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Équations différentielles
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Abstract

The Euler operator δ = t
d

dt
is considered in the space C = C(R+) of

the continuous functions on R+ = (0,∞). Nonlocal operational calculi for it
are presented and they are used for solving nonlocal Cauchy boundary value
problems for Euler differential equations. At last, Euler differential equations
are solved in mean-periodic functions for δ with respect to an arbitrary linear
functional in the resonance case.
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1. Nonlocal operational calculi for the Euler operator. Let Φ be a
non-zero linear functional on C = C(R+). The solution of the elementary bound-
ary value problem

δy − λy = f(t), Φ{y} = 0,
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has the form

y = Lλf(x) =
tλ

E(λ)
Φτ

{
τλ

∫ t

τ

f(σ)dσ

σλ+1

}
,

where E(λ) = Φτ{τ
λ} is the Euler indicatrix of the functional Φ. Lλ is said to be

the resolvent operator of δ with respect to Φ.

We begin with the following non-classical convolution related to the Euler
operator, which is considered in detail in [3–5].

Theorem 1. Let Φ be a continuous non-zero linear functional on C(R+).
Then the operation

(1) (f ∗ g)(t) = Φτ

{∫ t

τ

f

(
tτ

σ

)
g(σ)

dσ

σ

}

is a separately continuous, bilinear, commutative, and associative operation in

C(R+), such that

Lλf(t) =

{
tλ

E(λ)

}
∗ f.

Lemma 1. If f ∈ C1(R+), then

δ(f ∗ g) = δf ∗ g − Φ{f}g.

Here we also pay attention to a very useful property of convolution (1):
Lemma 2. The convolution given by (1) is such that

(2) Φ{f ∗ g} = 0

for arbitrary f, g ∈ C(R+).

Proof. The function

h(t, τ) =

∫ t

τ

f

(
tτ

σ

)
g(σ)

dσ

σ

is antisymmetric with respect to t and τ , i.e. h(t, τ) = −h(τ, t) and, hence,

(3)
Φ{f ∗ g} = Φt{(f ∗ g)(t)} = ΦtΦτ{h(t, τ)} = ΦtΦτ{−h(τ, t)}

= −ΦtΦτ{h(τ, t)} = −ΦτΦt{h(τ, t)} = −ΦtΦτ{h(t, τ)} = −Φ{f ∗ g}.

Here the Fubini property of the functional Φ is used, i.e. the possibility to in-
terchange Φt and Φτ . At the end, t and τ are also interchanged, since they are
“dumb” variables in the corresponding expressions. Thus the last chain of equal-
ities gives 2Φ{f ∗ g} = 0 and Φ{f ∗ g} = 0 holds. �
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Further, if Φ{1} 6= 0, i.e. if E(0) 6= 0, then without loss of generality we
may assume that the functional Φ satisfies Φ{1} = 1 and then the following
representation for L := L0 holds:

Lf = {1} ∗ f.

Let the space C = C(R+) be considered as a commutative and associative
algebra with the convolution ∗ as multiplication. Next, the commutative ring M

of convolution fractions
f

g
with g being non-zero non-divisor of zero is defined.

Two convolution fractions
f

g
and

f1

g1

are considered as equal iff f ∗ g1 = g ∗ f1.

The elements of C(R+) may be considered as convolutional fractions due to the
embedding

f →֒
f ∗ {1}

{1}
.

It embeds the ring (C(R+), ∗) into the ring M of the convolution fractions.
The reciprocal element

S = L−1

of L in the ring M is called the algebraic Euler operator. Its relation to the
ordinary Euler operator δ is given by

Lemma 3. If f ∈ C1(R+), then

δf = Sf − Φ{f},

where Φ{f} is the “numerical operator”
{Φ{f}}

{1}
.

By induction it follows that

(4) δkf = Skf − Φ{f}Sk−1 − Φ{δf}Sk−2 − · · · − Φ{δk−1f}.

If λ is such that E(λ) = Φτ (τ
λ) 6= 0, then (see [5])

1

S − λ
=

{
tλ

E(λ)

}
and

1

(S − λ)k
=

{
1

(k − 1)!

∂k−1

∂λk−1

(
tλ

E(λ)

)}
, k > 1.

2. Nonlocal Cauchy boundary value problems for Euler equations.

The general nonlocal Cauchy boundary value problem for the Euler operator

δ = t
d

dt
has the form

(5) P (δ)y(t) = F (t), Φ{δky} = αk, k = 0, 1, 2, . . . ,deg P − 1,

where P is a polynomial, Φ is an arbitrary non-zero linear functional, and αk are
real or complex numbers.

Compt. rend. Acad. bulg. Sci., 63, No 11, 2010 1553



Lemma 4. Let none of the zeros of the polynomial P (λ) be a zero of the

indicatrix E(λ), i.e. {λ : P (λ) = 0} ∩ {λ : P (λ) = 0} = Ø. Then P (S) is a

non-divisor of zero in M.

Proof. Assume that P (S) is a divisor of zero in M. Then at least for one
of the zeros λ = λ1 of P (λ) the element S − λ1 of M should be a divisor of zero.
This means that there is a function u ∈ C(R+), u 6= 0, such that (S − λ1)u = 0.
Multiplying by L, we get u− λ1Lu = 0. Hence, Φ{u} = 0. Applying the operator
δ to u−λ1Lu = 0, we get δu−λ1u = 0. All the non-zero solutions of this equation
are u = Ctλ1 with a constant C 6= 0. The condition Φ{u} = 0 gives CE(λ1) = 0
and hence E(λ1) = 0. The contradiction proves the lemma. �

The case, when P (S) is a non-divisor of zero in M, is called the non-resonance
case.

In this non-resonance case the operational approach gives the solution simply
by substituting (4) in (5) in order to obtain a usual algebraic equation

(6) P (S)y = F + Q(S),

where Q(S) is a polynomial of S with deg Q < deg P . It has the formal solution

y =
1

P (S)
F +

Q(S)

P (S)
.

Using the zeros of the polynomial P , the formal quotients
1

P (S)
and

Q(S)

P (S)
can be written as sums of elementary fractions. Representing each such fraction
as a function and then using

(7)

1

S − λ
=

{
tλ

E(λ)

}
and

1

(S − λ)k
=

{
1

(k − 1)!

∂k−1

∂λk−1

(
tλ

E(λ)

)}
, for k > 1,

one obtains the solution of the nonlocal Cauchy boundary problem in the non-
resonance case.

3. Mean-periodic solutions of Euler differential equations in the

non-resonance case.

Definition 1 (Schwartz [7], §22). A function f ∈ C(R+) is said to be

mean-periodic for the Euler operator with respect to a linear functional Φ (shortly
Φ-mean-periodic, Euler mean-periodic, or simply mean-periodic) if

Φτ{f(tτ)} = 0

identically on R+.
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Let us denote by CΦ the subset of the mean-periodic functions in C(R+)
with respect to the functional Φ.

If we are looking for mean-periodic solutions of the Euler equation P (δ)y(t)
= F (t), it is equivalent to a nonlocal Cauchy problem with homogeneous bound-
ary value conditions, i.e.

(8) P (δ)y(t) = F (t), Φ{δky} = 0, k = 0, 1, 2, . . . ,deg P − 1.

The following two theorems concerning properties of the mean-periodic func-
tions in the convolutional algebra (C(R+), ∗) are proved by the authors in [3] and
[4]:

Theorem 2. The mean-periodic functions for the Euler operator δ with re-

spect to any non-zero functional Φ : C(R+) → C form an ideal in the convolutional

algebra (C(R+), ∗).

Proof. Here we propose a simpler proof than the one given in [4]. For
the simplicity sake, we consider only the case when Φ{1} = E(0) 6= 0. First,
we show that f ∈ CΦ implies Lf ∈ CΦ. To this end, we consider the function
ϕ(t) = Φτ{(Lf)(tτ)}. We have δϕ(t) = Φτ{f(tτ)} = 0 and, hence, ϕ(t) = c =
const. But ϕ(1) = Φτ{(Lf)(τ)} = 0. Then Lnf ∈ CΦ for arbitrary n ∈ N. But
Lnf = An−1(ln t) ∗ f , where An−1 is a polynomial of degree exactly n− 1. Hence,
Q(ln t) ∗ f ∈ CΦ for arbitrary polynomial Q. Then the separate continuity of the
convolution ∗ and the Weierstrass’ approximation theorem imply that f ∗ g ∈ CΦ

for arbitrary g ∈ C(R+). The case when Φ{1} = 0 is considered in [4]. �

Theorem 3. If F ∈ CΦ and {λ : P (λ) = 0} ∩ {λ : E(λ) = 0} = Ø, then

P (δ)y = F has a unique solution y ∈ CΦ and it has the explicit form

y = G ∗ F,

with G = {G(t)} =
1

P (S)
.

4. Operational method for mean-periodic resonance solutions of

Euler differential equations. As we have mentioned in the previous sections,
the Φ-mean-periodic resonance solutions of an Euler differential equation have to
satisfy the homogeneous Cauchy boundary value conditions

(9) P (δ)y(t) = F (t), Φ{δky} = 0, k = 0, 1, 2, . . . ,deg P − 1.

Let P (λ) = (λ−λ1)
k1 . . . (λ−λm)kmQ(λ), where λ1, . . . , λm are the resonance

zeros of P (λ) with corresponding multiplicities k1, . . . , km. Here we assume that
they are simple zeros of the indicatrix E(λ).

Further we extend an idea of S. Grozdev [6] of reducing the resonance case
to the non-resonance one.
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Denote by C̃λ1,...,λm
the subalgebra of (C(R+), ∗) consisting of the functions

F ∈ C(R+) satisfying the conditions

F ∗ tλk = 0, k = 1, 2, . . . ,m

or in an equivalent form

Φτ

{
τλk

∫ τ

1

F (σ)dσ

σλk+1

}
= 0, k = 1, 2, . . . ,m.

Obviously these conditions are necessary for existing of a mean-periodic solution.
Our next task is to show that they are also sufficient.

We want to find the mean-periodic solutions w of the auxiliary equation

(10) (δ − λ1)
k1 . . . (δ − λ1)

kmw(t) = F (t).

Let L̃ be the restriction of L to C̃λ1,...,λm
and S̃ =

1

L̃
. In the ring M̃λ1,...,λm

of the

convolutional fractions in C̃λ1,...,λm
, equation (10) takes the form

(11) (S̃ − λ1)
k1 . . . (S̃ − λ1)

kmw = F.

The elements (S̃ − λk), k = 1, 2, . . . ,m, are non-divisors of zero in M̃λ1,...,λm
.

Indeed, assume (S̃ − λk)v = 0 for some v ∈ C̃λ1,...,λm
. It is equivalent to v −

λkL̃v = 0 and, hence, Φ{v} = 0. Applying δ, we get δv − λkv = 0, or v = Ctλk

with a non-zero constant C, which is a contradiction with v ∈ C̃λ1,...,λm
since

v ∗ tλk = −CtλkE′(λk) 6= 0.
The formal solution of (11) is

(12) w =
1

(S̃ − λ1)k1 . . . (S̃ − λm)km

F.

We will show that in fact the algebraic multiplier
1

(S̃ − λ1)k1 . . . (S̃ − λm)km

is

a convolution multiplier {G(t)}∗ with G ∈ C(R+) and we can find it explicitly.
To this end it is enough to show this for an arbitrary expression of the form

1

(S̃ − λk)j
, which will be represented as a convolution operator g∗ in C̃λ1,...,λm

defined by (g∗)f = g ∗ f . For arbitrary g ∈ C(R+) the convolution operator g∗ is
an inner operator in C̃λ1,...,λm

.
Theorem 4. Let λk be a resonance zero of P (λ). Then

(13)
1

(S̃ − λk)j
=

{
tλkAj(ln t)

E′(λk)

}
∗,

where Aj(x), j = 1, 2, . . . are Appell set of polynomials defined recurrently by

A1(x) = x, Aj
′(x) = Aj−1(x), Φτ{τ

λkAj(ln τ)} = 0, j > 1.
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Proof. First, let us consider the case j = 1. We are to prove that

(14)
1

S̃ − λk

F =

{
tλk ln t

E′(λk)

}
∗ F

for arbitrary F ∈ C̃λ1,...,λm
. This identity written in the form

[
(S̃ − λk)

{
tλk ln t

E′(λk)

}]
∗ F = F

can be verified easily using the basic formula

S̃f = δf + Φ{f}

from Lemma 3.
The case j > 1 can be settled by induction.

Since
1

(S̃ − λk)j
= ϕk,j(t) is a function satisfying the boundary value condi-

tion Φ{ϕk,j} = 0, then by Lemma 3

1

(S̃ − λk)j−1
= (S̃ − λk)

1

(S̃ − λk)j
= (δ − λk)

1

(S̃ − λk)j
,

and we have

tλkAj−1(ln t) = (δ − λk){t
λkAj(ln t)},

or

δAj(ln t) = Aj−1(ln t), Φτ{τ
λkAk(ln t)} = 0, k > 1.

These relations are equivalent to

Aj
′(x) = Aj−1(x), A1(x) = x, Φ̃ξ{e

λkξAj(ξ)} = 0,

where Φ̃ = Φ ◦ ln−1. Hence, {Aj(x)}∞j=1 are ordinary Appell polynomials with

respect to the functional Φ̃ = Φ ◦ ln−1 in C(R) (see Bourbaki [1], Chapter 6.2).
�
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