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The Euler operator δ = t (d/dt) is considered in the space C = C(R+), R+ = (0, ∞), and the
operators M: C → C such that Mδ = δM in C1(R+) are characterized. Next, for a non-zero linear
functional �: C(R+) → C the continuous linear operators M with the invariant hyperplane �{f } = 0
and commuting with δ in it are also characterized. Further, mean-periodic functions for δ with respect to
the functional � are introduced and it is proved that they form an ideal in a corresponding convolutional
algebra (C(R+), ∗). As an application, unique mean-periodic solutions of Euler differential equations
are characterized.

Keywords: Commutant; Riesz–Markov theorem; Invariant hyperplane; Convolutional algebra;
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1. Introduction

Compared with the case of differentiation operator D = d/dt in a space C of continuous
functions, the problem of characterizing the continuous linear operators M: C → C

commuting with the Euler operator δ = t (d/dt), i.e. such that

Mδ = δM

in C1, had not been so intensively treated as the corresponding problem for D. Here we can
mention only the classical book of Levin [1, Ch. 8 and 9, Theorem 20, pp. 379–380], where
δ is considered in spaces of entire functions.

In the operational calculus developed in Elizarraraz andVerde-Star [2] in fact some operators
commuting with the Euler operator are found.

Due to the analogy of the considerations for δ and D, a short survey of the results for
differentiation operator will be made.
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118 I. H. Dimovski and V. Z. Hristov

Bourbaki [3, Chapter 6] seems to be the first to characterize the linear continuous operators
M: C(R) → C(R) with MD = DM in C1(R). These are the operators of the form

Mf (t) = �τ {f (t + τ)},
where � is a linear functional on C(R). According to Riesz–Markov theorem
([4, Theorem 4.10.1]) � has the form

�(f ) =
∫ β

α

f (τ ) dσ(τ),

where −∞ < α < β < ∞ and σ(τ) is a Radon measure.
Delsarte [5] introduced the space of the mean-periodic functions determined by the

functional � as the kernel space of M . For details see also Schwartz [6].
One of the authors (Dimovski [7]) had found the linear continuous operators

M: C(R) → C(R), such that the subspace C� = {f ∈ C(R), �(f ) = 0} is an invariant sub-
space of M and M commutes with D in C1

�. It happened that these are the operators of the
form

Mf = μf (t) + m ∗ f,

where μ =const, m ∈ C(R), and ∗ is the operation

(f ∗ g)(t) = �τ

{∫ t

τ

f (t + τ − σ) g(σ ) dσ

}
.

Quite natural is the question about the relationship between the two types of commutants.
A partial answer is given by the following theorem (Dimovski and Skórnik [8, 9]):

The space of the mean-periodic functions determined by the functional � forms an ideal in
the convolutional algebra (C(R), ∗).

Similar results for the Pommiez operator �f (z) = [f (z) − f (0)]/z are presented by
Dimovski and Hristov [10].

An interesting historical survey about commutants of differentiation operator and related
operators like the Euler one can be found in the book of Korobeinik [11].

2. General commutant

THEOREM 2.1 A linear continuous operator M : C(R+) → C(R+) with M: C1(R+) →
C1(R+) commutes with δ = t (d/dt) in C1(R+) iff it admits a representation of the form

(Mf )(t) = �τ {f (tτ )} (1)

with a continuous linear functional �: C(R+) → C.

Proof Consider the one-parameter family T τ , 0 < τ < ∞, of the shift operators defined by

(T τf )(t) := f (tτ ), 0 < τ < ∞. (2)

Each of them commutes with δ = t (d/dt) in C1(R+). Indeed,

(δT τf )(t) = tf ′(tτ )τ = tτf ′(tτ ) = (δf )(tτ ) = (T τ δf )(t).

�
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Commutants of the Euler operator 119

LEMMA 2.2 A linear operator M: C(R+) → C(R+) with M: C1(R+) → C1(R+) commutes
with δ = t (d/dt) in C1(R+) iff M commutes with T τ for all τ, 0 < τ < ∞.

Proof First a ‘multiplicative’ version of the Taylor formula is needed. Let f be a polynomial
and g be the function defined by

g(x) = f (ex).

Then

f (tτ ) = g(ln(tτ )) = g(ln t + ln τ).

Denote x = ln t and ξ = ln τ , i.e. t = ex and τ = eξ , and apply the usual Taylor formula for g:

f (tτ ) = g(x + ξ) =
∞∑

n=0

g(n)(x)

n! ξn. (3)

Then

g′(x) = dg(x)

dx
= dg(ln t)

dt
· dt

dx
= df (t)

dt
· dex

dx
= f ′(t)ex = tf ′(t) = (δf )(t). (4)

Further,

g′′(x) = (δ2f )(t), . . . , g(n)(x) = (δnf )(t), . . . (5)

Substituting (4) and (5) in (3) gives the desired ‘multiplicative’ Taylor formula:

(T τf )(t) = f (tτ ) =
∞∑

n=0

(δnf )(t)
(ln τ)n

n! . (6)

It is true for arbitrary polynomial f (t).
Now suppose that M commutes with the Euler operator δ, i.e. Mδ = δM . Then, for every

τ, 0 < τ < ∞, (6) implies

(MT τ f )(t) = M

∞∑
n=0

(δnf )(t)
(ln τ)n

n! =
∞∑

n=0

(M(δnf ))(t)
(ln τ)n

n!

=
∞∑

n=0

(δn(Mf ))(t)
(ln τ)n

n! = (T τMf )(t).

In order to prove the opposite implication, suppose MTτ = T τM for every τ, 0 < τ < ∞,
and for arbitrary polynomial f (t), and reverse the order in the last chain of equalities as follows:

∞∑
n=0

(M(δnf ))(t)
(ln τ)n

n! = (M(T τf ))(t) = (T τ (Mf ))(t) =
∞∑

n=0

(δn(Mf ))(t)
(ln τ)n

n! .

The sums have to coincide for every τ and hence the coefficients of (ln τ)n are equal for
arbitrary n. For n = 1, it follows that

(M(δf ))(t) = (δ(Mf ))(t). (7)

Assuming that (7) is true for polynomials, it follows that it is true for arbitrary f ∈ C1(R+)

since f could be approximated by polynomials. The proof of the lemma is completed. �
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120 I. H. Dimovski and V. Z. Hristov

Proof of Theorem 2.1 It is a matter of a direct check to show that the operators of the form (1)
commute with δ and here only the proof of the necessity is needed.

If M commutes with δ, then by the lemma

MTτ f (t) = T τMf (t), 0 < τ < ∞. (8)

Applying the symmetry property

(T τf )(t) = f (tτ ) = f (τ t) = (T tf )(τ ) (9)

to the right hand side of (8) gives

(M(T τf ))(t) = (T t (Mf ))(τ ). (10)

Define the linear functional � as

�{f } := (Mf )(1).

Then, substituting 1 for t in (10) and taking into account that T 1 is the identity operator,
one has

(M(T τf ))(1) = (T 1(Mf ))(τ ) = (Mf )(τ).

The left hand side is the value of the functional � for the function g(t) = (T τf )(t), and hence

(Mf )(τ ) = �σ {(T τf )(σ )} = �σ {(T σf )(τ )}.

Using (2) and (9), this is in fact the desired representation (1) of the commutant of δ with τ

for t , and with the dumb variable σ instead of τ . This completes the proof. �

The abundance of the operators, commuting with δ in C(R+) given by Theorem 2.1, is in
sharp contrast to the set of linear operators commuting with δ in C(�), where � is a segment
[a, b] ⊂ R+. Then the only such operators are the trivial ones:

Mf(t) = cf(t), c = const.

Such a result for differentiation operator d/dx is shown by Kahane [12]. The corresponding
result for the Euler operator δ will be stated in the following theorem.

THEOREM 2.3 Let [a, b] ⊂ R+. Then a continuous linear operator M: C[a, b] → C[a, b],
such that M: C1[a, b] → C1[a, b], commutes with the Euler operator δ in C1[a, b] if and
only if it is an operator of the form

Mf (t) = cf (t),

with a constant c.
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Commutants of the Euler operator 121

Proof Let [a, b] be an arbitrary segment of R+ and let Mδ = δM in C1[a, b]. Consider the
substitution t = ex as the transformation

Sf(t) = f (ex) =: f̃ (x). (11)

Obviously S: C[a, b] → C[ln a, ln b] and S: C1[a, b] → C1[ln a, ln b]. Then, denoting
D := d/dt , one has as in (4)

Sδf (t) = f ′(ex) = DSf(t). (12)

It is supposed that

Mδf (t) = δMf(t).

Applying S on the left hand side and using (12) yields

SMδf (t) = SδMf(t) = DSMf(t). (13)

Denoting by M̃ the operator

M̃ = SMS−1. (14)

It is easily seen from (13) and (12) that

M̃Df̃ (x) = DM̃f̃ (x). (15)

This means that the conditions of Kahane’s theorem [12] are fulfilled for the operator M̃ in
C[ln a, ln b] and the result is that

M̃f̃ (x) = cf̃ (x), c = const,

which in view of (11) and (14) gives also the desired

Mf(t) = cf(t), c = const.

�

3. A general convolution related to the Euler operator

Basic for the theory of differentiation operator d/dt considered in a space C(�) of continuous
functions on an interval � is the operation

(f ∗ g)(t) = �τ

{∫ t

τ

f (t + τ − σ)g(σ ) dσ

}
, (16)

where � is a linear functional on C(�). Its properties are studied in detail in [13]. The
operation (16) is bilinear, commutative, and associative in C(�). It generalizes the classical
Duhamel convolution

(f ∗ g)(t) =
∫ t

0
f (t − τ)g(τ ) dτ (17)

when the functional � in (16) is �(f ) = f (0).
In ref. [7] it is shown that any operator of the commutant of d/dt in C(�) with an invariant

hyperplane C�(�) = {f ∈ C(�), �(f ) = 0} has the form Mf (t) = μf (t) + (m ∗ f )(t)

with μ = const and m ∈ C(�).
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122 I. H. Dimovski and V. Z. Hristov

In order to extend this result to the Euler operator an analogue of the operation (16) is
needed. In the literature only the analogue

(f ∗ g)(t) =
∫ t

1
f

(
t

τ

)
g(τ)

dτ

τ

of the Duhamel convolution (17) is known (see [2]).

DEFINITION 3.1 The analytic function

E(λ) = �τ(τ
λ) (18)

is said to be the Euler indicatrix of the functional �.

It is also convenient to denote for the rest of this article

ϕλ(t) = tλ

E(λ)
= tλ

�τ (τλ)
. (19)

Here a ‘multiplicative variant’ of (16) is proposed.

THEOREM 3.2 Let � be a continuous non-zero linear functional on C(R+). Then the operation

(f ∗ g)(t) = �τ

{∫ t

τ

f

(
tτ

σ

)
g(σ )

dσ

σ

}
(20)

is a separately continuous, bilinear, commutative, and associative operation in C(R+)

such that

�(f ∗ g) = 0. (21)

Proof According to Riesz–Markov theorem ([4, Theorem 4.10.1])

�{f } =
∫ β

α

f (τ ) dσ(τ)

with � = [α, β] ⊂ R+ and a Radon measure σ(t). Hence, (20) is a separately continuous
operation in C(�).

The bilinearity and the commutativity of the operation (20) are almost evident, whereas the
associativity of (20) is by no means obvious and needs a proof.

Let f (t) = tμ and g(t) = tν . Then

{tμ} ∗ {tν} = �τ

{∫ t

τ

(tτ )μ

σμ
σ ν dσ

σ

}
= tμ�τ

{
τμ

∫ t

τ

σ ν−μ−1 dσ

}
= tμ�τ

{
τμ tν−μ − τ ν−μ

ν − μ

}
= E(μ)tν − E(ν)tμ

ν − μ
.

Using this expression, it follows that

({tμ} ∗ {tν}) ∗ {tκ} = {tμ} ∗ ({tν} ∗ {tκ}) (22)

because both sides of (22) have one and the same symmetric form

tμ
E(ν)E(κ)

(μ − ν)(μ − κ)
+ tν

E(κ)E(μ)

(ν − κ)(ν − μ)
+ tκ

E(μ)E(ν)

(κ − μ)(κ − ν)
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Commutants of the Euler operator 123

with respect to μ, ν, and κ. Then, (22) differentiated m, n, and k times with respect to μ, ν,
and κ correspondingly, gives

({tμ(ln t)m} ∗ {tν(ln t)n}) ∗ {tκ(ln t)k} = {tμ(ln t)m} ∗ ({tν(ln t)n} ∗ {tκ(ln t)k}).
Next, passing to the limits μ → +0, ν → +0, and κ → +0, one gets

({(ln t)m} ∗ {(ln t)n}) ∗ {(ln t)k} = {(ln t)m} ∗ ({(ln t)n} ∗ {(ln t)k}).
But the bilinearity of (20) implies for arbitrary polynomials P, Q, and R

({P(ln t)} ∗ {Q(ln t)}) ∗ {R(ln t)} = {P(ln t)} ∗ ({Q(ln t)} ∗ {R(ln t)}).
To finish this proof, note that if t ∈ R+ then ln t covers the whole real line R. Then
Weierstrass’ theorem allows any function in C(R+) to be approximated almost uniformly
by polynomials of ln t, t > 0, i.e. by a sequence uniformly convergent to the function on each
segment [a, b] ⊂ R+. Due to the continuity of the functional �, the desired equality holds for
every f, g, h ∈ C(R+)

(f ∗ g) ∗ h = f ∗ (g ∗ h).

The second statement (21) of the theorem can be checked as follows: The function

h(t, τ ) =
∫ t

τ

f

(
tτ

σ

)
g(σ )

dσ

σ

is antisymmetric with respect to t and τ , i.e. h(t, τ ) = −h(τ, t), and, hence

�{f ∗ g} = �t {(f ∗ g)(t)} = �t�τ {h(t, τ )}
= �t�τ {−h(τ, t)} = −�t�τ {h(τ, t)}
= −�τ�t {h(τ, t)} = −�t�τ {h(t, τ )} = −�{f ∗ g}. (23)

Here, the Fubini property of the functional � is used, i.e. the possibility of interchanging
of �t and �τ . At the end, t and τ are also interchanged, since they are ‘dumb’ variables
in the expression. Thus, the last chain of equalities gives 2�{f ∗ g} = 0 and �{f ∗ g} = 0
holds. �

4. The commutant of δ in an invariant hyperplane

In this section, another commutant of δ will be described. Here, it is supposed that the operators
M: C(R+) → C(R+) preserve C1(R+), i.e. M: C1(R+) → C1(R+), and additionally they
preserve invariant also a hyperplane

C� := {f ∈ C(R+) : �{f } = 0}, (24)

i.e. M: C� → C�, where �: C(R+) → C is an arbitrary non-zero linear functional.
The main result of this section is the explicit representation Mf = μf + m ∗ f of any

linear continuous operator M: C(R+) → C(R+) with M: C� → C� and commuting with
δ = t (d/dt) in C1

� := C� ∩ C1(R+).
To this end some auxilliary results will be considered.
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124 I. H. Dimovski and V. Z. Hristov

LEMMA 4.1 A linear operator M: C(R+) → C(R+) with M: C1(R+) → C1(R+) and
M: C�(R+) → C�(R+) commutes with the Euler operator δ in C1

�(R+) iff M commutes
with Lλ in C(R+), where Lλ is the right inverse in C(R+) of the perturbed Euler operator
δλ = δ − λ, satisfying the boundary condition �(Lλf ) = 0.

Proof First an explicit expression for Lλ will be found. Let λ be such that E(λ) 	= 0. Then

Lλf (t) =
∫ t

1

(
t

τ

)λ

f (τ )
dτ

τ
− tλ

E(λ)
�τ

{∫ τ

1

( τ

σ

)λ

f (σ )
dσ

σ

}
. (25)

Indeed, the general solution of the linear differential equation t (dy/dt) − λy = f (t) is

y = tλ
(
c + ∫ t

1 f (τ)/τλ+1 dτ
)

with an arbitrary constant c. Then, using the condition �{y} =
0, one obtains the value

c = − 1

E(λ)
�τ

{∫ τ

1

( τ

σ

)λ

f (σ )
dσ

σ

}
.

Now suppose that MLλ = LλM in C(R+) and f ∈ C1
�(R+). To prove that

h = (Mδλ − δλM)f = 0,

consider

Lλh = LλMδλf − LλδλMf = M(Lλδλ)f − (Lλδλ)Mf ) = Mf − Mf = 0.

But Lλh = 0 implies δλLλh = 0, i.e. h = 0. Hence Mδλf = δλMf .
Conversely, let Mδλf = δλMf for every f ∈ C1

�(R+). If g ∈ C(R+), then there is a
function f ∈ C1

�(R+), for which f = Lλg.After the substitution f = Lλg in δλMf = Mδλf ,
one gets

δλ(MLλg) = MδλLλg = Mg.

Since �{Lλg} = 0, then �{MLλg} = 0. But the solution of the equation δλy = Mg with the
condition �{y} = 0 by definition is y = Lλ(Mg), which implies

MLλg = LλMg

in C(R+), which completes the proof. �

LEMMA 4.2 The operator Lλ given by (25) is a convolution operator of the form

Lλf = ϕλ ∗ f =
{

tλ

E(λ)

}
∗ f. (26)

Proof The equality (26) can be checked directly using (21) and the representation∫ t

τ
= ∫ t

1 − ∫ τ

1 . �

THEOREM 4.3 The commutant of δ in the invariant hyperplane C� coincides with the
commutant of any of the operators Lλ in C(R+).
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Commutants of the Euler operator 125

Proof Let M: C(R+) → C(R+) be a linear operator commuting with Lλ for some λ ∈ C,
i.e. MLλ = LλM . First, it will be proved that C� is an invariant hyperplane for M . Indeed,
let g be a function from C(R+) and f be the solution of the problem

δf − λf = g, �{f } = 0. (27)

Then

LλMg = MLλg = Mf (28)

and hence

Mg = (δ − λ)Mf.

Using (27) this can be written as

M(δ − λ)f = (δ − λ)Mf

or, equivalently,

(Mδ)f = (δM)f.

It remains to show that �{Mf } = 0. This follows using (28) and the representation (26) of Lλ

as a convolutional operator, along with the property �{p ∗ q} = 0 for arbitrary p, q ∈ C(R+)

of the convolution (20).
Conversely, let M: C(R+) → C(R+) have the hyperplane C� as an invariant subspace and

let Mδ = δM in C1
�. One has to prove that MLλ = LλM for λ ∈ C with E(λ) 	= 0.

Let f ∈ C(R+) be arbitrary and denote h = (MLλ − LλM)f . Then

(δ − λ)h = (δ − λ)MLλf − Mf = M(δ − λ)Lλf − Mf = 0

and also

�{h} = �{MLλf } − �{LλMf } = 0,

according to our assumptions. Since λ is not an eigenvalue, i.e. E(λ) 	= 0, then h = 0, or

MLλf = LλMf.

The proof is completed. �

DEFINITION 4.4 A linear operator M: C(R+) → C(R+) is said to be a multiplier of the
convolutional algebra (C(R+), ∗) when for arbitrary f, g ∈ C(R+) it holds

M(f ∗ g) = (Mf) ∗ g.

THEOREM 4.5 A linear operator M: C(R+) → C(R+) with M: C1(R+) → C1(R+) is a
multiplier of the convolution algebra (C(R+), ∗) iff it has a representation of the form

Mf(t) = μf (t) + (m ∗ f )(t), (29)

where μ = const and m ∈ C(R+).

Proof The sufficiency is obvious. In order to prove the necessity, the notations from (18)
and (19) will be used for convenience.
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126 I. H. Dimovski and V. Z. Hristov

Let M: C(R+) → C(R+) be an arbitrary multiplier of (C(R+), ∗). Applying (26), one has

MLλf = M(ϕλ ∗ f ) = (Mϕλ) ∗ f = ϕλ ∗ Mf = LλMf, (30)

i.e. MLλf = LλMf . Also, denoting eλ = Mϕλ, one has eλ ∈ C1(R+), and (30) gives

LλMf = eλ ∗ f.

It remains to apply the operator δλ = δ − λ and the definition of Lλ as the right inverse operator
of δλ to obtain

Mf = δλ(eλ ∗ f ).

The right hand side can be represented in a different way using the identity

δλ(u ∗ v) = (δλu) ∗ v + �(u)v, (31)

which can be checked directly. Then

(Mf)(t) = [(δλeλ) ∗ f ](t) + �(eλ)f (t),

which is the representation (29) with μ = �(eλ) = �{Mϕλ} and m(t) = (δλeλ)(t)

= [δλMϕλ](t). Thus, the necessity is proved. �

THEOREM 4.6 The function ϕλ(t) = tλ/E(λ) is a cyclic element of the operator Lλ.

Proof Let f ∈ C(R+) be arbitrarily chosen. It is needed to prove that there is a sequence of
functions of the form

fn(t) =
n∑

k=0

cnkL
k
λϕλ(t), n = 1, 2, . . .

converging to f (t) uniformly on any segment [a, b] of R+.
First, it is easy to show by induction that

Lk
λϕλ(t) = tλpk(ln t), (32)

where pk is a polynomial of degree k, i.e. pk(ln t) = ∑k
s=0 aks(ln t)s .

Indeed, if k = 1, then by (26) and (20)

Lλϕλ(t) =
{

tλ

E(λ)

}
∗

{
tλ

E(λ)

}
= 1

E2(λ)
�τ

{∫ t

τ

(
tτ

σ

)λ

σ λ dσ

σ

}

= 1

E2(λ)
tλ�τ

{
τλ

∫ t

τ

dσ

σ

}
= tλ

[
�τ {τλ}
E2(λ)

ln t − �τ {τλ ln τ }
E2(λ)

]
.

Next, the inductive step will be made. Suppose that

Lk−1
λ ϕλ(t) = tλpk−1(ln t).

Then

Lk
λϕλ(t) = Lλ(L

k−1
λ ϕλ(t)) =

{
tλ

E(λ)

}
∗ Lk−1

λ ϕλ(t)

= 1

E(λ)
�τ

{∫ t

τ

(
tτ

σ

)λ

σ λpk−1(ln σ)
dσ

σ

}

= 1

E(λ)
tλ�τ

{
τλ

∫ t

τ

pk−1(ln σ) d ln σ

}
.
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Commutants of the Euler operator 127

The integration of pk−1 gives a polynomial qk of ln t of degree k and the above chain of
equalities can be continued as

Lk
λϕλ(t) = 1

E(λ)
tλ�τ

{
τλ[qk(ln t) − qk(ln τ)]}

= tλ
[
�τ {τλ}
E(λ)

qk(ln t) − �τ {τλqk(ln τ)}
E(λ)

]
,

where the expression in the square brackets is obviously a polynomial pk of ln t of degree k,
as desired.

Now let f ∈ C(R+) be arbitrarily chosen. Consider the function f̃ (t) = f (t)/tλ, which is
again in C(R+). Making the substitution t = ex , x = ln t , the new function g(x) = f̃ (t) is in
C(−∞, ∞). By Weierstrass’ theorem, g can be approximated almost uniformly on (−∞, ∞)

by a sequence of polynomials {rn(x)}∞n=1, rn(x) = ∑n
k=0 bnkx

k , i.e. the convergence is uniform
on any segment [a, b] ⊂ (R+). Returning to the old variable, f̃ (t) can be approximated by
the sequence of polynomials {rn(ln t) = ∑n

k=0 bnk(ln t)k}∞n=1. Finally, multiplying by tλ and
using (32), the desired approximation of f (t) on (R+) follows from the representation

fn(t) = tλrn(ln t) =
n∑

k=0

bnkt
λ(ln t)k =

n∑
k=0

cnkt
λpk(ln t) =

n∑
k=0

cnkL
k
λϕλ(t).

The new coefficients cnk can be calculated from the old ones bnk . Thus, ϕλ is a cyclic element
of Lλ in C(R+). �

THEOREM 4.7 A linear operator M: C(R+) → C(R+), such that M: C1(R+) → C1(R+),

and with an invariant hyperplane C� = {f ∈ C(R+) : �{f } = 0} commutes with δ in C1
� if

and only if it has a representation of the form

(Mf )(t) = μf (t) + (m ∗ f )(t) (33)

with a constant μ ∈ C and m ∈ C(R+).

Proof Since �{f ∗ g} = 0 for f, g ∈ C(R+) (see (10)), then each operator of the form (33)
has C� as an invariant subspace. It commutes with δ in C1

�. Indeed, if f ∈ C1
�, then (31) gives

δ(m ∗ f ) = m ∗ δf + �{f }m
and, using (33),

δMf = μδf + m ∗ (δf ) + �{f }m = μδf + m ∗ (δf ) = Mδf.

The sufficiency is proved.
In order to prove the necessity of (33), according to Lemma 4.1, MLλ = LλM for λ ∈ C

with E(λ) 	= 0. As it is shown in [13] (Theorem 1.3.11, p. 33), the commutant of Lλ coincides
with the ring of the multipliers of the convolution algebra (C(R+), ∗) since Lλ has a cyclic
element. By Theorem 4.6 such a cyclic element is the function ϕλ(t) = tλ/E(λ) for which
Lλf = ϕλ ∗ f . The proof is completed. �

Remark The constant μ and the function m ∈ C(R+) in (29) are uniquely determined.
Indeed, assume that μf + m ∗ f = μ1f + m1 ∗ f . Take f such that �(f ) 	= 0. Then,
(23) implies μ�(f ) = μ1�(f ), and hence μ = μ1. From m ∗ f = m1 ∗ f for arbitrary
f ∈ C(R+) it follows that (m − m1) ∗ f = 0, and hence m = m1.
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128 I. H. Dimovski and V. Z. Hristov

5. Mean-periodic functions for the Euler operator

DEFINITION 5.1 A function f ∈ C(R+) is said to be mean-periodic for the Euler operator
with respect to the linear functional � if

�τ {f (tτ )} = 0

identically in R+.

It is clear that the mean-periodic functions with respect to � form the kernel space of
the operator

Mf(t) = �τ {f (tτ )}
commuting with the Euler operator δ in C(R+).

Now a connection between the mean-periodic functions and the convolutional algebra
(C(R+), ∗) will be shown.

THEOREM 5.2 The mean-periodic functions for the Euler operator δ with respect to any
non-zero functional �: C(R+) → C form an ideal in the convolutional algebra (C(R+), ∗).

Proof One need prove only that the convolutional product (f ∗ g)(t) of a mean-periodic
function f and an arbitrary function g ∈ C(R+) is a mean-periodic function, too, i.e. it is
given that �τ {f (tτ )} = 0 and then �τ {(f ∗ g)(tτ )} = 0 is to be shown. By (20)

(f ∗ g)(tτ ) = �σ

{∫ tτ

σ

f

(
tτσ

η

)
g(η)

dη

η

}
and

�τ {(f ∗ g)(tτ )} = �τ�σ

{∫ tτ

σ

f

(
tτσ

η

)
g(η)

dη

η

}
= �τ�σ

{∫ τ

σ

f

(
tτσ

η

)
g(η)

dη

η

}
+ �τ�σ

{∫ tτ

τ

f

(
tτσ

η

)
g(η)

dη

η

}
. (34)

Interchanging τ and σ in the first term of (34) and using the Fubini commutational property
of the functionals yields

�τ�σ

{∫ τ

σ

f

(
tτσ

η

)
g(η)

dη

η

}
= �σ�τ

{∫ σ

τ

f

(
tτσ

η

)
g(η)

dη

η

}
= �σ�τ

{
−

∫ τ

σ

f

(
tτσ

η

)
g(η)

dη

η

}
= −�τ�σ

{∫ τ

σ

f

(
tτσ

η

)
g(η)

dη

η

}
,

thus obtaining

�τ�σ

{∫ τ

σ

f

(
tτσ

η

)
g(η)

dη

η

}
= 0. (35)
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Commutants of the Euler operator 129

The second term in (34) also vanishes

�τ�σ

{∫ tτ

τ

f

(
tτσ

η

)
g(η)

dη

η

}
= �τ

{∫ tτ

τ

�σ

{
f

(
tτσ

η

)}
g(η)

dη

η

}
= 0 (36)

since f is mean-periodic and hence

�σ

{
f

(
tτσ

η

)}
= 0.

Finally, equations (34)–(36) give the desired result �τ {(f ∗ g)(tτ )} = 0. �

6. Application to the Euler differential equation

Now Theorem 5.2 will be applied to find necessary and sufficient conditions in order the Euler
differential equation

P(δ)y(t) = f (t), 0 < t < ∞, (37)

to have a unique mean-periodic solution with respect to a non-zero linear functional � in
C(R+). Here, δ = t (d/dt) is the Euler operator and P(μ) = a(μ − μ1)(μ − μ2) · · · (μ − μk)

is a polynomial.

THEOREM 6.1 In order for the Euler differential equation (37) to have a unique mean-periodic
solution with respect to a non-zero linear functional � in C(R+), it is necessary and sufficient
no roots of the equation P(λ) = 0 to be roots of the Euler indicatrix E(λ) = �τ(τ

λ).

Proof Consider the Euler differential equation (37). It is clear that in order for y to be a
mean-periodic solution, the right hand side, i.e. the function f (t), should be mean-periodic,
too. Formally, let Mf (t) = �τ {f (tτ )}. Applying M to (37) and using the commutativity of
δ = t (d/dt) and M yields

P(δ)My(t) = Mf(t).

Then from My = 0 it follows that Mf = 0, i.e. the requirement f to be mean-periodic is
a necessary condition for existing of a mean-periodic solution y. It can be shown that it is
also a sufficient condition, but in general the solution may not be unique. Indeed, if a root
μ of the equation P(λ) = 0 is a root of the Euler indicatrix E(λ), then the function tμ is a
solution of the homogeneous equation P(δ)u = 0, and hence the uniqueness of the solution
holds no more.

Now it will be shown that if neither of the roots μ1, μ2, . . . , μk of the equation P(λ) = 0 is a
root of the Euler indicatrix E(λ) = �τ {τλ}, then there exists a unique mean-periodic solution
of the Euler equation P(δ)y = f , provided f is a mean-periodic function with respect to �.
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130 I. H. Dimovski and V. Z. Hristov

Assuming that y is a mean-periodic solution of (37), an explicit expression for y will be
obtained. Let P be a polynomial of degree k

P (μ) = a(μ − μ1)(μ − μ2) · · · (μ − μk).

From the assumption that y is a mean-periodic solution it follows that

�{y} = �{δy} = · · · = �{δk−1y} = 0. (38)

Indeed, the mean-periodicity of y means that

�τ {y(tτ )} = 0.

Applying the operator δ to this identity with respect to t , Theorem 2.1 gives

�τ {(δny)(tτ )} = 0, n = 1, 2, . . . , k − 1.

It remains to put t = 1 in order to obtain the boundary conditions (38).
Next, unique solution of (37) is

y = 1

a
Lμk

Lμk−1 · · · Lμ1f (t). (39)

Indeed, the equation (37) can be represented as

(δ − μ1)[(δ − μ2) · · · (δ − μk)y(t)] = 1

a
f (t).

Denoting the square brackets by u1(t) yields

δu1 − μ1u1 = 1

a
f,

for u1 with �{u1} = 0, as it follows from (38). This equation has the unique solu-
tion u1 = (1/a)Lμ1f with Lμ1 defined as in Lemma 4.1. Next solve

δu2 − μ2u2 = u1, �{u2} = 0,

for u2(t) = (δ − μ3) · · · (δ − μk)y(t) with the unique solution u2 = Lμ2u1. Continuing in
the same manner one gets the unique solution (39) of the initial equation (37). Now it is
easy to verify that (39) is indeed a mean-periodic solution. It can be written in the form of
convolutional product using Lemma 4.2:

y = 1

a
Lμk

Lμk−1 · · · Lμ1f (t) =
(

1

a
ϕμk

∗ ϕμk−1 ∗ · · · ∗ ϕμ1

)
∗ f = ϕ ∗ f (40)

with ϕ := (1/a)ϕμk
∗ ϕμk−1 ∗ · · · ∗ ϕμ1 . It remains to use Theorem 5.2 to assert that the

mean-periodicity of f implies the mean-periodicity of y. �
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