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Parametric Problems

“Unless you are able to handle dependent data,

you will never gain interest of the engineers.”

lvo Babuska, talking to J. Rohn, 1992.
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Parametric Linear Systems

Consider the linear algebraic system

A(p) -x = b(p),

where

K K
A(p) := Ao+ Y Agps, b(p) :=bo + Y _ brpx

k=1 k=1

AiERnxm, b, e R", 1=0,...

the uncertain parameters pg vary within given intervals

p € [pl=([p,>P1ls--+s[Pp>Pr]) -
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Parametric AE Solution Sets

For AUE={1,...,K}, ANE =0,

¥hE = {x € R" | (Vpa € [pa])(3pe € [pe])(A(p)x = b(p))} -

AFE terminology is after S. Shary.

The quantification of the parameters concerns the solution set, not the system.

For a given A(p)xz = b(p), p € [p] € IR, there are 2K parametric solution sets X%, ..
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Parametric AE Solution Sets — special cases

P i (A(p),b(p),[p]) = {z € R"|3pe€p], A(p)z =b(p)}
2fol = X (A(pA)a b(pS)a [p])

= {z € R" | (Vpa € [pa])(Tpe € [ps])(A(pa)z = b(pe))}

Yeont = X (A(pe),b(pa),[p])
= {z € R" [ (Vpa € [pa])(Tpe € [pe])(A(pe)r = b(pa))}
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Example

Consider the Lyapunov matrix equation
AX +XA"T = F,
A common approach is to transform a matrix equation into linear system

Pz = f,

where P=1,QRQRA+AQRI,, x=vec(X), [ =vec(F).

If A€ [A], F €[F], or A, F have linear uncertainty structure,
In both cases, P has a linear uncertainty structure.

Therefore, a X% . must be considered

depending on the context of the particular problem.
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Example — Controllability

Sokolova S., Kuzmina, E., 2008.

Consider
z(t) = Ax(t) + Bu(t)

where A € [A] € IR®*™, B € [B] € IR®*™.

Let [A] be assimptotically stable.

The interval object is completely controllable if and only if
rank[V] =mn,  [V] C X ([A], [B]),
where

S1o1([A], [B]) := {V € R™™ | (VA € [A])(3B € [B])(AV+VAT = —BB")}.
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Example — Controllability

Controllability analysis reduces to

finding [v] C Ztol(P(aij)a .f(.f?a)a [A]a [F])v

where

Plaij) =1, A+ AR I,, ai; € [aij]

[w] = vec([V]),  f(fi;) := vec(F = —BBT).

SCAN'2012



Parametric AE Solution Sets

Theorem 1.

e = ) ) {=z €R"|A(pa,ps) - = =b(pa,ps)}-

rAa€[pAal re Elpe]
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Parametric AE Solution Sets

GOAL:

explicit representation of X% .. by means of inequalities

Why?

e exploring the solution set properties,

which helps designing better (sharp, fast) numerical methods

e finding exact bounds,

which helps in testing new numerical methods

The problem is related to Quantifier Elimination.
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D
une

Explicit Description of X

Fourier-Motzkin-like Elimination of £-parameters

G. Alefeld, V. Kreinovich, G. Mayer, J. Comput. Appl. Math. 152, 2003.

Improved in: E. Popova, BIT Numerical Mathematics, 2011.

e uniform representation of the characterizing inequalities
e considerable reduction their number
e removing the dependency on the particular orthant

e proving some superfluous inequalities
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Classification of the parameters

Definition 1. A parameter is of 1st class if it is involved in only one

equation does not matter how many times.

Definition 2. A parameter is of 2nd class if it is involved in more than
one equation of the system.

P1 1 1 P3 — Pa
P2 2p1 p2+1 |- =|p —p2/3
1 1 3pi—1 p3/2

SCAN'2012
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Parametric AE Solution Sets

E. D. Popova, W. Kramer, Characterization of AE Solution Sets to a Class of
Parametric Linear Systems, Compt. rend. Acad. bulg. Sci. 64(3):325-332, 2011.

Theorem 2. Ifx € 38 . # 0,

> (Avz —b.)[p.] Cbo — Aoz +) (b — Apz)[ppl-
reA HEE

equivallently

K
l[A(P)z —b(p)| < D Or|Arz — br|pr,
k=1

where 0 := {1 ifu € &, —1 if p € A}, p := mid([p]), p := rad([p]).
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Parametric AE Solution Sets

Theorem 3. Let A(p)x = b(p) involves only 1st class €-parameters.
A point x € R™ belongs to X5 ., if and only if

Z (Avz — b,)[pv] C bo — Aoz ‘|‘Z (bp — Apz)[pul.

rcA nEE

equivallently

K
|A(P) —b(P)] < > Ok|Arx — bk|pk,
k=1

where 0 := {1 if p € E, —1 if p € A}, p := mid([p]), p := rad([p]).

SCAN'2012
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Parametric AE Solution Sets

E.Popova, Explicit Description of AE Solution Sets to
Parametric Linear Systems, SIMAX 33(4):11721189.

If A(p)x = b(p) involves 2nd class €-parameters,
a point & € R™ belongs to X% ., if and only if

K
[A(P)z —b(P)| < D 6k|Awz — bi|Dr,
k=1
and "cross”’ inequalities

wa(z) + Y urw(@)Pu + Y vau(@)bu| < D lunu(@)Bu— ) [vau(@)|Du;

peé& neEA nEE nEA
ANET

obtained by Fourier-Motzkin-like elimination of £€-parameters

op:={1ifpe€, —1ifpec A}, p:= mid([p]), p:= rad([p]).
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Parametric AE Solution Sets

e The description of X% . by F-M elimination of £-parameters

is feasible, much faster & compact than by Quantifier Elimination.

e We have Oettly-Prager-type description of X%
— explicit for some classes 3%, . (symmetric, skew-symmetric, for 1st class £-pars, 2D)

— algorithmic procedure in general

e For description & visualization of 2D X% ., use

http://cose.math.bas.bg/webMathematica/webComputing/ParametricAESSet. jsp

Further research is necessary on:
— the description of ¥ . with fixed data dependencies,

UNL

— more conditions for sflu/red ineqs & formula for the degree of the poly.
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Parametric AE Solution Sets — Properties

e The elimination of A-parameters and 1st class £-parameters

does not introduce "cross’ inequalities.

Corollary 1. The infimum/supremum of a parametric AE solution set is
attained at particular end-points of the intervals for the 1st class €-parameters and

for the A-parameters.

The boundary of X%, .. is linear w.r.t. these parameters,
Y AE

although X% . may not depend linearly on these parameters.

SCAN'2012
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Parametric AE Solution Sets — Properties

e The boundary of 3% .. involving 2nd class €-parameters

may consist of polynomials of arbitrary degree.

pP1  —D2 2ps
r =
P2 D1 2ps
P1 € [_272]7p2 c [_172]7 P3 € [172]
2VP33P19P2

However 3P . is not convex even in a single orthant.
AE
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Examples

P1 p1+1 P3
( +1 2 ) L = s D1sD2 € [091]9 P3s D4 € [—1,1]
D2 —4P4

—3p2 + 1

-z
2Vp13ps...a ~ 2ipgIp1,p2,pa — UNbounded
2VP2HP1,p3,P4 — ZVp4ap1,p2,p3 - bounded
EVpl 7p23p37p4 — Segment Esz,p43p2,p47 o 00 T empty
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Parametric Tolerable Solution Set — Properties

2fol = X (A(pA)a b(pS)a [p])
= {z € R" | (Vpa € [pa])(3pe € [pe])(A(pa)z = b(pe))}

Theorem 4. 3 (A(pa),b(pe), [p]) is a convex polyhedron.

|. Sharaya & S. Shary prove it for some special cases.

SCAN'2012
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Inclusion Relations

o C Setans(Aw), b(u), [4]) C Setass(A(v), b(v), [v]) C ---

class € {uni, tol, cont, fixedA-pars}

for given A(p), b(p),[p], there are unique A([p]),b([p])

however, for given [A], [b] there are infinitely many choices of p, [p], A(p), b(p)

such that  A([p]) = [A], b([p]) = [b].

SCAN'2012
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Inclusion Relations

Lemma 1. For

f(p) = ao+api, + fo(p\{Pi,,Piz })> g(p) = Bo+Bpi, +go(P\{Pi1>Piz })

we can define

fl@) == qi+q2+ fo(p\ {pPirsPis})
9(q) := a1+ a3+ go(p\ {Pi1sDiz}),

~

where g1 € [q1] ts arbitrary, g2 = oo + api, — q1, 42 = |a|Pi; — q1,

gs = Bo + BPi, — 41, 43 = |B|Pi, — 41,

such that — f([p]) = f([a]),  g(p]) = G([q))-

SCAN'2012
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Inclusion Relations

Theorem 5. For two parameter vectors w € [u] € IR™!, v € [v] € IR™2, such
that A([u]) = A([v]) = [A],  b([u]) = b([v]) = [b] and

A(u), b(u) are obtained from A(v), b(v) by successive application of Lemma 1]
similarly A(v), b(v) are obtained from [A], [b], then

+ C Buni(A(u), b(u), [u]) C Buni(A(v),b(v),[v]) C -+ C Zuni([A], [b]).

Corollary 2. Theorem 5] is applicable to parametric AE solution sets which have
the same structure of the dependencies between the A-parameters and the same

domain [pAa].

SCAN'2012
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Inclusions — Parametric Tolerable Solution Set

Theorem 6. Let A,;([u]) = Arqa([v]) C [A].

If q € [q] involves only 1st class parameters, then

Yot ([A], b([g])) € ZBeor(A([u]), b([g])) =
Yot (Ari(u), [u], b([q])) € Zio(Ara(v), [v],b([q]))-

If A(v) involves more dependencies than A(u) and A([u]) = A([v]), then

3iot(A(uw),b(q); [u];[q]) € Zia(A(v),b(q),[v];[q])-

Special cases for A,.; (u) are considered by Sharaya (2008), Sharaya & Shary, RC (2011).
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Inclusions — Parametric Controllable Solution Set

Theorem 7.

Econt(A(Ps), b([q.A])a [Ps]) Q zcont(A(p5)7 b(q.A)a [pg]a [q.A])‘

b
unt’

Theorem 7 can be combined with the inclusion theorem for X

Examples demonstrating the combination of Inclusion Theorems are given in Popova, SIMAX.

SCAN'2012
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Outer and Inner Estimations

[v] © Yap C [u]
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Outer and Inner Estimations: 1) End-point Approach

For a given index set I, define the set By of end-points (vertices) of [pz].

Theorem 8. [t holds

5= (] Z(A(Pa,pe),b(Pa,pe), [pel)-
PAEBA

Corollary 1. For 3% . #£ 0,

0255 C () OZ(A(Pa,ps),b(Pa,pe), [pel)-

PAEB 4

p

[v] C X(A(pa,pe),b(Pa,pe), [Pe]) C [u] by any parametric solver for 37 ..

SCAN'2012
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Outer and Inner Estimations: 2nd Approach

based on the characterization

K
|[A(p)z — b(p)| < Z Opu|Apx — bp|Pp,
pn=1

where d, :={1ifpu € &, —1if p € A},

SCAN'2012

p := mid([p]), B := rad([p])-
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Outer Estimation > e Clul

E. D. Popova, M. Hladik, Outer Enclosures to Para-
metric AE Solution Set, to appear in Soft Computing.

Theorem 9. (Bauer—Skeel generalization) Let A(pP) be reqular and define

K
C := A" (p), x* := Cb(p), M := ) |CAg|pr.

k=1

If p(M) < 1, then every @ € ¥ o satisfies

r—z"| < (I—-M)™" (Z |C(Arz™ — bi)[pr — > |C(Araz™ — bk)lﬁk) :

ke& ke A

SCAN'2012
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Outer Estimations — Properties for 37 (A(pa), b(pe), [p])
e Bauer-Skeel method — gives worse enclosures

e End-Point Approach — gives the best enclosures, but not always the hull

P1 p1+1 P3
( ) Tr = ( ) s DP1,DP2 € [09 1]7 P3, P4 € [_171]°

p2+1 —2pg —3p2 + 1

p
Vpadpi2s

3p123 (A(p,)) ﬂ 231)123 (A(py)) = 2Vp45|p123 C DEHP123 (A(py))-

SCAN'2012
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Outer Estimation of X (A(pa), b(pe), [p]) — LP Approach

E. D. Popova, M. Hladik, Outer Enclosures to Para-
metric AE Solution Set, to appear in Soft Computing.

Proposition 1. For every @ € X7, there are y® € R™, k € A, such that

A(P)z + > pry” < ) |brlpr + b(P),

Ec A kEE
—A(P)z 4+ > Pry” < D |br|pr — b(p),
kc A ke&

Az < y®, —Arz < y", Vke A.

Proposition 1 gives X7 , for systems involving only 1st class £-parameters.

SCAN'2012
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Outer Estimation — Properties for X2 (A(pg), b(pa), [p])

con

E. D. Popova, M. Hladik, Outer Enclosures to Para-

metric AE Solution Set, to appear in Soft Computing.

Proposition.

The enclosure of ¥P__ computed by the parametric AE-Bauer-Skeel method

n

s always a subset
of the enclosure obtained by the end-point approach.

SCAN'2012
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Outer Estimation — Properties for 32 (A(pg),b(pa), [p])

A(p) = (

SCAN'2012

D1
D2

—D2
D1

»P

comn

) s b(q) = (22) s p1 € [0, %]9p2 € [1, g]aq € [1, g]

= 3(A(p),b(1), [p]) N =(A(p), b(3/2), [p])
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Outer Estimation —

D1 —DP2
A(p) = (
P2 P1
EP

comn

End-Point Approach:

SCAN'2012

Properties for 3X? (A(pg),b(pa),[p])

) s b(q) = (22) s p1 € [0, %]9p2 € [1, g]aq € [1, g]

= 3(A(p),b(1), [p]) N =(A(p), b(3/2), [p])
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Outer Estimation — Properties for 32 (A(pg),b(pa), [p])

A(p) = (

SCAN'2012

D1
D2

—D2
D1

»P

comn

) s b(q) = (22) s p1 € [0, %]9p2 € [1, g]aq € [1, g]

= 3(A(p),b(1), [p]) N =(A(p), b(3/2), [p])
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Methods for Outer Estimation of X%, .,

e The end-point approach has high computational complexity,

p

un’

however, it allows applying only methods for > and

to attack large scale 37 ;.

® The parametric B-S method is in real arithmetic,
— its self-verified analogue requires Kaucher arithmetic;

— B-S requires strong regularity of the parametric matrix & fails otherwise.

e There is a large room for further research.
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Inner Estimation:

SCAN'2012

[v]C Ztoi(A(pa), [b], [PA])
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Inner Estimation:

S.Shary, 1996: The "end-point” approach provides [v]C X:01([A], [b])
with comp. complexity 0(2'"’2)

By a complicated search-like algorithm he reduces the comp. complexity to O(2™).

Since  Xtor([A]; [b]) = Biar(Ari(p); [b]),  [A] = Ari([p])

consider A,;(p) = A° +>"_. A¥p,,
where A° = mid([A]), AY =rad([Al]e.), po € [-1,1], v =1,...,n

and apply the "end-point” approach to

the parametric system with comp. complexity O(2"™).
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Inner Estimation: Application to Controllability

Consider
z(t) = Ax(t) + Bu(t)

where A € [A] € IR®*"™, B € [B] € IR®"*™.

Let [A] be assimptotically stable.

The interval object is completely controllable if and only if
rank[V] =mn,  [V]C Sw([A], [B]),
where

.0 ([A], [B]) := {V € R™™ | (VA € [A])(3B € [B])(AV+V AT

SCAN'2012
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Inner Estimation: Application to Controllability

For
-1 -1 2
mid([A) = [ 3 -2 —5|, rad([ai;]) = 3/100,
—2 1 —5
[B] = ([3, 411, [-3F, =27, [192, 3D 7
we obtain
[109.599, 110.685] [ — 16.9308, —15.844] [25.6931, 26.7799]
[V] = [ — 16.9308, —15.844] [92.951, 94.0378] [ — 41.2174, —40.1306]
[25.6931,26.7799] [ —41.2174, —40.1306] [53.8834,54.9702]

SCAN'2012
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Parametric Tolerable Solution Set — Unboundedness

inspired by the work of I. Sharaya (2006, 07, ...) on unbounded nonparametric AE SSets

D
tol

p
tol

e a criterion for unbounded X

e a more precise structure of X

which imply

e new conditions for X7 #£ ()

and allow

p
tol

by methods for bounded X7 .

e inner & outer estimations of unbounded X

SCAN'2012
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General Conclusions

Explicit Description of 3% .. helps understanding their properties.

p

uni. several open problems

key problem is the description of X

Methods are available for X% . # 0, connected, further research on methods for:

p
uni

— disconnected XY, -, — efficient estimation of X

Searching for best estimation of ZZE, one has to consider

the inclusion relations & the properties of the methods.

We have to pay more attention to the applications.

These initial results open a Large Room for Further Research.
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