Mean-periodic Solutions of Euler Differential Equations

Ivan H. Dimovski ${ }^{1}$, Valentin Z. Hristov ${ }^{2}$ and Mohamed Sifi ${ }^{3}$

Key words and phrases: Euler operator, mean-periodic function, resolvent operator, commutant, Euler convolution.

AMS subject classification: Primary: 44A40; Secondary: 44A35

Abstract

Let $\Phi: C\left(\mathbb{R}_{+}\right) \rightarrow \mathbb{C}$ be a given nonzero linear functional. We are looking for mean-periodic solutions for the Euler operator $\delta=t \frac{d}{d t}$ and the functional Φ of equations of the form $P(\delta) y(t)=f(t)$ with a polynomial P. A function f is called meanperiodic with respect to Φ iff $\Phi_{\tau}\{f(t \tau\}=0$. A necessary condition for existence of such a solution is the requirement the right hand side f to be mean-periodic. Then, the problem is equivalent to the following nonlocal Cauchy problem: $P(\delta) y(t)=f(t), \Phi\left\{\delta^{k} y\right\}=0$, $k=0,1, \ldots, \operatorname{deg} P-1$. The solution of the last problem has the following Duhamel-type form $y=\delta(G * f)$, where G is the solution of the nonlocal Cauchy problem for $f(t) \equiv 1$ and $*$ denotes the convolution product in $C\left(\mathbb{R}_{+}\right)$

$$
(f * g)(t)=\Phi_{\tau}\left\{\int_{\tau}^{t} f\left(\frac{t \tau}{\sigma}\right) g(\sigma) \frac{d \sigma}{\sigma}\right\} .
$$

1. Mean-periodic functions for the Euler operator with respect to a functional

As it is well-known, the notion of mean-periodic function for the differentiation operator $\frac{d}{d t}$ with respect to a linear functional $\Phi: C(\mathbb{R}) \rightarrow \mathbb{C}$ is introduced in 1935 by J. Delsarte [1]. An extensive study of it is proposed in 1947 in the L. Schwartz' memoir [4].

Let us remind this basic definition.
Definition $1 A$ function $f \in C(\mathbb{R})$ is said to be mean-periodic with respect to a linear functional $\Phi: C(\mathbb{R}) \rightarrow \mathbb{C}$ iff $\Phi_{\tau}\{f(t+\tau)\}=0$ identically.

In Dimovski and Skórnik [3] an operational method is considered for solving linear ordinary differential equations with constant coefficients in mean-periodic functions with respect to a given functional Φ.

Here we extend this approach to Euler equations.
Definition $2 A$ function $f \in C\left(\mathbb{R}_{+}\right) \rightarrow \mathbb{C}$, where $\mathbb{R}_{+}=(0, \infty)$, is said to be mean-periodic for the Euler operator $\delta=t \frac{d}{d t}$ with respect to a linear functional $\Phi: C\left(\mathbb{R}_{+}\right) \rightarrow \mathbb{C}$ iff $\Phi_{\tau}\{f(t \tau)\}=0$ identically.

In the sequel a basic role is played by the following convolution product introduced in Dimovski and Skórnik [3] and Dimovski and Hristov [2]:

Theorem 1 ([3]). The operation

$$
\begin{equation*}
(f * g)(t)=\Phi_{\tau}\left\{\int_{\tau}^{t} f\left(\frac{t \tau}{\sigma}\right) g(\sigma) \frac{d \sigma}{\sigma}\right\} \tag{1}
\end{equation*}
$$

converts $C\left(\mathbb{R}_{+}\right)$into a commutative and associative algebra.
For the sake of completeness we supply a sketch of the proof. The commutativity is almost obvious. Let us verify the associativity. It is possible to do this by a direct check, but an easier way is to verify it at first for polynomials and then to use approximation argument.

Let $f(t)=t^{\mu}$ and $g(t)=t^{\nu}$. Then

$$
\begin{aligned}
\left\{t^{\mu}\right\} *\left\{t^{\nu}\right\} & =\Phi_{\tau}\left\{\int_{\tau}^{t} \frac{(t \tau)^{\mu}}{\sigma^{\mu}} \sigma^{\nu} \frac{d \sigma}{\sigma}\right\}=t^{\mu} \Phi_{\tau}\left\{\tau^{\mu} \int_{\tau}^{t} \sigma^{\nu-\mu-1} d \sigma\right\}= \\
& =t^{\mu} \Phi_{\tau}\left\{\tau^{\mu} \frac{t^{\nu-\mu}-\tau^{\nu-\mu}}{\nu-\mu}\right\}=\frac{E(\mu) t^{\nu}-E(\nu) t^{\mu}}{\nu-\mu}
\end{aligned}
$$

with $E(\lambda)=\Phi_{\tau}\left\{\tau^{\lambda}\right\}$. Using this expression, it follows that

$$
\begin{equation*}
\left(\left\{t^{\mu}\right\} *\left\{t^{\nu}\right\}\right) *\left\{t^{\nu}\right\}=\left\{t^{\mu}\right\} *\left(\left\{t^{\nu}\right\} *\left\{t^{\nu}\right\}\right) \tag{2}
\end{equation*}
$$

since both sides of (2) have one and the same symmetric form

$$
t^{\mu} \frac{E(\nu) E(\varkappa)}{(\mu-\nu)(\mu-\varkappa)}+t^{\nu} \frac{E(\varkappa) E(\mu)}{(\nu-\varkappa)(\nu-\mu)}+t^{\varkappa} \frac{E(\mu) E(\nu)}{(\varkappa-\mu)(\varkappa-\nu)} .
$$

with respect to μ, ν, and \varkappa. Then, (2), differentiated m, n, and k times with respect to μ, ν, and \varkappa correspondingly, gives
$\left(\left\{t^{\mu}(\ln t)^{m}\right\} *\left\{t^{\nu}(\ln t)^{n}\right\}\right) *\left\{t^{\varkappa}(\ln t)^{k}\right\}=\left\{t^{\mu}(\ln t)^{m}\right\} *\left(\left\{t^{\nu}(\ln t)^{n}\right\} *\left\{t^{\varkappa}(\ln t)^{k}\right\}\right)$.

Next, passing to the limits $\mu \rightarrow+0, \nu \rightarrow+0$ and $\varkappa \rightarrow+0$, one gets

$$
\left(\left\{(\ln t)^{m}\right\} *\left\{(\ln t)^{n}\right\}\right) *\left\{(\ln t)^{k}\right\}=\left\{(\ln t)^{m}\right\} *\left(\left\{(\ln t)^{n}\right\} *\left\{(\ln t)^{k}\right\}\right) .
$$

But the bilinearity of (1) implies for arbitrary polynomials P, Q and R

$$
(\{P(\ln t)\} *\{Q(\ln t)\}) *\{R(\ln t)\}=\{P(\ln t)\} *(\{Q(\ln t)\} *\{R(\ln t)\})
$$

To finish the proof, note that if $t \in \mathbb{R}_{+}$, then $\ln t$ covers the whole real line \mathbb{R}. Then Weierstrass' theorem allows any function in $C\left(\mathbb{R}_{+}\right)$to be approximated almost uniformly by polynomials of $\ln t, t>0$, i.e. by a sequence uniformly convergent to the function on each segment $[a, b] \subset \mathbb{R}_{+}$. Due to the continuity of the functional Φ the desired identity $(f * g) * h=f *(g * h)$ holds for every $f, g, h \in C\left(\mathbb{R}_{+}\right)$.

Further, we restrict the functional Φ by $\Phi\{1\} \neq 0$ and, without essential loss of generality, we may assume $\Phi\{1\}=1$.

Let $L: C\left(\mathbb{R}_{+}\right) \rightarrow C\left(\mathbb{R}_{+}\right)$be the right inverse operator of $\delta=t \frac{d}{d t}$, defined by the boundary value condition $\Phi\{L f\}=0$. It is easy to find $L f(t)$ explicitly:

$$
\begin{equation*}
L f(t)=\int_{1}^{t} \frac{f(\tau)}{\tau} d \tau-\Phi_{\sigma}\left\{\int_{1}^{\sigma} \frac{f(\tau)}{\tau} d \tau\right\} \tag{3}
\end{equation*}
$$

Moreover, $L f$ has the convolution representation

$$
L f=\{1\} * f
$$

and $L^{n} f=\left\{Q_{n}(\ln t)\right\} * f$, where Q_{n} is a polynomial of degree exactly n.
Let $M P_{\Phi}^{\delta}$ denote the space of the mean-periodic functions for δ with respect to Φ.
Lemma 1 If $f \in M P_{\Phi}^{\delta}$, then $L f \in M P_{\Phi}^{\delta}$.
Proof: Let $f \in M P_{\Phi}^{\delta}$, i.e. $\Phi_{\tau}\{f(t \tau)\}=0$. Consider the function $\varphi(t)$ $=\Phi_{\eta}\{(L f)(t \eta)\}$. Then
$\delta \varphi(t)=\delta \Phi_{\eta}\{(L f)(t \eta)\}=\Phi_{\eta}\{\delta(L f)(t \eta)\}=\Phi_{\eta}\{(\delta L) f(t \eta)\}=\Phi_{\eta}\{f(t \eta)\}=0$, since f is mean-periodic. Then $t \frac{d \varphi(t)}{d t}=0$ and $t>0$ imply $\varphi(t) \equiv C$, where C is a constant. In order to determine C, let us take $t=1$. Then

$$
\begin{aligned}
\varphi(1) & =\Phi_{\eta}\{L f(\eta)\}=\Phi_{\eta}\left\{\int_{1}^{\eta} \frac{f(\tau)}{\tau} d \tau-\Phi_{\sigma}\left\{\int_{1}^{\sigma} \frac{f(\tau)}{\tau} d \tau\right\}\right\}= \\
& =\Phi_{\eta}\left\{\int_{1}^{\eta} \frac{f(\tau)}{\tau} d \tau\right\}-\Phi_{\sigma}\left\{\int_{1}^{\sigma} \frac{f(\tau)}{\tau} d \tau\right\} \Phi\{1\}=0,
\end{aligned}
$$

which means $L f \in M P_{\Phi}^{\delta}$.

Corollary 1 Let $P(\lambda)$ be a polynomial. If $f \in M P_{\Phi}^{\delta}$, then

$$
\{P(\ln t)\} * f \in M P_{\Phi}^{\delta}
$$

Indeed, if $P(\lambda)=\sum_{k=0}^{\operatorname{deg} P} \beta_{k} \lambda^{k}$, then λ_{k} can be expressed as linear combination $\lambda^{k}=\sum_{j=0}^{k} \gamma_{j} Q_{j}(\lambda)$, where $Q_{j}(\lambda)$ are the polynomials from the proof of Theorem 1. Hence

$$
\{P(\ln t)\} *=\left\{\sum_{k=0}^{\operatorname{deg} P} \nu_{k} Q_{k}(\ln t)\right\} *=\sum_{k=0}^{\operatorname{deg} P} \nu_{k} L^{k}
$$

with some constants ν_{k}. Then the lemma implies $\{P(\ln t)\} * f \in M P_{\Phi}^{\delta}$ provided $f \in M P_{\Phi}^{\delta}$.

Theorem $2 M P_{\Phi}^{\delta}$ is an ideal in $\left(C\left(\mathbb{R}_{+}\right), *\right)$.
Proof: Let $f \in M P_{\Phi}^{\delta}$ and $g \in C\left(\mathbb{R}_{+}\right)$. If $P(\lambda)$ is an arbitrary polynomial, it follows from Lemma 1 that $P(\ln t) * f \in M P_{\Phi}^{\delta}$. According to Weierstrass' approximation theorem, we can find a polynomial sequence $\left\{P_{n}\right\}_{n=1}^{\infty}$, for which $P_{n}(x) \rightrightarrows g\left(e^{x}\right)$ on each segment $[a, b] \subset \mathbb{R}=(-\infty, \infty)$. Then $P_{n}(\ln t) \rightrightarrows g(t)$ on each segment $[\alpha, \beta] \subset \mathbb{R}_{+}=(0, \infty)$. But from Corollary 1

$$
P_{n}(\ln t) * f \in M P_{\Phi}^{\delta}, \quad \forall n \in \mathbb{N} .
$$

Since the space $M P_{\Phi}^{\delta}$ is closed with respect to the uniform convergence, the limit $g * f=f * g$ is mean-periodic, too.

2. Nonlocal Cauchy problems for Euler equations

Let $\Phi: C\left(\mathbb{R}_{+}\right) \rightarrow \mathbb{C}$ be a linear functional. According to Riesz-Markov theorem Φ has a representation of the form $\Phi\{f\}=\int_{\alpha}^{\beta} f(t) d \gamma(t)$, where $0<\alpha<\beta<+\infty$ and γ is a function with bounded variation.

Definition $3 P(\lambda)$ be a polynomial with $\operatorname{deg} P \geq 1$. The boundary value problem

$$
\begin{gather*}
P(\delta) y=f, \tag{4}\\
\Phi\left\{\delta^{k} y\right\}=\alpha_{k}, \quad k=0,1,2, \ldots, \operatorname{deg} P-1 \tag{5}
\end{gather*}
$$

with given $\alpha_{k} \in \mathbb{C}$ is said to be a nonlocal Cauchy problem for the Euler equation (4).

In [3] an operational method for solution of such nonlocal boundary value problems is developed. Here we reproduce the basic elements of this approach.

First, a Mikusiński-type operational calculus for the right inverse operator L, defined by (3), is developed. Without any loss of generality we may assume that $\Phi\{1\}=1$. Then (3) becomes

$$
\begin{equation*}
L f(t)=\int_{1}^{t} \frac{f(\tau)}{\tau} d \tau-\Phi_{\sigma}\left\{\int_{1}^{\sigma} \frac{f(\tau)}{\tau} d \tau\right\} \tag{6}
\end{equation*}
$$

In fact, L is the convolution operator $L=\{1\} *$, i.e. $L f=\{1\} * f$, in the convolution algebra $\left(C\left(\mathbb{R}_{+}\right), *\right)$ with the multiplication (1).

Let \mathfrak{M} be the ring of convolution fractions of the form $\frac{f}{g}$ where $f \in C\left(\mathbb{R}_{+}\right)$ and $g \in C\left(\mathbb{R}_{+}\right)$but g being a non-divisor of zero in $\left(C\left(\mathbb{R}_{+}\right), *\right)$.

Then the operator L can be identified with the constant function $\{1\}$, i.e. $L=\{1\}$. By 1 we will denote the unit element of \mathfrak{M} and hence $1 \neq\{1\}$. The basic element of the operational calculus we are to develop, is played by the element $S=\frac{1}{L}$ which may be called the algebraic Euler operator.

Lemma 2 If $f \in C^{1}\left(\mathbb{R}_{+}\right)$, then

$$
\begin{equation*}
\delta f=S f-\Phi\{f\} \tag{7}
\end{equation*}
$$

where $S f$ is the product $S . f$ in \mathfrak{M} and $\Phi\{f\}$ is to be understood as a "numerical" operator, i.e. as the convolution fraction $\frac{\{\Phi\{f\}\}}{\{1\}}$.

Proof: By an immediate check it is seen that

$$
L(\delta f)(t)=f(t)-f(1)-\Phi_{\tau}\{f(\tau)-f(1)\}=f(t)-\Phi\{f\} .
$$

This identity can be written as

$$
L(\delta f)=f-\Phi\{f\} . L
$$

Applying δ to both sides, we obtain (7).
Corollary 2 For arbitrary $k \in \mathbb{N}$ and $f \in C^{k}\left(\mathbb{R}_{+}\right)$we have

$$
\begin{equation*}
\delta^{k} f=S^{k} f-\Phi\{f\} S^{k-1}-\Phi\{\delta f\} S^{k-2}-\ldots-\Phi\left\{\delta^{k-1} f\right\} . \tag{8}
\end{equation*}
$$

The proof proceeds by induction using (7).

Theorem 3 Let $\lambda \in \mathbb{C}$ be such that $E\{\lambda\}=\Phi_{\tau}\left\{\tau^{\lambda}\right\} \neq 0$. Then

$$
\begin{equation*}
\frac{1}{S-\lambda}=\left\{\frac{t^{\lambda}}{E(\lambda)}\right\} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{(S-\lambda)^{k}}=\left\{\frac{1}{(k-1)!} \frac{d^{k-1}}{d \lambda^{k-1}}\left(\frac{t^{\lambda}}{E(\lambda)}\right)\right\} . \tag{10}
\end{equation*}
$$

The proof is given in [3]. In fact

$$
\frac{1}{S-\lambda}=L_{\lambda},
$$

where L_{λ} is the resolvent operator, for which $L_{\lambda} f(x)=y$ is the solution of the boundary value problem

$$
\delta y-\lambda y=f, \quad \Phi\{y\}=0 .
$$

It has the form

$$
L_{\lambda} f(t)=\int_{1}^{t}\left(\frac{t}{\tau}\right)^{\lambda} f(\tau) \frac{d \tau}{\tau}-\frac{t^{\lambda}}{E(\lambda)} \Phi_{\sigma}\left\{\int_{1}^{\sigma}\left(\frac{\sigma}{\tau}\right)^{\lambda} f(\tau) \frac{d \tau}{\tau}\right\}
$$

L_{λ} can be represented as the convolution operator

$$
L_{\lambda} f=\left\{\frac{t^{\lambda}}{E(\lambda)}\right\} * f
$$

Theorem 4 Let $P(\lambda)=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n-1} \lambda+a_{n}$ be a polynomial of degree n. Then the boundary value problem (4)-(5) is equivalent in M to the linear algebraic equation

$$
\begin{equation*}
P(S) y=f+Q(S) \tag{11}
\end{equation*}
$$

where

$$
Q(S)=\sum_{k=0}^{n-1} \sum_{m=0}^{n-k-1} a_{k} \alpha_{m} S^{n-k-m-1}=\sum_{\mu=0}^{n-1}\left(\sum_{\nu=0}^{n-\mu-1} a_{\nu} \alpha_{n-\mu-\nu-1}\right) S^{\mu} .
$$

Proof: First, let $y \in C^{n}\left(\mathbb{R}_{+}\right)$be a solution of (4)-(5). Then using (8) we obtain (11).

Conversely, let $y \in C^{n}\left(\mathbb{R}_{+}\right)$satisfies (11). Let us involve the right inverse L of δ substituting $S=\frac{1}{L}$. Then, L^{n}, applied to both sides of (11), gives

$$
L^{n} P\left(\frac{1}{L}\right) y=L^{n} f+L^{n} Q\left(\frac{1}{L}\right) .
$$

This can be written as

$$
\begin{equation*}
\widetilde{P}(L) y-\widetilde{Q}(L)=L^{n} f \tag{12}
\end{equation*}
$$

where $\widetilde{P}(\lambda)=\lambda^{n} P\left(\frac{1}{\lambda}\right)$ and $\widetilde{Q}(\lambda)=\lambda^{n} Q\left(\frac{1}{\lambda}\right)$ are the reciprocal polynomials of P and Q respectively. It remains to apply δ^{n} to both sides of (12):

$$
\delta^{n} \widetilde{P}(L) y-\delta^{n} \widetilde{Q}(L)=\delta^{n} L^{n} f=f
$$

Since L is a right inverse of δ, then $\delta^{n} L^{k}=\delta^{n-k} \delta^{k} L^{k}=\delta^{n-k}$ for $k=$ $0,1,2, \ldots, n$. The first term $\delta^{n} \widetilde{P}(L) y$ becomes $P(\delta) y$, while the second term $\delta^{n} \widetilde{Q}(L)$ is zero due to the fact that $\operatorname{deg} Q \leq n-1$ and there will always be at least first power of δ acting on the constant function $\{1\}$. Thus $P(\delta) y=f$ is proved.

The verification of $\Phi\left\{\delta^{k} y\right\}=\alpha_{k}, k=0,1,2, \ldots, n-1$, is more complicated but again straightforward.

Theorem 5 Let $y \in M P_{\Phi}^{\delta}$ be a mean-periodic solution of the Euler differential equation $P(\delta) y=f$. Then a necessary condition for existence of such a solution is $f \in M P_{\Phi}^{\delta}$. The problem of solving this equation in $M P_{\Phi}^{\delta}$ is equivalent to the nonlocal Cauchy boundary value problem (4)-(5) with the homogeneous initial conditions $\Phi\left\{\delta^{k} y\right\}=0, \quad k=0,1,2, \ldots, \operatorname{deg} P-1$.

Proof: Let y be a mean-periodic solution of (4), i.e. $\Phi_{\tau}\{y(t \tau)\}=0$. According to Dimovski and Hristov [2] the operator $M: C\left(\mathbb{R}_{+}\right) \rightarrow C\left(\mathbb{R}_{+}\right)$ given by $M f(t)=\Phi_{\tau}\{y(t \tau)\}, f \in C\left(\mathbb{R}_{+}\right)$, belongs to the commutant of δ, i.e. $M \delta=\delta M$. Applying M to both sides of $P(\delta) y=f$ and using $M y(t)=0$, we get

$$
M f=M P(\delta) y=P(\delta) M y=0 .
$$

Hence $f \in M P_{\phi}^{\delta}$.
Now we continue with the proof of the equivalence.
First, let $P(\delta) y=f, f \in M P_{\Phi}^{\delta}, \Phi\left\{\delta^{k} y\right\}=0, k=0,1,2, \ldots, n-1$. Let M be the operator from the commutant of δ, which corresponds to the
functional Φ as above. Consider the function $u=M y$. We need to prove that $u=0$. One has

$$
\delta^{k} u(t)=\delta^{k} M y(t)=M \delta^{k} y(t)=\Phi_{\tau}\left\{\left(\delta^{k} y\right)(t \tau)\right\}
$$

Substituting $t=1$ in this equality, we obtain

$$
\delta^{k} u(1)=\Phi_{\tau}\left\{\left(\delta^{k} y\right)(\tau)\right\}=0 .
$$

Thus u is a solution of the ordinary Cauchy problem

$$
P(\delta) u=0, \quad \delta^{k} u(1)=0, k=0,1,2, \ldots, n-1,
$$

which has the unique solution $u=0$, i.e. $M y=0$, which means that y is mean-periodic.

Conversely, let $P(\delta) y=f$ with a mean-periodic solution y, i.e. $M y=\Phi_{\tau}\{y(t \tau)\}=0$. Applying δ^{k}, one has

$$
0=\delta^{k} M y=M \delta^{k} y
$$

which means that $\delta^{k} y$ is mean-periodic for every $k \geq 0$. This can be written also as

$$
\Phi_{\tau}\left\{\left(\delta^{k} y\right)(t \tau)\right\}=0 .
$$

Finally, we substitute $t=1$ and get

$$
\Phi_{\tau}\left\{\left(\delta^{k} y\right)(\tau)\right\}=\Phi\left\{\delta^{k} y\right\}=0, k=0,1,2, \ldots, n-1 .
$$

Now we may assert that the problem of solving the Euler equations in mean-periodic functions is equivalent to solving the algebraic problem $P(S) y=f$ in \mathfrak{M}.

Its formal solution in \mathfrak{M} is

$$
\begin{equation*}
y=\frac{1}{P(S)} f \tag{13}
\end{equation*}
$$

provided $P(S)$ is non-divisor of zero.
Theorem $6 P(S)$ is a non-divisor of 0 iff $\Phi_{\tau}\left\{\tau^{\lambda}\right\} \neq 0$ for each zero of the polynomial $P(\lambda)$, i.e. if $P(\lambda)=0$ implies $\Phi_{\tau}\left\{\tau^{\lambda}\right\} \neq 0$.

Proof: Let $P(\lambda)=a_{0}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right), a_{0} \neq 0 . P(S)$ is a divisor of 0 if and only if at least one of the multipliers $S-\lambda_{k}$ is a divisor of zero. Let $S-\lambda$ be a divisor of zero, i.e. there exists an element (convolution fraction) $\frac{u}{v} \in \mathfrak{M}$, such that $(S-\lambda) \frac{u}{v}=0$. The last equality is equivalent to

$$
(1-\lambda L) u=0
$$

i.e. $\delta u-\lambda u=0$, with the solution $u=C t^{\lambda}, C \neq 0$ and $\Phi\{u\}=0$, i.e. $\Phi_{\tau}\left\{\tau^{\lambda}\right\}=0$.

An extension of the Duhamel principle to nonlocal Cauchy problems for Euler equations

Assuming that $\frac{1}{S P(S)}=G(t) \in C^{(n)}\left(\mathbb{R}_{+}\right)$, we see that G is the solution of the nonlocal Cauchy boundary value problem:

$$
P(\delta) G=1, \quad \Phi\left\{\delta^{k} G\right\}=0, \quad k=0,1,2, \ldots, n-1 .
$$

From the equation

$$
a_{0} \delta^{n} G+a_{1} \delta^{n-1} G+\ldots+a_{n} G=1
$$

we obtain $a_{0} \Phi\left\{\delta^{n} G\right\}=1$, or

$$
\begin{equation*}
\Phi\left\{\delta^{n} G\right\}=\frac{1}{a_{0}} \tag{14}
\end{equation*}
$$

Then the formal representation (13) becomes

$$
y=\delta(G * f)=\delta(f * G)=(\delta f) * G
$$

This is an extension of the classical Duhamel principle to nonlocal Cauchy problems for Euler equations.

Heaviside algorithm for interpreting $\frac{1}{P(S)}$ as a function

Let $P(S)$ be a non-divisor of zero in \mathfrak{M}. First, decompose $\frac{1}{P(S)}$ in simple fractions. Factorizing $P(S)$ as

$$
P(S)=a_{0}\left(S-\mu_{1}\right)^{k_{1}}\left(S-\mu_{2}\right)^{k_{2}} \ldots\left(S-\mu_{l}\right)^{k_{l}}, \quad k_{1}+k_{2}+\ldots+k_{l}=n,
$$

we have

$$
\frac{1}{P(S)}=\sum_{j=1}^{l} \sum_{m=1}^{k_{j}} \frac{A_{j m}}{\left(S-\mu_{j}\right)^{m}}
$$

where $A_{j m}$ are constants. It remains to replace each fraction $\frac{A_{j m}}{\left(S-\mu_{j}\right)^{m}}$ by the explicit expressions given in Theorem 3.
Example: Let all the zeros of the polynomial P be simple, i.e. $P(\mu)=a_{0}\left(\mu-\mu_{1}\right)\left(\mu-\mu_{2}\right) \ldots\left(\mu-\mu_{n}\right)$ with $\mu_{\nu} \neq \mu_{\kappa}$ for $\nu \neq \kappa$. Then

$$
\frac{1}{P(S)}=\sum_{k=1}^{n} \frac{1}{P^{\prime}\left(\mu_{k}\right)} \frac{1}{S-\mu_{k}}=\sum_{k=1}^{n} \frac{t^{\mu_{k}}}{P^{\prime}\left(\mu_{k}\right) E\left(\mu_{k}\right)} .
$$

As a particular case, let us take the functional

$$
\Phi\{f\}=\frac{f(1)+f(e)}{2}
$$

Then $E(\lambda)=\frac{1+e^{\lambda}}{2}$ and $\frac{1}{S-\lambda}=\frac{2 t^{\lambda}}{1+e^{\lambda}}$. We can write

$$
G(t)=\frac{1}{P(S)}=\sum_{k=1}^{n} \frac{2 t^{\mu_{k}}}{P^{\prime}\left(\mu_{k}\right)\left(1+e^{\mu_{k}}\right)}
$$

and then the solution of the equation $P(\delta) y(t)=f(t)$ with boundary value conditions $\delta^{k} y(1)+\delta^{k} y(e)=0, k=0,1, \ldots, n-1$, is

$$
y=G * f=\sum_{k=1}^{n} \frac{2}{P^{\prime}\left(\mu_{k}\right)\left(1+e^{\mu_{k}}\right)}\left(t^{\mu_{k}} * f\right),
$$

where

$$
t^{\mu_{k}} * f=\frac{1}{2}\left\{\int_{1}^{t}\left(\frac{t}{\tau}\right)^{\mu_{k}} f(\tau) \frac{d \tau}{\tau}+\int_{e}^{t}\left(\frac{t e}{\tau}\right)^{\mu_{k}} f(\tau) \frac{d \tau}{\tau}\right\}
$$

One can proceed in a similar way in the case of multiple zeros of $P(\mu)$. The only difference is that, according to (10), any fraction of the form $\frac{1}{(S-\mu)^{l}}$ should be replaced by the function

$$
\frac{1}{(l-1)!} \frac{d^{l-1}}{d \mu^{l-1}}\left(\frac{t^{\mu}}{E(\mu)}\right) .
$$

As for the resonance case, then additional considerations are needed. They are left for a next publication.

References

[1] J. Delsarte, Les fonctions moyenne-périodiques, J. Math. Pures Appl., 14(1935), 403-453.
[2] I. H. Dimovski, V. Z. Hristov, Commutants of the Euler operator and corresponding mean-periodic functions, Integral Transforms and Special Functions, 18(2007), No. 2, 117-131.
[3] I. H. Dimovski, K. A. Skórnik, Operational calculi for the Euler operator, Fractional Calculus and Applied Analysis, 9(2006), 89-100.
[4] L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. Math., 48(1947), 857-929.

1,2 Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
"Acad. G. Bonchev" Str., Block 8
1113 Sofia, BULGARIA
e-mails: ${ }^{1}$ dimovski@math.bas.bg , ${ }^{2}$ valhrist@bas.bg
${ }^{3}$ Department of Mathematics, Faculty of Sciences of Tunis
University of Tunis - EL Manar 2092 Tunis, TUNISIA
e-mail: mohamed.sif@fst.rnu.tn

