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Abstract
Let C} denotes the space of the smooth functions f(z) on the real
half-line R>p = [0,00) satisfying the initial value condition

f'(0) — hf(0) = 0 with fixed real h. We characterize the continu-

ous linear operators M : C,ll — C,ll which commute with the square
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D? = ) of the differentiation operator D = T on the subspace C’,%
x x

of the twice continuously differentiable functions of C’é. The explicit

representation of such operators is M f(z) = ®,{TY f(x)}, where

1 h Tty
T9f(w) = e+ )+ Sa a4y [ s
lz—yl
and @ is a linear functional on Cflr
The kernel space of this operator is denoted by M Pg and is called
the space of the mean-periodic functions for D? determined by ®. It
is proved that the space M Pg is invariant under the resolvent opera-
tor of D? with the boundary value conditions y'(0) — hy(0) = 0 and
®{y} = 0. A convolution structure * : C} x C} — C} is introduced
in C’}L? such that the resolvent operator is a continuous operator and
M Py is an ideal in the convolution algebra (C}l, *). This result is used
for effective solution in mean-periodic functions of ordinary differential
equations of the form P(D?)y = f with a polynomial P.

d2

dx?
Let C} be the space of smooth functions f on Rsq = [0, 00) satisfying the

boundary value condition

A family of operators commuting with D? =

f'(0) = hf(0) =0 (1)
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with a fixed h € R. By C? we denote the subspace of twice continuously
differentiable functions of C\.

Lemma 1 The operators

T+

) = G+ e g [ e @)

map C} onto C} and have the following properties:
(1) TVf(x) =T"f(y);
(if) T°f (z) = f(x);

(iii) D*TY =TYD?* on C};

(iv) TYT* = T*T".

Proof: Tt is seen directly that (7Y f)(0) — h(7Yf)(0) = 0 for arbitrary
f € CY(Rsp) and hence T : C} — C\.

The properties (i) and (ii) are obvious.

In order to prove (iii), we verify it first for y < x and then for z < y. If
y < x, then

+y
1f(5) = U+ +fa -}y [ F

and

dd_;Tyf(LE) = %[f"(x%-y) + [z —y)] + g[f/(a:+y) = [la =y =1"f"(2).

d2
If 2 < y, then the verification of ﬁTyf(x) = TYf"(x) goes in the same
T

way.

For the proof of (iv), one may verify it first for even powers of x, i.e. for
f(z) = x*, and then to proceed by approximation of an arbitrary function
f € C} by polynomials of the form P(x?).

Since the operators (2) are a very special case of the generalized trans-
lation operators of B. M. Levitan (see [3]), one may rely also on a general
proof in this book. O

Theorem 1 Let M : C} — C} be a continuous linear operator, such that
M : C? — C3?. Then the following assertions are equivalent:



(i) MD?= DM in C2;
(il) MTY =TYM for eachy > 0;

(iii) M has the explicit representation

Mf(z) = &, {T"f(x)} = ®, {f(x +y) + f(lv —yl) + ﬁ o f(t)dt}
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with a linear functional ® in C}.

Proof:

(1)=(ii)

Let f(x) be an even polynomial. Then the Maclaurin expansion
-7

n:()

2n

Dan

gives the following representation of the translated function:

TVf(x) =T"f(y) = Z (2n *D*" £(0)
- Z (gnn o™ f(x) Z 2n) an

Now (ii) will follow if we apply M to both sides and use MD?*"f(x)
= D*"M f(x) which follows immediately from (i) for each n € N:

MTf(z) = gn M D> f(z) Z gn D™ M f(x) = TY M f(x).
n:O n=

(i) = (i)
Let us define a continuous linear functional ® in C} by ®{f} = (M f)(0).
Substituting y = 0 in

TYM f(x) = MTY f(x) = MT" f(y),

we obtain

T°M f(z) = MT*f(0).

The left hand side is M f(x) and the right hand side is the value of the
functional ® for the function 7% f. Hence

Mf(z) = 24T f(y)} = ®,{T7f(2)}.
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Thus the implication is proved using y as the "dumb* variable of the func-
tional.

(iii)=> (i)
Let Mf(x) = ®,{TYf(x)}. Then D?*Mf(z) = ®,{D*T¥f(x)}. Using
D?TY = TYD? from Lemma 1, we have
D’M f(z) = ®,{T"D*f(x)} = MD*f(x).

Hence (iii)=-(i). O
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d
Theorem 2 The commutant of D* = e in C} is a commutative ring.
x

d2
Proof: Let M : C} — C} and N : C} — C} commute with D? = 32 in C}.

According to (iii) from Theorem 1, there are linear functionals ® and ¥
in Cj}, such that

Mf(z) = ®{Tf(x)} and Nf(z)=WAT"f(z)}.
Then
MN f(z) = &, {T"T*f(z)} and NMf(x)=V, 9 {T°TYf(x)}.
By (iv) from Lemma 1, T*TY = TYT* and hence
NMf(z) =V, 0, {T*TYf(x)} =V, ,{TYT" f(x)}.
It remains to use the Fubini property ¥, ®,¢(y, z) = ®,¥.g(y, z) for functions
9(y,2) € C*(Rsg x Rsg) in order to assert that MN = NM. O

2

Mean-periodic functions for D? = el in C}
x

Definition 1 The kernel space ker M of an operator of the form
Mf(z) = ®,{TYf(x)} is called the space of the mean-periodic functions for
2

2 [ ——
- dx?’

We use the notation M Py = ker M, i.e. MPy = {f € C} : ®,{TYf(z)} = 0}.
In order to reveal some specific properties of M Pg, let us introduce the
2

associated with the linear functional P.

d
resolvent operator R_ 2 of the operator D? = gt defined by the the bound-
T

ary value conditions y/'(0) — hy(0) = 0 and ®{y} = 0. In other words,
y(x) = R_y2f(x) is the solution of the differential equation

y' + Ny = f(x)

satisfying the boundary value conditions y'(0) — hy(0) = 0 and ®{y} = 0.
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Lemma 2 The resolvent operator R_y> of D* = e has the following ex-
x

plicit form
Ry f(z) = % /0 “sin A — £)f(1)dt

Acos Az + hsin \x Y
_ ) : _

Acos At + hsin A\t
A

where E(\) = @t{
type.

}, 15 an entire function of exponential

The proof is a matter of a direct check.
Lemma 3 R_): maps M Py into itself, i.e. R_y2(MPgy) C M Ps.

Proof: Let f € MPg, ie. O,{TYf(x)} = 0. We are to prove that
o(x) =, {TYR_,2f(x)} = 0. Indeed, we have
(D* + X)p(x) = y{(D2 +M)TYR_y2 f(2)}
= 0, {T"(D* + \)R_y2f(2)} = ©,{T" f(z)} = 0
since (D?* + M)R_2f(x) = f(z). Hence p(z) belongs to the kernel space of

D? 4+ )% ie. go(:c) Acos Az + Bsin Az with constants A and B. ¢ satisfies
the condition ¢'(0) —hp(0) = 0 and hence BA—hA = 0. In other words, ¢(x)

hsin A
i ) Using the boundary

is a function of the form p(z) = A | cosz +

value condition ®{f} = 0, we obtain

0= A, {cosx + hs;\n/\} = AE(N).
But E()\) # 0 and hence A = 0. Thus we proved that ¢(x) = 0. O

For the sake of simplicity, from now on we restrict our considerations to
the case h = 0, i.e. to the space

Co = {f € C'(Rxo), f'(0) = 0}

This is possible due to an explicit isomorphism between C} and C}.



Lemma 4 The linear operator
Tf@) = fla) +h [ e peya (@)
0

maps C} onto C§ and its inverse is

) = f@n [ 5 (5)
If f€C? then7f € CZ and (tf) =71f".

The proof is a matter of simple check (see Dimovski [1], p.153).

Due to Lemma 4, instead of the resolvent operator R_j: of D? with
boundary value conditions 3'(0) — hy(0) = 0 and ®{y} = 0, we may consider
the resolvent operator RO of D2 defined by the boundary value conditions
y/'(0) = 0 and ®{y} = 0, where & = d o 7L,

From now on we will use the notation ® instead of 5, assuming that we
are all the time in the case h = 0.

For a further simplification we assume that A = 0 is not an eigen-
value of the eigenvalue problem y” + My = 0, y/(0) = 0, ®{y} = 0.
This means that there exists a right inverse operator R of D? such that
(Rf)(0) =0, ®{Rf} = 0 which is possible when ®{1} # 0. If so, we may
assume additionally that ®{1} = 1 without any loss of generality. Then the
right inverse of D? has the form

T Y
rite) = (- oswi-a,{ [ osw.
0 0
In Dimovski [1], pp. 148-151, the following theorem is proved:

Theorem 3 The operation

(f * g)(x /dt/ft—r 7Vdr + = @t{/w:vT } (6)

(e, 1) = / f(t+x—7)g(r)dz + / F(lt -« — 7)g(|7])dr

where

is an inner operation in C3, which is bilinear, commutative, and associative,
and the operator R is the convolution operator R = {1}x, i.e. Rf = {1} x f.



Theorem 4 The subspace M Py of mean-periodic functions for D?* associ-
ated with the linear functional ® form an ideal in the convolution algebra

(Co, %)

Proof: By Lemma 3, if f € M Ps, then Rf € M Ps. But from Theorem 2
Rf = {1} f and R*f = {Qw(2?)} * f, where Q}, is a polynomial of degree
k.

Choose a polynomial sequence { P, (x)}%°; converging to g(y/z) uniformly
on each segment [a,b] C [0,00). Then {P,(x?)}2; converges to g(z) in Cj.

n

But P,(2?) = Zaka(xQ) with some constants ag, a1, s, ...,a,. Then
k=0

{P.(2?)}x f € M Py since {Q(z*)}*f € MPg, k=0,1,2,...,n. Obviously

the limit of a sequence of mean-periodic functions is also mean-periodic.
Hence g x f € M Py for arbitrary g € Cj and therefore M Pg is an ideal

in (C§, *). O]

Theorem 4 may be used to study the problem of solution of ordinary
differential equations with constant coefficients of the form

d2
P (@) y=[(x)
in mean-periodic functions of the space M Pg and to extend the Heaviside
algorithm for obtaining such solutions in explicit form. This will be left for a

subsequent publication, but analogous considerations for the Dunkl operator
Dy, instead of D? can be seen in Dimovski, Hristov, and Sifi [2].
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