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Abstract. In this paper the commutant of a composition D̃ = D1D2 . . . Dn of Dunkl

operators Djf(z) =
df(z)
dz

+ kj
f(z)− f(−z)

z
with parameters kj ≥ 0, j = 1, 2, . . . , n, is

described using power series in the space AR of the analytic functions in the disk DR = {z ∈
C : |z| < R}.
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1 Introduction

The Dunkl operator is a differential-difference operator defined in [3] in 1989 and since then many math-
ematicians have studied its properties and applications.

Let AR be the space of the analytic functions in the disk DR = {z ∈ C : |z| < R}.

Definition 1. For f ∈ AR, the operator Dk : AR → AR defined by

Dkf(z) =
df(z)
dz

+ k
f(z)− f(−z)

z
(1)

is called the Dunkl operator with parameter k ≥ 0.



Definition 2. It is said that a continuous linear operator M commutes with a fixed operator L, if
ML = LM . The set of all operators commuting with L is called the commutant of L and will be denoted
by Comm(L).

M.S. Hristova describes in [5] the commutant Comm(Dk) of the Dunkl operator Dk and in [6] the
commutant Comm(Dn

k ) of arbitrary power n of Dk. Here our goal is to extend this description to the
case of a composition D̃ = D1D2 . . . Dn of Dunkl operators Dj = Dkj

with arbitrary parameters kj ≥ 0,
j = 1, 2, . . . , n.

2 Representation of the commutant

Theorem 3. Let f be an analytic function from AR with a Taylor series f(z) =
∞∑

m=0

amzm. Then every

continuous linear operator M : AR → AR commutes with the composition D̃ = D1D2 . . . Dn of Dunkl
operators Dj = Dkj , kj ≥ 0, j = 1, 2, . . . , n, i.e. M ∈ Comm(D̃), if and only if it can be represented in
a power series form as

Mf(z) =
n−1∑
µ=0

∞∑
m=0

amdm,µzµ + (2)

+
∞∑

µ=n

∞∑

m=[ µ
n ]n

am




[ µ
n ]∏

ν=1

n∏

j=1

cj,m−νn+j

cj,µ−νn+j


 dm−[ µ

n ]n,µ−[ µ
n ]n . zµ,

where
cj,m = m + kj(1− (−1)m), 1 ≤ j ≤ n, m ≥ 0, (3)

dm,µ, 0 ≤ µ ≤ n − 1, m = 0, 1, 2, . . ., are arbitrary complex numbers with the only restriction the series
in the representation (2) to be convergent, and [A] denotes the integer part of the number A.

Proof. First, let us consider the action of the Dunkl operator Dj = Dkj on a single power zm of the
variable z ∈ C. If the power is even, i.e. m = 2s, then

Djz
2s =

{
dz2s

dz
+ kj

z2s − (−z)2s

z
= 2sz2s−1 for s ≥ 1,

0 for s = 0.

If the power is odd, i.e. m = 2s + 1, then

Djz
2s+1 =

dz2s+1

dz
+ kj

z2s+1 − (−z)2s+1

z
=(2s + 1)z2s + 2kjz

2s =(2s + 1 + 2kj)z2s.

The two representations can be combined in one formula:

Djz
m =

{
cj,mzm−1, cj,m = m + kj [1− (−1)m] for m ≥ 1,
0 for m = 0.

(4)

Next, if the composition D̃ = D1D2 . . . Dn is considered, its action on an arbitrary power m of the
variable z can be expressed as

D̃zm =





cn,mcn−1,m−1 . . . c1,m−n+1z
m−n =




n∏

j=1

cj,m−n+j


 zm−n for m ≥ n,

0 for 0 ≤ m ≤ n− 1.

(5)



Now consider an arbitrary operator M from the commutant Comm(D̃). Let us represent its action
again on an arbitrarily fixed power zm by the power series

Mzm =
∞∑

µ=0

dm,µzµ, m = 0, 1, 2, . . . (6)

Here the coefficients dm,µ are unknown, but they will be determined below.

In order to analyze the commutation MD̃ = D̃M , we start by expressing MD̃zm and D̃Mzm for
arbitrarily fixed power zm:

MD̃zm =





Mcn,m . . . c1,m−n+1z
m−n =

∞∑
µ=0

cn,m . . . c1,m−n+1dm−n,µzµ for m ≥ n,

0 for 0 ≤ m ≤ n− 1.

(7)

D̃Mzm = D̃

∞∑
µ=0

dm,µzµ =
∞∑

µ=0

dm,µD̃zµ

=
∞∑

µ=n

dm,µcn,µ . . . c1,µ−n+1z
µ−n =

∞∑
µ=0

dm,µ+ncn,µ+n . . . c1,µ+1z
µ. (8)

In the last formula µ− n was replaced by a single letter µ for convenience.
We want to have MD̃f(z) = D̃Mf(z) for every f ∈ A(R). By the uniqueness theorem for analytic

functions this will be true if and only if for every m ≥ 0 one has MD̃zm = D̃Mzm, i.e. if the expressions
in (7) and (8) coincide.

Let us consider first the case 0 ≤ m ≤ n− 1. Then one must have

0 =
∞∑

µ=0

dm,µ+ncn,µ+n . . . c1,µ+1z
µ.

By the uniqueness theorem the power series on the right is zero if and only if all its coefficients are equal
to zero, i.e. dm,µ+ncn,µ+n . . . c1,µ+1 = 0 for every µ = 0, 1, 2, . . .. But all cj,µ+j , 1 ≤ j ≤ n, are different
from zero and hence it is necessary to have

dm,µ+n = 0, 0 ≤ m ≤ n− 1, µ = 0, 1, 2, . . . .

This can be written in a better way if µ + n is replaced by a single index µ:

dm,µ = 0, 0 ≤ m ≤ n− 1, µ ≥ n. (9)

Now a recurrent formula for arbitrary m ≥ n will be found.
Comparing the first line in (7) with (8), we get by the uniqueness theorem that

cn,m . . . c1,m−n+1dm−n,µ = dm,µ+ncn,µ+n . . . c1,µ+1, m ≥ n, µ ≥ 0.

Replacing µ by µ− n we have

cn,m . . . c1,m−n+1dm−n,µ−n = cn,µ . . . c1,µ−n+1dm,µ, m ≥ n, µ ≥ n. (10)

But all constants cj,µ−n+j , 1 ≤ j ≤ n, are different from zero and we obtain the desired recurrent formula

dm,µ =
cn,m . . . c1,m−n+1

cn,µ . . . c1,µ−n+1
dm−n,µ−n =




n∏

j=1

cj,m−n+j

cj,µ−n+j


 dm−n,µ−n, m ≥ n, µ ≥ n. (11)



Now this important recurrent formula (11) will be used for expressing any coefficient dm,µ with m ≥ n
and µ ≥ n by a coefficient dp,q, where either 0 ≤ p ≤ n− 1 or 0 ≤ q ≤ n− 1.

Let us remind that in the sequel [A] will denote the integer part of a number A.
In the case

[m

n

]
<

[µ

n

]
one can apply

[m

n

]
times the recurrent formula (11) and then

dm,µ =




n∏

j=1

cj,m−n+j

cj,µ−n+j


 dm−n,µ−n =




n∏

j=1

cj,m−n+j

cµ−n+j







n∏

j=1

cj,m−2n+j

cµ−2n+j


 dm−2n,µ−2n

= . . . =




[m
n ]∏

ν=1

n∏

j=1

cj,m−νn+j

cj,µ−νn+j


 dm−[m

n ]n,µ−[m
n ]n. (12)

Here m− [
m
n

]
n ≤ n− 1, i.e. the first index is the remainder when m is divided by n, and µ− [

m
n

]
n ≥ n.

Then by our first observation (9) the coefficient dm−[m
n ]n,µ−[m

n ]n must be zero. Therefore (12) gives

dm,µ = 0, for
[m

n

]
<

[µ

n

]
. (13)

In the other case, when
[m

n

]
≥

[µ

n

]
, one can apply

[µ

n

]
times the recurrent formula (11) to get

dm,µ =




n∏

j=1

cj,m−n+j

cj,µ−n+j


 dm−n,µ−n =




n∏

j=1

cj,m−n+j

cµ−n+j







n∏

j=1

cj,m−2n+j

cµ−2n+j


 dm−2n,µ−2n

= . . . =




[ µ
n ]∏

ν=1

n∏

j=1

cj,m−νn+j

cj,µ−νn+j


 dm−[ µ

n ]n,µ−[ µ
n ]n. (14)

Now the second index µ− [
µ
n

]
n is the remainder when µ is divided by n.

Let us combine (13) and (14) as

dm,µ =





0 for
[m

n

]
<

[µ

n

]
,


[ µ

n ]∏
ν=1

n∏

j=1

cj,m−νn+j

cj,µ−νn+j


 dm−[ µ

n ]n,µ−[ µ
n ]n. for

[m

n

]
≥

[µ

n

]
.

(15)

This important formula shows that all coefficients dm,µ with 0 ≤ µ ≤ n− 1 can be chosen arbitrarily,
and then all other coefficients dm,µ with µ ≥ n are either equal to zero or can be expressed by some of
the arbitrarily chosen dν,κ with 0 ≤ κ ≤ n− 1.

The recurrent relation (15) allows a representation of Mzm as a polynomial of degree at most([
m
n

]
+ 1

)
n− 1:

Mzm =
n−1∑
µ=0

dm,µzµ +
([m

n ]+1)n−1∑
µ=n




[ µ
n ]∏

ν=1

n∏

j=1

cj,m−νn+j

cj,µ−νn+j


 dm−[ µ

n ]n,µ−[ µ
n ]n . zµ. (16)

Finally, the action of an operator M ∈ Comm(D̃) on some analytic function f(z) =
∞∑

m=0

amzm is



Mf(z) = M

∞∑
m=0

amzm =
∞∑

m=0

amMzm (17)

=
∞∑

m=0

am




n−1∑
µ=0

dm,µzµ +
([m

n ]+1)n−1∑
µ=n




[ µ
n ]∏

ν=1

n∏

j=1

cj,m−νn+j

cj,µ−νn+j


 dm−[ µ

n ]n,µ−[ µ
n ]n . zµ


 .

It is natural to interchange the two sums in order to have a standard power series representation of (17):

Mf(z) =
n−1∑
µ=0

∞∑
m=0

amdm,µzµ (18)

+
∞∑

µ=n

∞∑

m=[ µ
n ]n

am




[ µ
n ]∏

ν=1

n∏

j=1

cj,m−νn+j

cj,µ−νn+j


 dm−[ µ

n ]n,µ−[ µ
n ]n . zµ.

This is in fact the desired representation (2) and thus, we proved the necessity, i.e. if M ∈ Comm(D̃),
then the operator M must be of the form (2).

Now, let us check the sufficiency, i.e. if an operator M has the form (2), then it commutes with the
composition D̃ = D1D2 . . . Dn of the Dunkl operators Dj = Dkj , j = 1, 2, . . . , n, i.e. MD̃ = D̃M . It is
enough to verify this for all powers zm, m = 0, 1, 2, . . ., since they form a basis of the space of the analytic
functions AR. In fact, for arbitrarily fixed m we can use the representation (16) instead of the general
expression (2).

In the case 0 ≤ m ≤ n− 1 the representation (16) reduces to the first sum and Mzm =
n−1∑
m=0

dm,µzµ.

Now we calculate D̃Mzm and MD̃zm:

D̃(Mzm) = D̃

n−1∑
m=0

dm,µzµ =
n−1∑
m=0

dm,µD̃zµ =
n−1∑
m=0

dm,µ.0 = 0;

M(D̃zm) = M0 = 0,

i.e. D̃Mzm = MD̃zm = 0. Here we used the second case in (5).

In the case m ≥ n use the first line in (5) and next use (16) with zm−n to represent MD̃zm:

MD̃zm = M




n∏

j=1

cj,m−n+j


 zm−n =




n∏

j=1

cj,m−n+j


 Mzm−n (19)

=




n∏

j=1

cj,m−n+j







n−1∑
µ=0

dm−n,µzµ +
([m−n

n ]+1)n−1∑
µ=n

∏[ µ
n ]

ν=1

∏n
j=1 cj,m−n−νn+j

∏[ µ
n ]

ν=1

∏n
j=1 cj,µ−νn+j

dm−n−[ µ
n ]n,µ−[ µ

n ]n . zµ


 .

To represent the inverse commutation D̃Mzm, apply D̃ to (16):

D̃Mzm =
n−1∑
µ=0

dm,µD̃zµ +
([m

n ]+1)n−1∑
µ=n

∏[ µ
n ]

ν=1

∏n
j=1 cj,m−νn+j

∏[ µ
n ]

ν=1

∏n
j=1 cj,µ−νn+j

dm−[ µ
n ]n,µ−[ µ

n ]n . D̃zµ. (20)



The first sum will vanish because the second case in (5) gives D̃zµ = 0 for 0 ≤ µ ≤ n− 1.
Now use (5) for µ ≥ n:

D̃Mzm =
([m

n ]+1)n−1∑
µ=n

∏[ µ
n ]

ν=1

∏n
j=1 cj,m−νn+j

∏[ µ
n ]

ν=1

∏n
j=1 cj,µ−νn+j

dm−[ µ
n ]n,µ−[ µ

n ]n




n∏

j=1

cj,µ−n+j


zµ−n. (21)

It is suitable to separate the sum as
2n−1∑
µ=n

+
([m

n ]+1)n−1∑
µ=2n

. In the first sum the whole denominator will be

canceled with the product in brackets since
[

µ
n

]
= 1, but in the second sum, after canceling

∏n
j=1 cj,µ−n+j ,

the denominator will have n factors less than the numerator (without ν = 1):

D̃Mzm =
2n−1∑
µ=n




n∏

j=1

cj,m−n+j


 dm−n,µ−n zµ−n (22)

+
([m

n ]+1)n−1∑
µ=2n

(∏n
j=1 cj,m−n+j

)(∏[ µ
n ]

ν=2

∏n
j=1 cj,m−νn+j

)

∏[ µ
n ]

ν=2

∏n
j=1 cj,µ−νn+j

dm−[ µ
n ]n,µ−[ µ

n ]n zµ−n.

It remains to replace µ by µ + n and ν by ν + 1:

D̃Mzm =
n−1∑
µ=0




n∏

j=1

cj,m−n+j


 dm−n,µ+n−n zµ (23)

+
([m

n ]+1)n−1−n∑
µ=n

(∏n
j=1 cj,m−n+j

)(∏[µ+n
n ]−1

ν=1

∏n
j=1 cj,m−(ν+1)n+j

)

∏[µ+n
n ]−1

ν=1

∏n
j=1 cj,µ+n−(ν+1)n+j

dm−[µ+n
n ]n,µ+n−[µ+n

n ]n zµ.

After the obvious simplifications this representation of D̃Mzm coincides with the representation (19) of
MD̃zm which proves the sufficiency of (2) and thus the theorem.

3 Particular cases

Example 1. Let us note that as a simplest particular case of the Dunkl operator, when all parameters
kj , j = 1, 2, . . . , n, of the Dunkl operators Dj = Dkj are taken to be 0, one can have the n-th power Dn

of the classical differentiation operator D0f(z) = Df(z) =
df(z)
dz

. Then cj,m = m, j = 1, 2, . . . , n, and
Theorem 3 describes the commutant of Dn as:

Mf(z) =
n−1∑
µ=0

∞∑
m=0

amdm,µzµ +
∞∑

µ=n

∞∑

m=[ µ
n ]n

am

m. . . (m− [µ
n ]n + 1)

µ . . . (µ− [µ
n ]n + 1)

dm−[ µ
n ]n,µ−[ µ

n ]n . zµ. (24)

Similar results for D, its powers, and generalizations of D are given by some Russian mathematicians.
In particular, in [4] (§5.1) one can find such theorem and also additional bibliography.

Example 2. If we take not a composition, but a single Dunkl operator with parameter k > 0, i.e. n = 1,
then the representation of Comm(Dk) given by M.S. Hristova from [5] is obtained:

Mf(z) =
∞∑

m=0

amdmzµ +
∞∑

µ=1

∞∑
m=µ

am
cm . . . cm−µ+1

cµ . . . c1
dm−µ zµ. (25)



Example 3. If n ≥ 1 is arbitrary, but all parameters of the Dunkl operators Dj = Dkj
in the composition

D̃ = D1D2 . . . Dn are equal, i.e. k1 = k2 = . . . = kn = k > 0, then our result reduces to the representation
due to M.S. Hristova in [6]:

Mf(z) =
n−1∑
µ=0

∞∑
m=0

amdm,µzµ +
∞∑

µ=n

∞∑

m=[ µ
n ]n

am

cm . . . cm−[ µ
n ]n+1

cµ . . . cµ−[ µ
n ]n+1

dm−[ µ
n ]n,µ−[ µ

n ]n . zµ. (26)

Final notes. A different description of the commutant Comm(Dk) of the first power of the Dunkl oper-
ator in the space of the continuous functions on the real line R is given in [2], based on the convolutional
approach (see Dimovski [1]). It depends on an arbitrary continuous linear functional Φ : C(R) → C.
Note, that Theorem 3 also allows in the case of composition of n Dunkl operators to choose arbitrarily n
systems of constants dm,µ, 0 ≤ µ ≤ n− 1, m = 0, 1, 2, . . ..
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