Mean-periodic Solutions of Euler Differential Equations

Ivan H. Dimovski¹, Valentin Z. Hristov² and Mohamed Sifi³

Key words and phrases: Euler operator, mean-periodic function, resolvent operator, commutant, Euler convolution.

AMS subject classification: Primary: 44A40; Secondary: 44A35

Abstract

Let $\Phi: C(\mathbb{R}_+) \to \mathbb{C}$ be a given nonzero linear functional. We are looking for mean-periodic solutions for the Euler operator $\delta = t \frac{d}{dt}$ and the functional Φ of equations of the form $P(\delta)y(t) = f(t)$ with a polynomial P. A function f is called meanperiodic with respect to Φ iff $\Phi_{\tau} \{f(t\tau)\} = 0$. A necessary condition for existence of such a solution is the requirement the right hand side f to be mean-periodic. Then, the problem is equivalent to the following nonlocal Cauchy problem: $P(\delta)y(t) = f(t), \Phi \{\delta^k y\} = 0,$ $k = 0, 1, \ldots, \deg P - 1$. The solution of the last problem has the following Duhamel-type form $y = \delta(G * f)$, where G is the solution of the nonlocal Cauchy problem for $f(t) \equiv 1$ and * denotes the convolution product in $C(\mathbb{R}_+)$

$$(f * g)(t) = \Phi_{\tau} \left\{ \int_{\tau}^{t} f\left(\frac{t\tau}{\sigma}\right) g(\sigma) \frac{d\sigma}{\sigma} \right\}.$$

1. Mean-periodic functions for the Euler operator with respect to a functional

As it is well-known, the notion of mean-periodic function for the differentiation operator $\frac{d}{dt}$ with respect to a linear functional $\Phi : C(\mathbb{R}) \to \mathbb{C}$ is introduced in 1935 by J. Delsarte [1]. An extensive study of it is proposed in 1947 in the L. Schwartz' memoir [4].

Let us remind this basic definition.

Definition 1 A function $f \in C(\mathbb{R})$ is said to be mean-periodic with respect to a linear functional $\Phi : C(\mathbb{R}) \to \mathbb{C}$ iff $\Phi_{\tau}\{f(t+\tau)\} = 0$ identically. In Dimovski and Skórnik [3] an operational method is considered for solving linear ordinary differential equations with constant coefficients in mean-periodic functions with respect to a given functional Φ .

Here we extend this approach to Euler equations.

Definition 2 A function $f \in C(\mathbb{R}_+) \to \mathbb{C}$, where $\mathbb{R}_+ = (0, \infty)$, is said to be mean-periodic for the Euler operator $\delta = t \frac{d}{dt}$ with respect to a linear functional $\Phi : C(\mathbb{R}_+) \to \mathbb{C}$ iff $\Phi_\tau \{f(t\tau)\} = 0$ identically.

In the sequel a basic role is played by the following convolution product introduced in Dimovski and Skórnik [3] and Dimovski and Hristov [2]:

Theorem 1 ([3]). The operation

$$(f * g)(t) = \Phi_{\tau} \left\{ \int_{\tau}^{t} f\left(\frac{t\tau}{\sigma}\right) g(\sigma) \frac{d\sigma}{\sigma} \right\}$$
(1)

converts $C(\mathbb{R}_+)$ into a commutative and associative algebra.

For the sake of completeness we supply a sketch of the proof. The commutativity is almost obvious. Let us verify the associativity. It is possible to do this by a direct check, but an easier way is to verify it at first for polynomials and then to use approximation argument.

Let $f(t) = t^{\mu}$ and $g(t) = t^{\nu}$. Then

$$\{t^{\mu}\} * \{t^{\nu}\} = \Phi_{\tau} \left\{ \int_{\tau}^{t} \frac{(t\tau)^{\mu}}{\sigma^{\mu}} \sigma^{\nu} \frac{d\sigma}{\sigma} \right\} = t^{\mu} \Phi_{\tau} \left\{ \tau^{\mu} \int_{\tau}^{t} \sigma^{\nu-\mu-1} d\sigma \right\} =$$
$$= t^{\mu} \Phi_{\tau} \left\{ \tau^{\mu} \frac{t^{\nu-\mu} - \tau^{\nu-\mu}}{\nu - \mu} \right\} = \frac{E(\mu)t^{\nu} - E(\nu)t^{\mu}}{\nu - \mu}$$

with $E(\lambda) = \Phi_{\tau} \{\tau^{\lambda}\}$. Using this expression, it follows that

$$(\{t^{\mu}\} * \{t^{\nu}\}) * \{t^{\varkappa}\} = \{t^{\mu}\} * (\{t^{\nu}\} * \{t^{\varkappa}\})$$
(2)

since both sides of (2) have one and the same symmetric form

$$t^{\mu}\frac{E(\nu)E(\varkappa)}{(\mu-\nu)(\mu-\varkappa)} + t^{\nu}\frac{E(\varkappa)E(\mu)}{(\nu-\varkappa)(\nu-\mu)} + t^{\varkappa}\frac{E(\mu)E(\nu)}{(\varkappa-\mu)(\varkappa-\nu)}$$

with respect to μ, ν , and \varkappa . Then, (2), differentiated m, n, and k times with respect to μ, ν , and \varkappa correspondingly, gives

$$(\{t^{\mu}(\ln t)^{m}\} * \{t^{\nu}(\ln t)^{n}\}) * \{t^{\varkappa}(\ln t)^{k}\} = \{t^{\mu}(\ln t)^{m}\} * (\{t^{\nu}(\ln t)^{n}\} * \{t^{\varkappa}(\ln t)^{k}\}).$$

Next, passing to the limits $\mu \to +0, \nu \to +0$ and $\varkappa \to +0$, one gets

$$(\{(\ln t)^m\} * \{(\ln t)^n\}) * \{(\ln t)^k\} = \{(\ln t)^m\} * (\{(\ln t)^n\} * \{(\ln t)^k\}).$$

But the bilinearity of (1) implies for arbitrary polynomials P, Q and R

$$(\{P(\ln t)\} * \{Q(\ln t)\}) * \{R(\ln t)\} = \{P(\ln t)\} * (\{Q(\ln t)\} * \{R(\ln t)\})$$

To finish the proof, note that if $t \in \mathbb{R}_+$, then $\ln t$ covers the whole real line \mathbb{R} . Then Weierstrass' theorem allows any function in $C(\mathbb{R}_+)$ to be approximated almost uniformly by polynomials of $\ln t, t > 0$, i.e. by a sequence uniformly convergent to the function on each segment $[a, b] \subset \mathbb{R}_+$. Due to the continuity of the functional Φ the desired identity (f * g) * h = f * (g * h) holds for every $f, g, h \in C(\mathbb{R}_+)$.

Further, we restrict the functional Φ by $\Phi\{1\} \neq 0$ and, without essential loss of generality, we may assume $\Phi\{1\} = 1$.

Let $L: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ be the right inverse operator of $\delta = t \frac{d}{dt}$, defined by the boundary value condition $\Phi\{Lf\} = 0$. It is easy to find Lf(t) explicitly:

$$Lf(t) = \int_{1}^{t} \frac{f(\tau)}{\tau} d\tau - \Phi_{\sigma} \left\{ \int_{1}^{\sigma} \frac{f(\tau)}{\tau} d\tau \right\}.$$
 (3)

Moreover, Lf has the convolution representation

$$Lf = \{1\} * f$$

and $L^n f = \{Q_n(\ln t)\} * f$, where Q_n is a polynomial of degree exactly n.

Let MP_{Φ}^{δ} denote the space of the mean-periodic functions for δ with respect to Φ .

Lemma 1 If $f \in MP_{\Phi}^{\delta}$, then $Lf \in MP_{\Phi}^{\delta}$.

Proof: Let $f \in MP_{\Phi}^{\delta}$, i.e. $\Phi_{\tau}\{f(t\tau)\} = 0$. Consider the function $\varphi(t) = \Phi_{\eta}\{(Lf)(t\eta)\}$. Then

$$\delta\varphi(t) = \delta\Phi_{\eta}\{(Lf)(t\eta)\} = \Phi_{\eta}\{\delta(Lf)(t\eta)\} = \Phi_{\eta}\{(\delta L)f(t\eta)\} = \Phi_{\eta}\{f(t\eta)\} = 0,$$

since f is mean-periodic. Then $t \frac{d\varphi(t)}{dt} = 0$ and t > 0 imply $\varphi(t) \equiv C$, where C is a constant. In order to determine C, let us take t = 1. Then

$$\varphi(1) = \Phi_{\eta} \{ Lf(\eta) \} = \Phi_{\eta} \left\{ \int_{1}^{\eta} \frac{f(\tau)}{\tau} d\tau - \Phi_{\sigma} \left\{ \int_{1}^{\sigma} \frac{f(\tau)}{\tau} d\tau \right\} \right\} =$$
$$= \Phi_{\eta} \left\{ \int_{1}^{\eta} \frac{f(\tau)}{\tau} d\tau \right\} - \Phi_{\sigma} \left\{ \int_{1}^{\sigma} \frac{f(\tau)}{\tau} d\tau \right\} \Phi\{1\} = 0,$$
means $Lf \in MP^{\delta}$

which means $Lf \in MP_{\Phi}^{\delta}$.

Corollary 1 Let $P(\lambda)$ be a polynomial. If $f \in MP_{\Phi}^{\delta}$, then

$$\{P(\ln t)\} * f \in MP_{\Phi}^{\delta}.$$

Indeed, if $P(\lambda) = \sum_{k=0}^{\deg P} \beta_k \lambda^k$, then λ_k can be expressed as linear combination $\lambda^k = \sum_{j=0}^k \gamma_j Q_j(\lambda)$, where $Q_j(\lambda)$ are the polynomials from the proof of Theorem 1. Hence

$$\{P(\ln t)\} * = \left\{ \sum_{k=0}^{\deg P} \nu_k Q_k(\ln t) \right\} * = \sum_{k=0}^{\deg P} \nu_k L^k$$

with some constants ν_k . Then the lemma implies $\{P(\ln t)\} * f \in MP_{\Phi}^{\delta}$ provided $f \in MP_{\Phi}^{\delta}$.

Theorem 2 MP_{Φ}^{δ} is an ideal in $(C(\mathbb{R}_+), *)$.

Proof: Let $f \in MP_{\Phi}^{\delta}$ and $g \in C(\mathbb{R}_+)$. If $P(\lambda)$ is an arbitrary polynomial, it follows from Lemma 1 that $P(\ln t) * f \in MP_{\Phi}^{\delta}$. According to Weierstrass' approximation theorem, we can find a polynomial sequence $\{P_n\}_{n=1}^{\infty}$, for which $P_n(x) \Rightarrow g(e^x)$ on each segment $[a, b] \subset \mathbb{R} = (-\infty, \infty)$. Then $P_n(\ln t) \Rightarrow g(t)$ on each segment $[\alpha, \beta] \subset \mathbb{R}_+ = (0, \infty)$. But from Corollary 1

$$P_n(\ln t) * f \in MP_{\Phi}^{\delta}, \quad \forall n \in \mathbb{N}.$$

Since the space MP_{Φ}^{δ} is closed with respect to the uniform convergence, the limit g * f = f * g is mean-periodic, too.

2. Nonlocal Cauchy problems for Euler equations

Let $\Phi : C(\mathbb{R}_+) \to \mathbb{C}$ be a linear functional. According to Riesz-Markov theorem Φ has a representation of the form $\Phi\{f\} = \int_{\alpha}^{\beta} f(t)d\gamma(t)$, where $0 < \alpha < \beta < +\infty$ and γ is a function with bounded variation.

Definition 3 $P(\lambda)$ be a polynomial with deg $P \ge 1$. The boundary value problem

$$P(\delta)y = f,\tag{4}$$

$$\Phi\{\delta^{k}y\} = \alpha_{k}, \quad k = 0, 1, 2, \dots, \deg P - 1$$
(5)

with given $\alpha_k \in \mathbb{C}$ is said to be a nonlocal Cauchy problem for the Euler equation (4).

In [3] an operational method for solution of such nonlocal boundary value problems is developed. Here we reproduce the basic elements of this approach.

First, a Mikusiński-type operational calculus for the right inverse operator L, defined by (3), is developed. Without any loss of generality we may assume that $\Phi\{1\} = 1$. Then (3) becomes

$$Lf(t) = \int_{1}^{t} \frac{f(\tau)}{\tau} d\tau - \Phi_{\sigma} \left\{ \int_{1}^{\sigma} \frac{f(\tau)}{\tau} d\tau \right\}.$$
 (6)

In fact, L is the convolution operator $L = \{1\}^*$, i.e. $Lf = \{1\}^*f$, in the convolution algebra $(C(\mathbb{R}_+), *)$ with the multiplication (1).

Let \mathfrak{M} be the ring of convolution fractions of the form $\frac{f}{g}$ where $f \in C(\mathbb{R}_+)$ and $g \in C(\mathbb{R}_+)$ but g being a non-divisor of zero in $(C(\mathbb{R}_+), *)$.

Then the operator L can be identified with the constant function $\{1\}$, i.e. $L = \{1\}$. By 1 we will denote the unit element of \mathfrak{M} and hence $1 \neq \{1\}$. The basic element of the operational calculus we are to develop, is played by the element $S = \frac{1}{L}$ which may be called the *algebraic Euler operator*.

Lemma 2 If $f \in C^1(\mathbb{R}_+)$, then

$$\delta f = Sf - \Phi\{f\},\tag{7}$$

where Sf is the product S.f in \mathfrak{M} and $\Phi\{f\}$ is to be understood as a "numerical" operator, i.e. as the convolution fraction $\frac{\{\Phi\{f\}\}}{\{1\}}$.

Proof: By an immediate check it is seen that

$$L(\delta f)(t) = f(t) - f(1) - \Phi_{\tau} \{ f(\tau) - f(1) \} = f(t) - \Phi \{ f \}.$$

This identity can be written as

$$L(\delta f) = f - \Phi\{f\}.L.$$

Applying δ to both sides, we obtain (7).

Corollary 2 For arbitrary $k \in \mathbb{N}$ and $f \in C^k(\mathbb{R}_+)$ we have

$$\delta^{k} f = S^{k} f - \Phi\{f\} S^{k-1} - \Phi\{\delta f\} S^{k-2} - \dots - \Phi\{\delta^{k-1} f\}.$$
(8)

The proof proceeds by induction using (7).

Theorem 3 Let $\lambda \in \mathbb{C}$ be such that $E\{\lambda\} = \Phi_{\tau}\{\tau^{\lambda}\} \neq 0$. Then

$$\frac{1}{S-\lambda} = \left\{ \frac{t^{\lambda}}{E(\lambda)} \right\}$$
(9)

and

$$\frac{1}{(S-\lambda)^k} = \left\{ \frac{1}{(k-1)!} \frac{d^{k-1}}{d\lambda^{k-1}} \left(\frac{t^\lambda}{E(\lambda)}\right) \right\}.$$
 (10)

The proof is given in [3]. In fact

$$\frac{1}{S-\lambda} = L_{\lambda},$$

where L_{λ} is the resolvent operator, for which $L_{\lambda}f(x) = y$ is the solution of the boundary value problem

$$\delta y - \lambda y = f, \quad \Phi\{y\} = 0.$$

It has the form

$$L_{\lambda}f(t) = \int_{1}^{t} \left(\frac{t}{\tau}\right)^{\lambda} f(\tau)\frac{d\tau}{\tau} - \frac{t^{\lambda}}{E(\lambda)}\Phi_{\sigma}\left\{\int_{1}^{\sigma} \left(\frac{\sigma}{\tau}\right)^{\lambda} f(\tau)\frac{d\tau}{\tau}\right\}.$$

 L_{λ} can be represented as the convolution operator

$$L_{\lambda}f = \left\{\frac{t^{\lambda}}{E(\lambda)}\right\} * f.$$

Theorem 4 Let $P(\lambda) = a_0\lambda^n + a_1\lambda^{n-1} + \ldots + a_{n-1}\lambda + a_n$ be a polynomial of degree n. Then the boundary value problem (4)-(5) is equivalent in M to the linear algebraic equation

$$P(S)y = f + Q(S), \tag{11}$$

where

$$Q(S) = \sum_{k=0}^{n-1} \sum_{m=0}^{n-k-1} a_k \alpha_m S^{n-k-m-1} = \sum_{\mu=0}^{n-1} \left(\sum_{\nu=0}^{n-\mu-1} a_\nu \alpha_{n-\mu-\nu-1} \right) S^{\mu}.$$

Proof: First, let $y \in C^n(\mathbb{R}_+)$ be a solution of (4)-(5). Then using (8) we obtain (11).

Conversely, let $y \in C^n(\mathbb{R}_+)$ satisfies (11). Let us involve the right inverse L of δ substituting $S = \frac{1}{L}$. Then, L^n , applied to both sides of (11), gives

$$L^{n}P\left(\frac{1}{L}\right)y = L^{n}f + L^{n}Q\left(\frac{1}{L}\right)$$

This can be written as

$$\widetilde{P}(L)y - \widetilde{Q}(L) = L^n f.$$
(12)

where $\tilde{P}(\lambda) = \lambda^n P\left(\frac{1}{\lambda}\right)$ and $\tilde{Q}(\lambda) = \lambda^n Q\left(\frac{1}{\lambda}\right)$ are the reciprocal polynomials of P and Q respectively. It remains to apply δ^n to both sides of (12):

$$\delta^n \widetilde{P}(L) y - \delta^n \widetilde{Q}(L) = \delta^n L^n f = f.$$

Since L is a right inverse of δ , then $\delta^n L^k = \delta^{n-k} \delta^k L^k = \delta^{n-k}$ for k = 0, 1, 2, ..., n. The first term $\delta^n \tilde{P}(L)y$ becomes $P(\delta)y$, while the second term $\delta^n \tilde{Q}(L)$ is zero due to the fact that deg $Q \leq n-1$ and there will always be at least first power of δ acting on the constant function {1}. Thus $P(\delta)y = f$ is proved.

The verification of $\Phi{\delta^k y} = \alpha_k, k = 0, 1, 2, ..., n-1$, is more complicated but again straightforward.

Theorem 5 Let $y \in MP_{\Phi}^{\delta}$ be a mean-periodic solution of the Euler differential equation $P(\delta)y = f$. Then a necessary condition for existence of such a solution is $f \in MP_{\Phi}^{\delta}$. The problem of solving this equation in MP_{Φ}^{δ} is equivalent to the nonlocal Cauchy boundary value problem (4)-(5) with the homogeneous initial conditions $\Phi\{\delta^k y\} = 0$, $k = 0, 1, 2, \ldots, \deg P - 1$.

Proof: Let y be a mean-periodic solution of (4), i.e. $\Phi_{\tau}\{y(t\tau)\} = 0$. According to Dimovski and Hristov [2] the operator $M : C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ given by $Mf(t) = \Phi_{\tau}\{y(t\tau)\}, f \in C(\mathbb{R}_+)$, belongs to the commutant of δ , i.e. $M\delta = \delta M$. Applying M to both sides of $P(\delta)y = f$ and using My(t) = 0, we get

$$Mf = MP(\delta)y = P(\delta)My = 0.$$

Hence $f \in MP_{\Phi}^{\delta}$.

Now we continue with the proof of the equivalence.

First, let $P(\delta)y = f$, $f \in MP_{\Phi}^{\delta}$, $\Phi\{\delta^k y\} = 0$, k = 0, 1, 2, ..., n - 1. Let M be the operator from the commutant of δ , which corresponds to the functional Φ as above. Consider the function u = My. We need to prove that u = 0. One has

$$\delta^k u(t) = \delta^k M y(t) = M \delta^k y(t) = \Phi_\tau \{ (\delta^k y)(t\tau) \}$$

Substituting t = 1 in this equality, we obtain

$$\delta^k u(1) = \Phi_\tau\{(\delta^k y)(\tau)\} = 0.$$

Thus u is a solution of the ordinary Cauchy problem

$$P(\delta)u = 0, \quad \delta^k u(1) = 0, k = 0, 1, 2, \dots, n-1,$$

which has the unique solution u = 0, i.e. My = 0, which means that y is mean-periodic.

Conversely, let $P(\delta)y = f$ with a mean-periodic solution y, i.e. $My = \Phi_{\tau}\{y(t\tau)\} = 0$. Applying δ^k , one has

$$0 = \delta^k M y = M \delta^k y,$$

which means that $\delta^k y$ is mean-periodic for every $k \ge 0$. This can be written also as

$$\Phi_{\tau}\{(\delta^k y)(t\tau)\} = 0$$

Finally, we substitute t = 1 and get

$$\Phi_{\tau}\{(\delta^k y)(\tau)\} = \Phi\{\delta^k y\} = 0, \ k = 0, 1, 2, \dots, n-1.$$

Now we may assert that the problem of solving the Euler equations in mean-periodic functions is equivalent to solving the algebraic problem P(S)y = f in \mathfrak{M} .

Its formal solution in \mathfrak{M} is

$$y = \frac{1}{P(S)}f\tag{13}$$

provided P(S) is non-divisor of zero.

Theorem 6 P(S) is a non-divisor of 0 iff $\Phi_{\tau}{\{\tau^{\lambda}\}} \neq 0$ for each zero of the polynomial $P(\lambda)$, i.e. if $P(\lambda) = 0$ implies $\Phi_{\tau}{\{\tau^{\lambda}\}} \neq 0$.

Proof: Let $P(\lambda) = a_0(\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n), a_0 \neq 0$. P(S) is a divisor of 0 if and only if at least one of the multipliers $S - \lambda_k$ is a divisor of zero. Let $S - \lambda$ be a divisor of zero, i.e. there exists an element (convolution fraction) $\frac{u}{v} \in \mathfrak{M}$, such that $(S - \lambda)\frac{u}{v} = 0$. The last equality is equivalent to $(1 - \lambda L)u = 0$,

i.e. $\delta u - \lambda u = 0$, with the solution $u = Ct^{\lambda}$, $C \neq 0$ and $\Phi\{u\} = 0$, i.e. $\Phi_{\tau}\{\tau^{\lambda}\} = 0$.

An extension of the Duhamel principle to nonlocal Cauchy problems for Euler equations

Assuming that $\frac{1}{SP(S)} = G(t) \in C^{(n)}(\mathbb{R}_+)$, we see that G is the solution of the nonlocal Cauchy boundary value problem:

$$P(\delta)G = 1, \qquad \Phi\{\delta^k G\} = 0, \qquad k = 0, 1, 2, \dots, n-1.$$

From the equation

$$a_0\delta^n G + a_1\delta^{n-1}G + \ldots + a_nG = 1$$

we obtain $a_0 \Phi\{\delta^n G\} = 1$, or

$$\Phi\{\delta^n G\} = \frac{1}{a_0} \tag{14}$$

Then the formal representation (13) becomes

$$y = \delta(G * f) = \delta(f * G) = (\delta f) * G.$$

This is an extension of the classical Duhamel principle to nonlocal Cauchy problems for Euler equations.

Heaviside algorithm for interpreting $\frac{1}{P(S)}$ as a function

Let P(S) be a non-divisor of zero in \mathfrak{M} . First, decompose $\frac{1}{P(S)}$ in simple fractions. Factorizing P(S) as

$$P(S) = a_0(S - \mu_1)^{k_1}(S - \mu_2)^{k_2} \dots (S - \mu_l)^{k_l}, \quad k_1 + k_2 + \dots + k_l = n,$$

we have

$$\frac{1}{P(S)} = \sum_{j=1}^{l} \sum_{m=1}^{k_j} \frac{A_{jm}}{(S - \mu_j)^m},$$

where A_{jm} are constants. It remains to replace each fraction $\frac{A_{jm}}{(S-\mu_j)^m}$ by the explicit expressions given in Theorem 3.

Example: Let all the zeros of the polynomial P be simple, i.e. $P(\mu) = a_0(\mu - \mu_1)(\mu - \mu_2) \dots (\mu - \mu_n)$ with $\mu_{\nu} \neq \mu_{\kappa}$ for $\nu \neq \kappa$. Then

$$\frac{1}{P(S)} = \sum_{k=1}^{n} \frac{1}{P'(\mu_k)} \frac{1}{S - \mu_k} = \sum_{k=1}^{n} \frac{t^{\mu_k}}{P'(\mu_k)E(\mu_k)}$$

As a particular case, let us take the functional

$$\Phi\{f\} = \frac{f(1) + f(e)}{2}.$$

Then $E(\lambda) = \frac{1+e^{\lambda}}{2}$ and $\frac{1}{S-\lambda} = \frac{2t^{\lambda}}{1+e^{\lambda}}$. We can write

$$G(t) = \frac{1}{P(S)} = \sum_{k=1}^{n} \frac{2t^{\mu_k}}{P'(\mu_k)(1+e^{\mu_k})}$$

and then the solution of the equation $P(\delta)y(t) = f(t)$ with boundary value conditions $\delta^k y(1) + \delta^k y(e) = 0, \ k = 0, 1, \dots, n-1$, is

$$y = G * f = \sum_{k=1}^{n} \frac{2}{P'(\mu_k)(1+e^{\mu_k})} (t^{\mu_k} * f),$$

where

$$t^{\mu_k} * f = \frac{1}{2} \left\{ \int_1^t \left(\frac{t}{\tau}\right)^{\mu_k} f(\tau) \frac{d\tau}{\tau} + \int_e^t \left(\frac{te}{\tau}\right)^{\mu_k} f(\tau) \frac{d\tau}{\tau} \right\}$$

One can proceed in a similar way in the case of multiple zeros of $P(\mu)$. The only difference is that, according to (10), any fraction of the form $\frac{1}{(S-\mu)^l}$ should be replaced by the function

$$\frac{1}{(l-1)!} \frac{d^{l-1}}{d\mu^{l-1}} \left(\frac{t^{\mu}}{E(\mu)}\right).$$

As for the resonance case, then additional considerations are needed. They are left for a next publication.

References

- J. Delsarte, Les fonctions moyenne-périodiques, J. Math. Pures Appl., 14(1935), 403-453.
- [2] I. H. Dimovski, V. Z. Hristov, Commutants of the Euler operator and corresponding mean-periodic functions, *Integral Transforms and Special Functions*, 18(2007), No. 2, 117-131.
- [3] I. H. Dimovski, K. A. Skórnik, Operational calculi for the Euler operator, Fractional Calculus and Applied Analysis, 9(2006), 89-100.

[4] L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. Math., 48(1947), 857-929.

^{1,2} Institute of Mathematics and Informatics Bulgarian Academy of Sciences
"Acad. G. Bonchev" Str., Block 8
1113 Sofia, BULGARIA
e-mails: ¹ dimovski@math.bas.bg , ² valhrist@bas.bg

³ Department of Mathematics, Faculty of Sciences of Tunis University of Tunis - EL Manar 2092 Tunis, TUNISIA e-mail: mohamed.sifi@fst.rnu.tn