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Abstract
Let ® : C(R4) — C be a given nonzero linear functional. We are
looking for mean-periodic solutions for the KEuler operator
0 = t— and the functional ® of equations of the form

P(§)y(t) = f(t) with a polynomial P. A function f is called mean-
periodic with respect to ® iff &, {f(tr} = 0. A necessary condi-
tion for existence of such a solution is the requirement the right hand
side f to be mean-periodic. Then, the problem is equivalent to the
following nonlocal Cauchy problem: P(8)y(t) = f(t), ® {6*y} = 0,
k=0,1,...,deg P — 1. The solution of the last problem has the fol-
lowing Duhamel-type form y = §(G * f), where G is the solution of the
nonlocal Cauchy problem for f(t) = 1 and * denotes the convolution
product in C'(R)

(f*9)(t) = @, {/f Carcas

1. Mean-periodic functions for the Euler operator with respect to
a functional

As it is well-known, the notion of mean-periodic function for the differ-

entiation operator 7 with respect to a linear functional ® : C(R) — C is

introduced in 1935 by J. Delsarte [1]. An extensive study of it is proposed
in 1947 in the L. Schwartz’ memoir [4].
Let us remind this basic definition.

Definition 1 A function f € C(R) is said to be mean-periodic with respect
to a linear functional ® : C(R) — C iff @ {f(t + 7)} = 0 identically.
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In Dimovski and Skérnik [3] an operational method is considered for
solving linear ordinary differential equations with constant coefficients in
mean-periodic functions with respect to a given functional ®.

Here we extend this approach to Euler equations.

Definition 2 A function f € C(Ry) — C, where Ry = (0,00), is said
to be mean-periodic for the Euler operator 6 = t— with respect to a linear

functional @ : C(Ry) — C iff &.{f(t7)} = 0 identically.

In the sequel a basic role is played by the following convolution product
introduced in Dimovski and Skérnik [3] and Dimovski and Hristov [2]:

Theorem 1 ([3]). The operation

drow=o{ [ () o2} m

converts C'(Ry) into a commutative and associative algebra.

For the sake of completeness we supply a sketch of the proof. The com-
mutativity is almost obvious. Let us verify the associativity. It is possible
to do this by a direct check, but an easier way is to verify it at first for
polynomials and then to use approximation argument.

Let f(t) = t* and g(t) = ¢”. Then

{t}={t"t = &; {/Tt (1:3“0”(%0} = thd, {T“ /Tt a”‘“_lda} —

_ g Tut”_“—T”_“ _ E(p)tr — E(v)t!
i v— v—

with E(\) = ®,.{7*}. Using this expression, it follows that
SUSERUSIESUS S US SICUS SR Unl) (2)
since both sides of (2) have one and the same symmetric form

EWEG)  , EGIEGW . EWEW

(7T R g ey Rl P o

with respect to u, v, and s. Then, (2), differentiated m, n, and k times with
respect to u, v, and s correspondingly, gives

(e (n )™} {t (In )"} # {7 (I t)F} = {t*(Int)™ b ({£ (Int)" = {7 (In )" }).
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Next, passing to the limits y — +0,v — 40 and » — +0, one gets

{mt)"} s {(Int)"}) + {(Int)"} = {(Int)™} » ({(In )"} » {(Int)"}).

But the bilinearity of (1) implies for arbitrary polynomials P, @ and R

{P(Int)} «{Q(nt)}) * {R(Int)} = {P(nt)} + ({Q(nt)} * {R(Int)}).

To finish the proof, note that if ¢ € R, then Int covers the whole real line R.
Then Weierstrass’ theorem allows any function in C(R, ) to be approximated
almost uniformly by polynomials of Int,t > 0, i.e. by a sequence uniformly
convergent to the function on each segment [a,b] C R, . Due to the continuity
of the functional ® the desired identity (f*g)*h = f*(g*h) holds for every
faga h e C(R-l-)

Further, we restrict the functional ® by ®{1} # 0 and, without essential

loss of generality, we may assume ®{1} = 1.

d
Let L : C(Ry) — C(Ry) be the right inverse operator of § = t%, de-
fined by the boundary value condition ®{Lf} = 0. It is easy to find Lf(t)

explicitly:
t o
Lf(t):/ @dT—(I)U {/ mCZT}. (3)
1 7T 1 T
Moreover, L f has the convolution representation
Lf ={1} = f

and L"f = {Q,(Int)} = f, where @, is a polynomial of degree exactly n.
Let MPJ denote the space of the mean-periodic functions for § with
respect to ®.

Lemma 1 If f € MP}, then Lf € MPJ.

Proof: Let f € MP), ie. ®.{f(tr)} = 0. Consider the function (t)
— @,{(Lf)(t)}. Then

dp(t) = 6@, {(Lf)(tn)} = @, {o(Lf)(tn)} = P, {(6L) f(tn)} = @, {f(tn)} = 0,
dip(t)

C'is a constant. In order to determine C, let us take ¢ = 1. Then

o(1) = ®,{LF(n)} = @, { / 04—, { / ’ @Ck}} _

:@n{/ln@df}—q>g{/10@d7}q>{1}:o,

which means Lf € MPJ.

since f is mean-periodic. Then ¢ =0 and t > 0 imply ¢(t) = C, where



Corollary 1 Let P()\) be a polynomial. If f € M P, then
{P(Int)} * f € MPS.

Indeed, if P(\) = Zze:gop BrAF, then \; can be expressed as linear combi-
nation \*¥ = Z?:o 7;Q; (), where Q);()) are the polynomials from the proof
of Theorem 1. Hence

{P(Int)}* = { Z l/ka(lnt)} * = Z v LF

k=0

with some constants 1. Then the lemma implies {P(Int)} * f € MP}
provided f € MPJ.

Theorem 2 M P is an ideal in (C(Ry),*).

Proof: Let f € MPJ and g € C(R,). If P()) is an arbitrary polynomial,
it follows from Lemma 1 that P(Int) x f € MPJ. According to Weier-

strass’ approximation theorem, we can find a polynomial sequence {P,}2 ,

for which P,(z) = g(e*) on each segment [a,b] C R = (—00,00). Then
P,(Int) =2 g(t) on each segment [, 5] C Ry = (0, 00). But from Corollary 1

P,(Int)« f € MP), VnecN.

Since the space M Py is closed with respect to the uniform convergence, the
limit g * f = f % g is mean-periodic, too.

2. Nonlocal Cauchy problems for Euler equations

Let @ : C(R;) — C be a linear functional. According to Riesz-Markov

theorem @ has a representation of the form ®{f} = [ aﬁ f(t)dv(t), where
0 <a< <+ and v is a function with bounded variation.

Definition 3 P()\) be a polynomial with deg P > 1. The boundary value
problem

P)y =/, (4)
d{*yl =ap, k=0,1,2,...,degP — 1 (5)

with given oy € C is said to be a nonlocal Cauchy problem for the Euler
equation (4).



In [3] an operational method for solution of such nonlocal boundary value
problems is developed. Here we reproduce the basic elements of this ap-
proach.

First, a Mikusinski-type operational calculus for the right inverse operator
L, defined by (3), is developed. Without any loss of generality we may assume
that ®{1} = 1. Then (3) becomes

Lf(t)—/lt@ch—(bg{/la@dr}. (6)

In fact, L is the convolution operator L = {1}x, i.e. Lf = {1}« f, in the
convolution algebra (C(R, ), ) with the multiplication (1).

Let 9 be the ring of convolution fractions of the form / where f € C'(R,)

9
and g € C(R;) but g being a non-divisor of zero in (C(Ry), *).
Then the operator L can be identified with the constant function {1}, i.e.

L = {1}. By 1 we will denote the unit element of 9t and hence 1 # {1}.
The basic element of the operational calculus we are to develop, is played by

the element S = 7 which may be called the algebraic Fuler operator.

Lemma 2 If f € CYR,), then

5f =Sf —®{f}, (7)

where Sf is the product S.f in M and ®{f} is to be understood as a “nu-
iy
{1}

merical” operator, i.e. as the convolution fraction

Proof: By an immediate check it is seen that
L(Sf)(t) = f(t) = f(1) = @{f(7) = f()} = f(t) — 2{[}.
This identity can be written as
L(Gf) = f - ®{f}.L.
Applying § to both sides, we obtain (7).
Corollary 2 For arbitrary k € N and f € C*(R,) we have
Ff=8"f —{fISF 1t —d{5f1SF 2 — .. —d{sFfL. (8)

The proof proceeds by induction using (7).
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Theorem 3 Let A € C be such that E{\} = ®.{7*} #0. Then

I ()
S—Xx  LEW
and
I rodet (10)
(S—=XNF  L(E—=Dld1\EWN) /) ["
The proof is given in [3]. In fact
1
R

where L, is the resolvent operator, for which Ly f(xz) = y is the solution of
the boundary value problem

oy — Ay =f, @{y}=0.

It has the form

o= [ (1) 0% - e [(2) 1L}

Ly can be represented as the convolution operator

s = {Etw}f

Theorem 4 Let P(\) = agA\™ + a; A" ' + ... + ap_1 A + a, be a polynomial
of degree n. Then the boundary value problem (4)-(5) is equivalent in M to
the linear algebraic equation

P(S)y = f+Q(S), (11)
where
n—1n—k—1 n—1 /n—p—1
Q(S> - Z akamSn_k_m_l = Z ( Z auan—u—u—l) SH.
k=0 m=0 pn=0 v=0

Proof: First, let y € C™(R,) be a solution of (4)-(5). Then using (8) we
obtain (11).



Conversely, let y € C™(R ) satisfies (11). Let us involve the right inverse
1
L of § substituting S = I Then, L™, applied to both sides of (11), gives

pr(2)i-vrero(L).

This can be written as
P(L)y - Q(L) = L"f. (12)

~ 1 ~ 1
where P(A\) = \"P (X) and Q(\) = \"Q (X) are the reciprocal poly-
nomials of P and () respectively. It remains to apply 0" to both sides of
(12):
O"P(L)yy —0"Q(L) =6"L"f = f.
Since L is a right inverse of §, then 6"LF = §"k*LF = " F for k =

0,1,2,...,n. The first term 0" P(L)y becomes P(J)y, while the second term
(5"@(L) is zero due to the fact that deg () < n —1 and there will always be at
least first power of 0 acting on the constant function {1}. Thus P(d)y = f
is proved.

The verification of ®{6*y} = ay, k = 0,1,2,...,n—1, is more complicated
but again straightforward.

Theorem 5 Let y € M P) be a mean-periodic solution of the Euler differ-
ential equation P(0)y = f. Then a necessary condition for existence of such
a solution is f € MPS. The problem of solving this equation in M P is
equivalent to the nonlocal Cauchy boundary value problem (4)-(5) with the
homogeneous initial conditions ®{6*y} =0, k=0,1,2,...,degP — 1.

Proof: Let y be a mean-periodic solution of (4), i.e. ®.{y(tr)} = 0.
According to Dimovski and Hristov [2] the operator M : C(R;) — C(R})
given by M f(t) = &, {y(t7)}, f € C(R.), belongs to the commutant of 4, i.e.
Mé§ = 6M. Applying M to both sides of P(§)y = f and using My(t) = 0,
we get

Mf=MP()y=Pd)My=0.

Hence f € MPJ.

Now we continue with the proof of the equivalence.

First, let P(0)y = f, f € MP), ®{6*y} =0, k = 0,1,2,...,n — 1.
Let M be the operator from the commutant of ¢, which corresponds to the



functional ® as above. Consider the function u = My. We need to prove
that w = 0. One has

Shu(t) = 8" My(t) = Movy(t) = ®,{(8"y)(tr)}.

Substituting ¢ = 1 in this equality, we obtain
*u(l) = @ {(6"y)(1)} = 0.

Thus u is a solution of the ordinary Cauchy problem

PO)u=0, &u1l)=0k=0,1,2,...,n—1,
which has the unique solution u = 0, i.e. My = 0, which means that y is
mean-periodic.

Conversely, let P(d)y = [ with a mean-periodic solution y, i.e.
My = @ {y(tr)} = 0. Applying ¢*, one has
0= 6"My = Md*y,

which means that 6y is mean-periodic for every k > 0. This can be written
also as

@ {(8y)(tT)} = 0.
Finally, we substitute t = 1 and get

O {(0"y) (1)} = ®{*y} =0, k=0,1,2,...,n— 1.

Now we may assert that the problem of solving the Euler equations
in mean-periodic functions is equivalent to solving the algebraic problem
P(S)y = f in M.

Its formal solution in 901 is

v = e f (13)

provided P(S) is non-divisor of zero.
Theorem 6 P(S) is a non-divisor of 0 iff ®,.{7*} # 0 for each zero of the
polynomial P(\), i.e. if P(\) = 0 implies ®, {7} # 0.

Proof: Let P(A) = ag(A — A ) A= X2) ... (A= An), ag # 0. P(9) is a
divisor of 0 if and only if at least one of the multipliers S — A is a divisor of
zero. Let S — A be a divisor of zero, i.e. there exists an element (convolution

fraction) Ye 9M, such that (S — )\)g = 0. The last equality is equivalent to
v v
(1 —=AL)u =0,

ie. du — Au = 0, with the solution v = Ct*, C # 0 and ®{u} = 0, i..
o {r'} =0.



An extension of the Duhamel principle to nonlocal Cauchy prob-
lems for Euler equations

1
Assuming that SP(9) = G(t) € C"™(R,), we see that G is the solution

of the nonlocal Cauchy boundary value problem:
P(6)G =1, d{s*G} =0, k=0,1,2,...,n—1.
From the equation
aod"G + a1 6" "G+ ... +a,G =1

we obtain ag®{d"G} =1, or
1
P{"G} = — (14)
Qg

Then the formal representation (13) becomes

y=90(Gxf)=0(f+xG)=(0f) xG.
This is an extension of the classical Duhamel principle to nonlocal Cauchy

problems for Euler equations.

1
Heaviside algorithm for interpreting ——— as a function

P(5)

1
P(5)

Let P(S) be a non-divisor of zero in 9. First, decompose in simple

fractions. Factorizing P(S) as
P(S) = CLQ(S — ul)kl(S — Mg)k2 c. (S — ,ul)kl, kl + kQ + ...+ kl =n,

we have

A
where Aj,, are constants. It remains to replace each fraction ——2"— by

. o (S =)™
the explicit expressions given in Theorem 3.
Example: Let all the zeros of the polynomial P be simple, i.e.

P(p) = ao(pp — pa) (e — pia) - .. (1 — ) with g, # p, for v # k. Then

tHE
S Z P/ 5 Ik Z P! () E ()
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As a particular case, let us take the functional

1)+ f(e
NEEEUESIC)
1 A 1 2tA
Then E(\) = ;6 ands_)\zlfe/\.Wecanwrite
1 = QtHk
Gt) = ——— =
0= 58 = & Pl o)

and then the solution of the equation P(0)y(t) = f(t) with boundary value
conditions 6%y (1) + d*y(e) =0, k=0,1,...,,n — 1, is

. 2
V=G =) Py )

s 0 [ (6 ]

One can proceed in a similar way in the case of multiple zeros of P(u). The

where

only difference is that, according to (10), any fraction of the form m
— K
should be replaced by the function

(i - D)l dcfd-ll (Etw) |

As for the resonance case, then additional considerations are needed.
They are left for a next publication.
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