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Abstract

Let C1
h denotes the space of the smooth functions f(x) on the real

half-line R≥0 = [0,∞) satisfying the initial value condition
f ′(0) − hf(0) = 0 with fixed real h. We characterize the continu-
ous linear operators M : C1

h → C1
h which commute with the square

D2 =
d2

dx2
of the differentiation operator D =

d

dx
on the subspace C2

h

of the twice continuously differentiable functions of C1
h. The explicit

representation of such operators is Mf(x) = Φy{T yf(x)}, where

T yf(x) =
1

2
{f(x + y) + f(|x − y|)} +

h

2

∫ x+y

|x−y|
f(t)dt

and Φ is a linear functional on C1
h.

The kernel space of this operator is denoted by MPΦ and is called
the space of the mean-periodic functions for D2 determined by Φ. It
is proved that the space MPΦ is invariant under the resolvent opera-
tor of D2 with the boundary value conditions y′(0) − hy(0) = 0 and
Φ{y} = 0. A convolution structure ∗ : C1

h × C1
h → C1

h is introduced
in C1

h, such that the resolvent operator is a continuous operator and
MPΦ is an ideal in the convolution algebra (C1

h, ∗). This result is used
for effective solution in mean-periodic functions of ordinary differential
equations of the form P (D2)y = f with a polynomial P .

A family of operators commuting with D2 =
d2

dx2

Let C1
h be the space of smooth functions f on R≥0 = [0,∞) satisfying the

boundary value condition

f ′(0) − hf(0) = 0 (1)
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with a fixed h ∈ R. By C2
h we denote the subspace of twice continuously

differentiable functions of C1
h.

Lemma 1 The operators

T yf(x) =
1

2
{f(x+ y) + f(|x− y|)} +

h

2

∫ x+y

|x−y|

f(t)dt (2)

map C1
h onto C1

h and have the following properties:

(i) T yf(x) = T xf(y);

(ii) T 0f(x) = f(x);

(iii) D2T y = T yD2 on C2
h;

(iv) T yT z = T zT y.

Proof: It is seen directly that (T yf)(0) − h(T yf)(0) = 0 for arbitrary
f ∈ C1(R≥0) and hence T y : C1

h → C1
h.

The properties (i) and (ii) are obvious.
In order to prove (iii), we verify it first for y ≤ x and then for x < y. If

y ≤ x, then

T yf(x) =
1

2
{f(x+ y) + f(x− y)} +

h

2

∫ x+y

x−y

f(t)dt

and

d2

dx2
T yf(x) =

1

2
[f ′′(x+ y) + f ′′(x− y)] +

h

2
[f ′(x+ y)− f ′(x− y)] = T yf ′′(x).

If x < y, then the verification of
d2

dx2
T yf(x) = T yf ′′(x) goes in the same

way.
For the proof of (iv), one may verify it first for even powers of x, i.e. for

f(x) = x2n, and then to proceed by approximation of an arbitrary function
f ∈ C1

h by polynomials of the form P (x2).
Since the operators (2) are a very special case of the generalized trans-

lation operators of B. M. Levitan (see [3]), one may rely also on a general
proof in this book. �

Theorem 1 Let M : C1
h → C1

h be a continuous linear operator, such that

M : C2
h → C2

h. Then the following assertions are equivalent:
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(i) MD2 = D2M in C2
h;

(ii) MT y = T yM for each y ≥ 0;

(iii) M has the explicit representation

Mf(x) = Φy{T yf(x)} = Φy

{
f(x+ y) + f(|x− y|)

2
+
h

2

∫ x+y

|x−y|

f(t)dt

}

(3)
with a linear functional Φ in C1

h.

Proof:
(i)⇒(ii)
Let f(x) be an even polynomial. Then the Maclaurin expansion

f(x) =
∞∑

n=0

x2n

(2n)!
D2nf(0)

gives the following representation of the translated function:

T yf(x) = T xf(y) =
∞∑

n=0

y2n

(2n)!
T xD2nf(0)

=
∞∑

n=0

y2n

(2n)!
T 0D2nf(x) =

∞∑

n=0

y2n

(2n)!
D2nf(x).

Now (ii) will follow if we apply M to both sides and use MD2nf(x)
= D2nMf(x) which follows immediately from (i) for each n ∈ N:

MT yf(x) =
∞∑

n=0

y2n

(2n)!
MD2nf(x) =

∞∑

n=0

y2n

(2n)!
D2nMf(x) = T yMf(x).

(ii)⇒(iii)
Let us define a continuous linear functional Φ in C1

h by Φ{f} = (Mf)(0).
Substituting y = 0 in

T yMf(x) = MT yf(x) = MT xf(y),

we obtain
T 0Mf(x) = MT xf(0).

The left hand side is Mf(x) and the right hand side is the value of the
functional Φ for the function T xf . Hence

Mf(x) = Φy{T xf(y)} = Φy{T yf(x)}.
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Thus the implication is proved using y as the ”dumb“ variable of the func-
tional.

(iii)⇒(i)
Let Mf(x) = Φy{T yf(x)}. Then D2Mf(x) = Φy{D2T yf(x)}. Using

D2T y = T yD2 from Lemma 1, we have

D2Mf(x) = Φy{T yD2f(x)} = MD2f(x).

Hence (iii)⇒(i). �

Theorem 2 The commutant of D2 =
d2

dx2
in C1

h is a commutative ring.

Proof: Let M : C1
h → C1

h and N : C1
h → C1

h commute with D2 =
d2

dx2
in C2

h.

According to (iii) from Theorem 1, there are linear functionals Φ and Ψ
in C1

h, such that

Mf(x) = Φy{T yf(x)} and Nf(x) = Ψz{T zf(x)}.
Then

MNf(x) = ΦyΨz{T yT zf(x)} and NMf(x) = ΨzΦy{T zT yf(x)}.
By (iv) from Lemma 1, T zT y = T yT z, and hence

NMf(x) = ΨzΦy{T zT yf(x)} = ΨzΦy{T yT zf(x)}.
It remains to use the Fubini property ΨzΦyg(y, z) = ΦyΨzg(y, z) for functions
g(y, z) ∈ C1(R≥0 × R≥0) in order to assert that MN = NM . �

Mean-periodic functions for D2 =
d2

dx2
in C1

h

Definition 1 The kernel space kerM of an operator of the form

Mf(x) = Φy{T yf(x)} is called the space of the mean-periodic functions for

D2 =
d2

dx2
, associated with the linear functional Φ.

We use the notationMPΦ = kerM , i.e. MPΦ = {f ∈ C1
h : Φy{T yf(x)} = 0}.

In order to reveal some specific properties of MPΦ, let us introduce the

resolvent operator R−λ2 of the operator D2 =
d2

dx2
, defined by the the bound-

ary value conditions y′(0) − hy(0) = 0 and Φ{y} = 0. In other words,
y(x) = R−λ2f(x) is the solution of the differential equation

y′′ + λ2y = f(x)

satisfying the boundary value conditions y′(0) − hy(0) = 0 and Φ{y} = 0.
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Lemma 2 The resolvent operator R−λ2 of D2 =
d2

dx2
has the following ex-

plicit form

R−λ2f(x) =
1

λ

∫ x

0

sinλ(x− t)f(t)dt

−λ cosλx+ h sinλx

λE(λ)
Φy

{∫ y

0

sinλ(y − t)f(t)dt

}
,

where E(λ) = Φt

{
λ cosλt+ h sinλt

λ

}
, is an entire function of exponential

type.

The proof is a matter of a direct check.

Lemma 3 R−λ2 maps MPΦ into itself, i.e. R−λ2(MPΦ) ⊂MPΦ.

Proof: Let f ∈ MPΦ, i.e. Φy{T yf(x)} = 0. We are to prove that
ϕ(x) = Φy{T yR−λ2f(x)} ≡ 0. Indeed, we have

(D2 + λ2)ϕ(x) = Φy{(D2 + λ2)T yR−λ2f(x)}
= Φy{T y(D2 + λ2)R−λ2f(x)} = Φy{T yf(x)} ≡ 0,

since (D2 + λ2)R−λ2f(x) = f(x). Hence ϕ(x) belongs to the kernel space of
D2 + λ2, i.e. ϕ(x) = A cosλx+B sinλx with constants A and B. ϕ satisfies
the condition ϕ′(0)−hϕ(0) = 0 and hence Bλ−hA = 0. In other words, ϕ(x)

is a function of the form ϕ(x) = A

(
cos x+

h sinλ

λ

)
. Using the boundary

value condition Φ{f} = 0, we obtain

0 = AΦt

{
cos x+

h sinλ

λ

}
= AE(λ).

But E(λ) 6= 0 and hence A = 0. Thus we proved that ϕ(x) ≡ 0. �

For the sake of simplicity, from now on we restrict our considerations to
the case h = 0, i.e. to the space

C1
0 = {f ∈ C1(R≥0), f

′(0) = 0}.

This is possible due to an explicit isomorphism between C1
h and C1

0 .
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Lemma 4 The linear operator

τf(x) = f(x) + h

∫ x

0

e−h(x−t)f(t)dt (4)

maps C1
h onto C1

0 and its inverse is

τ−1f(x) = f(x) + h

∫ x

0

f(t)dt. (5)

If f ∈ C2
h, then τf ∈ C2

0 and (τf)′′ = τf ′′.

The proof is a matter of simple check (see Dimovski [1], p.153).
Due to Lemma 4, instead of the resolvent operator R−λ2 of D2 with

boundary value conditions y′(0)−hy(0) = 0 and Φ{y} = 0, we may consider

the resolvent operator R̃0 of D2, defined by the boundary value conditions
y′(0) = 0 and Φ̃{y} = 0, where Φ̃ = Φ ◦ τ−1.

From now on we will use the notation Φ instead of Φ̃, assuming that we
are all the time in the case h = 0.

For a further simplification we assume that λ = 0 is not an eigen-
value of the eigenvalue problem y′′ + λ2y = 0, y′(0) = 0, Φ{y} = 0.
This means that there exists a right inverse operator R of D2, such that
(Rf)′(0) = 0, Φ{Rf} = 0 which is possible when Φ{1} 6= 0. If so, we may
assume additionally that Φ{1} = 1 without any loss of generality. Then the
right inverse of D2 has the form

Rf(x) =

∫ x

0

(x− t)f(t)dt− Φy

{∫ y

0

(y − t)f(t)dt

}
.

In Dimovski [1], pp. 148-151, the following theorem is proved:

Theorem 3 The operation

(f ∗ g)(x) =

∫ x

0

dt

∫ t

0

f(t− τ)g(τ)dτ +
1

2
Φt

{∫ t

0

ψ(x, τ)dτ

}
, (6)

where

ψ(x, t) =

∫ t

x

f(t+ x− τ)g(τ)dz +

∫ t

−x

f(|t− x− τ |)g(|τ |)dτ,

is an inner operation in C1
0 , which is bilinear, commutative, and associative,

and the operator R is the convolution operator R = {1}∗, i.e. Rf = {1} ∗ f .
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Theorem 4 The subspace MPΦ of mean-periodic functions for D2 associ-

ated with the linear functional Φ form an ideal in the convolution algebra

(C1
0 , ∗).

Proof: By Lemma 3, if f ∈ MPΦ, then Rf ∈ MPΦ. But from Theorem 2
Rf = {1} ∗ f and Rkf = {Qk(x

2)} ∗ f , where Qk is a polynomial of degree
k.

Choose a polynomial sequence {Pn(x)}∞n=1 converging to g(
√
x) uniformly

on each segment [a, b] ⊂ [0,∞). Then {Pn(x2)}∞n=1 converges to g(x) in C1
0 .

But Pn(x2) =
n∑

k=0

αkQk(x
2) with some constants α0, α1, α2, . . . , αn. Then

{Pn(x2)}∗f ∈MPΦ since {Qk(x
2)}∗f ∈MPΦ, k = 0, 1, 2, . . . , n. Obviously

the limit of a sequence of mean-periodic functions is also mean-periodic.
Hence g ∗ f ∈ MPΦ for arbitrary g ∈ C1

0 and therefore MPΦ is an ideal
in (C1

0 , ∗). �

Theorem 4 may be used to study the problem of solution of ordinary
differential equations with constant coefficients of the form

P

(
d2

dx2

)
y = f(x)

in mean-periodic functions of the space MPΦ and to extend the Heaviside
algorithm for obtaining such solutions in explicit form. This will be left for a
subsequent publication, but analogous considerations for the Dunkl operator
Dk instead of D2 can be seen in Dimovski, Hristov, and Sifi [2].
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