Commutants of $\frac{d^2}{dx^2}$ on the Real Half-Line

Ivan H. Dimovski¹, Valentin Z. Hristov²

Key words and phrases: commutant, generalized translation operator, mean-periodic function, convolution algebra, ideal.

AMS subject classification: Primary: 447B37; Secondary: 47B38, 47A15

Abstract

Let C_h^1 denotes the space of the smooth functions f(x) on the real half-line $\mathbb{R}_{\geq 0} = [0, \infty)$ satisfying the initial value condition f'(0) - hf(0) = 0 with fixed real h. We characterize the continuous linear operators $M : C_h^1 \to C_h^1$ which commute with the square $D^2 = \frac{d^2}{dx^2}$ of the differentiation operator $D = \frac{d}{dx}$ on the subspace C_h^2 of the twice continuously differentiable functions of C_h^1 . The explicit representation of such operators is $Mf(x) = \Phi_y\{T^yf(x)\}$, where

$$T^{y}f(x) = \frac{1}{2} \{ f(x+y) + f(|x-y|) \} + \frac{h}{2} \int_{|x-y|}^{x+y} f(t)dt$$

and Φ is a linear functional on C_h^1 .

The kernel space of this operator is denoted by MP_{Φ} and is called the space of the mean-periodic functions for D^2 determined by Φ . It is proved that the space MP_{Φ} is invariant under the resolvent operator of D^2 with the boundary value conditions y'(0) - hy(0) = 0 and $\Phi\{y\} = 0$. A convolution structure $*: C_h^1 \times C_h^1 \to C_h^1$ is introduced in C_h^1 , such that the resolvent operator is a continuous operator and MP_{Φ} is an ideal in the convolution algebra $(C_h^1, *)$. This result is used for effective solution in mean-periodic functions of ordinary differential equations of the form $P(D^2)y = f$ with a polynomial P.

A family of operators commuting with $D^2 = \frac{d^2}{dx^2}$

Let C_h^1 be the space of smooth functions f on $\mathbb{R}_{\geq 0} = [0, \infty)$ satisfying the boundary value condition

$$f'(0) - hf(0) = 0 \tag{1}$$

with a fixed $h \in \mathbb{R}$. By C_h^2 we denote the subspace of twice continuously differentiable functions of C_h^1 .

Lemma 1 The operators

$$T^{y}f(x) = \frac{1}{2} \{ f(x+y) + f(|x-y|) \} + \frac{h}{2} \int_{|x-y|}^{x+y} f(t)dt$$
(2)

map C_h^1 onto C_h^1 and have the following properties:

- (i) $T^y f(x) = T^x f(y);$
- (ii) $T^0 f(x) = f(x);$
- (iii) $D^2 T^y = T^y D^2$ on C_h^2 ;
- (iv) $T^y T^z = T^z T^y$.

Proof: It is seen directly that $(T^y f)(0) - h(T^y f)(0) = 0$ for arbitrary $f \in C^1(\mathbb{R}_{\geq 0})$ and hence $T^y : C_h^1 \to C_h^1$.

The properties (i) and (ii) are obvious.

In order to prove (iii), we verify it first for $y \leq x$ and then for x < y. If $y \leq x$, then

$$T^{y}f(x) = \frac{1}{2}\{f(x+y) + f(x-y)\} + \frac{h}{2}\int_{x-y}^{x+y} f(t)dt$$

and

$$\frac{d^2}{dx^2}T^yf(x) = \frac{1}{2}[f''(x+y) + f''(x-y)] + \frac{h}{2}[f'(x+y) - f'(x-y)] = T^yf''(x).$$

If x < y, then the verification of $\frac{d^2}{dx^2}T^yf(x) = T^yf''(x)$ goes in the same way.

For the proof of (iv), one may verify it first for even powers of x, i.e. for $f(x) = x^{2n}$, and then to proceed by approximation of an arbitrary function $f \in C_h^1$ by polynomials of the form $P(x^2)$.

Since the operators (2) are a very special case of the generalized translation operators of B. M. Levitan (see [3]), one may rely also on a general proof in this book. \Box

Theorem 1 Let $M : C_h^1 \to C_h^1$ be a continuous linear operator, such that $M : C_h^2 \to C_h^2$. Then the following assertions are equivalent:

- (i) $MD^2 = D^2M$ in C_h^2 ;
- (ii) $MT^y = T^y M$ for each $y \ge 0$;
- (iii) M has the explicit representation

$$Mf(x) = \Phi_y\{T^y f(x)\} = \Phi_y\left\{\frac{f(x+y) + f(|x-y|)}{2} + \frac{h}{2}\int_{|x-y|}^{x+y} f(t)dt\right\}$$
(3)

with a linear functional Φ in C_h^1 .

Proof: (i)⇒(ii)

Let f(x) be an even polynomial. Then the Maclaurin expansion

$$f(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} D^{2n} f(0)$$

gives the following representation of the translated function:

$$T^{y}f(x) = T^{x}f(y) = \sum_{n=0}^{\infty} \frac{y^{2n}}{(2n)!} T^{x}D^{2n}f(0)$$
$$= \sum_{n=0}^{\infty} \frac{y^{2n}}{(2n)!} T^{0}D^{2n}f(x) = \sum_{n=0}^{\infty} \frac{y^{2n}}{(2n)!} D^{2n}f(x).$$

Now (ii) will follow if we apply M to both sides and use $MD^{2n}f(x) = D^{2n}Mf(x)$ which follows immediately from (i) for each $n \in \mathbb{N}$:

$$MT^{y}f(x) = \sum_{n=0}^{\infty} \frac{y^{2n}}{(2n)!} MD^{2n}f(x) = \sum_{n=0}^{\infty} \frac{y^{2n}}{(2n)!} D^{2n}Mf(x) = T^{y}Mf(x).$$

$$(ii) \Rightarrow (iii)$$

Let us define a continuous linear functional Φ in C_h^1 by $\Phi\{f\} = (Mf)(0)$. Substituting y = 0 in

$$T^{y}Mf(x) = MT^{y}f(x) = MT^{x}f(y),$$

we obtain

$$T^0 M f(x) = M T^x f(0).$$

The left hand side is Mf(x) and the right hand side is the value of the functional Φ for the function $T^{x}f$. Hence

$$Mf(x) = \Phi_y\{T^x f(y)\} = \Phi_y\{T^y f(x)\}.$$

Thus the implication is proved using y as the "dumb" variable of the functional.

 $(iii) \Rightarrow (i)$

Let $Mf(x) = \Phi_y\{T^yf(x)\}$. Then $D^2Mf(x) = \Phi_y\{D^2T^yf(x)\}$. Using $D^2T^y = T^yD^2$ from Lemma 1, we have

$$D^2 M f(x) = \Phi_y \{ T^y D^2 f(x) \} = M D^2 f(x).$$

Hence $(iii) \Rightarrow (i)$.

Theorem 2 The commutant of $D^2 = \frac{d^2}{dx^2}$ in C_h^1 is a commutative ring.

Proof: Let $M: C_h^1 \to C_h^1$ and $N: C_h^1 \to C_h^1$ commute with $D^2 = \frac{d^2}{dx_h^2}$ in C_h^2 .

According to (iii) from Theorem 1, there are linear functionals Φ and Ψ in C_h^1 , such that

$$Mf(x) = \Phi_y\{T^y f(x)\}$$
 and $Nf(x) = \Psi_z\{T^z f(x)\}.$

Then

$$MNf(x) = \Phi_y \Psi_z \{ T^y T^z f(x) \} \text{ and } NMf(x) = \Psi_z \Phi_y \{ T^z T^y f(x) \}.$$

By (iv) from Lemma 1, $T^{z}T^{y} = T^{y}T^{z}$, and hence

$$NMf(x) = \Psi_z \Phi_y \{T^z T^y f(x)\} = \Psi_z \Phi_y \{T^y T^z f(x)\}.$$

It remains to use the Fubini property $\Psi_z \Phi_y g(y, z) = \Phi_y \Psi_z g(y, z)$ for functions $g(y, z) \in C^1(\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0})$ in order to assert that MN = NM. \Box

Mean-periodic functions for $D^2 = \frac{d^2}{dx^2}$ in C_h^1

Definition 1 The kernel space ker M of an operator of the form $Mf(x) = \Phi_y\{T^yf(x)\}$ is called the space of the mean-periodic functions for $D^2 = \frac{d^2}{dx^2}$, associated with the linear functional Φ .

We use the notation $MP_{\Phi} = \ker M$, i.e. $MP_{\Phi} = \{f \in C_h^1 : \Phi_y\{T^y f(x)\} = 0\}.$

In order to reveal some specific properties of MP_{Φ} , let us introduce the resolvent operator $R_{-\lambda^2}$ of the operator $D^2 = \frac{d^2}{dx^2}$, defined by the boundary value conditions y'(0) - hy(0) = 0 and $\Phi\{y\} = 0$. In other words, $y(x) = R_{-\lambda^2}f(x)$ is the solution of the differential equation

$$y'' + \lambda^2 y = f(x)$$

satisfying the boundary value conditions y'(0) - hy(0) = 0 and $\Phi\{y\} = 0$.

С		_
L		
L		
L		

Lemma 2 The resolvent operator $R_{-\lambda^2}$ of $D^2 = \frac{d^2}{dx^2}$ has the following explicit form

$$R_{-\lambda^2}f(x) = \frac{1}{\lambda} \int_0^x \sin\lambda(x-t)f(t)dt -\frac{\lambda\cos\lambda x + h\sin\lambda x}{\lambda E(\lambda)} \Phi_y \left\{ \int_0^y \sin\lambda(y-t)f(t)dt \right\},$$

where $E(\lambda) = \Phi_t \left\{ \frac{\lambda \cos \lambda t + h \sin \lambda t}{\lambda} \right\}$, is an entire function of exponential type.

The proof is a matter of a direct check.

Lemma 3 $R_{-\lambda^2}$ maps MP_{Φ} into itself, i.e. $R_{-\lambda^2}(MP_{\Phi}) \subset MP_{\Phi}$.

Proof: Let $f \in MP_{\Phi}$, i.e. $\Phi_y\{T^yf(x)\} = 0$. We are to prove that $\varphi(x) = \Phi_y\{T^yR_{-\lambda^2}f(x)\} \equiv 0$. Indeed, we have

$$(D^{2} + \lambda^{2})\varphi(x) = \Phi_{y}\{(D^{2} + \lambda^{2})T^{y}R_{-\lambda^{2}}f(x)\}$$

= $\Phi_{y}\{T^{y}(D^{2} + \lambda^{2})R_{-\lambda^{2}}f(x)\} = \Phi_{y}\{T^{y}f(x)\} \equiv 0,$

since $(D^2 + \lambda^2)R_{-\lambda^2}f(x) = f(x)$. Hence $\varphi(x)$ belongs to the kernel space of $D^2 + \lambda^2$, i.e. $\varphi(x) = A \cos \lambda x + B \sin \lambda x$ with constants A and B. φ satisfies the condition $\varphi'(0) - h\varphi(0) = 0$ and hence $B\lambda - hA = 0$. In other words, $\varphi(x)$ is a function of the form $\varphi(x) = A\left(\cos x + \frac{h \sin \lambda}{\lambda}\right)$. Using the boundary value condition $\Phi\{f\} = 0$, we obtain

$$0 = A\Phi_t \left\{ \cos x + \frac{h \sin \lambda}{\lambda} \right\} = AE(\lambda).$$

But $E(\lambda) \neq 0$ and hence A = 0. Thus we proved that $\varphi(x) \equiv 0$.

For the sake of simplicity, from now on we restrict our considerations to the case h = 0, i.e. to the space

$$C_0^1 = \{ f \in C^1(\mathbb{R}_{\ge 0}), f'(0) = 0 \}.$$

This is possible due to an explicit isomorphism between C_h^1 and C_0^1 .

Lemma 4 The linear operator

$$\tau f(x) = f(x) + h \int_0^x e^{-h(x-t)} f(t) dt$$
(4)

maps C_h^1 onto C_0^1 and its inverse is

$$\tau^{-1}f(x) = f(x) + h \int_0^x f(t)dt.$$
 (5)

If $f \in C_h^2$, then $\tau f \in C_0^2$ and $(\tau f)'' = \tau f''$.

The proof is a matter of simple check (see Dimovski [1], p.153).

Due to Lemma 4, instead of the resolvent operator $R_{-\lambda^2}$ of D^2 with boundary value conditions y'(0) - hy(0) = 0 and $\Phi\{y\} = 0$, we may consider the resolvent operator $\widetilde{R_0}$ of D^2 , defined by the boundary value conditions y'(0) = 0 and $\widetilde{\Phi}\{y\} = 0$, where $\widetilde{\Phi} = \Phi \circ \tau^{-1}$.

From now on we will use the notation Φ instead of $\tilde{\Phi}$, assuming that we are all the time in the case h = 0.

For a further simplification we assume that $\lambda = 0$ is not an eigenvalue of the eigenvalue problem $y'' + \lambda^2 y = 0$, y'(0) = 0, $\Phi\{y\} = 0$. This means that there exists a right inverse operator R of D^2 , such that (Rf)'(0) = 0, $\Phi\{Rf\} = 0$ which is possible when $\Phi\{1\} \neq 0$. If so, we may assume additionally that $\Phi\{1\} = 1$ without any loss of generality. Then the right inverse of D^2 has the form

$$Rf(x) = \int_0^x (x-t)f(t)dt - \Phi_y \left\{ \int_0^y (y-t)f(t)dt \right\}.$$

In Dimovski [1], pp. 148-151, the following theorem is proved:

Theorem 3 The operation

$$(f*g)(x) = \int_0^x dt \int_0^t f(t-\tau)g(\tau)d\tau + \frac{1}{2}\Phi_t \left\{ \int_0^t \psi(x,\tau)d\tau \right\}, \quad (6)$$

where

$$\psi(x,t) = \int_{x}^{t} f(t+x-\tau)g(\tau)dz + \int_{-x}^{t} f(|t-x-\tau|)g(|\tau|)d\tau,$$

is an inner operation in C_0^1 , which is bilinear, commutative, and associative, and the operator R is the convolution operator $R = \{1\}*, i.e.$ $Rf = \{1\}*f$. **Theorem 4** The subspace MP_{Φ} of mean-periodic functions for D^2 associated with the linear functional Φ form an ideal in the convolution algebra $(C_0^1, *)$.

Proof: By Lemma 3, if $f \in MP_{\Phi}$, then $Rf \in MP_{\Phi}$. But from Theorem 2 $Rf = \{1\} * f$ and $R^k f = \{Q_k(x^2)\} * f$, where Q_k is a polynomial of degree k.

Choose a polynomial sequence $\{P_n(x)\}_{n=1}^{\infty}$ converging to $g(\sqrt{x})$ uniformly on each segment $[a,b] \subset [0,\infty)$. Then $\{P_n(x^2)\}_{n=1}^{\infty}$ converges to g(x) in C_0^1 . But $P_n(x^2) = \sum_{k=0}^n \alpha_k Q_k(x^2)$ with some constants $\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_n$. Then $\{P_n(x^2)\} * f \in MP_{\Phi}$ since $\{Q_k(x^2)\} * f \in MP_{\Phi}, k = 0, 1, 2, \ldots, n$. Obviously the limit of a sequence of mean-periodic functions is also mean-periodic.

Hence $g * f \in MP_{\Phi}$ for arbitrary $g \in C_0^1$ and therefore MP_{Φ} is an ideal in $(C_0^1, *)$.

Theorem 4 may be used to study the problem of solution of ordinary differential equations with constant coefficients of the form

$$P\left(\frac{d^2}{dx^2}\right)y = f(x)$$

in mean-periodic functions of the space MP_{Φ} and to extend the Heaviside algorithm for obtaining such solutions in explicit form. This will be left for a subsequent publication, but analogous considerations for the Dunkl operator D_k instead of D^2 can be seen in Dimovski, Hristov, and Sifi [2].

References

- [1] I. H. Dimovski, Convolutional calculus, Kluwer, Dordrecht, 1990.
- [2] I. H. Dimovski, V. Z. Hristov, and M. Sifi, Commutants of the Dunkl operators in C(ℝ), Fractional Calculus & Applied Analysis, 9, 2006, No 3, 195 - 213.
- [3] B. M. Levitan, Generalized translation operators and some of their applications, Fizmatgiz, Moscow, 1962 (Russian).

Contact information:

^{1,2} Institute of Mathematics and Informatics Bulgarian Academy of Sciences
"Acad. G. Bonchev" Str., Block 8
1113 Sofia, BULGARIA
e-mails: ¹ dimovski@math.bas.bg , ² valhrist@bas.bg