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Introduction

The Dunkl operator is a differential-difference operator defined in [3] in 1989 and since then many math-
ematicians have studied its properties and applications.

Let Ar be the space of the analytic functions in the disk Dp = {z € C: |z| < R}.

Definition 1. For f € Ag, the operator Dy : Agp — Agr defined by

is called the Dunkl operator with parameter k > 0.



Definition 2. [t is said that a continuous linear operator M commutes with a fixed operator L, if
ML = LM. The set of all operators commuting with L is called the commutant of L and will be denoted
by Comm(L).

M.S. Hristova describes in [5] the commutant Comm(Dy) of the Dunkl operator Dy, and in [6] the
commutant Comm(D}) of arbitrary power n of Dj. Here our goal is to extend this description to the

case of a composition D = D1Ds ... D, of Dunkl operators D; = Dy, with arbitrary parameters k; > 0,
1=12,...,n

2 Representation of the commutant

Theorem 3. Let f be an analytic function from Agr with a Taylor series f(z Z amz™. Then every

continuous linear operator M : Agr — Ar commutes with the composition D= D1D2 D,, of Dunkl
operators Dy = Dy, k; >0, j =1,2,...,n, i.e. M € Comm(D), if and only if it can be Tepresented mn
a power series form as

n—1 oo
Mf(z) = Y3 amdmuz" + 2)
pn=0m=0

71.

+ Z Z an, HHij vn+j dm—[f] . [%]n . Z”,

H=N = [L]n v=1j=1 Chw—vnti
where
Cim =m+ki(1-(=1)"), 1<j<n, m=0, (3)
Ay, 0 < p<n—1,m=0,1,2,..., are arbitrary complex numbers with the only restriction the series

in the representation (2) to be convergent, and [A] denotes the integer part of the number A.

Proof. First, let us consider the action of the Dunkl operator D; = Dy, on a single power 2™ of the
variable z € C. If the power is even, i.e. m = 2s, then

dz z
0 for s =0.

If the power is odd, i.e. m = 2s 4+ 1, then

d 2s 25 _ (__.)\2s
DjZQSZ{ c —|—ij (=2) =252 for s > 1,

dz2s+1 N k_228+1 _ (_2)25+1
dz J

The two representations can be combined in one formula:

Dj225+1 = = (25 +1)2% + 2ka25 =2s+1+ 2]@)225

D,z = {cj,mzm_l, ¢jm =m+kj[l —(=1)™] form >1, (4)
0 for m = 0.

Next, if the composition D = DD,...D, is considered, its action on an arbitrary power m of the
variable z can be expressed as

—-n _ m—n
Do — ) CamCn—1m—1--. Clm—nt12" " = H Cim—n+j | Z for m > n, (5)

0 for0<m<n-—1.



Now consider an arbitrary operator M from the commutant Comm(D). Let us represent its action
again on an arbitrarily fixed power z™ by the power series

Mz™ = dm 2", m=0,1,2,... (6)
pn=0

Here the coefficients d,,,,, are unknown, but they will be determined below.

In order to analyze the commutation M D = DM, we start by expressing M Dz™ and DMz™ for
arbitrarily fixed power z™:

oo
~ Mec e Clim— zm_”:Zc o Clomena1@m—n. 2" form >n
MDZm — n,m 1,m—n+1 n,m 1, m—n+18m—n,u = 1t (7)
n=0
0 for0<m<n-—1.
o0 oo
DMz" = DY dpuz" = dmy,Dz"
pn=0 pn=0
o0 o0
= Z A pCrpi -+ C1pmg1 287 = Z A pgnCnptn - - C1pp1 25 (8)
n=n n=0

In the last formula p — n was replaced by a single letter p for convenience.

We want to have MDf(z) = DM f(z) for every f € A(R). By the uniqueness theorem for analytic
functions this will be true if and only if for every m > 0 one has M Dz™ = DM z™, i.e. if the expressions
in (7) and (8) coincide.

Let us consider first the case 0 < m < n — 1. Then one must have

00
0= E dm,pArnCn,,u,Jrn e C1,u+12”~
n=0

By the uniqueness theorem the power series on the right is zero if and only if all its coefficients are equal
to zero, i.e. dm, utnCn ptn ---Clput1 = 0 for every = 0,1,2,.... But all ¢; 4, 1 < j < n, are different
from zero and hence it is necessary to have

Admpysn=0, 0<m<n—-1, u=0,1,2,....
This can be written in a better way if u 4 n is replaced by a single index pu:
dnyp=0, 0<m<n—1, p>n. (9)

Now a recurrent formula for arbitrary m > n will be found.
Comparing the first line in (7) with (8), we get by the uniqueness theorem that

Cnym - - Clym—n+18m—n,u = Am utnCnptn - - - Clpg1, M >, 4> 0.
Replacing p by u — n we have

Cnym -+ Clim—n+1Gm—n,u—n = Cnp - - Clp—n41Gm p, M >N, 0 > N. (10)
But all constants ¢;,;,—n+j, 1 < j < n, are different from zero and we obtain the desired recurrent formula

n
Co
J,m—n+j
m—n,pu—n — H ] ‘ dm—n,u—n; m 2= n,p>n. (11)
Cjp—mntj

Cnom -« Clym—n+1 d

dm,,u -

Crp -+ Clu—n+t1 i



Now this important recurrent formula (11) will be used for expressing any coefficient d,,, , with m > n
and p > n by a coefficient d, 4, where either 0 <p<n—-1or0<g<n—1.
Let us remind that in the sequel [A] will denote the integer part of a number A.

In the case {@} < [ﬁ] one can apply [T} times the recurrent formula (11) and then
n n n

n n n

d _ Cj,m—n+j d _ ijm/—”"!‘j Cj,m—2n+j d
mep . - m—n,u—m — c - c - m—2n,u—2n
j=1 “hm—nty j=1 “H—nty j=1 “H—2ntj
m
[7] n c
_ _ Jym—vn+j
- T H H Cs . dm—[%]n,u—[%]n' (12)
v=1j=1 Jsp—rn+j

Here m — [%] n <n—1, i.e. the first index is the remainder when m is divided by n, and u— [%] n>n.
Then by our first observation (9) the coefficient d_, [m]np[m]n must be zero. Therefore (12) gives

dpp =0, for [%} < [%} . (13)

In the other case, when [@} > [H}, one can apply [H} times the recurrent formula (11) to get
n n n

n n n
d _ Cim=nti | 4 _ Cjm—n+j Cim=2ntj | 4
m,p . - m—n,u—mn — c - c - m—2n,u—22n

j=1 “hmu—nty j=1 “H—nti j=1 “H—2ntj

(4] » .
_ _ Jm—vnty | g 14

’ H H Ci i m—[%]n,u—[%]n' ( )

v=1j=1 75K J

Now the second index p — [£] n is the remainder when p is divided by n.
Let us combine (13) and (14) as

0 for ] < |7
A = Cjm—vn+j m (15)
HH Y (g for [0 2 5]

v=1j=1 Cjn—vntj

This important formula shows that all coefficients d,,,, with 0 < < n —1 can be chosen arbitrarily,
and then all other coefficients d, , with u > n are either equal to zero or can be expressed by some of
the arbitrarily chosen d,, ,, with 0 < 3¢ <n — 1.

The recurrent relation (15) allows a representation of Mz™ as a polynomial of degree at most
(5] + -1
n

(2]
n—1 n - n
cj
mo_ de,uzu + Z H H Lo vnt) dnL—[ﬁ]n,#-[ﬁ}n : Z’u' (16)
p=0 p=n v=1j=1 Cjp—vn+j " "
Finally, the action of an operator M € Comm(ﬁ) on some analytic function f(z Z 2™

m=0



Mf(z) = M i A 2™ = i A M 2™ (17)
m=0 m=0

o oo (ln-t (8] o
= Z Qm Z dmﬁtz'u‘ + Z H H CLLWH_J dmf[%]n,,uf[%]n . Z'U‘
m=0 pn=0 n=n v=1j=1 J,p—vn+jg

It is natural to interchange the two sums in order to have a standard power series representation of (17):

n—1 oo
Mf(Z) = Z Z amdm’#zﬂ (18)
#=0m=0
+ Z Z Am H H ZJymovndtg dmf[ﬁ]n,uf[’i]n Lk
A= = [£]n V=1 j=1 Cj,pu—vn+j n n

This is in fact the desired representation (2) and thus, we proved the necessity, i.e. if M € Comm(D),
then the operator M must be of the form (2).

Now, let us check the sufficiency, i.e. if an operator M has the form (2), then it commutes with the
composition D=DD,... D,, of the Dunkl operators D; = Dy, j = 1,2,...,n, ie. MD = DM. Tt is
enough to verify this for all powers 2™, m = 0, 1,2, ..., since they form a basis of the space of the analytic
functions Ag. In fact, for arbitrarily fixed m we can use the representation (16) instead of the general
expression (2).

n—1
In the case 0 < m < n — 1 the representation (16) reduces to the first sum and Mz = Z 2"
m=0

Now we calculate DM 2™ and M Dz™:

n—1 n—1 n—1
DMz™) =D dpu = dpyD" =" dp -0 =0;
m=0 m=0 m=0

M(Dz™) = MO0 =0,
i.e. DMz™ = MDz™ = 0. Here we used the second case in (5).

In the case m > n use the first line in (5) and next use (16) with z™~" to represent MDz™:

n n
MDz™ =M H Cim—mtj | 277" = H Cjm—mtj | M2 (19)
j=1 j=1
n n—1 ([mn;n]"'_l)n_l H[%] n
=1 H i=1 Cj,m—n—vn+j
o D D S S el
J=1 #=0 p=n | J S | PR
To represent the inverse commutation DM z"™ apply D to (16):
no1 (+)n=1 =[&] n
~ ~ n L Cim— ; ~
DMz™ = de,MDZ”—F Z Hu_l H]—l J,m—vn+j dm,[&]n,uf[ﬂ]n . DzM. (20)

P
=0 p=n HLZL H?:1 Cjp—vntj



The first sum will vanish because the second case in (5) gives Dz# = 0 for 0 < p < n — 1.
Now use (5) for p > n:

(B1r)n1 ls] e
DITEI S HHHJ LI ] Hm v | @

p=n IL% Hj:l Cjpu—vn+tj

an—1 ([B]+1)n—1
It is suitable to separate the sum as Z + Z . In the first sum the whole denominator will be
H=n pn=2n
canceled with the product in brackets since [%] = 1, but in the second sum, after canceling H?:1 Cjpi—ntjs
the denominator will have n factors less than the numerator (without v = 1):

N 2n—1 n
DMz" = > | [l cim-nts | dm-npn 2" (22)
p=n \j=1

(2wt (T cimones) (TR T e )

d 123 lu‘in
Y o e [ [2]n *
p=2n Hu=2 Hj:l Cj,p—vn+j
It remains to replace pu by u+n and v by v + 1:
DMz™ = Z H Cjm—n+j | Am—n,ptn—n 2" (23)

p=0 \j=1

[=£2] 1

([Z]+)n—1-n (H?;l Cj,mn+j)<Hu_"1 Il Cj,m—(u-‘rl)n+j>
> G-

H=n HV:I Hj:l Cj ptn—(v+1)n+j

dm [u+n]n#+n [ +n]n Pl

After the obvious simplifications this representation of DM 2™ coincides with the representation (19) of
M Dz"™ which proves the sufficiency of (2) and thus the theorem. |

3 Particular cases

Example 1. Let us note that as a simplest particular case of the Dunkl operator, when all parameters
ki, j=1,2,...,n, of the Dunkl operators D; = Dy are taken to be 0, one can have the n-th power D"

d,
of the classical differentiation operator Do f(z) = Df(z) = % Then ¢jm =m, j = 1,2,...,n, and
z

Theorem 3 describes the commutant of D™ as:

SED ) RIS S D" Lty s
22 mdm,p =l m ...(u [E]n +1) m—[&]nu—[L]n - = -

Similar results for D, its powers, and generalizations of D are given by some Russian mathematicians.
In particular, in [4] (§5.1) one can find such theorem and also additional bibliography.

Example 2. If we take not a composition, but a single Dunkl operator with parameter £ > 0, i.e. n =1,
then the representation of Comm(Dy) given by M.S. Hristova from [5] is obtained:

Z a’?’fL T)’LZ + Z Z a”ﬁl .(fm 1'u+1 d"l_ﬂ ZIJ’ (25)

p=lm=p



Example 3. If n > 1 is arbitrary, but all parameters of the Dunkl operators D; = Dy, in the composition

D= D1Ds...D, areequal, ie. k1 = ks =... =k, =k > 0, then our result reduces to the representation
due to M.S. Hristova in [6]:

n—1 oo

DI IIEEDS Z am%dm*[ﬂmw[%}” )
H=N [

pn=0 m=0

7”

Final notes. A different description of the commutant Comm(Dy) of the first power of the Dunkl oper-
ator in the space of the continuous functions on the real line R is given in [2], based on the convolutional
approach (see Dimovski [1]). It depends on an arbitrary continuous linear functional ® : C(R) — C.
Note, that Theorem 3 also allows in the case of composition of n Dunkl operators to choose arbitrarily n
systems of constants dy, ., 0 <pu<n—-1,m=0,1,2,....
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