Parametric AE Solution Sets: Properties and Estimations

Evgenija D. Popova

Institute of Mathematics & Informatics Bulgarian Academy of Sciences

Supported by the grant BG051PO001/3.3-05-001 of the Bulgarian Ministry of Science and Education.

Parametric Problems

"Unless you are able to handle dependent data, you will never gain interest of the engineers."

Ivo Babuška, talking to J. Rohn, 1992.

Outline

I Parametric AE Solution Sets (Σ_{AE}^p) : Definition

Application example

Characterization, Properties

II Parametric AE Solution Sets (Σ_{AE}^p) : Outer estimation

Inner estimation

III Unbounded Σ_{tol}^p

Parametric Linear Systems

Consider the linear algebraic system

$$A(p) \cdot x = b(p),$$

where

$$A(p) := A_0 + \sum_{k=1}^K A_k p_k, \qquad b(p) := b_0 + \sum_{k=1}^K b_k p_k$$

$$A_i \in \mathbb{R}^{n \times m}, \ b_i \in \mathbb{R}^n, \quad i = 0, \dots, K$$

the uncertain parameters $oldsymbol{p_k}$ vary within given intervals

$$p \in [p] = ([\underline{p}_1, \overline{p}_1], \dots, [\underline{p}_K, \overline{p}_K])^{\top}.$$

For
$$\mathcal{A} \cup \mathcal{E} = \{1, \dots, K\}$$
, $\mathcal{A} \cap \mathcal{E} = \emptyset$,

$$\Sigma_{AE}^p := \left\{ x \in \mathbb{R}^n \mid (\forall p_{\mathcal{A}} \in [p_{\mathcal{A}}]) (\exists p_{\mathcal{E}} \in [p_{\mathcal{E}}]) (A(p)x = b(p)) \right\}.$$

AE terminology is after S. Shary.

The quantification of the parameters concerns the solution set, not the system.

For a given A(p)x=b(p), $p\in[p]\in\mathbb{R}^K$, there are $\mathbf{2}^K$ parametric solution sets $\mathbf{\Sigma}_{AE}^p$.

Parametric AE Solution Sets — special cases

$$\Sigma_{uni}^{p}\left(A(p),b(p),[p]
ight) \;\; := \;\; \{x \in \mathbb{R}^{n} \; | \; \exists p \in [p], \; A(p)x = b(p)\}$$

$$egin{array}{lll} \Sigma_{tol}^p &=& \Sigma\left(A(p_{\mathcal{A}}),b(p_{\mathcal{E}}),[p]
ight) \ &:=& \left\{x\in\mathbb{R}^n\mid (orall p_{\mathcal{A}}\in[p_{\mathcal{A}}])(\exists p_{\mathcal{E}}\in[p_{\mathcal{E}}])(A(p_{\mathcal{A}})x=b(p_{\mathcal{E}}))
ight\} \end{array}$$

$$egin{array}{lll} \Sigma_{cont}^p &=& egin{array}{lll} \Sigma\left(A(p_{\mathcal{E}}),b(p_{\mathcal{A}}),[p]
ight) \ &:=& \{x\in\mathbb{R}^n\mid (orall p_{\mathcal{A}}\in[p_{\mathcal{A}}])(\exists p_{\mathcal{E}}\in[p_{\mathcal{E}}])(A(p_{\mathcal{E}})x=b(p_{\mathcal{A}}))\} \end{array}$$

Example

Consider the Lyapunov matrix equation

$$AX + XA^{\top} = F,$$

A common approach is to transform a matrix equation into linear system

$$Px = f$$

where $P = I_n \otimes A + A \otimes I_n$, x = vec(X), f = vec(F).

If $A \in [A]$, $F \in [F]$, or A, F have linear uncertainty structure,

in both cases, P has a linear uncertainty structure.

Therefore, a Σ_{AE}^{p} must be considered

depending on the context of the particular problem.

Example — Controllability

Sokolova S., Kuzmina, E., 2008.

Consider

$$\dot{x}(t) = Ax(t) + Bu(t)$$

where $A \in [A] \in \mathbb{IR}^{n \times n}$, $B \in [B] \in \mathbb{IR}^{n \times m}$.

Let [A] be assimptotically stable.

The interval object is completely controllable if and only if

$$\mathsf{rank}[oldsymbol{V}] = oldsymbol{n}, \qquad [oldsymbol{V}] \subseteq oldsymbol{\Sigma_{tol}}([oldsymbol{A}], [oldsymbol{B}]),$$

where

$$\Sigma_{tol}([A],[B]) := \{V \in \mathbb{R}^{n imes n} \mid (orall A \in [A])(\exists B \in [B])(AV + VA^ op = -BB^ op)\}.$$

Example — Controllability

Controllability analysis reduces to

finding
$$[v] \subseteq \Sigma_{tol}(P(a_{ij}), f(f_{ij}), [A], [F]),$$

where

$$P(a_{ij}) := I_n \otimes A + A \otimes I_n, \qquad a_{ij} \in [a_{ij}]$$

$$[v] = extsf{vec}([V]), \qquad f(f_{ij}) := extsf{vec}(F = -BB^ op).$$

Theorem 1.

$$\Sigma_{AE}^p \ = igcap_{p_{\mathcal{A}} \in [p_{\mathcal{A}}]} igcup_{p_{\mathcal{E}} \in [p_{\mathcal{E}}]} \left\{ x \in \mathbb{R}^n \mid A(p_{\mathcal{A}}, p_{\mathcal{E}}) \cdot x = b(p_{\mathcal{A}}, p_{\mathcal{E}})
ight\}.$$

GOAL:

explicit representation of Σ_{AE}^{p} by means of inequalities

Why?

- exploring the solution set properties,
 - which helps designing better (sharp, fast) numerical methods
- finding exact bounds,

which helps in testing new numerical methods

The problem is related to Quantifier Elimination.

Explicit Description of Σ_{uni}^{p}

Fourier-Motzkin-like Elimination of \mathcal{E} -parameters

G. Alefeld, V. Kreinovich, G. Mayer, J. Comput. Appl. Math. 152, 2003.

Improved in: E. Popova, BIT Numerical Mathematics, 2011.

- uniform representation of the characterizing inequalities
- considerable reduction their number
- removing the dependency on the particular orthant
- proving some superfluous inequalities

Classification of the parameters

Definition 1. A parameter is of 1st class if it is involved in only one equation does not matter how many times.

Definition 2. A parameter is of **2nd class** if it is involved in more than one equation of the system.

$$egin{pmatrix} egin{pmatrix} oldsymbol{p_1} & 1 & 1 \ oldsymbol{p_2} & 2oldsymbol{p_1} & oldsymbol{p_2} & 1 \ 1 & 1 & 3oldsymbol{p_1} - 1 \end{pmatrix} \cdot x = egin{pmatrix} oldsymbol{p_3} - oldsymbol{p_4} \ oldsymbol{p_1} - oldsymbol{p_2} / 3 \ oldsymbol{p_3} / 2 \end{pmatrix}$$

E. D. Popova, W. Krämer, Characterization of AE Solution Sets to a Class of Parametric Linear Systems, Compt. rend. Acad. bulg. Sci. 64(3):325-332, 2011.

Theorem 2. If $x \in \Sigma_{AE}^p \neq \emptyset$,

$$\sum_{
u\in\mathcal{A}}(A_
u x-b_
u)[p_
u]\subseteq b_0-A_0x+\!\!\sum_{\mu\in\mathcal{E}}(b_\mu-A_\mu x)[p_\mu].$$

equivallently

$$|A(\dot{p})x - b(\dot{p})| \le \sum_{k=1}^K \delta_k |A_k x - b_k| \widehat{p}_k,$$

where $\delta_k := \{1 \text{ if } \mu \in \mathcal{E}, -1 \text{ if } \mu \in \mathcal{A}\}, \quad \dot{p} := mid([p]), \, \hat{p} := rad([p]).$

Theorem 3. Let A(p)x = b(p) involves only 1st class \mathcal{E} -parameters.

A point $x \in \mathbb{R}^n$ belongs to Σ_{AE}^p , if and only if

$$\sum_{
u\in\mathcal{A}}(A_
u x-b_
u)[p_
u]\subseteq b_0-A_0x+\!\!\sum_{\mu\in\mathcal{E}}(b_\mu-A_\mu x)[p_\mu].$$

equivallently

$$|A(\dot{p})x - b(\dot{p})| \le \sum_{k=1}^K \delta_k |A_k x - b_k| \widehat{p}_k,$$

where $\delta_k := \{1 \text{ if } \mu \in \mathcal{E}, -1 \text{ if } \mu \in \mathcal{A}\}, \quad \dot{p} := mid([p]), \, \hat{p} := rad([p]).$

E.Popova, Explicit Description of AE Solution Sets to Parametric Linear Systems, SIMAX 33(4):11721189.

If A(p)x = b(p) involves 2nd class \mathcal{E} -parameters, a point $x \in \mathbb{R}^n$ belongs to Σ^p_{AE} , if and only if

$$|A(\dot{p})x-b(\dot{p})| \quad \leq \quad \sum_{k=1}^K \delta_k |A_k x-b_k| \widehat{p}_k,$$

and "cross" inequalities

$$\left|w_{\lambda}(x)+\sum_{\mu\in\mathcal{E}}u_{\lambda,\mu}(x)\dot{p}_{\mu}+\sum_{\mu\in\mathcal{A}}v_{\lambda,\mu}(x)\dot{p}_{\mu}
ight| \ \leq \ \sum_{\mu\in\mathcal{E}}|u_{\lambda,\mu}(x)|\widehat{p}_{\mu}-\sum_{\mu\in\mathcal{A}}|v_{\lambda,\mu}(x)|\widehat{p}_{\mu},$$

 $\lambda \in \mathcal{T}$

obtained by Fourier-Motzkin-like elimination of ${oldsymbol {\cal E}}$ -parameters

$$\delta_{\mu}:=\{\mathbf{1} ext{ if } \mu\in\mathcal{E}, \ -\mathbf{1} ext{ if } \mu\in\mathcal{A}\}, \quad \dot{p}:=\mathsf{mid}([p]), \ \widehat{p}:=\mathsf{rad}([p]).$$

- ullet The description of Σ_{AE}^p by F-M elimination of ${\mathcal E}$ -parameters is feasible, much faster & compact than by Quantifier Elimination.
- ullet We have Oettly-Prager-type description of Σ^p_{AE}
- explicit for some classes Σ_{AE}^p (symmetric, skew-symmetric, for 1st class \mathcal{E} -pars, 2D)
- algorithmic procedure in general
- ullet For description & visualization of 2D Σ_{AE}^p , use ${\tt http://cose.math.bas.bg/webMathematica/webComputing/ParametricAESSet.jsp}$

Further research is necessary on:

- the description of Σ^p_{uni} with fixed data dependencies,
- more conditions for sflu/red ineqs & formula for the degree of the poly.

Parametric AE Solution Sets — Properties

ullet The elimination of ${\cal A}$ -parameters and 1st class ${\cal E}$ -parameters does not introduce "cross" inequalities.

Corollary 1. The infimum/supremum of a parametric AE solution set is attained at particular end-points of the intervals for the 1st class \mathcal{E} -parameters and for the A-parameters.

The boundary of Σ_{AE}^p is linear w.r.t. these parameters, although Σ_{AE}^p may not depend linearly on these parameters.

Parametric AE Solution Sets — Properties

ullet The boundary of Σ_{AE}^p involving 2nd class $oldsymbol{\mathcal{E}}$ -parameters may consist of polynomials of arbitrary degree.

$$egin{pmatrix} p_1 & -p_2 \ p_2 & p_1 \end{pmatrix} x &=& egin{pmatrix} 2p_3 \ 2p_3 \end{pmatrix} \ p_1 \in [-2,2], p_2 \in [-1,2], & p_3 \in [1,2] \end{cases}$$

 $\Sigma_{orall p_3 \exists p_1, p_2}$

However Σ_{AE}^{p} is not convex even in a single orthant.

Examples

$$egin{pmatrix} p_1 & p_1+1 \ p_2+1 & -2p_4 \end{pmatrix} x &= egin{pmatrix} p_3 \ -3p_2+1 \end{pmatrix}, & p_1,p_2 \in [0,1], \; p_3,p_4 \in [-1,1] \end{cases}$$

$$\Sigma_{orall p_1 \exists p_2 \dots 4}$$
 - bounded

$$\Sigma_{\exists p_{1...4}} \subseteq \Sigma_{\exists\exists\exists\exists}$$
 $\Sigma_{\forall p_1 \exists p_{2...4}}$ - bounded $\Sigma_{\forall p_3 \exists p_1, p_2, p_4}$ - unbounded

$$\Sigma_{\forall p_2 \exists p_1, p_3, p_4}$$
 - disconnected $\Sigma_{\forall p_4 \exists p_1, p_2, p_3}$ - bounded

$$\Sigma_{orall p_4 \exists p_1, p_2, p_3}$$
 - bounded

$$\Sigma_{orall p_1,p_2 \exists p_3,p_4}$$
 – segment

$$\Sigma_{\forall p_1,p_2 \exists p_3,p_4}$$
 - segment $\Sigma_{\forall p_2,p_4 \exists p_2,p_4},\ldots$ - empty

Parametric Tolerable Solution Set — Properties

$$egin{array}{lll} \Sigma_{tol}^p &=& \Sigma\left(A(p_{\mathcal{A}}),b(p_{\mathcal{E}}),[p]
ight) \ &:=& \left\{x\in\mathbb{R}^n\mid (orall p_{\mathcal{A}}\in[p_{\mathcal{A}}])(\exists p_{\mathcal{E}}\in[p_{\mathcal{E}}])(A(p_{\mathcal{A}})x=b(p_{\mathcal{E}}))
ight\} \end{array}$$

Theorem 4. $\Sigma(A(p_A), b(p_E), [p])$ is a convex polyhedron.

I. Sharaya & S. Shary prove it for some special cases.

Inclusion Relations

$$\cdots \subseteq \Sigma_{class}(A(u),b(u),[u]) \subseteq \Sigma_{class}(A(v),b(v),[v]) \subseteq \cdots$$

class $\in \{ uni, tol, cont, fixed A-pars \}$

for given A(p), b(p), [p], there are unique A([p]), b([p])

however, for given [A],[b] there are infinitely many choices of p,[p],A(p),b(p)

such that
$$A([p]) = [A], b([p]) = [b].$$

Inclusion Relations

Lemma 1. For

$$f(p) = \alpha_0 + \alpha p_{i_1} + f_0(p \setminus \{p_{i_1}, p_{i_2}\}), \qquad g(p) = \beta_0 + \beta p_{i_2} + g_0(p \setminus \{p_{i_1}, p_{i_2}\})$$

we can define

$$ilde{f}(q) \;\; := \;\; q_1 + q_2 + f_0(p \setminus \{p_{i_1}, p_{i_2}\})$$

$$\tilde{g}(q) := q_1 + q_3 + g_0(p \setminus \{p_{i_1}, p_{i_2}\}),$$

where
$$q_1 \in [q_1]$$
 is arbitrary, $\dot{q}_2 = \alpha_0 + \alpha \dot{p}_{i_1} - \dot{q}_1$, $\hat{q}_2 = |\alpha| \hat{p}_{i_1} - \hat{q}_1$,

$$\dot{q}_3 = \beta_0 + \beta \dot{p}_{i_2} - \dot{q}_1, \, \hat{q}_3 = |\beta| \hat{p}_{i_2} - \hat{q}_1,$$

such that
$$f([p]) = \tilde{f}([q]), \quad g([p]) = \tilde{g}([q]).$$

Inclusion Relations

Theorem 5. For two parameter vectors $u \in [u] \in \mathbb{R}^{m_1}$, $v \in [v] \in \mathbb{R}^{m_2}$, such that A([u]) = A([v]) = [A], b([u]) = b([v]) = [b] and

A(u), b(u) are obtained from A(v), b(v) by successive application of Lemma 1, similarly A(v), b(v) are obtained from [A], [b], then

$$\cdots \subseteq \Sigma_{uni}(A(u),b(u),[u]) \subseteq \Sigma_{uni}(A(v),b(v),[v]) \subseteq \cdots \subseteq \Sigma_{uni}([A],[b]).$$

Corollary 2. Theorem 5 is applicable to parametric AE solution sets which have the same structure of the dependencies between the A-parameters and the same domain $[p_A]$.

Inclusions — Parametric Tolerable Solution Set

Theorem 6. Let $A_{ri}([u]) = A_{rd}([v]) \subseteq [A]$. If $q \in [q]$ involves only 1st class parameters, then

 $oldsymbol{\Sigma_{tol}([A],b([q]))} \subseteq oldsymbol{\Sigma_{tol}(A([u]),b([q]))} =$

$$\Sigma_{tol}(A_{ri}(u),[u],b([q]))\subseteq \Sigma_{tol}(A_{rd}(v),[v],b([q])).$$

If A(v) involves more dependencies than A(u) and A([u]) = A([v]), then

$$\Sigma_{tol}(A(u),b(q),[u],[q]) \subseteq \Sigma_{tol}(A(v),b(q),[v],[q]).$$

Special cases for $A_{ri}(u)$ are considered by Sharaya (2008), Sharaya & Shary, RC (2011).

Inclusions — Parametric Controllable Solution Set

Theorem 7.

$$\Sigma_{cont}(A(p_{\mathcal{E}}),b([q_{\mathcal{A}}]),[p_{\mathcal{E}}]) \subseteq \Sigma_{cont}(A(p_{\mathcal{E}}),b(q_{\mathcal{A}}),[p_{\mathcal{E}}],[q_{\mathcal{A}}]).$$

Theorem 7 can be combined with the inclusion theorem for Σ_{uni}^p .

Examples demonstrating the combination of Inclusion Theorems are given in Popova, SIMAX.

Outer and Inner Estimations

$$[v] \subseteq \Sigma^p_{AE} \subseteq [u]$$

Outer and Inner Estimations: 1) End-point Approach

For a given index set I, define the set \mathcal{B}_I of end-points (vertices) of $[p_{\mathcal{I}}]$.

Theorem 8. It holds

$$\Sigma_{AE}^p = igcap_{\mathcal{A} \in \mathcal{B}_{\mathcal{A}}} \Sigma(A(ilde{p}_{\mathcal{A}},p_{\mathcal{E}}),b(ilde{p}_{\mathcal{A}},p_{\mathcal{E}}),[p_{\mathcal{E}}]).$$

Corollary 1. For $\Sigma_{AE}^{p} \neq \emptyset$,

$$\Box \Sigma_{AE}^{p} \subseteq igcap_{\mathcal{A} \in \mathcal{B}_{\mathcal{A}}} \Box \Sigma(A(ilde{p}_{\mathcal{A}}, p_{\mathcal{E}}), b(ilde{p}_{\mathcal{A}}, p_{\mathcal{E}}), [p_{\mathcal{E}}]).$$

 $[v]\subseteq \Sigma(A(ilde{p}_{\mathcal{A}},p_{\mathcal{E}}),b(ilde{p}_{\mathcal{A}},p_{\mathcal{E}}),[p_{\mathcal{E}}])\subseteq [u]$ by any parametric solver for Σ^p_{uni} .

Outer and Inner Estimations: 2nd Approach

based on the characterization

$$|A(\dot p)x-b(\dot p)| \ \le \ \sum_{\mu=1}^K \delta_\mu |A_\mu x-b_\mu| \widehat p_\mu,$$

where
$$\delta_{\mu}:=\{1 \text{ if } \mu \in \mathcal{E}, \ -1 \text{ if } \mu \in \mathcal{A}\}, \qquad \dot{p}:=\mathsf{mid}([p]), \ \widehat{p}:=\mathsf{rad}([p]).$$

Outer Estimation

$$\Sigma^p_{AE}\subseteq [u]$$

E. D. Popova, M. Hladík, *Outer Enclosures to Parametric AE Solution Set*, to appear in Soft Computing.

Theorem 9. (Bauer-Skeel generalization) Let $\mathbf{A}(\dot{\mathbf{p}})$ be regular and define

$$C:=A^{-1}(\dot{p}), \qquad x^*:=Cb(\dot{p}), \qquad M:=\sum_{k=1}^K |CA_k|\hat{p}_k.$$

If ho(M) < 1, then every $x \in \Sigma_{AE}^p$ satisfies

$$|x-x^*| \leq (I-M)^{-1} \left(\sum_{k \in \mathcal{E}} |C(A_k x^*-b_k)|\hat{p}_k - \sum_{k \in \mathcal{A}} |C(A_k x^*-b_k)|\hat{p}_k
ight).$$

- Bauer-Skeel method gives worse enclosures
- End-Point Approach gives the best enclosures, but not always the hull

$$egin{pmatrix} p_1 & p_1+1 \ p_2+1 & -2p_4 \end{pmatrix} x = egin{pmatrix} p_3 \ -3p_2+1 \end{pmatrix}, & p_1,p_2 \in [0,1], & p_3,p_4 \in [-1,1]. \end{pmatrix}$$

$$\Sigma^p_{orall p_4 \exists p_{123}}$$

$$\Sigma^p_{\exists p_{123}}(A(\underline{p}_4)) \bigcap \Sigma^p_{\exists p_{123}}(A(\overline{p}_4)) = \Sigma^p_{\forall p_4 \exists p_{123}} \subset \Box \Sigma^p_{\exists p_{123}}(A(\overline{p}_4)).$$

Outer Estimation of $\Sigma^p_{tol}(A(p_{\mathcal{A}}),b(p_{\mathcal{E}}),[p])$ — LP Approach

E. D. Popova, M. Hladík, *Outer Enclosures to Para-metric AE Solution Set*, to appear in Soft Computing.

Proposition 1. For every $x \in \Sigma_{tol}^p$ there are $y^k \in \mathbb{R}^n$, $k \in \mathcal{A}$, such that

$$egin{aligned} A(\dot{p})x + \sum_{k \in \mathcal{A}} \hat{p}_k y^k & \leq \sum_{k \in \mathcal{E}} |b_k| \hat{p}_k + b(\dot{p}), \ -A(\dot{p})x + \sum_{k \in \mathcal{A}} \hat{p}_k y^k & \leq \sum_{k \in \mathcal{E}} |b_k| \hat{p}_k - b(\dot{p}), \ A_k x \leq y^k, \; -A_k x \leq y^k, \; \; orall k \in \mathcal{A}. \end{aligned}$$

Proposition 1 gives $\square \Sigma_{tol}^p$ for systems involving only 1st class \mathcal{E} -parameters.

E. D. Popova, M. Hladík, *Outer Enclosures to Para-metric AE Solution Set*, to appear in Soft Computing.

Proposition.

The enclosure of Σ_{con}^p computed by the parametric AE-Bauer-Skeel method

is always a subset

of the enclosure obtained by the end-point approach.

$$A(p) = egin{pmatrix} p_1 & -p_2 \ p_2 & p_1 \end{pmatrix}, \quad b(q) = egin{pmatrix} 2q \ 2q \end{pmatrix}, \qquad p_1 \in [0,rac{1}{2}], p_2 \in [1,rac{3}{2}], q \in [1,rac{3}{2}] \end{pmatrix}$$

$$\sum_{con}^{p} = \Sigma(A(p), b(1), [p]) \cap \Sigma(A(p), b(3/2), [p])$$

$$A(p) = egin{pmatrix} p_1 & -p_2 \ p_2 & p_1 \end{pmatrix}, \quad b(q) = egin{pmatrix} 2q \ 2q \end{pmatrix}, \qquad p_1 \in [0,rac{1}{2}], p_2 \in [1,rac{3}{2}], q \in [1,rac{3}{2}] \end{pmatrix}$$

$$\sum_{con}^{p} = \Sigma(A(p), b(1), [p]) \cap \Sigma(A(p), b(3/2), [p])$$

End-Point Approach:

$$A(p) = egin{pmatrix} p_1 & -p_2 \ p_2 & p_1 \end{pmatrix}, \quad b(q) = egin{pmatrix} 2q \ 2q \end{pmatrix}, \qquad p_1 \in [0,rac{1}{2}], p_2 \in [1,rac{3}{2}], q \in [1,rac{3}{2}] \end{pmatrix}$$

$$\sum_{con}^{p} = \Sigma(A(p), b(1), [p]) \cap \Sigma(A(p), b(3/2), [p])$$

Methods for Outer Estimation of Σ_{AE}^{p}

The end-point approach has high computational complexity,

```
however, it allows applying only methods for \Sigma_{uni}^p, and to attack large scale \Sigma_{tol}^p.
```

- The parametric B-S method is in real arithmetic,
 - its self-verified analogue requires Kaucher arithmetic;
 - B-S requires strong regularity of the parametric matrix & fails otherwise.

• There is a large room for further research.

Inner Estimation: $[v] \subseteq \Sigma_{tol}(A(p_{\mathcal{A}}), [b], [p_{\mathcal{A}}])$

. . .

Inner Estimation:

S.Shary, 1996: The "end-point" approach provides $[v] \subseteq \Sigma_{tol}([A],[b])$ with comp. complexity $O(2^{n^2})$

By a complicated search-like algorithm he reduces the comp. complexity to $O(2^n)$.

Since
$$\Sigma_{tol}([A],[b])=\Sigma_{tol}(A_{ri}(p),[b]), \qquad [A]=A_{ri}([p])$$

consider
$$A_{ri}(p) = A^0 + \sum_{
u=1}^n A^
u p_
u$$
 ,

where
$$A^0=\mathsf{mid}([A])$$
, $A^
u=\mathsf{rad}([A]_{ullet
u})$, $p_
u\in[-1,1]$, $u=1,\ldots,n$

and apply the "end-point" approach to

the parametric system with comp. complexity $O(2^n)$.

Inner Estimation: Application to Controllability

Consider

$$\dot{x}(t) = Ax(t) + Bu(t)$$

where $A \in [A] \in \mathbb{IR}^{n \times n}$, $B \in [B] \in \mathbb{IR}^{n \times m}$.

Let [A] be assimptotically stable.

The interval object is completely controllable if and only if

$$\mathsf{rank}[V] = n, \qquad [V] \subseteq \Sigma_{tol}([A], [B]),$$

where

$$\Sigma_{tol}([A],[B]) := \{V \in \mathbb{R}^{n imes n} \mid (orall A \in [A])(\exists B \in [B])(AV + VA^ op = -BB^ op)\}.$$

Inner Estimation: Application to Controllability

For

$$\mathsf{mid}([A]) = egin{pmatrix} -1 & -1 & 2 \ 3 & -2 & -5 \ -2 & 1 & -5 \end{pmatrix}, \quad \mathsf{rad}([a_{ij}]) = 3/100,$$

$$[B] = ([\frac{31}{4}, \frac{41}{4}], [-\frac{37}{4}, -\frac{27}{4}], [\frac{103}{4}, \frac{113}{4}])^{\top}$$

we obtain

$$[V] = egin{pmatrix} [109.599, 110.685] & [-16.9308, -15.844] & [25.6931, 26.7799] \ [-16.9308, -15.844] & [92.951, 94.0378] & [-41.2174, -40.1306] \ [25.6931, 26.7799] & [-41.2174, -40.1306] & [53.8834, 54.9702] \end{pmatrix}$$

Parametric Tolerable Solution Set — Unboundedness

inspired by the work of I. Sharaya (2006, 07, ...) on unbounded nonparametric AE SSets

- ullet a criterion for unbounded Σ^p_{tol}
- ullet a more precise structure of Σ^p_{tol}

which imply

ullet new conditions for $\Sigma^p_{tol}
eq \emptyset$

and allow

ullet inner & outer estimations of unbounded Σ^p_{tol}

by methods for bounded Σ_{tol}^{p} .

General Conclusions

- Explicit Description of Σ_{AE}^{p} helps understanding their properties. key problem is the description of Σ_{uni}^{p} : several open problems
- ullet Methods are available for $\Sigma_{AE}^p
 eq \emptyset$, connected, further research on methods for:
 - disconnected Σ^p_{AE} , efficient estimation of Σ^p_{uni}
- ullet Searching for best estimation of Σ^p_{AE} , one has to consider the inclusion relations & the properties of the methods.
- We have to pay more attention to the applications.
- These initial results open a Large Room for Further Research.