# Commutants of $\frac{d^{2}}{d x^{2}}$ on the Real Half-Line 

Ivan H. Dimovski ${ }^{1}$, Valentin Z. Hristov ${ }^{2}$

Key words and phrases: commutant, generalized translation operator, mean-periodic function, convolution algebra, ideal.

AMS subject classification: Primary: 447B37; Secondary: 47B38, 47A15

## Abstract

Let $C_{h}^{1}$ denotes the space of the smooth functions $f(x)$ on the real half-line $\mathbb{R}_{\geq 0}=[0, \infty)$ satisfying the initial value condition $f^{\prime}(0)-h f(0)=0$ with fixed real $h$. We characterize the continuous linear operators $M: C_{h}^{1} \rightarrow C_{h}^{1}$ which commute with the square $D^{2}=\frac{d^{2}}{d x^{2}}$ of the differentiation operator $D=\frac{d}{d x}$ on the subspace $C_{h}^{2}$ of the twice continuously differentiable functions of $C_{h}^{1}$. The explicit representation of such operators is $M f(x)=\Phi_{y}\left\{T^{y} f(x)\right\}$, where

$$
T^{y} f(x)=\frac{1}{2}\{f(x+y)+f(|x-y|)\}+\frac{h}{2} \int_{|x-y|}^{x+y} f(t) d t
$$

and $\Phi$ is a linear functional on $C_{h}^{1}$.
The kernel space of this operator is denoted by $M P_{\Phi}$ and is called the space of the mean-periodic functions for $D^{2}$ determined by $\Phi$. It is proved that the space $M P_{\Phi}$ is invariant under the resolvent operator of $D^{2}$ with the boundary value conditions $y^{\prime}(0)-h y(0)=0$ and $\Phi\{y\}=0$. A convolution structure $*: C_{h}^{1} \times C_{h}^{1} \rightarrow C_{h}^{1}$ is introduced in $C_{h}^{1}$, such that the resolvent operator is a continuous operator and $M P_{\Phi}$ is an ideal in the convolution algebra ( $C_{h}^{1}, *$ ). This result is used for effective solution in mean-periodic functions of ordinary differential equations of the form $P\left(D^{2}\right) y=f$ with a polynomial $P$.
A family of operators commuting with $D^{2}=\frac{d^{2}}{d x^{2}}$
Let $C_{h}^{1}$ be the space of smooth functions $f$ on $\mathbb{R}_{\geq 0}=[0, \infty)$ satisfying the boundary value condition

$$
\begin{equation*}
f^{\prime}(0)-h f(0)=0 \tag{1}
\end{equation*}
$$

with a fixed $h \in \mathbb{R}$. By $C_{h}^{2}$ we denote the subspace of twice continuously differentiable functions of $C_{h}^{1}$.

Lemma 1 The operators

$$
\begin{equation*}
T^{y} f(x)=\frac{1}{2}\{f(x+y)+f(|x-y|)\}+\frac{h}{2} \int_{|x-y|}^{x+y} f(t) d t \tag{2}
\end{equation*}
$$

map $C_{h}^{1}$ onto $C_{h}^{1}$ and have the following properties:
(i) $T^{y} f(x)=T^{x} f(y)$;
(ii) $T^{0} f(x)=f(x)$;
(iii) $D^{2} T^{y}=T^{y} D^{2}$ on $C_{h}^{2}$;
(iv) $T^{y} T^{z}=T^{z} T^{y}$.

Proof: It is seen directly that $\left(T^{y} f\right)(0)-h\left(T^{y} f\right)(0)=0$ for arbitrary $f \in C^{1}\left(\mathbb{R}_{\geq 0}\right)$ and hence $T^{y}: C_{h}^{1} \rightarrow C_{h}^{1}$.

The properties (i) and (ii) are obvious.
In order to prove (iii), we verify it first for $y \leq x$ and then for $x<y$. If $y \leq x$, then

$$
T^{y} f(x)=\frac{1}{2}\{f(x+y)+f(x-y)\}+\frac{h}{2} \int_{x-y}^{x+y} f(t) d t
$$

and
$\frac{d^{2}}{d x^{2}} T^{y} f(x)=\frac{1}{2}\left[f^{\prime \prime}(x+y)+f^{\prime \prime}(x-y)\right]+\frac{h}{2}\left[f^{\prime}(x+y)-f^{\prime}(x-y)\right]=T^{y} f^{\prime \prime}(x)$.
If $x<y$, then the verification of $\frac{d^{2}}{d x^{2}} T^{y} f(x)=T^{y} f^{\prime \prime}(x)$ goes in the same way.

For the proof of (iv), one may verify it first for even powers of $x$, i.e. for $f(x)=x^{2 n}$, and then to proceed by approximation of an arbitrary function $f \in C_{h}^{1}$ by polynomials of the form $P\left(x^{2}\right)$.

Since the operators (2) are a very special case of the generalized translation operators of B. M. Levitan (see [3]), one may rely also on a general proof in this book.

Theorem 1 Let $M: C_{h}^{1} \rightarrow C_{h}^{1}$ be a continuous linear operator, such that $M: C_{h}^{2} \rightarrow C_{h}^{2}$. Then the following assertions are equivalent:
(i) $M D^{2}=D^{2} M$ in $C_{h}^{2}$;
(ii) $M T^{y}=T^{y} M$ for each $y \geq 0$;
(iii) $M$ has the explicit representation

$$
\begin{equation*}
M f(x)=\Phi_{y}\left\{T^{y} f(x)\right\}=\Phi_{y}\left\{\frac{f(x+y)+f(|x-y|)}{2}+\frac{h}{2} \int_{|x-y|}^{x+y} f(t) d t\right\} \tag{3}
\end{equation*}
$$

with a linear functional $\Phi$ in $C_{h}^{1}$.
Proof:
(i) $\Rightarrow$ (ii)

Let $f(x)$ be an even polynomial. Then the Maclaurin expansion

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} D^{2 n} f(0)
$$

gives the following representation of the translated function:

$$
\begin{aligned}
& T^{y} f(x)=T^{x} f(y)=\sum_{n=0}^{\infty} \frac{y^{2 n}}{(2 n)!} T^{x} D^{2 n} f(0) \\
= & \sum_{n=0}^{\infty} \frac{y^{2 n}}{(2 n)!} T^{0} D^{2 n} f(x)=\sum_{n=0}^{\infty} \frac{y^{2 n}}{(2 n)!} D^{2 n} f(x) .
\end{aligned}
$$

Now (ii) will follow if we apply $M$ to both sides and use $M D^{2 n} f(x)$ $=D^{2 n} M f(x)$ which follows immediately from (i) for each $n \in \mathbb{N}$ :

$$
\begin{aligned}
& M T^{y} f(x)=\sum_{n=0}^{\infty} \frac{y^{2 n}}{(2 n)!} M D^{2 n} f(x)=\sum_{n=0}^{\infty} \frac{y^{2 n}}{(2 n)!} D^{2 n} M f(x)=T^{y} M f(x) . \\
& (\mathrm{ii}) \Rightarrow(\mathrm{iii})
\end{aligned}
$$

Let us define a continuous linear functional $\Phi$ in $C_{h}^{1}$ by $\Phi\{f\}=(M f)(0)$. Substituting $y=0$ in

$$
T^{y} M f(x)=M T^{y} f(x)=M T^{x} f(y)
$$

we obtain

$$
T^{0} M f(x)=M T^{x} f(0)
$$

The left hand side is $M f(x)$ and the right hand side is the value of the functional $\Phi$ for the function $T^{x} f$. Hence

$$
M f(x)=\Phi_{y}\left\{T^{x} f(y)\right\}=\Phi_{y}\left\{T^{y} f(x)\right\} .
$$

Thus the implication is proved using $y$ as the "dumb" variable of the functional.
(iii) $\Rightarrow$ (i)

Let $M f(x)=\Phi_{y}\left\{T^{y} f(x)\right\}$. Then $D^{2} M f(x)=\Phi_{y}\left\{D^{2} T^{y} f(x)\right\}$. Using $D^{2} T^{y}=T^{y} D^{2}$ from Lemma 1, we have

$$
D^{2} M f(x)=\Phi_{y}\left\{T^{y} D^{2} f(x)\right\}=M D^{2} f(x) .
$$

Hence (iii) $\Rightarrow$ (i).
Theorem 2 The commutant of $D^{2}=\frac{d^{2}}{d x^{2}}$ in $C_{h}^{1}$ is a commutative ring.
Proof: Let $M: C_{h}^{1} \rightarrow C_{h}^{1}$ and $N: C_{h}^{1} \rightarrow C_{h}^{1}$ commute with $D^{2}=\frac{d^{2}}{d x^{2}}$ in $C_{h}^{2}$.
According to (iii) from Theorem 1, there are linear functionals $\Phi$ and $\Psi$ in $C_{h}^{1}$, such that

$$
M f(x)=\Phi_{y}\left\{T^{y} f(x)\right\} \quad \text { and } \quad N f(x)=\Psi_{z}\left\{T^{z} f(x)\right\} .
$$

Then

$$
M N f(x)=\Phi_{y} \Psi_{z}\left\{T^{y} T^{z} f(x)\right\} \quad \text { and } \quad N M f(x)=\Psi_{z} \Phi_{y}\left\{T^{z} T^{y} f(x)\right\}
$$

By (iv) from Lemma $1, T^{z} T^{y}=T^{y} T^{z}$, and hence

$$
N M f(x)=\Psi_{z} \Phi_{y}\left\{T^{z} T^{y} f(x)\right\}=\Psi_{z} \Phi_{y}\left\{T^{y} T^{z} f(x)\right\}
$$

It remains to use the Fubini property $\Psi_{z} \Phi_{y} g(y, z)=\Phi_{y} \Psi_{z} g(y, z)$ for functions $g(y, z) \in C^{1}\left(\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}\right)$ in order to assert that $M N=N M$.

Mean-periodic functions for $D^{2}=\frac{d^{2}}{d x^{2}}$ in $C_{h}^{1}$
Definition 1 The kernel space ker $M$ of an operator of the form $M f(x)=\Phi_{y}\left\{T^{y} f(x)\right\}$ is called the space of the mean-periodic functions for $D^{2}=\frac{d^{2}}{d x^{2}}$, associated with the linear functional $\Phi$.
We use the notation $M P_{\Phi}=\operatorname{ker} M$, i.e. $M P_{\Phi}=\left\{f \in C_{h}^{1}: \Phi_{y}\left\{T^{y} f(x)\right\}=0\right\}$.
In order to reveal some specific properties of $M P_{\Phi}$, let us introduce the resolvent operator $R_{-\lambda^{2}}$ of the operator $D^{2}=\frac{d^{2}}{d x^{2}}$, defined by the the boundary value conditions $y^{\prime}(0)-h y(0)=0$ and $\Phi\{y\}=0$. In other words, $y(x)=R_{-\lambda^{2}} f(x)$ is the solution of the differential equation

$$
y^{\prime \prime}+\lambda^{2} y=f(x)
$$

satisfying the boundary value conditions $y^{\prime}(0)-h y(0)=0$ and $\Phi\{y\}=0$.

Lemma 2 The resolvent operator $R_{-\lambda^{2}}$ of $D^{2}=\frac{d^{2}}{d x^{2}}$ has the following explicit form

$$
\begin{aligned}
R_{-\lambda^{2}} f(x)= & \frac{1}{\lambda} \int_{0}^{x} \sin \lambda(x-t) f(t) d t \\
& -\frac{\lambda \cos \lambda x+h \sin \lambda x}{\lambda E(\lambda)} \Phi_{y}\left\{\int_{0}^{y} \sin \lambda(y-t) f(t) d t\right\},
\end{aligned}
$$

where $E(\lambda)=\Phi_{t}\left\{\frac{\lambda \cos \lambda t+h \sin \lambda t}{\lambda}\right\}$, is an entire function of exponential type.

The proof is a matter of a direct check.
Lemma $3 R_{-\lambda^{2}}$ maps $M P_{\Phi}$ into itself, i.e. $R_{-\lambda^{2}}\left(M P_{\Phi}\right) \subset M P_{\Phi}$.
Proof: Let $f \in M P_{\Phi}$, i.e. $\Phi_{y}\left\{T^{y} f(x)\right\}=0$. We are to prove that $\varphi(x)=\Phi_{y}\left\{T^{y} R_{-\lambda^{2}} f(x)\right\} \equiv 0$. Indeed, we have

$$
\begin{aligned}
& \left(D^{2}+\lambda^{2}\right) \varphi(x)=\Phi_{y}\left\{\left(D^{2}+\lambda^{2}\right) T^{y} R_{-\lambda^{2}} f(x)\right\} \\
= & \Phi_{y}\left\{T^{y}\left(D^{2}+\lambda^{2}\right) R_{-\lambda^{2}} f(x)\right\}=\Phi_{y}\left\{T^{y} f(x)\right\} \equiv 0,
\end{aligned}
$$

since $\left(D^{2}+\lambda^{2}\right) R_{-\lambda^{2}} f(x)=f(x)$. Hence $\varphi(x)$ belongs to the kernel space of $D^{2}+\lambda^{2}$, i.e. $\varphi(x)=A \cos \lambda x+B \sin \lambda x$ with constants $A$ and $B . \varphi$ satisfies the condition $\varphi^{\prime}(0)-h \varphi(0)=0$ and hence $B \lambda-h A=0$. In other words, $\varphi(x)$ is a function of the form $\varphi(x)=A\left(\cos x+\frac{h \sin \lambda}{\lambda}\right)$. Using the boundary value condition $\Phi\{f\}=0$, we obtain

$$
0=A \Phi_{t}\left\{\cos x+\frac{h \sin \lambda}{\lambda}\right\}=A E(\lambda)
$$

But $E(\lambda) \neq 0$ and hence $A=0$. Thus we proved that $\varphi(x) \equiv 0$.
For the sake of simplicity, from now on we restrict our considerations to the case $h=0$, i.e. to the space

$$
C_{0}^{1}=\left\{f \in C^{1}\left(\mathbb{R}_{\geq 0}\right), f^{\prime}(0)=0\right\} .
$$

This is possible due to an explicit isomorphism between $C_{h}^{1}$ and $C_{0}^{1}$.

Lemma 4 The linear operator

$$
\begin{equation*}
\tau f(x)=f(x)+h \int_{0}^{x} e^{-h(x-t)} f(t) d t \tag{4}
\end{equation*}
$$

maps $C_{h}^{1}$ onto $C_{0}^{1}$ and its inverse is

$$
\begin{equation*}
\tau^{-1} f(x)=f(x)+h \int_{0}^{x} f(t) d t \tag{5}
\end{equation*}
$$

If $f \in C_{h}^{2}$, then $\tau f \in C_{0}^{2}$ and $(\tau f)^{\prime \prime}=\tau f^{\prime \prime}$.
The proof is a matter of simple check (see Dimovski [1], p.153).
Due to Lemma 4, instead of the resolvent operator $R_{-\lambda^{2}}$ of $D^{2}$ with boundary value conditions $y^{\prime}(0)-h y(0)=0$ and $\Phi\{y\}=0$, we may consider the resolvent operator $\widetilde{R_{0}}$ of $D^{2}$, defined by the boundary value conditions $y^{\prime}(0)=0$ and $\Phi\{y\}=0$, where $\tilde{\Phi}=\Phi \circ \tau^{-1}$.

From now on we will use the notation $\Phi$ instead of $\widetilde{\Phi}$, assuming that we are all the time in the case $h=0$.

For a further simplification we assume that $\lambda=0$ is not an eigenvalue of the eigenvalue problem $y^{\prime \prime}+\lambda^{2} y=0, y^{\prime}(0)=0, \Phi\{y\}=0$. This means that there exists a right inverse operator $R$ of $D^{2}$, such that $(R f)^{\prime}(0)=0, \Phi\{R f\}=0$ which is possible when $\Phi\{1\} \neq 0$. If so, we may assume additionally that $\Phi\{1\}=1$ without any loss of generality. Then the right inverse of $D^{2}$ has the form

$$
R f(x)=\int_{0}^{x}(x-t) f(t) d t-\Phi_{y}\left\{\int_{0}^{y}(y-t) f(t) d t\right\} .
$$

In Dimovski [1], pp. 148-151, the following theorem is proved:
Theorem 3 The operation

$$
\begin{equation*}
(f * g)(x)=\int_{0}^{x} d t \int_{0}^{t} f(t-\tau) g(\tau) d \tau+\frac{1}{2} \Phi_{t}\left\{\int_{0}^{t} \psi(x, \tau) d \tau\right\} \tag{6}
\end{equation*}
$$

where

$$
\psi(x, t)=\int_{x}^{t} f(t+x-\tau) g(\tau) d z+\int_{-x}^{t} f(|t-x-\tau|) g(|\tau|) d \tau
$$

is an inner operation in $C_{0}^{1}$, which is bilinear, commutative, and associative, and the operator $R$ is the convolution operator $R=\{1\} *$, i.e. $R f=\{1\} * f$.

Theorem 4 The subspace $M P_{\Phi}$ of mean-periodic functions for $D^{2}$ associated with the linear functional $\Phi$ form an ideal in the convolution algebra $\left(C_{0}^{1}, *\right)$.

Proof: By Lemma 3, if $f \in M P_{\Phi}$, then $R f \in M P_{\Phi}$. But from Theorem 2 $R f=\{1\} * f$ and $R^{k} f=\left\{Q_{k}\left(x^{2}\right)\right\} * f$, where $Q_{k}$ is a polynomial of degree $k$.

Choose a polynomial sequence $\left\{P_{n}(x)\right\}_{n=1}^{\infty}$ converging to $g(\sqrt{x})$ uniformly on each segment $[a, b] \subset[0, \infty)$. Then $\left\{P_{n}\left(x^{2}\right)\right\}_{n=1}^{\infty}$ converges to $g(x)$ in $C_{0}^{1}$. But $P_{n}\left(x^{2}\right)=\sum_{k=0}^{n} \alpha_{k} Q_{k}\left(x^{2}\right)$ with some constants $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Then $\left\{P_{n}\left(x^{2}\right)\right\} * f \in M P_{\Phi}$ since $\left\{Q_{k}\left(x^{2}\right)\right\} * f \in M P_{\Phi}, k=0,1,2, \ldots, n$. Obviously the limit of a sequence of mean-periodic functions is also mean-periodic.

Hence $g * f \in M P_{\Phi}$ for arbitrary $g \in C_{0}^{1}$ and therefore $M P_{\Phi}$ is an ideal in $\left(C_{0}^{1}, *\right)$.

Theorem 4 may be used to study the problem of solution of ordinary differential equations with constant coefficients of the form

$$
P\left(\frac{d^{2}}{d x^{2}}\right) y=f(x)
$$

in mean-periodic functions of the space $M P_{\Phi}$ and to extend the Heaviside algorithm for obtaining such solutions in explicit form. This will be left for a subsequent publication, but analogous considerations for the Dunkl operator $D_{k}$ instead of $D^{2}$ can be seen in Dimovski, Hristov, and Sifi [2].

## References

[1] I. H. Dimovski, Convolutional calculus, Kluwer, Dordrecht, 1990.
[2] I. H. Dimovski, V. Z. Hristov, and M. Sifi, Commutants of the Dunkl operators in $C(\mathbb{R})$, Fractional Calculus \& Applied Analysis, 9, 2006, No 3, 195-213.
[3] B. M. Levitan, Generalized translation operators and some of their applications, Fizmatgiz, Moscow, 1962 (Russian).

Contact information:
1,2 Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
"Acad. G. Bonchev" Str., Block 8
1113 Sofia, BULGARIA
e-mails: ${ }^{1}$ dimovski@math.bas.bg , ${ }^{2}$ valhrist@bas.bg

