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Abstract

Let Φ : C(R+) → C be a given nonzero linear functional. We are
looking for mean-periodic solutions for the Euler operator

δ = t
d

dt
and the functional Φ of equations of the form

P (δ)y(t) = f(t) with a polynomial P . A function f is called mean-
periodic with respect to Φ iff Φτ {f(tτ} = 0. A necessary condi-
tion for existence of such a solution is the requirement the right hand
side f to be mean-periodic. Then, the problem is equivalent to the
following nonlocal Cauchy problem: P (δ)y(t) = f(t), Φ

{
δky
}

= 0,
k = 0, 1, . . . ,deg P − 1. The solution of the last problem has the fol-
lowing Duhamel-type form y = δ(G∗f), where G is the solution of the
nonlocal Cauchy problem for f(t) ≡ 1 and ∗ denotes the convolution
product in C(R+)

(f ∗ g)(t) = Φτ

{∫ t

τ

f

(
tτ

σ

)
g(σ)

dσ

σ

}
.

1. Mean-periodic functions for the Euler operator with respect to

a functional

As it is well-known, the notion of mean-periodic function for the differ-

entiation operator
d

dt
with respect to a linear functional Φ : C(R) → C is

introduced in 1935 by J. Delsarte [1]. An extensive study of it is proposed
in 1947 in the L. Schwartz’ memoir [4].

Let us remind this basic definition.

Definition 1 A function f ∈ C(R) is said to be mean-periodic with respect

to a linear functional Φ : C(R) → C iff Φτ{f(t + τ)} = 0 identically.
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In Dimovski and Skórnik [3] an operational method is considered for
solving linear ordinary differential equations with constant coefficients in
mean-periodic functions with respect to a given functional Φ.

Here we extend this approach to Euler equations.

Definition 2 A function f ∈ C(R+) → C, where R+ = (0,∞), is said

to be mean-periodic for the Euler operator δ = t
d

dt
with respect to a linear

functional Φ : C(R+) → C iff Φτ{f(tτ)} = 0 identically.

In the sequel a basic role is played by the following convolution product
introduced in Dimovski and Skórnik [3] and Dimovski and Hristov [2]:

Theorem 1 ([3]). The operation

(f ∗ g)(t) = Φτ

{∫ t

τ

f

(
tτ

σ

)
g(σ)

dσ

σ

}
(1)

converts C(R+) into a commutative and associative algebra.

For the sake of completeness we supply a sketch of the proof. The com-
mutativity is almost obvious. Let us verify the associativity. It is possible
to do this by a direct check, but an easier way is to verify it at first for
polynomials and then to use approximation argument.

Let f(t) = tµ and g(t) = tν . Then

{tµ} ∗ {tν} = Φτ

{∫ t

τ

(tτ)µ

σµ
σν dσ

σ

}
= tµΦτ

{
τµ

∫ t

τ

σν−µ−1dσ

}
=

= tµΦτ

{
τµ tν−µ − τ ν−µ

ν − µ

}
=

E(µ)tν − E(ν)tµ

ν − µ

with E(λ) = Φτ{τ
λ}. Using this expression, it follows that

({tµ} ∗ {tν}) ∗ {tκ} = {tµ} ∗ ({tν} ∗ {tκ}) (2)

since both sides of (2) have one and the same symmetric form

tµ
E(ν)E(κ)

(µ − ν)(µ − κ)
+ tν

E(κ)E(µ)

(ν − κ)(ν − µ)
+ tκ

E(µ)E(ν)

(κ − µ)(κ − ν)
.

with respect to µ, ν, and κ. Then, (2), differentiated m,n, and k times with
respect to µ, ν, and κ correspondingly, gives

({tµ(ln t)m}∗{tν(ln t)n})∗{tκ(ln t)k} = {tµ(ln t)m}∗({tν(ln t)n}∗{tκ(ln t)k}).
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Next, passing to the limits µ → +0, ν → +0 and κ → +0, one gets

({(ln t)m} ∗ {(ln t)n}) ∗ {(ln t)k} = {(ln t)m} ∗ ({(ln t)n} ∗ {(ln t)k}).

But the bilinearity of (1) implies for arbitrary polynomials P,Q and R

({P (ln t)} ∗ {Q(ln t)}) ∗ {R(ln t)} = {P (ln t)} ∗ ({Q(ln t)} ∗ {R(ln t)}).

To finish the proof, note that if t ∈ R+, then ln t covers the whole real line R.
Then Weierstrass’ theorem allows any function in C(R+) to be approximated
almost uniformly by polynomials of ln t, t > 0, i.e. by a sequence uniformly
convergent to the function on each segment [a, b] ⊂ R+. Due to the continuity
of the functional Φ the desired identity (f ∗g)∗h = f ∗ (g ∗h) holds for every
f, g, h ∈ C(R+).

Further, we restrict the functional Φ by Φ{1} 6= 0 and, without essential
loss of generality, we may assume Φ{1} = 1.

Let L : C(R+) → C(R+) be the right inverse operator of δ = t
d

dt
, de-

fined by the boundary value condition Φ{Lf} = 0. It is easy to find Lf(t)
explicitly:

Lf(t) =

∫ t

1

f(τ)

τ
dτ − Φσ

{∫ σ

1

f(τ)

τ
dτ

}
. (3)

Moreover, Lf has the convolution representation

Lf = {1} ∗ f

and Lnf = {Qn(ln t)} ∗ f , where Qn is a polynomial of degree exactly n.
Let MP δ

Φ denote the space of the mean-periodic functions for δ with
respect to Φ.

Lemma 1 If f ∈ MP δ
Φ, then Lf ∈ MP δ

Φ.

Proof: Let f ∈ MP δ
Φ, i.e. Φτ{f(tτ)} = 0. Consider the function ϕ(t)

= Φη{(Lf)(tη)}. Then

δϕ(t) = δΦη{(Lf)(tη)} = Φη{δ(Lf)(tη)} = Φη{(δL)f(tη)} = Φη{f(tη)} = 0,

since f is mean-periodic. Then t
dϕ(t)

dt
= 0 and t > 0 imply ϕ(t) ≡ C, where

C is a constant. In order to determine C, let us take t = 1. Then

ϕ(1) = Φη{Lf(η)} = Φη

{∫ η

1

f(τ)

τ
dτ − Φσ

{∫ σ

1

f(τ)

τ
dτ

}}
=

= Φη

{∫ η

1

f(τ)

τ
dτ

}
− Φσ

{∫ σ

1

f(τ)

τ
dτ

}
Φ{1} = 0,

which means Lf ∈ MP δ
Φ.
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Corollary 1 Let P (λ) be a polynomial. If f ∈ MP δ
Φ, then

{P (ln t)} ∗ f ∈ MP δ
Φ.

Indeed, if P (λ) =
∑deg P

k=0 βkλ
k, then λk can be expressed as linear combi-

nation λk =
∑k

j=0 γjQj(λ), where Qj(λ) are the polynomials from the proof
of Theorem 1. Hence

{P (ln t)}∗ =

{
deg P∑

k=0

νkQk(ln t)

}
∗ =

deg P∑

k=0

νkL
k

with some constants νk. Then the lemma implies {P (ln t)} ∗ f ∈ MP δ
Φ

provided f ∈ MP δ
Φ.

Theorem 2 MP δ
Φ is an ideal in (C(R+), ∗).

Proof: Let f ∈ MP δ
Φ and g ∈ C(R+). If P (λ) is an arbitrary polynomial,

it follows from Lemma 1 that P (ln t) ∗ f ∈ MP δ
Φ. According to Weier-

strass’ approximation theorem, we can find a polynomial sequence {Pn}
∞

n=1,
for which Pn(x) ⇉ g(ex) on each segment [a, b] ⊂ R = (−∞,∞). Then
Pn(ln t) ⇉ g(t) on each segment [α, β] ⊂ R+ = (0,∞). But from Corollary 1

Pn(ln t) ∗ f ∈ MP δ
Φ, ∀n ∈ N.

Since the space MP δ
Φ is closed with respect to the uniform convergence, the

limit g ∗ f = f ∗ g is mean-periodic, too.

2. Nonlocal Cauchy problems for Euler equations

Let Φ : C(R+) → C be a linear functional. According to Riesz-Markov

theorem Φ has a representation of the form Φ{f} =
∫ β

α
f(t)dγ(t), where

0 < α < β < +∞ and γ is a function with bounded variation.

Definition 3 P (λ) be a polynomial with deg P ≥ 1. The boundary value

problem

P (δ)y = f, (4)

Φ{δky} = αk, k = 0, 1, 2, . . . , deg P − 1 (5)

with given αk ∈ C is said to be a nonlocal Cauchy problem for the Euler

equation (4).
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In [3] an operational method for solution of such nonlocal boundary value
problems is developed. Here we reproduce the basic elements of this ap-
proach.

First, a Mikusiński-type operational calculus for the right inverse operator
L, defined by (3), is developed. Without any loss of generality we may assume
that Φ{1} = 1. Then (3) becomes

Lf(t) =

∫ t

1

f(τ)

τ
dτ − Φσ

{∫ σ

1

f(τ)

τ
dτ

}
. (6)

In fact, L is the convolution operator L = {1}∗, i.e. Lf = {1} ∗ f , in the
convolution algebra (C(R+), ∗) with the multiplication (1).

Let M be the ring of convolution fractions of the form
f

g
where f ∈ C(R+)

and g ∈ C(R+) but g being a non-divisor of zero in (C(R+), ∗).
Then the operator L can be identified with the constant function {1}, i.e.

L = {1}. By 1 we will denote the unit element of M and hence 1 6= {1}.
The basic element of the operational calculus we are to develop, is played by

the element S =
1

L
which may be called the algebraic Euler operator.

Lemma 2 If f ∈ C1(R+), then

δf = Sf − Φ{f}, (7)

where Sf is the product S.f in M and Φ{f} is to be understood as a “nu-

merical” operator, i.e. as the convolution fraction
{Φ{f}}

{1}
.

Proof: By an immediate check it is seen that

L(δf)(t) = f(t) − f(1) − Φτ{f(τ) − f(1)} = f(t) − Φ{f}.

This identity can be written as

L(δf) = f − Φ{f}.L.

Applying δ to both sides, we obtain (7).

Corollary 2 For arbitrary k ∈ N and f ∈ Ck(R+) we have

δkf = Skf − Φ{f}Sk−1 − Φ{δf}Sk−2 − . . . − Φ{δk−1f}. (8)

The proof proceeds by induction using (7).
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Theorem 3 Let λ ∈ C be such that E{λ} = Φτ{τ
λ} 6= 0. Then

1

S − λ
=

{
tλ

E(λ)

}
(9)

and
1

(S − λ)k
=

{
1

(k − 1)!

dk−1

dλk−1

(
tλ

E(λ)

)}
. (10)

The proof is given in [3]. In fact

1

S − λ
= Lλ,

where Lλ is the resolvent operator, for which Lλf(x) = y is the solution of
the boundary value problem

δy − λy = f, Φ{y} = 0.

It has the form

Lλf(t) =

∫ t

1

(
t

τ

)λ

f(τ)
dτ

τ
−

tλ

E(λ)
Φσ

{∫ σ

1

(σ

τ

)λ

f(τ)
dτ

τ

}
.

Lλ can be represented as the convolution operator

Lλf =

{
tλ

E(λ)

}
∗ f.

Theorem 4 Let P (λ) = a0λ
n + a1λ

n−1 + . . . + an−1λ + an be a polynomial

of degree n. Then the boundary value problem (4)-(5) is equivalent in M to

the linear algebraic equation

P (S)y = f + Q(S), (11)

where

Q(S) =
n−1∑

k=0

n−k−1∑

m=0

akαmSn−k−m−1 =
n−1∑

µ=0

(
n−µ−1∑

ν=0

aναn−µ−ν−1

)
Sµ.

Proof: First, let y ∈ Cn(R+) be a solution of (4)-(5). Then using (8) we
obtain (11).
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Conversely, let y ∈ Cn(R+) satisfies (11). Let us involve the right inverse

L of δ substituting S =
1

L
. Then, Ln, applied to both sides of (11), gives

LnP

(
1

L

)
y = Lnf + LnQ

(
1

L

)
.

This can be written as

P̃ (L)y − Q̃(L) = Lnf. (12)

where P̃ (λ) = λnP

(
1

λ

)
and Q̃(λ) = λnQ

(
1

λ

)
are the reciprocal poly-

nomials of P and Q respectively. It remains to apply δn to both sides of
(12):

δnP̃ (L)y − δnQ̃(L) = δnLnf = f.

Since L is a right inverse of δ, then δnLk = δn−kδkLk = δn−k for k =
0, 1, 2, . . . , n. The first term δnP̃ (L)y becomes P (δ)y, while the second term

δnQ̃(L) is zero due to the fact that deg Q ≤ n−1 and there will always be at
least first power of δ acting on the constant function {1}. Thus P (δ)y = f

is proved.
The verification of Φ{δky} = αk, k = 0, 1, 2, . . . , n−1, is more complicated

but again straightforward.

Theorem 5 Let y ∈ MP δ
Φ be a mean-periodic solution of the Euler differ-

ential equation P (δ)y = f . Then a necessary condition for existence of such

a solution is f ∈ MP δ
Φ. The problem of solving this equation in MP δ

Φ is

equivalent to the nonlocal Cauchy boundary value problem (4)-(5) with the

homogeneous initial conditions Φ{δky} = 0, k = 0, 1, 2, . . . , deg P − 1.

Proof: Let y be a mean-periodic solution of (4), i.e. Φτ{y(tτ)} = 0.
According to Dimovski and Hristov [2] the operator M : C(R+) → C(R+)
given by Mf(t) = Φτ{y(tτ)}, f ∈ C(R+), belongs to the commutant of δ, i.e.
Mδ = δM . Applying M to both sides of P (δ)y = f and using My(t) = 0,
we get

Mf = MP (δ)y = P (δ)My = 0.

Hence f ∈ MP δ
Φ.

Now we continue with the proof of the equivalence.
First, let P (δ)y = f , f ∈ MP δ

Φ, Φ{δky} = 0, k = 0, 1, 2, . . . , n − 1.
Let M be the operator from the commutant of δ, which corresponds to the

7



functional Φ as above. Consider the function u = My. We need to prove
that u = 0. One has

δku(t) = δkMy(t) = Mδky(t) = Φτ{(δ
ky)(tτ)}.

Substituting t = 1 in this equality, we obtain

δku(1) = Φτ{(δ
ky)(τ)} = 0.

Thus u is a solution of the ordinary Cauchy problem

P (δ)u = 0, δku(1) = 0, k = 0, 1, 2, . . . , n − 1,

which has the unique solution u = 0, i.e. My = 0, which means that y is
mean-periodic.

Conversely, let P (δ)y = f with a mean-periodic solution y, i.e.
My = Φτ{y(tτ)} = 0. Applying δk, one has

0 = δkMy = Mδky,

which means that δky is mean-periodic for every k ≥ 0. This can be written
also as

Φτ{(δ
ky)(tτ)} = 0.

Finally, we substitute t = 1 and get

Φτ{(δ
ky)(τ)} = Φ{δky} = 0, k = 0, 1, 2, . . . , n − 1.

Now we may assert that the problem of solving the Euler equations
in mean-periodic functions is equivalent to solving the algebraic problem
P (S)y = f in M.

Its formal solution in M is

y =
1

P (S)
f (13)

provided P (S) is non-divisor of zero.

Theorem 6 P (S) is a non-divisor of 0 iff Φτ{τ
λ} 6= 0 for each zero of the

polynomial P (λ), i.e. if P (λ) = 0 implies Φτ{τ
λ} 6= 0.

Proof: Let P (λ) = a0(λ − λ1)(λ − λ2) . . . (λ − λn), a0 6= 0. P (S) is a
divisor of 0 if and only if at least one of the multipliers S − λk is a divisor of
zero. Let S −λ be a divisor of zero, i.e. there exists an element (convolution

fraction)
u

v
∈ M, such that (S − λ)

u

v
= 0. The last equality is equivalent to

(1 − λL)u = 0,

i.e. δu − λu = 0, with the solution u = Ctλ, C 6= 0 and Φ{u} = 0, i.e.
Φτ{τ

λ} = 0.
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An extension of the Duhamel principle to nonlocal Cauchy prob-

lems for Euler equations

Assuming that
1

SP (S)
= G(t) ∈ C(n)(R+), we see that G is the solution

of the nonlocal Cauchy boundary value problem:

P (δ)G = 1, Φ{δkG} = 0, k = 0, 1, 2, . . . , n − 1.

From the equation

a0δ
nG + a1δ

n−1G + . . . + anG = 1

we obtain a0Φ{δnG} = 1, or

Φ{δnG} =
1

a0

(14)

Then the formal representation (13) becomes

y = δ(G ∗ f) = δ(f ∗ G) = (δf) ∗ G.

This is an extension of the classical Duhamel principle to nonlocal Cauchy
problems for Euler equations.

Heaviside algorithm for interpreting
1

P (S)
as a function

Let P (S) be a non-divisor of zero in M. First, decompose
1

P (S)
in simple

fractions. Factorizing P (S) as

P (S) = a0(S − µ1)
k1(S − µ2)

k2 . . . (S − µl)
kl , k1 + k2 + . . . + kl = n,

we have

1

P (S)
=

l∑

j=1

kj∑

m=1

Ajm

(S − µj)m
,

where Ajm are constants. It remains to replace each fraction
Ajm

(S − µj)m
by

the explicit expressions given in Theorem 3.
Example: Let all the zeros of the polynomial P be simple, i.e.
P (µ) = a0(µ − µ1)(µ − µ2) . . . (µ − µn) with µν 6= µκ for ν 6= κ. Then

1

P (S)
=

n∑

k=1

1

P ′(µk)

1

S − µk

=
n∑

k=1

tµk

P ′(µk)E(µk)
.

9



As a particular case, let us take the functional

Φ{f} =
f(1) + f(e)

2
.

Then E(λ) =
1 + eλ

2
and

1

S − λ
=

2tλ

1 + eλ
. We can write

G(t) =
1

P (S)
=

n∑

k=1

2tµk

P ′(µk)(1 + eµk)

and then the solution of the equation P (δ)y(t) = f(t) with boundary value
conditions δky(1) + δky(e) = 0, k = 0, 1, . . . , , n − 1, is

y = G ∗ f =
n∑

k=1

2

P ′(µk)(1 + eµk)
(tµk ∗ f),

where

tµk ∗ f =
1

2

{∫ t

1

(
t

τ

)µk

f(τ)
dτ

τ
+

∫ t

e

(
te

τ

)µk

f(τ)
dτ

τ

}

One can proceed in a similar way in the case of multiple zeros of P (µ). The

only difference is that, according to (10), any fraction of the form
1

(S − µ)l

should be replaced by the function

1

(l − 1)!

dl−1

dµl−1

(
tµ

E(µ)

)
.

As for the resonance case, then additional considerations are needed.
They are left for a next publication.
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