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Let C1 denote the space of the smooth functions on the real half-line R≥0 = [0,∞)
and C1

h is the subspace of C1 consisting of its functions f(x) which satisfy the initial value
condition f ′(0)− hf(0) = 0 with a fixed real h.

The aim of the paper is to characterize all continuous linear operators M : C1 → C1

which has the subspace C1
h = {f : f ∈ C1, f ′(0) − hf(0) = 0} as an invariant subspace and

commuting with the square D2 of the differentiation operator D =
d

dx
on C2

h.The set of all

such operators is said to be the commutant of D2 under the constraints considered and is
denoted by Comm(D2; h). We prove that each operator M from Comm(D2; h) has an explicit
representation Mf(x) = Φy{T yf(x)}, where

T yf(x) =
1

2
{f(x + y) + f(|x− y|)}+

h

2

∫ x+y

|x−y|
f(t)dt

is a generalized translation operator in the sense of B. Levitan [10] and Φ is a linear functional
on C1.

Next, for a fixed h we prove that Comm(D2; h) is a commutative algebra. The kernel
space of each of the operators from the commutant, denoted by MPΦ, forms a space of mean-
periodic functions for D2 in the sense of K. Trimeche [11]. A convolution structure ∗ : C×C →
C is introduced, such that MPΦ is an ideal in the convolution algebra (C, ∗). This result can
be used for effective solution in mean-periodic functions of ordinary differential equations of
the form P (D2)y = f with a polynomial P .

By means of this convolution structure, we characterize the commutant of D2 in C1,
subjected to a local constraint of the form f ′(0)−hf(0) = 0 and to an additional non-local one
of the form Φ{f} = 0 with Φ being a linear functional on C1. It consists of all linear operators
M : C1 → C1 of the form

Mf(x) = µf(x) + (m ∗ f)(x)

with µ = const and m ∈ C1.

MSC 2010: Primary: 447B37; Secondary: 47B38, 47A15

Key Words: commutant, generalized translation operator, mean-periodic function,

convolution algebra, ideal



80 I. Dimovski, V. Hristov

0. Introduction

Till recently, not too many investigations could be pointed out on the
problem for characterizing of commutants of the square of differentiation. Ch.
Kahane [9] announced that the commutant of D2 on C[a, b] for a finite interval
[a, b], without any additional constraints, consists of the operators of the form

Mf(x) = Af(x) + Bf(a + b− x) + C

a+b−x∫

x

f(t)dt,

where A,B, C are arbitrary constants.
Starting with J. Delsarte [2] and ending with B. Levitan [10], the family

of the generalized translation operators

T yf(x) =
1
2
{f(x + y) + f(|x− y|)}+

h

2

∫ x+y

|x−y|
f(t)dt

is introduced as consisting of operators C1 → C1, commuting with D2 in their
invariant subspace

C1
h = C1

h(R≥0) = {f(x) : f ∈ C1(R≥0), f ′(0)− hf(0) = 0}.
But they do not exhaust all such operators. It happens that all continuous linear
operators M : C1 → C1, having C1

h as an invariant subspace and commuting
with D2 in C2

h, are exhausted by the operators of the form

Mf(x) = Φy{T yf(x)} = Φy

{
f(x + y) + f(|x− y|)

2
+

h

2

∫ x+y

|x−y|
f(t)dt

}

with an arbitrary linear functional Φ on C1 (Theorem 1).
This representation resembles the description of the commutant of the

operator of differentiation D =
d

dx
in C(R) published in Bourbaki [1]:

Mf(x) = Φy{f(x + y)}.
with a linear functional Φ on C(R).

Following this pattern the authors have also found the commutants of
several operators, e.g. the Pommiez operator [4], the Euler operator ([5] and
[6]), and the Dunkl operators [7].

1. A family of operators commuting with D2 =
d2

dx2

Let C1
h be the subspace of the space C1 of the smooth functions f on

R≥0 = [0,∞) satisfying the boundary value condition

f ′(0)− hf(0) = 0 (1)
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with a fixed h ∈ R. By C2
h we denote the subspace of twice continuously

differentiable functions of C1
h. We are looking for the linear operators M :

C1 → C1 with an invariant subspace C1
h, commuting with D2 in C2

h.

Lemma 1. The operators

T yf(x) =
1
2
{f(x + y) + f(|x− y|)}+

h

2

∫ x+y

|x−y|
f(t)dt (2)

map C into C and have the following properties:

(i) C1
h is an invariant subspace for T y;

(ii) T yf(x) = T xf(y);

(iii) T 0f(x) = f(x);

(iv) D2T y = T yD2 on C2
h;

(v) T yT z = T zT y.
P r o o f. (i) It is seen directly that (T yf)′(0)−h(T yf)(0) = 0 for arbitrary

f ∈ C1(R≥0) and hence T y : C1
h → C1

h.
(ii) and (iii) are obvious.
(iv) We verify it first for y ≤ x and then for x < y. If y ≤ x, then

T yf(x) =
1
2
{f(x + y) + f(x− y)}+

h

2

∫ x+y

x−y
f(t)dt

and
d2

dx2
T yf(x) =

1
2
[f ′′(x + y) + f ′′(x− y)] +

h

2
[f ′(x + y)− f ′(x− y)] = T yf ′′(x).

If x < y, then the verification of
d2

dx2
T yf(x) = T yf ′′(x) goes in the same

way.
(v) We verify it first for even powers of x, i.e. for f(x) = x2n, and then

proceed by approximation of an arbitrary function f ∈ C by polynomials of the
form P (x2).

Since the operators (2) are very special case of the generalized translation
operators of B. M. Levitan (see [10]), one may rely also on the general proof in
this book.

2. Characterization of the operators M : C1 → C1 commuting
with D2 in the invariant subspace C1

h

Theorem 1. Let M : C1 → C1 be a continuous linear operator with
C1

h as an invariant subspace and such that M : C2 → C2. Then the following
assertions are equivalent:
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(i) MD2 = D2M on C2
h;

(ii) MT y = T yM for each y ≥ 0;

(iii) M has the explicit representation

Mf(x) = Φy{T yf(x)} = Φy

{
f(x + y) + f(|x− y|)

2
+

h

2

∫ x+y

|x−y|
f(t)dt

}
(3)

with a linear functional Φ in C1.

P r o o f. (i)⇒(ii) Let f(x) be an even polynomial. Then the Maclaurin
expansion

f(x) =
∞∑

n=0

x2n

(2n)!
D2nf(0)

gives the following representation of the ”translated” function:

T yf(x) = T xf(y) =
∞∑

n=0

y2n

(2n)!
T xD2nf(0)

=
∞∑

n=0

y2n

(2n)!
T 0D2nf(x) =

∞∑

n=0

y2n

(2n)!
D2nf(x).

Now (ii) will follow if we apply M to both sides and use the identity MD2nf(x)
= D2nMf(x) which follows immediately from (i) for each n ∈ N:

MT yf(x) =
∞∑

n=0

y2n

(2n)!
MD2nf(x) =

∞∑

n=0

y2n

(2n)!
D2nMf(x) = T yMf(x).

(ii)⇒(iii) Let us define a continuous linear functional Φ on C1 by Φ{f} =
(Mf)(0). Substituting y = 0 in

T yMf(x) = MT yf(x) = MT xf(y),

we obtain
T 0Mf(x) = MT xf(0).

The left hand side is Mf(x) and the right hand side is the value of the functional
Φ for the function T xf . Hence

Mf(x) = Φy{T xf(y)} = Φy{T yf(x)}.

Thus the implication is proved using y as the ”dumb“ variable of the functional.
(iii)⇒(i) Let Mf(x) = Φy{T yf(x)}. Then D2Mf(x) = Φy{D2T yf(x)}

for f ∈ C2
h. Using D2T y = T yD2 from Lemma 1, we obtain
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D2Mf(x) = Φy{T yD2f(x)} = MD2f(x).

Hence (iii)⇒(i).

Theorem 2. The commutant of D2 =
d2

dx2
in C1

h is a commutative

ring. P r o o f. Let the operators M : C1
h → C1

h and N : C1
h → C1

h commute with

D2 =
d2

dx2
in C2

h.

According to (iii) from Theorem 1, there are linear functionals Φ and Ψ
in C1, such that

Mf(x) = Φy{T yf(x)} and Nf(x) = Ψz{T zf(x)}.

Then

MNf(x) = ΦyΨz{T yT zf(x)} and NMf(x) = ΨzΦy{T zT yf(x)}.

By (iv) from Lemma 1, T zT y = T yT z, and hence

NMf(x) = ΨzΦy{T zT yf(x)} = ΨzΦy{T yT zf(x)}.

It remains to use the Fubini property ΨzΦy{g(y, z)} = ΦyΨz{g(y, z)} for func-
tions g(y, z) ∈ C1(R≥0 × R≥0) in order to assert that MN = NM .

3. Characterization of the operators M : C1 → C1 commuting
with D2 in the invariant subspaces C1

h and C1
Φ = {f ∈ C1, Φ{f} = 0}

Let Φ be a continuous linear functional on C1 = C1(R≥0) = C1[0,∞).
We are looking for the set of the linear operators M : C1 → C1 with invariant
subspaces C1

h and C1
Φ = {f ∈ C1, Φ{f} = 0} and commuting with D2 in them

with the notation Comm(D2, h, Φ).
In Dimovski and Petrova [8] a convolution structure ∗ : C1 × C1 → C1

is introduced with the following properties:

f ∗ g ∈ C1
h and Φ{(f ∗ g)} = 0 (4)

for arbitrary f, g ∈ C1.
Our aim is to show that each operator M : C1 → C1 of the commutant

Comm(D2, h, Φ), we are interested in, has the explicit form

Mf = µf + m ∗ f

with µ = const and m ∈ C1.
There is no need to know the explicit form of the convolution f∗g. We will

use only the fact that the resolvent operator R−λ2 of D2 under the constraints
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y′(0) − hy(0) = 0 and Φ{y} = 0 is a convolution operator R−λ2 = ϕλ∗ with
ϕλ ∈ C1

h.
Let us remind that the resolvent operator R−λ2f = y of the operator

D2 =
d2

dx2
is defined as the solution of the differential equation y′′ + λ2y = f(x)

with the boundary value conditions y′(0)− hy(0) = 0 and Φ{y} = 0.
In Dimovski and Petrova [8] it is shown that

R−λ2f(x) =
{

λ cosλx + h sinλx

λE(λ)

}
∗ f(x)

with E(λ) = Φξ

{
λ cosλξ + h sinλξ

λE(λ)

}
.

Theorem 3. Let M : C1 → C1 be continuous linear operator with
invariant subspaces C1

h and C1
Φ which maps C2 into C2. Then the following

assertions are equivalent:
(i) M commutes with D2 in C2

h and C2
Φ;

(ii) M commutes with R−λ2 in C1 for a fixed λ;
(iii) M is a multiplier of the convolution algebra (C1, ∗);
(iv) M admits a representation of the form

Mf = µf + m ∗ f (5)

with µ = const and m ∈ C1.
P r o o f. (i) ⇒ (ii) Assume that MD2 = D2M in C1

h and C1
Φ. Let f ∈ C1

be arbitrary. Consider the function

ψ(x) = MR−λ2f(x)−R−λ2Mf(x).

We obtain

(D2 + λ2)ψ = (D2 + λ2)MR−λ2f −Mf = M(D2 + λ2)R−λ2f −Mf = 0.

It is easy to verify that the function ψ satisfies the boundary value conditions
ψ′(0)− hψ(0) = 0 and Φ{ψ} = 0. Hence, ψ(x) ≡ 0 since λ is not an eigenvalue,
i.e.

MR−λ2f = R−λ2Mf, f ∈ C1.

(ii) ⇒ (iii) This follows from Theorem 1.3.11 in Dimovski [3], p. 53.
According to this theorem, the commuting of M with R−λ2 implies that M is a
multiplier of the convolution algebra (C1, ∗).

(iii) ⇒ (iv) The identity R−λ2f = ϕλ∗f with ϕλ =
{

λ cosλx + h sinλx

λE(λ)

}

∈ C2
h implies MR−λ2f = R−λ2Mf = (Mϕλ) ∗ f . Denoting ψλ = Mϕλ ∈ C2

h,
we get
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Mf = (D2 + λ2)(ψλ ∗ f) = D2(ψλ ∗ f) + (λ2ψλ ∗ f)
= D2(ψλ) ∗ f + Φ{ψλ}f + λ2ψλ ∗ f = Φ{ψλ}f + [(D2 + λ2)ψλ] ∗ f,

which is the representation (5) with µ = Φ{ψλ} and m = (D2 + λ2)ψλ.
(iv) ⇒ (i) From the properties (4) of the convolution structure f ∗ g it

follows that C1
h and C1

Φ are invariant subspaces of C1. From (5) it follows that
M : C2 → C2 and M commutes with R−λ2 in C1, i.e.

MR−λ2f = R−λ2Mf, f ∈ C1.

Multiplying with (D2 + λ2) we obtain

(D2 + λ2)MR−λ2f = Mf.

Taking f = (D2 + λ2)g with g ∈ C2
h ∩ C2

Φ, we get

(D2 + λ2)MR−λ2(D2 + λ2)g = M(D2 + λ2)g,

but R−λ2(D2 + λ2)g = g for g ∈ C2
h ∩ C2

Φ. Hence (D2 + λ2)M = M(D2 + λ2)
on C2

h ∩ C2
Φ which is equivalent to MD2 = D2M .

4. Mean-periodic functions for D2 =
d2

dx2
in C1

h

Definition 1. The kernel space kerM of an operator Mf(x) = Φy{T yf(x)}
from Comm(D2, h) is called the space of the mean-periodic functions for D2,
associated with the linear functional Φ.

We use the notation MPΦ = kerM = {f ∈ C1
h : Φy{T yf(x)} = 0}.

Lemma 4. R−λ2 maps MPΦ into itself, i.e. R−λ2(MPΦ) ⊂ MPΦ.
P r o o f. Let f ∈ MPΦ, i.e. Φy{T yf(x)} = 0. We are to prove that

ϕ(x) = Φy{T yR−λ2f(x)} ≡ 0. Indeed, we have

(D2 + λ2)ϕ(x) = Φy{(D2 + λ2)T yR−λ2f(x)}
= Φy{T y(D2 + λ2)R−λ2f(x)} = Φy{T yf(x)} ≡ 0,

since (D2 + λ2)R−λ2f(x) = f(x). Hence ϕ(x) belongs to the kernel space of
D2 +λ2, i.e. ϕ(x) = A cosλx+B sinλx with constants A and B. ϕ satisfies the
condition ϕ′(0)− hϕ(0) = 0 and hence Bλ− hA = 0. In other words, ϕ(x) is a

function of the form ϕ(x) = A

(
cosλx +

h sinλx

λ

)
. Using the boundary value

condition Φ{f} = 0, we obtain

0 = AΦt

{
cosλt +

h sinλt

λ

}
= AE(λ).
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But E(λ) 6= 0 and hence A = 0. Thus we proved that ϕ(x) ≡ 0.
For the sake of simplicity, from now on we restrict our considerations to

the case h = 0, i.e. to the space

C1
0 = {f ∈ C1(R≥0), f ′(0) = 0}.

This is possible due to an explicit isomorphism between C1
h and C1

0 .

Lemma 5. The linear operator

τf(x) = f(x) + h

∫ x

0
e−h(x−t)f(t)dt (6)

maps C1
h onto C1

0 and its inverse is

τ−1f(x) = f(x) + h

∫ x

0
f(t)dt. (7)

If f ∈ C2
h, then τf ∈ C2

0 and (τf)′′ = τf ′′.
The proof is a matter of simple check (see Dimovski [3], p.153).
Due to Lemma 6, instead of the resolvent operator R−λ2 of D2 with

boundary value conditions y′(0)−hy(0) = 0 and Φ{y} = 0, we may consider the
resolvent operator R̃0 of D2, defined by the boundary value conditions y′(0) = 0
and Φ̃{y} = 0, where Φ̃ = Φ ◦ τ−1.

From now on we will use the notation Φ instead of Φ̃, assuming that we
are all the time in the case h = 0.

For a further simplification we assume that λ = 0 is not an eigenvalue of
the eigenvalue problem y′′ + λ2y = 0, y′(0) = 0, Φ{y} = 0. This means that
there exists a right inverse operator R of D2, such that
(Rf)′(0) = 0, Φ{Rf} = 0 which is possible when Φ{1} 6= 0. If so, we may
assume additionally that Φ{1} = 1 without any loss of generality. Then the
right inverse of D2 has the form

Rf(x) =
∫ x

0
(x− t)f(t)dt− Φy

{∫ y

0
(y − t)f(t)dt

}
.

In Dimovski [3], pp. 148-151, the following theorem is proved:

Theorem 4. The operation

(f ∗ g)(x) =
∫ x

0
dt

∫ t

0
f(t− τ)g(τ)dτ +

1
2
Φt

{∫ t

0
ψ(x, τ)dτ

}
, (8)

where

ψ(x, t) =
∫ t

x
f(t + x− τ)g(τ)dz +

∫ t

−x
f(|t− x− τ |)g(|τ |)dτ,
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is an inner operation in C, which is bilinear, commutative, and associative, and
R is the convolution operator R = {1}∗, i.e. Rf = {1} ∗ f .

Theorem 5. The subspace MPΦ of mean-periodic functions for D2

associated with the linear functional Φ forms an ideal in the convolution algebra
(C, ∗).

P r o o f. By Lemma 4, if f ∈ MPΦ, then Rf ∈ MPΦ. But from Theorem
2 we have Rf = {1} ∗ f and Rkf = {Qk(x2)} ∗ f , where Qk is a polynomial of
degree k. Next, choose a polynomial sequence {Pn(x)}∞n=1 converging to g(

√
x)

uniformly on each segment [a, b] ⊂ [0,∞). Then {Pn(x2)}∞n=1 converges to g(x)

in C1
0 . But Pn(x2) =

n∑

k=0

αkQk(x2) with some constants α0, α1, α2, . . . , αn. Then

{Pn(x2)}∗f ∈ MPΦ since {Qk(x2)}∗f ∈ MPΦ, k = 0, 1, 2, . . . , n. Obviously the
limit lim

n→∞{Pn(x2)}∗f = g∗f of the sequence {{Pn(x2)}∗f}∞n=1 of mean-periodic
functions is also mean-periodic.

Hence g ∗ f ∈ MPΦ for arbitrary g ∈ C and therefore MPΦ is an ideal
in (C, ∗).

Theorem 5 may be used to study the problem of solution of ordinary
differential equations with constant coefficients of the form

P

(
d2

dx2

)
y = f(x)

in mean-periodic functions of the space MPΦ and to extend the Heaviside al-
gorithm for obtaining such solutions in explicit form. This will be left for a
subsequent publication, but analogous considerations for the Dunkl operator
Dk instead of D2 can be seen in Dimovski, Hristov, and Sifi [7].

5. Open problem

Characterize all continuous linear operators M : C → C with an invariant
subspace {f ∈ C, f(0) = 0} and commuting with D2.

Conjecture: Mf(x) = µf(x) + Φy

{∫ x+y

|x−y|
f(t)dt

}
with µ = const and

a linear functional Φ on C.
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