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Abstract

Here the Euler operator δ = t
d

dt
is considered in the space C = C(R+), R+

= (0,∞), and the operators M : C → C such that Mδ = δM in C1(R+) are charac-
terized. Next, for a non-zero linear functional Φ : C(R+) → C the continuous linear
operators M with the invariant hyperplane Φ{f} = 0 and commuting with δ in it are
also characterized. Further, mean-periodic functions for δ with respect to the func-
tional Φ are introduced and it is proved that they form an ideal in a corresponding
convolutional algebra (C(R+), ∗). As an application the mean-periodic solutions of
Euler differential equations are characterized.
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Introduction. Compared with the case of the differentiation operator D =
d

dt
in

a space C of continuous functions, the problem of characterizing the continuous linear

operators M : C → C commuting with the Euler operator δ = t
d

dt
, i.e. such that

Mδ = δM in C1, had not been so intensively treated as the corresponding problem for
D. Here we can mention only the classical book of Levin [12] (Ch. 8 and 9, Theorem
20, pp. 379–380), where δ is considered not in C, but in spaces of entire functions. In
the operational calculus developed by Elizarraraz and Verde-Star [9] in fact some
operators commuting with the Euler operator can also be found.

Due to the analogy of the considerations for δ and D, a short survey of the results
for the differentiation operator will be made.

Bourbaki [1], Chapter 6, seems to be the first to characterize the linear continuous
operators M : C(R) → C(R) with MD = DM in C1(R).

One of the authors (Dimovski [3]) had found the linear continuous operators
M : C(R) → C(R), such that the subspace CΦ = {f ∈ C(R),Φ(f) = 0} is an invariant
subspace of M and M commutes with D in C1

Φ.
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Let us mention that Delsarte [2] introduced the space of the mean-periodic
functions determined by the functional Φ as the kernel space of M . For details see also
Schwartz [13].

Rather natural is the question about the relationship between the two types of
commutants. A partial answer for the differentiation operator is given by the following
theorem (Dimovski and Skórnik [6,7]): The space of the mean-periodic functions
determined by the functional Φ forms an ideal in the convolutional algebra (C(R), ∗).

Similar results for the Pommiez operator ∆f(z) = [(f(z) − f(0)]/z are presented
by the authors in [5].

Finally, an interesting historical survey about commutants of the differentiation
operator and related operators like the Euler one can be found in the book of Ko-
robeinik [11].

General commutant. The main theorem in the general case is:
Theorem 1. A linear continuous operator M : C(R+) → C(R+) with M : C1(R+)

→ C1(R+) commutes with δ = t
d

dt
in C1(R+) iff it admits a representation of the form

(1) (Mf)(t) = Φτ{f(tτ)}

with a continuous linear functional Φ : C(R+) → C.
The proof uses the one-parameter family T τ , 0 < τ < ∞, of the shift operators

defined by

(2) (T τf)(t) := f(tτ), 0 < τ < ∞.

Each of them commutes with δ = t
d

dt
in C1(R+) and the following lemma shows their

importance:
Lemma 1. A linear operator M : C(R+) → C(R+) with M : C1(R+)

→ C1(R+) commutes with δ = t
d

dt
in C1(R+) iff M commutes with T τ for all

τ, 0 < τ < ∞.
In the proof of the lemma the following “multiplicative” version of the Taylor

formula is needed:

(3) (T τf)(t) = f(tτ) =
∞
∑

n=0

(δnf)(t)
(ln τ)n

n!
.

It is true for arbitrary polynomial f(t). Then the possibility to approximate any func-
tion in C(0,∞) by polynomials is used.

The abundance of operators commuting with δ in C(R+) given by Theorem 1 is
in sharp contrast to the set of linear operators commuting with δ in C(∆), where ∆ is
a segment [a, b] ⊂ R+:

Theorem 2. Let [a, b] ⊂ R+. Then a continuous linear operator M : C[a, b] →
C[a, b], such that M : C1[a, b] → C1[a, b], commutes with the Euler operator δ in
C1[a, b] if and only if it is an operator of the form

Mf(t) = cf(t),

with a constant c.
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The proof goes by transforming δ into the differentiation operator D =
d

dx
and

using the corresponding result for D due to Kahane [10].
A general convolution related to the Euler operator. Basic for the theory

of the differentiation operator
d

dt
considered in a space C(∆) of continuous functions

on an interval ∆ is the operation

(4) (f ∗ g)(t) = Φτ

{
∫

t

τ

f(t + τ − σ)g(σ)dσ

}

,

where Φ is a linear functional on C(∆). Its properties are studied in details in [4].
The operation (4) is bilinear, commutative, and associative in C(∆). It generalizes the
classical Duhamel convolution when the functional Φ in (4) is Φ(f) = f(0).

In order to extend this result to the Euler operator an analogue of operation (4)
is needed.

Definition 1. The analytic function

(5) E(λ) = Φτ (τ
λ)

is said to be the Euler indicatrix of the functional Φ.
It is also convenient to denote for the rest of the paper

(6) ϕλ(t) =
tλ

E(λ)
=

tλ

Φτ (τλ)
.

Here a “multiplicative” variant of (4) is proposed:
Theorem 3. Let Φ be a continuous non-zero linear functional on C(R+). Then

the operation

(7) (f ∗ g)(t) = Φτ

{
∫

t

τ

f

(

tτ

σ

)

g(σ)
dσ

σ

}

is a separately continuous, bilinear, commutative, and associative operation in C(R+),
such that

(8) Φ(f ∗ g) = 0.

The commutant of δ in an invariant hyperplane. In this section another com-
mutant of δ will be described. Here it is supposed that the operators M : C(R+) →
C(R+) preserve C1(R+), i.e. M : C1(R+) → C1(R+), and additionally they also pre-
serve an invariant hyperplane

(9) CΦ := {f ∈ C(R+) : Φ{f} = 0},

i.e., M : CΦ → CΦ, where Φ : C(R+) → C is an arbitrary non-zero linear functional.
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The main result of this section is the explicit representation Mf = µf
+ m ∗ f of any linear continuous operator M : C(R+) → C(R+) with M : CΦ → CΦ

and commuting with δ = t
d

dt
in C1

Φ := CΦ ∩ C1(R+).

With that end in view some auxilliary results will be considered.
Lemma 2. A linear operator M : C(R+) → C(R+) with M : C1(R+)

→ C1(R+) and M : CΦ(R+) → CΦ(R+) commutes with the Euler operator δ in
C1

Φ(R+) iff M commutes with Lλ in C(R+), where

(10) Lλf(t) =

∫

t

1

(

t

τ

)λ

f(τ)
dτ

τ
−

tλ

E(λ)
Φτ

{
∫

τ

1

( τ

σ

)λ

f(σ)
dσ

σ

}

is the right inverse in C(R+) of the perturbed Euler operator δλ = δ − λ satisfying the
boundary condition Φ(Lλf) = 0.

Lemma 3. The operator Lλ, given by (10), is a convolution operator of the form

(11) Lλf = ϕλ ∗ f =

{

tλ

E(λ)

}

∗ f.

Theorem 4. The commutant of δ in the invariant hyperplane CΦ coincides with
the commutant of any of the operators Lλ in C(R+).

Definition 2. A linear operator M : C(R+) → C(R+) is said to be a multiplier
of the convolutional algebra C(R+), ∗) when for arbitrary f, g ∈ C(R+) it holds

M(f ∗ g) = (Mf) ∗ g.

Theorem 5. A linear operator M : C(R+) → C(R+) with M : C1(R+) → C1(R+)
is a multiplier of the convolution algebra (C(R+), ∗) iff it has a representation of the
form

(12) Mf(t) = µf(t) + (m ∗ f)(t),

where µ = const and m ∈ C(R+).

Theorem 6. The function ϕλ(t) =
tλ

E(λ)
is a cyclic element of the operator Lλ.

As it is shown in the book [4] (Theorem 1.3.11, p.33) , the commutant of Lλ

coincides with the ring of the multipliers of the convolution algebra (C(R+), ∗) since
Lλ has a cyclic element. By Theorem 6 such a cyclic element exists and the following
characterization holds:

Theorem 7. A linear operator M : C(R+) → C(R+) with M : C1(R+) → C1(R+)
which has an invariant hyperplane CΦ = {f ∈ C(R+) : Φ{f} = 0}, commutes with δ
in C1

Φ if and only if it has a representation of the form

(13) (Mf)(t) = µf(t) + (m ∗ f)(t)

with a constant µ ∈ C and m ∈ C(R+).
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Remark. The constant µ and the function m ∈ C(R+) in (12) are uniquely
determined.

Mean-periodic functions for the Euler operator.
Definition 3. A function f ∈ C(R+) is said to be mean-periodic for the Euler

operator with respect to the linear functional Φ if

Φτ{f(tτ)} = 0

identically in R+.
It is clear that the mean-periodic functions with respect to Φ form the kernel space

of the operator

Mf(t) = Φτ{f(tτ)}

commuting with the Euler operator δ in C1(R+).
Now a connection between the mean-periodic functions for δ with respect to Φ

and the convolutional algebra (C(R+), ∗) will be given:
Theorem 8. The mean-periodic functions for the Euler operator δ with respect

to any non-zero functional Φ : C(R+) → C form an ideal in the convolutional algebra
(C(R+), ∗).

Application to the Euler differential equation. Now Theorem 8 will be ap-
plied to find necessary and sufficient conditions in order an Euler differential equation

(14) P (δ)y(t) = f(t), 0 < t < ∞,

to have a unique mean-periodic solution with respect to a non-zero linear functional Φ

in C(R+). Here δ = t
d

dt
is the Euler operator and P (µ) = a(µ−µ1)(µ−µ2) . . . (µ−µk)

is a polynomial.
Theorem 9. In order the Euler differential equation (14) to have a unique mean-

periodic solution with respect to a non-zero linear functional Φ in C(R+), it is necessary
and sufficient no one of the roots of the equation P (λ) = 0 to be a root of the Euler
indicatrix E(λ) = Φτ (τ

λ).
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