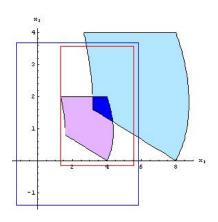
Improved Enclosure for Some Parametric Solution Sets with Linear Shape

Evgenija D. Popova

Institute of Mathematics & Informatics Bulgarian Academy of Sciences



Outline

- ullet Parametric linear systems, Σ^p_{uni} , outer estimation
- ullet Sufficient conditions for linear boundary of Σ^p_{uni}
- Generalization of Neumaier & Pownuk's method
- Implications, Applications, Examples
- Conclusions

Parametric Linear Systems

Consider the linear algebraic system

$$A(p) \cdot x = b(p),$$

where

$$A(p) := A_0 + \sum_{k=1}^K p_k A_k, \qquad b(p) := b_0 + \sum_{k=1}^K p_k b_k$$

$$A_i \in \mathbb{R}^{n \times m}, \ b_i \in \mathbb{R}^n, \quad i = 0, \dots, K$$

the uncertain parameters $oldsymbol{p_k}$ vary within given intervals

$$p \in [p] = ([\underline{p}_1, \overline{p}_1], \dots, [\underline{p}_K, \overline{p}_K])^{\top}.$$

Parametric Linear Systems

$$egin{array}{lll} \Sigma_{uni}^p &=& \Sigma_{uni}^p \left(A(p),b(p),[p]
ight) \ &:=& \left\{x\in\mathbb{R}^n\mid \exists p\in[p],\; A(p)\cdot x=b(p)
ight\} \end{array}$$

In worst-case analysis of uncertain systems

the GOAL is outer interval estimation [u] of Σ_{uni}^p

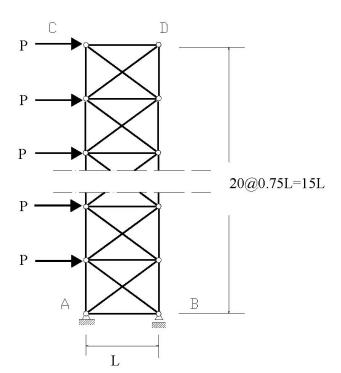
that is: Find interval vector [u], such that $\Sigma_{uni}^p \subseteq [u]$.

The best parametric method

influenced and motivated by

R.L.Muhanna, R.L.Mullen, H.Zhang, Interval FE as a basis for generalized models of uncertainty in engineering mechanics, in Proc. of REC'2004.

• A.Neumaier, A.Pownuk, Linear systems with large uncertainties, with applications to truss structures, Reliable Computing 13, 149-172, 2007. exploited the structure of the parameter dependencies



FEM Analysis of Truss Structures

$$K(p)x = b$$

however, the el. stiffness matrices

$$(K_e)_{mn} = \frac{E_e A_e}{L_e} a_m a_n = a_m p_e a_n$$

thus

$$K(p) = B^{\top} \underline{Diag(p)} B.$$

Neumaier & Pownuk's method: Main Theorem

Let A(p)x = b(q) is representable as

$$(A_0 + LDR)x = b_0 + Fq \tag{1}$$

for some $L \in \mathbb{R}^{m imes K_1}$, $R \in \mathbb{R}^{K_1 imes n}$, $F \in \mathbb{R}^{n imes K_2}$ and $D = \mathsf{Diag}(p)$.

Let $D_0\in\mathbb{R}^{K_1 imes K_1}$ be such that $C:=(A_0+LD_0R)^{-1}$ exists, and put $d=(D_0-D)y$, where y=Rx.

If there are vectors $w \geq 0$, w' > 0 and w'' such that

$$w' \leq w - |D_0 - D||RCL|w, \qquad w'' \geq |D_0 - D||RCb_0 + RCFq|,$$

then

$$d \in [d] := [-lpha w, lpha w], \qquad lpha = \max_i rac{w_i''}{w_i'},$$

and the solution x of (1) is related to y and d by the equations

$$egin{array}{lll} x & = & Cb_0 + CFq + CLd, \ y & = & RCb_0 + RCFq + RCLd. \end{array}$$

Neumaier & Pownuk's method for Σ_{uni}^p

Advantages:

- ullet does not require strong regularity of A(p) on [p], while all other parametric methods do
- P 20@0.75L=15L
 P A B

- large parameter uncertainties
- scalable to high dimensions: > 5000 variables, > 10000 int. parameters (application to problems untractable so far)

Restrictions:

not every parametric matrix has the representation

$$(A_0 + L \mathsf{Diag}(p)R)x = b_0 + Fq$$

required is knowledge of $L\in\mathbb{R}^{m imes K_1}$, $R\in\mathbb{R}^{K_1 imes n}$ such that $A(p)=A_0+LDR$. the matrix and the r.h.side vector are independent.

Neumaier & Pownuk's method

$$(A_0 + LDR)x = b_0 + Fq$$

restriction:

required is knowledge of $L \in \mathbb{R}^{m \times K_1}$, $R \in \mathbb{R}^{K_1 \times n}$ such that $A(p) = A_0 + LDR$

GOAL:

- How to find such a representation, if it exists?
- ullet If the representation is possible, generalize the method for dependencies between A and b

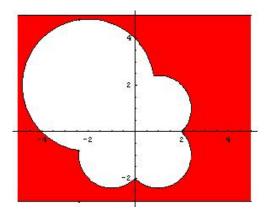
$$A(p)x = b(p,q)$$

Shape of Σ_{uni}^p

The shape of Σ_{uni}^{p} is determined by

the degree of the polynomials that define the boundary of Σ_{uni}^{p} .

ullet In general, the shape of Σ^p_{uni} is nonlinear.



ullet For a large class of applied problems the shape of Σ^p_{uni} is linear.

Σ_{uni}^p with Linear Shape

basing on E. Popova, BIT Numerical Mathematics 52(1):179-200, 2012.

Theorem 1. Σ_{uni}^{p} has linear shape w.r.t. a parameter p_{k} , $k \in \{1, \ldots, K\}$, if

- the nonzero elements of the vector $A_k x b_k$ are linearly dependent,
- equivalently: $rank((A_k|b_k)) = 1$
- equivalently: denoting $g_k(x)$ the polynomial GCD of $A_k x b_k$ $g_k(x) = const \ if \ A_k = 0 \ and \ g_k(x) \neq const \ otherwise.$

Σ_{uni}^{p} with Linear Shape

Important Implication

Corollary 1. The infimum/supremum of Σ_{uni}^p is attained at particular end-points of the intervals for the parameters that contribute linearly to the boundary.

Theorem 1 gives only sufficient conditions for linear boundary of Σ^p_{uni} .

Σ_{uni}^{p} with Linear Shape

consider the parametric linear algebraic system in the form

$$A(p)x = b(p,q)$$

$$A(p) := A_0 + \sum_{k=1}^{k_1} p_k A_k$$

$$b(p,q) := b_0 + \sum_{k=1}^{k_1} p_k b_k + \sum_{k=k_1+1}^{K} q_k b_k.$$

Σ_{uni}^{p} with Linear Shape Conversion Theorem

Theorem 2. Let $g_k(x) := GCD(A_k x)$ be $g_k(x) \neq const$

for every p_k , $k \in \{1, \ldots, k_1\}$.

Define

$$L := (l_1 | \ldots | l_{k_1}) \in \mathbb{R}^{n \times k_1}, \qquad l_k := A_k x / g_k(x) \in \mathbb{R}^n$$

$$R := (r_1 | \dots | r_{k_1})^{\top} \in \mathbb{R}^{k_1 \times n}, \quad r_k := (\frac{\partial g_k(x)}{\partial x_1}, \dots, \frac{\partial g_k(x)}{\partial x_n})^{\top} \in \mathbb{R}^n$$

$$F:=(b_{k_1+1}|\dots|b_K)\in\mathbb{R}^{n imes(K-k_1)}$$

If for every $k \in \{1, \ldots, k_1\}$, there exists $t_k \in \mathbb{R}$

such that
$$t_k l_k = b_k = \partial b(p,q)/\partial p_k$$
,

then Σ_{uni}^{p} has linear shape and

Equivalent Representation

Corollary 2. If all parameters satisfy previous Theorem, then the system

$$A(p)x = b(p,q)$$

has the equivalent representation

$$(A_0 + LDR)x = b_0 + LDt + Fq$$

where $\mathbf{D} = Diag(\mathbf{p})$.

Neumaier & Pownuk's method: Generalization

Let A(p)x = b(q) is representable as

$$(A_0 + LDR)x = b_0 + LDt + Fq$$
 (2)

for some $L\in\mathbb{R}^{n imes k_1}$, $R\in\mathbb{R}^{k_1 imes n}$, $F\in\mathbb{R}^{n imes (K-k_1)}$, $t\in\mathbb{R}^{k_1}$, $D=\mathsf{Diag}(p)$.

Let $D_0\in\mathbb{R}^{k_1 imes k_1}$ be such that $C:=(A_0+LD_0R)^{-1}$ exists, and put $d=(D_0-D)(y-t)$, where y=Rx. If there are vectors $w>0,\,w'>0$ and w'' such that

$$w' \leq w - |D_0 - D||RCL|w, \quad w'' \geq |D_0 - D||RCb_0 + RCFq + RCLD_0t - t|,$$

then

$$d \in [d] := [-lpha w, lpha w], \qquad lpha = \max_i rac{w_i''}{w_i'},$$

and the solution x of (2) is related to y and d by the equations

$$egin{array}{lcl} x & = & Cb_0 + CFq + CL(D_0t+d), \ y & = & RCb_0 + RCFq + RCL(D_0t+d). \end{array}$$

Example

Consider

$$egin{pmatrix} p_1+p_2 & p_1-p_2 \ p_1-p_2 & p_1+p_2 \end{pmatrix} x \ = \ egin{pmatrix} 2p_2+3p_1-1 \ -2p_2+3p_1+3 \end{pmatrix}, \qquad p \in egin{pmatrix} [rac{1}{2},rac{3}{2}] \ [rac{1}{2},rac{3}{2}] \end{pmatrix}$$

The original NP-method gives $x_{NP} = ([-2.51, 6.51], [-2.51, 6.51])^{ op},$ while all other methods fail.

The generalized NP-method gives $x_{gNP} = ([0.5, 3.51], [0.5, 3.51])^{ op}$.

 x_{NP} overestimates x_{gNP} by 66.6%.

Electrical Circuits

 $Z_k \pm 10\%$.

Find bounds for the node voltages V_i .

By loop analysis:

$$\begin{pmatrix} \frac{1}{Z_1} + \frac{1}{Z_3} + \frac{1}{Z_6} & -\frac{1}{Z_3} & 0 \\ -\frac{1}{Z_3} & \frac{1}{Z_2} + \frac{1}{Z_3} + \frac{1}{Z_4} + \frac{1}{Z_5} & -\frac{1}{Z_4} - \frac{1}{Z_5} \\ 0 & -\frac{1}{Z_4} - \frac{1}{Z_5} & \frac{1}{Z_4} + \frac{1}{Z_5} + \frac{1}{Z_7} + \frac{1}{Z_{10}} \\ 0 & 0 & -\frac{1}{Z_7} \\ -\frac{1}{Z_6} & 0 & 0 \end{pmatrix}$$

Main Application: Sharpen the Bounds

Corollary 3. The infimum/supremum of Σ_{uni}^{p} is attained at particular end-points of the intervals for the parameters that satisfy Theorem 1.

Which endpoints of $[p_k]$ form the lower/upper bounds of $\square \Sigma_{uni}^p$ is determined by:

solving derivative parametric systems, see
 E.Popova, Computer-Assisted Proofs in Solving Linear Parametric
 Problems, SCAN 2006, IEEE Computer Society Press, 2007.

APPLICATION:

Fix the values of the parameters, that satisfy Theorem 1, at appropriate endpoints of their intervals

and find sharper bounds for the respective Σ_{uni}^p involving the remaining less number of interval parameters.

Parametric AE Solution Sets

$$\Sigma_{AE}^p := \{x \in \mathbb{R}^n \mid (orall p_{\mathcal{A}} \in [p_{\mathcal{A}}]) (\exists p_{\mathcal{E}} \in [p_{\mathcal{E}}]) (A(p_{\mathcal{A}}, p_{\mathcal{E}})x = b(p_{\mathcal{A}}, p_{\mathcal{E}})) \}$$

E.Popova, Explicit Description of AE Solution Sets to Parametric Linear Systems, SIMAX 33, 2012.

• The boundary of Σ_{AE}^{p} is linear w.r.t. all \mathcal{A} -parameters. (the shape of Σ_{AE}^{p} is determined by the \mathcal{E} -parameters)

implies the APPLICABILITY of

- ullet the sufficient conditions for linear boundary w.r.t. ${oldsymbol{\mathcal{E}}}$ -parameters
- the Conversion Theorem for these parameters

to
$$\Sigma^p_{AE}$$
 .

Outer Estimation

$$\Sigma^p_{AE}\subseteq [u]$$

E. D. Popova, M. Hladík, *Outer Enclosures to Parametric AE Solution Set*, Soft Computing 17, 2013.

For a given index set \mathcal{A} , define the set $\mathcal{B}_{\mathcal{A}}$ of end-points (vertices) of $[p_{\mathcal{A}}]$.

Theorem 3. For $\Sigma_{AE}^p \neq \emptyset$,

$$\Box \Sigma_{AE}^p \subseteq igcap_{\mathcal{A} \in \mathcal{B}_{\mathcal{A}}} \Box \Sigma_{uni}(A(ilde{p}_{\mathcal{A}}, p_{\mathcal{E}}), b(ilde{p}_{\mathcal{A}}, p_{\mathcal{E}}), [p_{\mathcal{E}}]).$$

 $\Sigma_{uni}(A(ilde{p}_{\mathcal{A}},p_{\mathcal{E}}),b(ilde{p}_{\mathcal{A}},p_{\mathcal{E}}),[p_{\mathcal{E}}])\subseteq [u]$ by any parametric solver for Σ_{uni}^p .

The above end-point approach implies the APPLICABILITY of the generalized Neumaier & Pownuk method.

Conclusions

The sufficient conditions for linear boundary w.r.t. some \mathcal{E} -parameters:

- ullet expand our knowledge about the shape of Σ^p_{uni} , Σ^p_{AE}
- allow reducing the dependencies (which cause overestimation)

$$(A_0 + LDiag(p)R) x(p,q) = b_0 + LDiag(p)t + Fq$$

- the above allow:
 - expanding the applicability of NP-method to other problem domains
 - generalizing the NP-method for A(p)x = b(p,q)

preserving its scalability

- obtain exact or sharper bounds for $\Sigma^p_{uni},\,\Sigma^p_{AE}$ accounting for the linear boundary w.r.t. some parameters.

A detailed discussion can be found in:

Popova, E.: Improved Enclosure for Some Parametric Solution Sets with Linear Shape, Computers and Mathematics with Applications, online: April 2014.

THANK YOU!