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Abstract. Hybrid Communicating Sequential Processes (HCSP) extends
CSP to include differential equations and interruptions. We feel comfort-
able in our experience with HCSP to model scenarios of the Level 3 of
Chinese Train Control System (CTCS-3), and to define a formal seman-
tics for Simulink. The Hoare style calculus of [5] proposes a calculus to
verify HCSP processes. However it has an error with respect to super-
dense computation. This paper is to establish another calculus for a
subset of HCSP, which uses Duration Calculus formulas to record pro-
gram history, negligible time state to denote super-dense computation
and semantic continuation to avoid infinite interval. It is compositional
and sound.
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1 Introduction

Hybrid system combines discrete control and continuous evolution. A continu-
ously evolving plant with discrete control is a typical example. The behaviour
of the plant can be defined by a differential equation, say F (ṡ, s, u) = 0. A
computer samples the state of the plant every d time units through a sensor,
calculates its control parameter u according to the sensed state s and sends back
to the plant through an actuator. Communicating Sequential Processes (CSP,
[4]) provides channels to model the sensor and the actuator, and parallelism
to model interaction between the computer and the plant. However CSP lacks
a construct to model physical behaviour of the plant. [3, 14] propose a Hybrid
CSP (HCSP) and suggest to use HCSP to model hybrid systems. HCSP intro-
duces into CSP continuous variables, differential equations, and interruptions
by boundary, timeout and communication. Our experience in using HCSP to
describe the scenarios of Level 3, Chinese Train Control System (CTCS-3) [15]
and give a formal semantics of Simulink [16] is quite satisfactory, and will be
reported in other papers.

This paper presents a compositional Hoare style calculus to verify properties
of HCSP processes. The calculus has to meet two challenges. The first one is



to reason about differential equations. We adopt differential invariants from [8,
9]. An algorithm which generates a polynomial (in)equality invariant from a
polynomial differential equation is developed in [6]. The algorithm is complete
as it always produces an invariant, provided that one exists. The generation of
the polynomial invariant is supported by a symbolic computation tool for semi-
algebraic system, DISCOVERER, which is based on the theory invented in [11,
10].

Another challenge is how to accommodate super-dense computation in the
calculus. By super-dense computation we mean that computer is much faster
than other physical devices and computation time of a computer is therefore
negligible, although the temporal order of computations is still there. In the plant
control example, the control parameter sent from the computer is supposed to
control the state sensed before. The computation time for calculating the new
control parameter is neglected.

A Hoare style logic for reasoning about HCSP is firstly proposed by [5], which
simply uses the chop modality of Duration Calculus (DC) [13] to describe the
sequential composition, and point intervals to describe super-dense computa-
tions. Unfortunately chop degenerates into conjunction at a point interval, and
the temporal order of computations disappears. Hence, the monotonicity rule
cannot be maintained, and it forms an error of [5]. In this paper we use a dedi-
cated DC state variable N to mark negligible time. This idea can be traced back
to [7, 1]. It is also used in [2], where another Hoare style calculus for HCSP is
proposed with different semantic specification. Another approach to deal with
super-dense computation is to use pre- and post-conditions as well as history
formulas as done in [5], but delete point values in the history formulas in order
to maintain the monotonicity rule (see [12] for details).

We also use Hoare triple in our calculus. Triples have the form

{PreH }Sys{PostH },

where Sys is an HCSP process, and PreH and PostH are DC formulas to express
properties of the pre-history and post-history of the execution of Sys. A dedicated
propositional letter C is used to indicate whether a behaviour defined by a history
formula can be further extended.
Structure of the paper In Section 2, we will introduce the language Hybrid
CSP briefly, and then present the calculus for reasoning about Hybrid CSP in
Section 3 and Section 4. Finally, we conclude the paper by a discussion about
the calculus.

2 Hybrid CSP

Hybrid CSP is an extension of CSP with differential equations and interruptions
to model behaviour of hybrid systems.
Notation:
HCSP vocabulary includes:



– a countable set of discrete and continuous variables, which are interpreted
as functions from time (non-negative reals) to reals, and

– a countable set of channel names.

HCSP is defined according to the following grammar, where v stands for a
variable, s and ṡ stand for a vector of variables and their time derivatives, ch
stands for channel name, I stands for a non-empty finite set of indices, e and
B are arithmetical expression and boolean expression of variables, and d is a
positive (real) constant.

P ::= skip | v := e | wait d | P ;Q | B → P | P tQ
| ch?x | ch!e | []i∈I(ioi → Pi)

| 〈F (ṡ, s) = 0&B〉 | 〈F (ṡ, s) = 0&B〉�d P

| 〈F (ṡ, s) = 0&B〉� []i∈I(ioi → Pi)

Sys ::= P | P ∗ | Sys1 ‖ Sys2

Here follows the meaning of each construct:

– skip does nothing and terminates immediately.
– v := e is an atomic assignment.
– wait d does nothing and terminates right after d time units.
– P ;Q is the sequential composition of P and Q. It behaves as P first, and

then Q after P terminates.
– B → P behaves like P if B is true. Otherwise it terminates immediately.
– P t Q is the internal choice of CSP. We include this operator to simulate

non-deterministic actions.
– ch?x inputs a value over channel ch and stores in x.
– ch!e sends the value of e over channel ch. Here we assume the synchronous

communication as defined in CSP.
– []i∈I(ioi → Pi) is the external choice of CSP. An occurrence of ioi can lead

to the execution of Pi, where ioi stands for an input or output.
– 〈F (ṡ, s) = 0&B〉 defines a bounded evolution of the differential equation F

over s. B is a boolean expression of s, which defines a domain of s in the
sense that, if the evolution of s as defined by F (ṡ, s) = 0 is beyond B, the
statement terminates. Otherwise it goes forward.

– 〈F (ṡ, s) = 0&B〉�dP behaves like 〈F (ṡ, s) = 0&B〉 if it can terminate within
d time units. Otherwise, after d (inclusive) time units, it behaves like P .

– 〈F (ṡ, s) = 0&B〉 � []i∈I(ioi → Pi) behaves like 〈F (ṡ, s) = 0&B〉 until a
communication in the following context appears. Then it behaves like Pi

immediately after the communication ioi occurs.
– P ∗ means that the execution of P can be repeated for arbitrarily finitely

many times.
– Sys1 ‖ Sys2 behaves as if Sys1 and Sys2 are executed independently except

that all communications along the common channels between Sys1 and Sys2
are to be synchronized. In order to guarantee that Sys1 and Sys2 have no



shared continuous nor discrete variables, and neither shared input nor output
channels, we give the following syntactical constraints:

(VC(Sys1) ∩VC(Sys2)) = ∅,
(InChan(Sys1) ∩ InChan(Sys2)) = ∅,

(OutChan(Sys1) ∩OutChan(Sys2)) = ∅,

where VC(Sys) stands for variables of Sys, InChan(Sys) for input channels
of Sys and OutChan(Sys) for output channels of Sys.

Example: Plant Control (PLC)
A computer every d time units senses a plant, calculates the new control accord-
ing to the sensed state and sends back to the plant. This can be modelled in
HCSP as

(〈F (s, ṡ, u) = 0〉� cp2c!s→ cc2p?u)∗ ‖
(wait d; cp2c?v; cc2p!contl(v))∗

where contl(v) is an expression of v to stand for a calculation of the control
parameter corresponding to v, which stores the sensed state.

3 Hoare Triple

The calculus is given in

{PreH } Sys {PostH },

which is similar to the Hoare triple but has PreH and PostH in Duration Cal-
culus (DC) [13] to record pre-history and post-history of Sys.

DC is based on Interval Temporal Logic, and reasons about terms
∫
S, where

S is a Boolean function over time (non-negative reals) and
∫
S is the duration of

state S within the reference time interval. We define

` =
∫
1,

dSe = (
∫
S = `) ∧ (` > 0),

dSe< = dSe ∨ (` = 0).

Hence, for any given interval, ` is the length of the interval, and dSe means that
S holds (almost) everywhere in the interval and the interval is not a point one.

A history formula is a DC formula, or followed by the propositional letter C
to stand for Continuation, or a disjunction of such formulas:

HF ::= A | A_C | HF1 ∨HF2

where A is a DC formula without occurrence of C. PreH and PostH are history
formulas.
Example: Stability of PLC

{dControllable(s, u)e_C} PLC {(` > T )⇒ ((` = T )_d| s− starget |< εe)}



The pre-history requires that the initial state and control are controllable and
the pre-history can be continued. The post-history concludes that after T time
units the plant will be very close to the target (starget).

In order to treat super-dense computation, we introduce N state to stand for
negligible time. Therefore time is measured by

∫
¬N .

Example: Stability of PLC becomes

{dControllable(s, u) ∧Ne_C} PLC {(
∫
¬N > T )⇒

((
∫
¬N = T )_d| s− starget |< εe)}

4 Axioms and Rules

We introduce for each channel name c two shared states c! and c? to represent
the readiness of output and input plus a shared variable c to store the message
to be passed.

– Monotonicity
If {PreH }Sys{PostH }, (PreH ′ ⇒ PreH ) and (PostH ⇒ PostH ′), then

{PreH ′} Sys {PostH ′}.

– Disjunction
History formula can be restricted to disjunction of DC formulas with or
without C as its last part. Correspondingly we can establish the following
rule:

If {PreH i} Sys {PostH i}, i = 1, ..., n,
then {

∨n
i=1 PreH i} Sys {

∨n
i=1 PostH i}

This rule can be generalized to the Existential one, such as

If {PreH } Sys {PostH }
then {∃z.PreH } Sys {∃z.PostH }
provided z 6∈ VC(Sys)

– Skip
{PreH } skip {PreH }

It means, skip does nothing and terminates immediately.
– Assignment

If (PreH [(` = 0)/C]⇒ >_dPre[e/x]e), then

{PreH } x := e {PreH [(dPre ∧ ¬Chan(P ) ∧Ne_C)/C]}

where we assume that Pre does not containN nor channel variables, Chan(P )
is {c? | c ∈ InChan(P )} ∪ {c! | c ∈ OutChan(P )}, and, by ¬Chan(P ), we
mean the conjunction of ¬c, c ∈ Chan(P ), assuming that the assignment
statement is inside process P .



The hypothesis says that the last period of the pre-history (after ignoring
C, i.e. C is replaced by (` = 0)) can conclude e satisfying Pre. Then the
post-history can make sure that x satisfies Pre after the assignment, and
no channels are ready for communication during the assignment. By N this
rule also shows that an assignment consumes negligible time.

– Wait
If (PreH [(` = 0)/C]⇒ >_dPree), then

{PreH } wait d {PreH [(dPre ∧ ¬Chan(P )e ∧ (
∫
¬N = d))_C)/C]}

where d > 0, Pre follows the assumption stated in the Assignment and so
does in the followings. This rule specifies, wait d inherits the last state from
PreH and no channel is ready for communication during this waiting period
(i.e. non-negligible time passes d).

– Sequential Composition

If {PreH i}Pi{PostH i}, i = 1, 2, and PostH 1 ⇒ PreH 2, then

{PreH 1} P1;P2 {PostH 2}

– Conditional
1. If (PreH [(` = 0)/C]⇒ >_dBe), then

{PreH } B → P {PostH }

provided {PreH }P{PostH }.

2. If (PreH [(` = 0)/C]⇒ >_d¬Be), then

{PreH } B → P {PreH }

– Internal Choice

If {PreH } Pi {PostH i}, i = 1, 2
then {PreH } P1 t P2 {PostH 1 ∨ PostH 2}

– Input
If PreH [(` = 0)/C] ⇒ >_dPree,
then {PreH } c?x {PreH [In(c, x)/C]}

where

WaitIn(c, x) = dPre ∧ c? ∧ ¬c! ∧ ¬(Chan(P ) \ {c?})e
SynIn(c, x) = d(∃x.Pre) ∧ c? ∧ c! ∧ (x = c) ∧ ¬(Chan(P ) \ {c?}) ∧Ne_

d(∃x.Pre) ∧ (x = c) ∧ ¬Chan(P ) ∧Ne
In(c, x) = WaitIn(c, x)<

_

SynIn(c, x)_C ∨WaitIn(c, x)

An input has to be firstly synchronized by an output that is described
through WaitIn. Otherwise the input side will wait forever (i.e. the second
disjunct of In cannot be continued). After the synchronization, a message



is input to x through c (i.e. x = c, as c stores the message), and the other
variables do not change (i.e. ∃x.Pre). Here, we also assume, the message
passing consumes negligible time and after it all channels become not ready
for a negligible period to prevent multi-usage of a single message passing
event.

– Output
If PreH [(` = 0)/C] ⇒ >_dPree,
then {PreH } c!e {PreH [Out(c, e)/C]}

where

WaitOut(c,e) = dPre ∧ c! ∧ ¬c? ∧ ¬(Chan(P ) \ {c!})e
SynOut(c, e) = dPre ∧ c! ∧ c? ∧ (c = e) ∧ ¬(Chan(P ) \ {c!}) ∧Ne_

dPre ∧ (c = e) ∧ ¬Chan(P ) ∧Ne
Out(c, e) = WaitOut(c, e)<

_

SynOut(c, e)_C ∨WaitOut(c, e)

A symmetrical explanation can be given for the Output.
– External Choice

We use c1?x1 → P1 [] c2?x2 → P2 to explain this rule.

1. Let (PreH [(` = 0)/C]⇒ >_dPree).
2. Waiting Phase:

Wait = dPre
2∧

i=1

(ci? ∧ ¬ci!) ∧ ¬(Chan(P ) \ {c1?, c2?})e

3. Synchronous Phase: for i = 1, 2

Syni = d(∃xi.P re) ∧ ci! ∧ ci? ∧ (xi = ci) ∧ ¬(Chan(P ) \ {ci?}) ∧Ne_
d(∃xi.P re) ∧ (xi = ci) ∧ ¬Chan(P ) ∧Ne

where, in ci, 1 = 2 and 2 = 1.
4. If for i = 1, 2

{PreH [(Wait<
_

Syn_
i C ∨ Wait)/C]} Pi {PostH i}

then we can conclude

{PreH } c1?x1 → P1 [] c2?x2 → P2 {PostH 1 ∨ PostH 2}

– Boundary Interruption
Given a differential invariant Inv of 〈F (ṡ, s) = 0&B〉 with initial states
satisfying Init

If PreH [(` = 0)/C] ⇒ >_dInit ∧ Pree, then
{PreH } 〈F (ṡ, s) = 0&B〉
{PreH [((dInv ∧ Pre ∧B ∧ ¬Chan(P )e<_

dPre ∧Close(Inv) ∧Close(¬B) ∧ ¬Chan(P ) ∧Ne_C)
∨dInv ∧ Pre ∧B ∧ ¬Chan(P )e)/C]}



where Pre does not contain s, and Close(G) is for the closure of G to include
the boundary, e.g. Close(x < 2) = x ≤ 2.
During the evolution of s, Inv and B must hold and so does Pre for the vari-
ables other than s. However, when s stops, it will transit to the consecutive
statement immediately (i.e. in negligible time). But, during the transition,
¬B becomes true, or B reaches its boundary and Close(¬B) becomes true
(if B is closed). This can also argue for Inv.

– Timeout Interruption

〈F (ṡ, s) = 0&B〉�d Q

can be semantically defined as

〈F (ṡ, s) = 0, ṫ = 1&(B ∧ t < d)〉; ((t = d)→ Q)

with 0 as initial value of t.
For the Boundary Interruption rule, if we rewrite 〈F (ṡ, s) = 0&B〉 into
〈F (ṡ, s) = 0, ṫ = 1&B〉 and can generate a differential invariant which can
deduce a range of t, say Rg(t), then we can make sure that the duration of∫
¬N for dInv ∧ Pre ∧ B ∧ ¬Chan(P )e< in the Boundary Interruption

rule must satisfy Rg(
∫
¬N).

– Communication Interruption
The rule for 〈F (ṡ, s) = 0&B〉 � []i∈I(ioi → Pi) is a combination of the
Boundary Interruption rule and the External Choice rule but quite
complicated.
Here we use 〈F (ṡ, s) = 0〉� (c!s→ Q) to demonstrate its main idea. Assume
Inv is a differential invariant of F for initial values Init, and

PreH [(` = 0)/C]⇒ >_dInit ∧ Pree,

where Pre does not contain s.

If {PreH [((dInve ∧WaitOut(c, s)<
_

SynOut(c, s))_C
∨(dInve ∧WaitOut(c, s)))/C]} Q {PostH },

then {PreH } 〈F (ṡ, s) = 0〉� (c!s→ Q) {PostH }

Since B is >, s can evolve forever unless an output over c occurs.
– Repetition:

We use the conventional history invariant as defined below

If {InvH } P {InvH }
then {InvH } P ∗ {InvH }

– Parallel Composition

If {PreH i} Sysi {PostH i}
and PostH i[(` = 0)/C] ⇒ >_dPostie, i = 1, 2

then {
∧2

i=1 PreH i} Sys1 ‖ Sys2 {
∧2

i=1 PostH i[dPostie/C]}

where Posti, i = 1, 2 do not contain N and channel variables.
In order to avoid different length and occurrence of N state between parallel
processes, we use dPostie to fill up PostH i, for i = 1, 2.



5 Discussion

1. The calculus can only prove safety property, although it introduces the con-
cept of readiness. It is still a challenge to develop a calculus for liveness
property.

2. To prove properties of HCSP processes, we have to find out appropriate
differential invariants for various differential equations. Although [6] proposes
an algorithm to establish polynomial invariants for polynomial differential
equations, the complexity of the algorithm is terribly high. We are making
efforts to establish nonlinear invariants with reasonable complexity.

3. In [5], the notation of HCSP includes (P �d Q) and (P � []i∈I(ioi → Pi)),
where P can be an arbitrary HCSP process. The history formulas of the
calculus record all details of various HCSP processes. We believe that the
calculus can be revised for [5].

4. Intuitively this calculus is sound. A rigorous proof of its soundness is to
give HCSP another naive semantics and to prove consistency between the
semantics and the calculus.
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8. André Platzer and Edmund M. Clark. Computing differential invariants of hybrid
systems as fixedpoints. In Proc. of CAV 2008, LNCS 5123, pp. 176-189, 2008.
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