( f ∗g) = (δ f )∗g−Φ{ f}g.
Here we pay attention also to a very useful property of the convolution (1):

Lemma 2 The convolution given by (1) is such that

Φ{ f ∗g}= 0 (2)

for arbitrary f ,g ∈C(R+).

Further, if Φ{1} �= 0, i.e. if E(0) �= 0, then without loss of generality we may assume
that the functional Φ satisfies Φ{1}= 1 and then the following representation for L= L0
holds:

L f = {1}∗ f .
Let the space C = C(R+) be considered as a commutative and associative algebra

with the convolution ∗ as multiplication. Next, the commutative ring M of convolution

fractions
f

g
with g being nonzero non-divisor of zero) is defined. Two convolution

fractions
f

g
and

f1

g1
are considered as equal iff f ∗ g1 = g ∗ f1. The elements of C(R+)

may be considered as convolutional fractions due to the embeding

f ↪→ f ∗{1}
{1} .

It embeds the ring (C(R+),∗) into the ring M of the convolution fractions.
The reciprocal element

S= L−1

of L in the ring M is called the algebraic Euler operator. Its relation to the ordinary
Euler operator δ is given by
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Lemma 3 If f ∈C1(R+), then

δ f = S f −Φ{ f},

where Φ{ f} is the “numerical operator” {Φ{ f}}{1} .

By induction it follows that

δ k f = Sk f −Φ{ f}Sk−1−Φ{δ f}Sk−2− . . .−Φ{δ k−1 f}. (3)

If λ is such that E(λ ) = Φτ(τλ ) �= 0, then (see [8])

1
S−λ

=

{
tλ

E(λ )

}
and

1
(S−λ )k

=

{
1

(k−1)!
∂ k−1

∂λ k−1

(
tλ

E(λ )

)}
, k > 1.

Nonlocal Cauchy boundary value problems for Euler equations

The general nonlocal Cauchy boundary value problem for the Euler operator δ = t
d

dt
has the form

P(δ )y(t) = F(t), Φ{δ ky}= αk, k = 0,1,2, . . . ,degP−1, (4)

where P is a polynomial, Φ is an arbitrary non-zero linear functional, and αk are real or
complex numbers.

Lemma 4 Let none of the zeros of the polynomial P(λ ) be a zero of the indicatrix E(λ ),
i.e. {λ : P(λ ) = 0}∩{λ : P(λ ) = 0}= Ø. Then P(S) is a non-divisor of zero in M .

The case, when P(S) is a non-divisor of zero in M , is called the non-resonance case.
In this non-resonance case the operational approach gives the solution simply by

substituting (3) in (4) in order to obtain an usual algebraic equation

P(S)y= F+Q(S), (5)

where Q(S) is a polynomial of S with degQ< degP. It has the formal solution

y=
1

P(S)
F+

Q(S)

P(S)
.

Using the zeros of the polynomial P, the formal quotients
1

P(S)
and

Q(S)

P(S)
can be

written as sums of elementary fractions. Representing each such fraction as a function
and, then using

1
S−λ

=

{
tλ

E(λ )

}
and

1
(S−λ )k

=

{
1

(k−1)!
∂ k−1

∂λ k−1

(
tλ

E(λ )

)}
, for k > 1,

(6)
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one obtains the solution of the nonlocal Cauchy boundary problem in the nonresonance
case.

Mean-periodic solutions of Euler differential equations in the
non-resonance case

Definition 1 (Schwartz [10], §22) A function f ∈ C(R+) is said to be mean-periodic
for the Euler operator with respect to a linear functional Φ (shortly Φ-mean-periodic,
Euler mean-periodic, or simply mean-periodic) if

Φτ{ f (tτ)}= 0

identically on R+.

Let us denote byMPΦ the subset of the mean-periodic functions inC(R+)with respect
to the functional Φ.
If we are looking for mean-periodic solutions of the Euler equation P(δ )y(t) =

f (t), it is equivalent to a nonlocal Cauchy problem with homogeneous boundary value
conditions, i.e.

P(δ )y(t) = f (t), Φ{δ ky}= 0, k = 0,1,2, . . . ,degP−1. (7)

The following two theorems concerning properties of the mean-periodic functions in
the convolutional algebra (C(R+),∗) are proved by the authors in [3] and [4]:

Theorem 2 The mean-periodic functions for the Euler operator δ with respect to
any non-zero functional Φ : C(R+)→ C form an ideal in the convolutional algebra
(C(R+),∗).
Theorem 3 If f ∈MPΦ and {λ : P(λ ) = 0}∩{λ : E(λ ) = 0}=Ø, then P(δ )y= f has
a unique solution y ∈MPΦ and it has the explicit form

y= G∗ f ,

with G= {G(t)}= 1
P(S)

using the representations (6).

OPERATIONAL METHOD FOR MEAN-PERIODIC RESONANCE
SOLUTIONS OF EULER DIFFERENTIAL EQUATIONS

Here we give a result for multiple resonance zeros which generalizes the case of simple
resonance zeros considered by the authors in [5].
As it was mentioned above, the Φ-mean-periodic resonance solutions of an Euler dif-

ferential equation have to satisfy the homogeneous Cauchy boundary value conditions:

P(δ )y(t) = f (t), Φ{δ ky}= 0, k = 0,1,2, . . . ,degP−1. (8)
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If λ0 is one of the resonance zeros, let us denote by k0 and κ0 its multiplicities in the
polynomial P and the Euler indicatrix E, respectively, i.e.

P(λ ) = (λ −λ0)
k0Q(λ ), Q(λ0) �= 0, (9)

and
E(λ0) = E ′(λ0) = . . .= E(κ−1)(λ0) = 0,E(κ0)(λ0) �= 0. (10)

Now an idea of S. Grozdev [9] will be used for reducing the resonance case to the
non-resonance one.
Denote by C̃λ0 the subalgebra of (C(R+),∗) consisting of the functions f ∈ C(R+)

satisfying the conditions

f ∗ tλ0 = 0, f ∗ tλ0 ln t = 0, . . . , f ∗ tλ0 lnk0−1 t = 0. (11)

Obviously these conditions are necessary for existing of a mean-periodic solution.
Our next task is to show that they are also sufficient.

Lemma 5 Let λ0 be a resonance zero of the polynomial P. Then, if S̃ denotes the

restriction of S to C̃λ0 ,it holds

1

(S̃−λ0)n
=

{
tλ0An(ln t)
E(κ)(λ0)

}
∗ , (12)

where An(x), n= 1,2, . . ., are an Appell set of polynomials defined recurrently by

A1(ln t) = lnκ t, Φt

{
tλ0An(ln t)

}
= 0, A′n+1(x) = An(x), x= ln t. (13)

We have to consider two cases: 1) k0 ≤ κ0 and 2) k0 > κ0.

Case 1: k0 ≤ κ0
For any λ which is not a zero of the polynomial P we can use the representation

Rλ f̃ =

{
tλ

E(λ )

}
∗ f̃ for f̃ ∈ C̃λ0 and P(λ ) �= 0. (14)

Then it is natural to let λ tend to λ0:

lim
λ→λ0

Rλ f̃ = lim
λ→λ0

{
tλ0 .tλ−λ0

E(λ )

}
∗ f̃ . (15)

Representing

tλ−λ0 = e(λ−λ0) ln t =
κ0−1
∑
k=0

(λ −λ0)
k lnk t

k!
+ (16)

+ (λ −λ0)
κ0

[
lnκ0 t

κ0!
+(λ −λ0)

∞

∑
k=κ0+1

(λ −λ0)
k−κ0−1 lnk t
k!

]
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and

E(λ ) = (λ −λ0)
κ

[
E(κ0)(λ0)

κ0!
+(λ −λ0)

∞

∑
k=κ0+1

(λ −λ0)
k−κ0−1Ek(λ0)

k!

]
, (17)

it follows that

lim
λ→λ0

Rλ f̃ =

{
tλ0 lnκ0 t

E(κ0)(λ0)

}
∗ f̃ . (18)

Now we can express the elementary fractions needed for the solution as

1

S̃−λ0
=

{
tλ0 lnκ0 t

E(κ0)(λ0)

}
∗ (19)

and by induction
1

(S̃−λ0)n
=

{
tλ0An(ln t)
E(κ0)(λ0)

}
∗ , (20)

where An are polynomials of Appel type in the sense of Bourbaki [1] (Chapter 6.2)
related to the Euler operator with the properties

A1(ln t) = lnκ0 t, Φt

{
tλ0An(ln t)

}
= 0, A′n+1(x) = An(x), x= ln t.

Later we will give the form of the solution of (8) and the part corresponding to the
resonance zero λ = λ0 depends in this case on k0 arbitrary constants.

Case 2: k0 > κ0

In this case the representation of
1

(S̃−λ0)n
is the same. The only difference is that the

part of the solution corresponding to the resonance zero λ = λ0 depends on κ0 arbitrary
constants as it will be indicated below. �

General solution
In the case when the polynomial P in (8) has more than one multiple resonance zeros

we can proceed as follows:
Let the resonance zeros be λ1, . . . ,λm with multiplicities k1, . . . ,km.
In fact, after removing the non-resonance zeros of P, we want to find the mean-

periodic solutions w of the auxiliary equation

(δ −λ1)
k1 . . .(δ −λm)kmw(t) = F(t). (21)

Lemma 5 shows how to treat the case of only one zero. In the general case we can
take for each zero λμ , μ = 1, . . . ,m, the subalgebra C̃λμ of (C(R+),∗) consisting of the
functions f ∈C(R+) satisfying the conditions

f ∗ tλμ = 0, f ∗ tλμ ln t = 0, . . . , f ∗ tλμ lnkμ−1 t = 0. (22)
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Next, denote by L̃ the restriction of L to the intersection C̃λ1,...,λm =∩ m
μ=1C̃λμ . Let S̃=

1

L̃
.

In the ring M̃λ1,...,λm of the convolutional fractions in C̃λ1,...,λm , equation (21) takes the
form

(S̃−λ1)
k1 . . .(S̃−λm)kmw= F. (23)

The elements (S̃− λk), k = 1,2, . . . ,m, are non-divisors of zero in M̃λ1,...,λm and the
formal solution of (23) is

w=
1

(S̃−λ1)k1 . . .(S̃−λm)km
F. (24)

Next step is to represent the algebraic multiplier
1

(S̃−λ1)k1 . . .(S̃−λm)km
in the form

m

∑
μ=1

kμ

∑
j=1

Bμ, j

(S̃−λμ) j
.

The general solution of the auxiliary equation (21), which contains only the resonance
zeros of P from the Euler equation (8), is then a sum

w=
m

∑
μ=1

(
kμ

∑
j=1

Bμ, j

{
tλμAμ, j(ln t)
E(κ)(λμ)

}
∗F+

min{kμ ,κμ}
∑
j=1

Cμ, jt
λμ ln j−1 t

)

with a uniquely determined constants Bμ, j and arbitrary constants Cμ, j, μ = 1, . . . ,m,
j = 1, . . . ,min{kμ ,κμ}. Here Aμ, j, μ = 1, . . . ,m, s= 1,2, . . ., are m polynomial systems
of Appel type in the sense of Bourbaki [1] (Chapter 6.2) related to the Euler operator
with the properties

Aμ,1(ln t) = lnκμ t, Φt

{
tλmAμ,s(ln t)

}
= 0, A′μ,s+1(x) = Aμ,s(x), x= ln t.

In order to have a full solution of (8), the non-resonance zeros have also to be taken into
account using for them the representations (6).
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