Доклади на Българската академия на науките Comptes rendus de l'Académie bulgare des Sciences

Tome 59, No 2, 2006

MATHEMATIQUES

Analyse fonctionelle

COMMUTANTS OF THE EULER OPERATOR

I. H. Dimovski, V. Z. Hristov

(Submitted on December 7, 2005)

Abstract

Here the Euler operator $\delta=t\frac{d}{dt}$ is considered in the space $C=C(\mathbb{R}_+),\mathbb{R}_+=(0,\infty)$, and the operators $M\colon C\to C$ such that $M\delta=\delta M$ in $C^1(\mathbb{R}_+)$ are characterized. Next, for a non-zero linear functional $\Phi:C(\mathbb{R}_+)\to\mathbb{C}$ the continuous linear operators M with the invariant hyperplane $\Phi\{f\}=0$ and commuting with δ in it are also characterized. Further, mean-periodic functions for δ with respect to the functional Φ are introduced and it is proved that they form an ideal in a corresponding convolutional algebra $(C(\mathbb{R}_+),*)$. As an application the mean-periodic solutions of Euler differential equations are characterized.

Key words and phrases: commutant, invariant hyperplane, convolutional algebra, multiplier, cyclic element, mean-periodic function

2000 Mathematics Subject Classification: 47B38, 47B37

Introduction. Compared with the case of the differentiation operator $D=\frac{d}{dt}$ in a space C of continuous functions, the problem of characterizing the continuous linear operators $M:C\to C$ commuting with the Euler operator $\delta=t\frac{d}{dt}$, i.e. such that $M\delta=\delta M$ in C^1 , had not been so intensively treated as the corresponding problem for D. Here we can mention only the classical book of Levin [12] (Ch. 8 and 9, Theorem 20, pp. 379–380), where δ is considered not in C, but in spaces of entire functions. In the operational calculus developed by ELIZARRARAZ and VERDE-STAR [9] in fact some operators commuting with the Euler operator can also be found.

Due to the analogy of the considerations for δ and D, a short survey of the results for the differentiation operator will be made.

BOURBAKI [1], Chapter 6, seems to be the first to characterize the linear continuous operators $M: C(\mathbb{R}) \to C(\mathbb{R})$ with MD = DM in $C^1(\mathbb{R})$.

One of the authors (DIMOVSKI [3]) had found the linear continuous operators $M: C(\mathbb{R}) \to C(\mathbb{R})$, such that the subspace $C_{\Phi} = \{f \in C(\mathbb{R}), \Phi(f) = 0\}$ is an invariant subspace of M and M commutes with D in C_{Φ}^1 .

Let us mention that Delsarte [2] introduced the space of the mean-periodic functions determined by the functional Φ as the kernel space of M. For details see also

Rather natural is the question about the relationship between the two types of commutants. A partial answer for the differentiation operator is given by the following theorem (Dimovski and Skórnik [6,7]): The space of the mean-periodic functions determined by the functional Φ forms an ideal in the convolutional algebra $(C(\mathbb{R}), *)$.

Similar results for the Pommiez operator $\Delta f(z) = [(f(z) - f(0))]/z$ are presented by the authors in [5].

Finally, an interesting historical survey about commutants of the differentiation operator and related operators like the Euler one can be found in the book of Ko-ROBEINIK [11]

General commutant. The main theorem in the general case is:

Theorem 1. A linear continuous operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C^1(\mathbb{R}_+)$ $\to C^1(\mathbb{R}_+)$ commutes with $\delta = t \frac{d}{dt}$ in $C^1(\mathbb{R}_+)$ iff it admits a representation of the form

$$(Mf)(t) = \Phi_{\tau}\{f(t\tau)\}\$$

with a continuous linear functional $\Phi: C(\mathbb{R}_+) \to \mathbb{C}$. The proof uses the one-parameter family $T^{\tau}, 0 < \tau < \infty$, of the shift operators defined by

(2)
$$(T^{\tau}f)(t) := f(t\tau), \qquad 0 < \tau < \infty.$$

Each of them commutes with $\delta = t \frac{d}{dt}$ in $C^1(\mathbb{R}_+)$ and the following lemma shows their

Lemma 1. A linear operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C^1(\mathbb{R}_+)$ $\to C^1(\mathbb{R}_+)$ commutes with $\delta = t \frac{d}{dt}$ in $C^1(\mathbb{R}_+)$ iff M commutes with T^{τ} for all

In the proof of the lemma the following "multiplicative" version of the Taylor formula is needed:

(3)
$$(T^{\tau}f)(t) = f(t\tau) = \sum_{n=0}^{\infty} (\delta^n f)(t) \frac{(\ln \tau)^n}{n!}.$$

It is true for arbitrary polynomial f(t). Then the possibility to approximate any function in $C(0,\infty)$ by polynomials is used.

The abundance of operators commuting with δ in $C(\mathbb{R}_+)$ given by Theorem 1 is in sharp contrast to the set of linear operators commuting with δ in $C(\Delta)$, where Δ is a segment $[a,b] \subset \mathbb{R}_+$:

Theorem 2. Let $[a,b] \subset \mathbb{R}_+$. Then a continuous linear operator $M: C[a,b] \to$ C[a,b], such that $M:C^1[a,b]\to C^1[a,b]$, commutes with the Euler operator δ in $C^{1}[a,b]$ if and only if it is an operator of the form

$$Mf(t) = cf(t),$$

with a constant c.

The proof goes by transforming δ into the differentiation operator $D = \frac{d}{dx}$ and using the corresponding result for D due to Kahane [10].

A general convolution related to the Euler operator. Basic for the theory of the differentiation operator $\frac{d}{dt}$ considered in a space $C(\Delta)$ of continuous functions on an interval Δ is the operation

(4)
$$(f * g)(t) = \Phi_{\tau} \left\{ \int_{\tau}^{t} f(t + \tau - \sigma)g(\sigma)d\sigma \right\},$$

where Φ is a linear functional on $C(\Delta)$. Its properties are studied in details in [4]. The operation (4) is bilinear, commutative, and associative in $C(\Delta)$. It generalizes the classical Duhamel convolution when the functional Φ in (4) is $\Phi(f) = f(0)$.

In order to extend this result to the Euler operator an analogue of operation (4) is needed.

Definition 1. The analytic function

(5)
$$E(\lambda) = \Phi_{\tau}(\tau^{\lambda})$$

is said to be the Euler indicatrix of the functional Φ .

It is also convenient to denote for the rest of the paper

(6)
$$\varphi_{\lambda}(t) = \frac{t^{\lambda}}{E(\lambda)} = \frac{t^{\lambda}}{\Phi_{\tau}(\tau^{\lambda})}.$$

Here a "multiplicative" variant of (4) is proposed:

Theorem 3. Let Φ be a continuous non-zero linear functional on $C(\mathbb{R}_+)$. Then the operation

(7)
$$(f * g)(t) = \Phi_{\tau} \left\{ \int_{\tau}^{t} f\left(\frac{t\tau}{\sigma}\right) g(\sigma) \frac{d\sigma}{\sigma} \right\}$$

is a separately continuous, bilinear, commutative, and associative operation in $C(\mathbb{R}_+)$, such that

$$\Phi(f * g) = 0.$$

The commutant of δ in an invariant hyperplane. In this section another commutant of δ will be described. Here it is supposed that the operators $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ preserve $C^1(\mathbb{R}_+)$, i.e. $M: C^1(\mathbb{R}_+) \to C^1(\mathbb{R}_+)$, and additionally they also preserve an invariant hyperplane

(9)
$$C_{\Phi} := \{ f \in C(\mathbb{R}_+) : \Phi \{ f \} = 0 \},$$

i.e., $M: C_{\Phi} \to C_{\Phi}$, where $\Phi: C(\mathbb{R}_+) \to \mathbb{C}$ is an arbitrary non-zero linear functional.

2 Compt. rend. Acad. bulg. Sci., 59, No 2, 2006

The main result of this section is the explicit representation $Mf = \mu f + m * f$ of any linear continuous operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C_\Phi \to C_\Phi$ and commuting with $\delta = t \frac{d}{dt}$ in $C_\Phi^1 := C_\Phi \cap C^1(\mathbb{R}_+)$.

With that end in view some auxilliary results will be considered.

Lemma 2. A linear operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C^1(\mathbb{R}_+) \to C^1(\mathbb{R}_+)$ and $M: C_{\Phi}(\mathbb{R}_+) \to C_{\Phi}(\mathbb{R}_+)$ commutes with the Euler operator δ in $C_{\Phi}^1(\mathbb{R}_+)$ iff M commutes with L_{λ} in $C(\mathbb{R}_+)$, where

(10)
$$L_{\lambda}f(t) = \int_{1}^{t} \left(\frac{t}{\tau}\right)^{\lambda} f(\tau) \frac{d\tau}{\tau} - \frac{t^{\lambda}}{E(\lambda)} \Phi_{\tau} \left\{ \int_{1}^{\tau} \left(\frac{\tau}{\sigma}\right)^{\lambda} f(\sigma) \frac{d\sigma}{\sigma} \right\}$$

is the right inverse in $C(\mathbb{R}_+)$ of the perturbed Euler operator $\delta_{\lambda} = \delta - \lambda$ satisfying the boundary condition $\Phi(L_{\lambda}f) = 0$.

Lemma 3. The operator L_{λ} , given by (10), is a convolution operator of the form

(11)
$$L_{\lambda}f = \varphi_{\lambda} * f = \left\{ \frac{t^{\lambda}}{E(\lambda)} \right\} * f.$$

Theorem 4. The commutant of δ in the invariant hyperplane C_{Φ} coincides with the commutant of any of the operators L_{λ} in $C(\mathbb{R}_{+})$.

Definition 2. A linear operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ is said to be a multiplier of the convolutional algebra $C(\mathbb{R}_+), *)$ when for arbitrary $f, g \in C(\mathbb{R}_+)$ it holds

$$M(f * g) = (Mf) * g.$$

Theorem 5. A linear operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C^1(\mathbb{R}_+) \to C^1(\mathbb{R}_+)$ is a multiplier of the convolution algebra $(C(\mathbb{R}_+), *)$ iff it has a representation of the form

(12)
$$Mf(t) = \mu f(t) + (m * f)(t),$$

where $\mu = \text{const}$ and $m \in C(\mathbb{R}_+)$.

Theorem 6. The function $\varphi_{\lambda}(t) = \frac{t^{\lambda}}{E(\lambda)}$ is a cyclic element of the operator L_{λ} .

As it is shown in the book [4] (Theorem 1.3.11, p.33), the commutant of L_{λ} coincides with the ring of the multipliers of the convolution algebra $(C(\mathbb{R}_+),*)$ since L_{λ} has a cyclic element. By Theorem 6 such a cyclic element exists and the following characterization holds:

Theorem 7. A linear operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C^1(\mathbb{R}_+) \to C^1(\mathbb{R}_+)$ which has an invariant hyperplane $C_{\Phi} = \{f \in C(\mathbb{R}_+) : \Phi\{f\} = 0\}$, commutes with δ in C_{Φ}^1 if and only if it has a representation of the form

(13)
$$(Mf)(t) = \mu f(t) + (m * f)(t)$$

with a constant $\mu \in \mathbb{C}$ and $m \in C(\mathbb{R}_+)$.

Remark. The constant μ and the function $m \in C(\mathbb{R}_+)$ in (12) are uniquely determined.

Mean-periodic functions for the Euler operator.

Definition 3. A function $f \in C(\mathbb{R}_+)$ is said to be mean-periodic for the Euler operator with respect to the linear functional Φ if

$$\Phi_{\tau}\{f(t\tau)\} = 0$$

identically in \mathbb{R}_+ .

It is clear that the mean-periodic functions with respect to Φ form the kernel space of the operator

$$Mf(t) = \Phi_{\tau}\{f(t\tau)\}\$$

commuting with the Euler operator δ in $C^1(\mathbb{R}_+)$.

Now a connection between the mean-periodic functions for δ with respect to Φ and the convolutional algebra $(C(\mathbb{R}_+),*)$ will be given:

Theorem 8. The mean-periodic functions for the Euler operator δ with respect to any non-zero functional $\Phi: C(\mathbb{R}_+) \to \mathbb{C}$ form an ideal in the convolutional algebra $(C(\mathbb{R}_+), *)$.

Application to the Euler differential equation. Now Theorem 8 will be applied to find necessary and sufficient conditions in order an Euler differential equation

(14)
$$P(\delta)y(t) = f(t), \qquad 0 < t < \infty,$$

to have a unique mean-periodic solution with respect to a non-zero linear functional Φ in $C(\mathbb{R}_+)$. Here $\delta = t \frac{d}{dt}$ is the Euler operator and $P(\mu) = a(\mu - \mu_1)(\mu - \mu_2) \dots (\mu - \mu_k)$ is a polynomial.

Theorem 9. In order the Euler differential equation (14) to have a unique meanperiodic solution with respect to a non-zero linear functional Φ in $C(\mathbb{R}_+)$, it is necessary and sufficient no one of the roots of the equation $P(\lambda) = 0$ to be a root of the Euler indicatrix $E(\lambda) = \Phi_{\tau}(\tau^{\lambda})$.

REFERENCES

[¹] Bourbaki N. Éléments de mathématique, Livre IV, Fonctions d'une variable réelle, Théorie élémentaire, Paris, Hermann, 1951. [²] Delsarte J. J. Math. Pures Appl., 14, 1935, 403–453. [³] Dimovski I. H. Compt. rend. Acad. bulg. Sci., 31, 1978, No 10, 1245–1248. [⁴] Id. Convolutional calculus, Dordrecht, Kluwer, 1990 (or Az Buki, Bulg. Math. Monographs, 2, Publ. House of Bulg. Acad. Sci., Sofia, 1982). [⁵] Dimovski I. H., V. Z. Hristov Int. J. of Mathematics and Mathematical Sciences, 2005, 2005, No 8, 1239–1251. [⁶] Dimovski I. H., K. Skórnik. Mean-periodic operational calculi, Algebraic analysis and related topics, Banach Center Publications, 53, Institute of Mathematics, Warszawa, Polish Academy of Sciences, 2000, 105–112. [⁶] Id. Fractional Calculus & Applied Analysis, 4, 2001, No 2, 237–243. [ጾ] Edwards R. E. Functional analysis. Theory and applications, Holt, New York, Rinehart and Winston, 1965. [ⴰ] Elizarrarar D., L. Verde-Star. On a class of differential equations that contains the equations of Euler and Chebyshev, Adv. Appl. Math., 19, 1977, 514–528. [¹¹] Kahane C. Amer. Math. Monthly, 76, 1969, 171–173. [¹¹] Korobeinik Yu. F. Shift operators on numerical families, Rostov University, 1983 (Russian). [¹²] Levin B.

Ya. Distribution of zeros of entire functions, Translations of Mathematical monographs, $\bf 5$, AMS, Providence, Rhode Island, 1964. [13] Schwartz L. Ann. Math., $\bf 48$, 1947, 857–929.

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: dimovski@math.bas.bg
valhrist@bas.bg