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Abstract. In this paper we analyse the development of automated systems by means
of adding features to a basic system. Our approach is to describe systems in tempo-
ral logic. We regard the process of integrating features as a transformation of those
temporal logic descriptions. We use substitution of predicates as the basic means to
achieve feature readiness of descriptions and define feature integration. We show that
several description formalisms for features known from the literature can be fitted into
the formal framework of our analysis, despite the fact that they have been initially
motivated by different observations. Among these formalisms are Samborski’sstack
service model[12], thefeature constructfor SMV [10] and others. We argue that the
way to address the verification problems which are specific to systems with features
provided by our analysis is clear, convenient and based on classical and well estab-
lished logical notions only. The logic we use in examples of description in this paper
is the duration calculus with higher order quantifiers and iteration [15, 8, 1, 5].

Introduction

New models of automated systems, such as computerised systems, and new versions of soft-
ware are typically obtained by making additions and small other changes to earlier ones. Such
additions are known asfeatures[2, 4]. Systems which have been built by adding features are
more likely to have design faults than others, because features are typically designed sepa-
rately from basic systems and from each other. Nevertheless, the method of obtaining better
designs by integrating features is immensely more efficient that its known alternatives. That
is why verification is important for such systems. Telecommunication systems are the great-
est source of examples of systems with features. Sets of features, whose combined effect on
the behaviour of a basic system is unconventional, are said to have aninteractionin the liter-
ature on telecommunications. Identifying feature interactions is one of the most outstanding
verification problems related to the development of systems by incorporating features.

In general, a featureF can be regarded as a mappingF : S → S, whereS is the class of
systems in question, such that given a systemS ∈ S an (attempt to) integrateF into S results
in a systemF (S). Less generally, but very commonly, a feature is a prefabricated itemF ,
and the result of integratingF into a systemS is then denoted byS ⊕ F where⊕ stands for
an operation of feature integration.

In this paper we are interested in systems’ behaviour and therefore assume that the rel-
evant properties of such behaviour are described in a temporal logic. We assume that there
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is a modelling relation|= on S × L(S) whereL(S) stands for the language of the chosen
temporal logic based on the vocabulary which corresponds to the class of systemsS such that

S |= ϕ

denotes thatthe logic model(s) of all the potential behaviours ofS satisfyϕ, and in particular,

S ⊕ F |= ϕ

stands forS with featureF added to it satisfiesϕ. Using|= and⊕, some interesting statements
about systems with features can be formalised:
Feature interaction
S ⊕ F1 ⊕ . . .⊕ Fn 6|= ϕ the ”combined effort” of all

the features breaksϕ;
S ⊕ F1 ⊕ . . .⊕ Fi−1 ⊕ Fi+1 ⊕ . . .⊕ Fn |= ϕ, i = 1, . . . , n ϕ holds, as long as one of the

interacting features is absent.
Implicit definition of feature composition
(F1 ⊕ F2) ≡ F iff ∀S(S ⊕ F ≡ (S ⊕ F1)⊕ F2) whereS1 ≡ S2  ∀ϕ(S1 |= ϕ ⇔ S2 |= ϕ).

Furthermore, we assume that the chosen temporal logic allows the representation ofS |=
ϕ in the form|= [[S]] ⇒ ϕ, where[[S]] stands for a logical formula which defines the class of
the logic’s models which represent behaviours ofS.

In this paper we propose a representation for⊕. We assume that afeature readyform
Sn . . . S1B of [[S]] can be obtained in which the immutable base ofS is denoted by formula
B and the parts ofS which can be affected by the integration of features are denoted by
substitutionsS1, . . . , Sn, Si denoting parts ofS which are mutable relative to theith ”stub”
Si−1 . . . S1B. We assume that a featureF is described as a sequenceF1, . . . , Fn of substitu-
tions which represent the additions made upon its integration at the various levels of mutabil-
ity in S, and the way it changes the roles of the default mutable parts ofS, so that[[S ⊕ F ]]
can be put down asSnFn . . . S1F1B. Heren and the particular predicate letters subject to
instantiation can vary, depending on the kind of systems and features in question.

Our approach was inspired by Samborski’sstack service model[12] and builds on the se-
mantics of thefeature constructfor SMV [10], given in [9]. We show that several description
formalisms for features known from the literature can be fit into the formal framework we
propose. Among these formalisms are Samborski’s model [12] and thefeature constructfor
SMV [10].

We choose the extension of the Duration Calculus (DC, [15, 6]) by iteration [1], a quan-
tifier which binds state variables [8] and one which binds temporal variables with finite vari-
ability [5], as the logic for our examples in this paper. We include a concise definition ofDC
here only. The properties ofDC that motivate our choice become manifest by the way we
use it to describe systems’ behaviour. We believe that other choices are compatible with our
approach too.

1 Preliminaries on the Duration Calculus and Substitution of Predicate Letters

DC is a linear time first order interval-based temporal logic. It has one normal binary modal-
ity known aschop. A comprehensive survey onDC can be found in [6]. Extensions and
variants ofDC have been proposed and studied in a number of works, among which are
[1, 14, 8, 13]. Since we use some of these extending constructs, and for the sake of self-
containedness, we include a brief formal definition ofDC as it appears in this paper.
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Languages Along with the customary first order logic symbols,DC vocabularies include
state variables. State variablesP form state expressionsS, which have the syntax:

S ::= 0 | P | (S ⇒ S)
State expressions occur in formulas as part ofduration terms

∫
S. The syntax ofDC terms

t andformulasϕ extends that of first order logic by duration terms and formulas built using
the modalitieschopanditeration, denoted here by(.; .) and(.)∗, respectively:

t ::= c | x | ∫ S | f(t, . . . , t)
ϕ ::= ⊥ | R(t, . . . , t) | (ϕ ⇒ ϕ) | (ϕ; ϕ) | ϕ∗ | ∃xϕ

Constant, function and predicate symbols can be eitherrigid or flexible in DC. (The inter-
pretations of rigid symbols are required not to depend on the reference interval.) Individual
variables are rigid. State variables are flexible. The symbols0, +, = and≤ with their cus-
tomary roles are mandatory inDC vocabularies. In the BNF for formulas,x stands for either
an individual variable, or a state variable, of a flexible constant. Flexible constants are also
calledtemporal variablesin DC.
Semantics The model of time inDC is the linearly ordered group of the reals, which is also
the fixed domain of individuals ofDC. Other models of time have been studied too. Domains
are constant inDC in general. The set of the possible worlds in models forDC in the Kripke
sense is{[τ1, τ2] : τ1, τ2 ∈ R, τ1 ≤ τ2}. We denote this set byI. A DC interpretationI of a
DC languageL is a function onL’s vocabulary. The types of the values ofI for symbols of
the various kinds are as follows:
I(x), I(c) ∈ R for individual variablesx and rigid constantsc
I(c) : I → R for flexible c
I(f) : Rn → R, I(R) : Rn → {0, 1} for n-ary rigidf , R
I(f) : I×Rn → R, I(R) : Rn → {0, 1} for n-ary flexiblef , R
I(P ) : R → {0, 1} for state variablesP

I(0), I(+), I(≤) andI(=) are required to be the corresponding components of〈R, 0, +,≤〉
and equality onR, respectively.

InterpretationsI(P ) of state variablesP are required to have thefinite variability property
which means that for any twoτ1, τ2 ∈ R, the set{τ : I(P )(τ) = 0 andτ1 ≤ τ ≤ τ2} is
required to be either empty, or a finite union of intervals. This requirement corresponds to the
assumption that observable states change only finitely often in bounded intervals of time.

Given an interpretationI, the valueIτ (S) of state expressionS at timeτ ∈ R, and the
valueIσ(t) of a termt at intervalσ ∈ I are defined by the clauses:

Iτ (0) = 0
Iτ (P ) = I(P )(τ)
Iτ (S1 ⇒ S2) = max{1− Iτ (S1), Iτ (S2)}

Iσ(c) = I(c)(σ)
Iσ(x) = I(x)

Iσ(
∫

S) =
max σ∫
min σ

Iτ (S)dτ

Iσ(f(t1, . . . , tn)) = I(f)(Iσ(t1), . . . , Iσ(tn)) for rigid f
Iσ(f(t1, . . . , tn)) = I(f)(σ, Iσ(t1), . . . , Iσ(tn)) for flexiblef

The modelling relation|= is defined on interpretationsI of a given languageL, intervals
σ ∈ I and formulasϕ from L by the clauses:
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I, σ 6|= ⊥
I, σ |= R(t1, . . . , tn) iff I(R)(σ, Iσ(t1), . . . , Iσ(tn)) = 1;
I, σ |= ϕ ⇒ ψ iff either I, σ |= ψ or I, σ 6|= ϕ;
I, σ |= (ϕ; ψ) iff I, σ1 |= ϕ andI, σ2 |= ψ for someσ1, σ2 ∈ I

such thatσ = σ1 ∪ σ2 andmin σ2 = max σ1;
I, σ |= ϕ∗ iff there exists an ascending sequenceτ0, . . . , τn

such thatτ0 = min σ, τn = max σ,
andI, [τi−1, τi] |= ϕ, i = 1, . . . , n;

I, σ |= ∃xϕ iff J, σ |= ϕ for someJ which is ax-variant ofI.
Abbreviations The symbols>,¬,∨,∧,⇔, ∀, 6=,≥, < and> are used to abbreviate formulas
and terms in the usual way. Infix notation is used wherever+, = and≤ occur. The following
abbreviations are (more)DC-specific:

1  0 ⇒ 0 ` 
∫

1 dSe  ` 6= 0 ∧ ∫
S = ` 3ϕ  ((>; ϕ);>) 2ϕ  ¬3¬ϕ

When omitting parentheses, we assume that(.; .) has thesmallestbinding strength. We never
omit the parentheses of(.; .) itself. We also write(ϕ; ψ; χ) instead of((ϕ; ψ); χ), etc.
Substitution of predicate letters by predicates This is our main tool here. In this paper
variablesmeans individual, state or temporal variables. Letϕ be a formula andx1, . . . , xn

be free variables ofϕ. Let λx1 . . . xn.ϕ be the predicate onx1, . . . , xn which ϕ defines. We
do not requireFV (ϕ) ⊆ {x1, . . . , xn}, in order to enable the definition of parameterised
families of predicates by singleϕs. Given ann-ary predicate letterP and a formulaψ, the
substitution[λx1 . . . xn.ϕ/P ]ψ of P byλx1 . . . xn.ϕ is defined by the clauses:

θ⊥  ⊥
θR(t1, . . . , tm)  R(t1, . . . , tm), if R 6 .= P
θP (t1, . . . , tn)  [t1/x1, . . . , tn/xn]ϕ
θ(ψ1 ⇒ ψ2)  θψ1 ⇒ θψ2

θ(ψ1; ψ2)  (θψ1; θψ2)
θ(ϕ∗)  (θϕ)∗

θ∃xψ  ∃yθ[y/x]ψ wherey 6∈ FV (ϕ) \ {x1, . . . , xn}
Simultaneoussubstitution[λx1 . . . xni

.ϕi/Pi : i ∈ I] of several predicate letters is defined
similarly.

2 Hardware features: an introductory example

Let us show how our approach works when the integration of a feature amounts to connecting
a piece of circuitry to a system, which itself is a circuit. Let the observable signals of our
basic system bex1, . . . , xn. Let x1, . . . , xn be also the names of the state variables which
stand for these signals in the formulaS describing the system. That is, an interpretationI
for the signalsx1, . . . , xn represents a behaviour of the considered basic system at interval
σ iff I, σ |= [[S]]. Naturally,FV ([[S]]) ⊆ {x1, . . . , xn}. There are extensive studies on the
description of hardware and especially digital circuits byDC in this way. For instance, [11]
proposes a set of derivedDC constructs calledimplementablesfor the description of the
basic temporal and causal relations between input and output signals of the simplest digital
devices.

Letϕ be a formula which represents the circuitry that comes with the featureF in a similar
way. LetFV (ϕ) = {y1, . . . , ym}. To describe the integration of the feature completely, we
need to list the connections between the signalsx1, . . . , xn of the basic system and the signals
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Figure 1: FeatureF is integrated into systemS by adding a circuit.S andS ⊕ F , which is represented by the
dashed rectangle, have the same observable signals.

of the new circuity1, . . . , ym. Some of these signals get identified, that is, connected by
conductors, others remain accessible to the environment. Let the signalsx1, . . . , xk of S be
connected to the signalsy1, . . . , yk of the feature. Let the system obtained after the integration
interact with its environment through the remaining signalsxk+1, . . . , xn, yk+1, . . . , ym of its
now two parts. Then its behaviour can be described by the formula

[[S ⊕ F ]] = [x1/yk+1, . . . , xk/y2k]∃y1 . . . ∃yk(ϕ ∧ [y1/x1, . . . , yk/xk][[S]]) (1)

We assume thatm = 2k, that is, the number of signals that the feature contributes to the sys-
tem is equal to the number of signals it hides from the environment, for the sake of simplicity.
ThenS can be written as

[λx1 . . . xn.[[S]]/P ]︸ ︷︷ ︸
S1

P (x1, . . . , xn)︸ ︷︷ ︸
B

(2)

and[[S ⊕ F ]] can be written as

S1[λyk+1 . . . ymxk+1 . . . xn.∃y1 . . . ∃yk(ϕ ∧ P (y1, . . . , yk, xk+1, . . . , xn))/P ]B (3)

respectively, whereP is ann-ary predicate letter. Since

[λx1 . . . xn.[[S]]/P ]P (y1, . . . , yk, xk+1, . . . , xn) is [y1/x1, . . . , yk/xk][[S]],

the formulas (1) and (3) are equivalent. Besides, (3), which describesS ⊕ F , is obtained by
inserting a substitution betweenS1 andB in the description (2) forS. The inserted substi-
tution carries all the information relevant to the integration of the featureF . The formula
P (x1, . . . , xn) on the right in both (2) and (3) determines the interface of the system with
the environment, that is the list of its signals. The substitution[λx1 . . . xn.[[S]]/P ] determines
both the implementation ofS as before the introduction ofF and the behaviour of the circuit
found inS upon the integration ofF as part ofS ⊕ F .

Some observations can be made on the way the integration of a feature was described
above.

The description[[S]] of S was rewritten into the form (2), as the instantiation of the sys-
tem’s interfaceB, by the system’s actual behaviourS1. This roughly corresponds to disman-
tling the system and preparing it for an upgrade. Upon dismantling the system, the identity
between the implementation of its actual behaviour ”inside” and its interface ”outside” is lost,
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and the place holderP which is now explicitly available for substitution, defines the possible
ways of revising this identity. The revision comes in the form of the intermediate substitution
F which describes the feature to be integrated.

Here,F can fully control the extent to which the basic system’s circuit affects the featured
system’s behaviour. For instance,F can choose to fully reinterpret the signalsx1, . . . , xn of
S; it can also reinterpret the signalsx1, . . . , xk only, as we have done above.

The place holderP has at most one occurrence in the definition of the predicate on the
left hand side of/ in F . This occurrence is positive and in the scope of existential quantifiers
only. This is related to the feature being an addition of circuitry. Multiple occurrences ofP
would mean that whatever circuitry implementsλx1 . . . xn.[[S]], should be multiplied upon
the integration ofF . This is unrealistic for hardware. Similarly, a negative occurrence or
an occurrence in the scope of a universal quantifier may not correspond to any conceivable
reassembly of the circuitry ofS. In the next section we deal with software features, where
this needs not be the case.

The description of the circuits ofS andF as predicates on their signals is compatible with
the approach to usemodulesand moduleinstancesas known from, e.g., SMV.

3 Software features

The huge variety of meanings thatexecuting programshas in the various programming lan-
guages makes it very hard to search for universal and practically valuable formalisations to
the integration of software features. In this section we introduce a simple imperative real
time concurrent programming language similar to that in [3], in order to illustrate how soft-
ware features’ behaviour can be described by substitution. Programs in it are fixed sets of
interleaving processes with shared variables. We assume that they interact with their environ-
ments by reading and writing signals like variables. We define the semantics of the language
by a translation of programs intoDC formulas.

3.1 A language for concurrent processes with shared variables

ProgramsP in our programming language are parallel compositions of sequential processes
of the form

P = P1‖ . . . ‖Pn (4)

which all have access to the same set of variables and input and output signals. We usex, y,
. . . to denote both variables and signals. The only difference is that signals may not occur on
the wrong side of assignment statements. In the BNF for processes belowe andc stand for
arbitrary and boolean expressions respectively:

P ::= skip | x := e | delay e | if c then P else P | (P ; P ) | while c do P
We denote the set of the variables occurring on the left side of assignment statements in

processP by Write(P ). TheDC language we use to describe the behaviour of programs
contains a pair of temporal variablesx andx′ for every syntactically correct program variable
x, the state variablesactivei, and the flexible0-ary predicate letters[[P ]]i, i < ω, for every
syntactically correct processP .

TheDC temporal variablesx andx′ denote the values of the program variablex in the
beginning and in the end of a reference interval, respectively,activei holds at timeτ iff Pi is
active at timeτ , and[[P ]]i hold at intervalσ iff σ represents a complete run of a subprocess
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P of the processPi in (4). We consider only terminating behaviour here. Nonterminating
behaviour can be handled similarly, using the extension ofDC by infinite intervals[13].

For the rest of this section we fix a programP and|=P to denote validity in theDC theory
of P. Obviously, for all program variablesx

|=P ∀u∀v((x′ = u; x = v) ⇒ u = v) (5)

Consider the abbreviations:
K(X) 

∧
x∈X

2x′ = x, whereX stands for a set of variables;

Ai  dactiveie ;
Sleepi  d¬activeie ∨ ` = 0 .

K(X) describes that the variablesX preserve their values within the reference interval.Ai

describes that processPi is active andSleepi describes thatPi is inactive throughout the
reference interval. Obviously,|=P Ai ⇒ 2(Ai ∨ ` = 0) for all i and|=P ¬(Ai ∧Aj) if i 6= j.
A variablex can be updated onlywithin an interval where some process is active:

|=P 2

(
¬K({x}) ⇒ ∨

x∈Write(Pi)

3Ai

)

Let te denote the time needed to evaluate expressione. Then the predicate letters[[P ]]i validate
the formulas:

|=P [[skip]]i ⇔ Sleepi

|=P [[x := e]]i ⇔ (` = te ∧ x′ = e ∧ K(Write(Pi) \ {x}) ∧ Ai; Sleepi)
|=P [[delay e]]i ⇔ ` = max(te, e) ∧ (Ai ∧ K(Write(Pi)); Sleepi)

|=P [[if c then P else Q]]i ⇔
(

(` = tc ∧ c ∧ Ai ∧ K(Write(Pi)); Sleepi; [[P ]]i)∨
(` = tc ∧ ¬c ∧ Ai ∧ K(Write(Pi)); Sleepi; [[Q]]i)

)

|=P [[(P ; Q)]]i ⇔ ([[P ]]i; [[Q]]i)
|=P [[while c do P ]]i ⇔ [[if c then (P ; while c do P )) else skip]]i

Under these assumptions, an interpretationI and an intervalσ represent a complete run ofP
iff

I, σ |=P

n∧
i=1

[[Pi]]i (6)

3.2 Adding features which are processes

Designing a software feature as a process to be run concurrently with the rest of the basic
system’s processes is intuitive, because the design can be started from an informal account
of what conditions on the behaviour of a system should trigger action on behalf of a feature
and how the feature should affect the working of the system. Besides, a process can easily be
designed to monitor the behaviour of the processes it shares variables with.

Let F be a feature of this kind. LetPf be the process to be added upon the integration
of F and (4) stand for the basic system. Then the resultP ⊕ F of integrationF into P
can be represented asP‖Pf . This suggests the following form of the basic system, which is
feature-ready for features which are additional concurrently run processes:

P = [skip/A]P1‖ . . . Pn‖A
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Now the substitution[Pf‖A/A] can be used to describe the integration ofF :

P‖Pf = [skip/A][Pf‖A/A]P1‖ . . . ‖Pn‖A

Since the behaviour ofP is described by means of a simple conjunction in (6), a similarly
shaped feature-ready form of[[P]] can be obtained, and (6) can be rewritten in the form:

I, σ |=P [Sleepa/A]

(
n∧

i=1

[[Pi]]i

)
∧ A (7)

wherea 6∈ {1, . . . , n}, and thenI, σ would represent a complete run ofP⊕ F iff

I, σ |=P [Sleepa/A][[[Pf ]]f ∧ A/A]

(
n∧

i=1

[[Pi]]i

)
∧ A (8)

wheref 6∈ {1, . . . , n, a}.

3.3 Adding features which are procedures

Software features can also be implemented as modifications of subroutines such as drivers
and operating system functions which are to be invoked through standard entry points. One
way to demonstrate this in our programming language is to introduce named processes and
allow occurrences of their names to stand for invocations of these subprocesses as procedures.
Yet, in order to show how substitution can be used to describe the revision of such procedures
upon the integration of a feature, we only extend the BNF for processes to allow place holders
A to occur where subprocesses subject to revision is to be put:

P ::= skip | . . . | while c do P | A
Now a feature-ready program can be written in the form

P = [D1/A1, . . . , Dk/Ak]P1(A1, . . . , Ak)‖ . . . ‖Pn(A1, . . . , Ak) (9)

where the parameter lists(A1, . . . , Ak) indicate that the processesP1, . . . , Pn may have been
written with occurrences of the some of place holdersA1, . . . , Ak, andD1, . . . , Dk are the
default implementations of the processes namedA1, . . . , Ak, which are part of the basic sys-
tem. Various kinds of substitutions can be inserted in (9) to change the working ofD1, . . . , Dk

in various ways:

[Pf,i/Ai] The default procedureDi gets replaced by one supplied by
the feature. Further feature integration may be unable to
change this again, becausePf,i contains no place holders.

[(Pf,i; Ai)/Ai] Di getschained, that is, programmed to be run after some
new codePf,i. This is typical of exception handlers.[

if c
then Pf,i

else Ai
/Ai

]
The feature-supplied code replaces the default conditionally.

Just like in the case of adding processes by parallel composition, the role of place holders
and the corresponding substitutions is preserved in theDC description of the behaviour of
the considered systems.
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3.4 The stack service model in terms of substitutions

Samborski’sstack service modelassumes that services in a distributed system are organised
as anetworkof stacks, and processtokens, which represent user and system requests. A
stack processes a token it receives by feeding it to its topmost service. A service may choose
either to completely process a token itself, or resort to the service immediately below it in
the stack by generating a token to be passed to this service. In this model feature integration
is represented by the insertion of services into stacks. Different stacks in a network can have
different services and have them appearing in different orders. This reflects the possibility
for different users of the network to subscribe to different features, as known in the case of
a telephone system, and prioritise the reaction of services in response to requests in different
ways. In the stack service model, feature integration is done by inserting services in stacks.

Thestateof a stack of services is a tuple

S = 〈n, Lu, Ls, ε, d, R1 · . . . ·Rk, V 〉

wheren is an identifier for the stack in question,Lu andLs are queues of incoming tokens
originating from the stack’s user and from the system, respectively,ε ∈ {0, 1} denotes the
state of a ”door” which gives priority to user incoming tokens when open, and to system
tokens when closed,d is thecoming downtoken,S = R1 · . . . ·Rk is thelist of servicesin S,
andV is thevaluation of the variablesof S. If there is no coming down tokend, δ is put in
the place ofd. ServicesRi, i = 1, . . . , k, can be regarded as functions which, given a tokent,
a state of the ”door”ε and a valuation of the stack’s variablesV , return a tuple〈d, U, γ,W 〉,
whered is a token to be passed to the next service in the stack,U is a set of tokens to
be released in the network, andγ andW are the state of the ”door” and the valuation of
the stack’s variables upon the completion ofR. In case serviceR does not process tokent,
R(t, ε, V ) = 〈t, ∅, ε, V 〉.

The operational semantics of the stack service model is presented in detail in [12]. In this
section we show how the feature integration in the sense of the stack service model can be
described in terms of substitutions.

3.4.1 Programming stacks in the language of shared variables

A stack of services can be programmed as a process in the extension of our programming
language by one process place holderA. Individual servicesR can be programmed in the
form

P (R) = (C(R); if d 6= δ then A else skip), (10)

whereC(R) stands for some code which implements the relationR(t, ε, V ) = 〈d, U, γ,W 〉
by sampling and assigningε, d andx1, . . . , xm appropriately, and releasing the tokensU into
the network by means of, e.g., an atomic commandputToken (e). The designated occurrence
of a place holderA is the only one allowed in (10). It enables the chaining of successive
services. . . Ri ·Ri+1 . . . in a stack by means of a sequence of successive substitutions

. . . [[[P (Ri+1)]]n/A][[[P (Ri)]]n/A] . . .

Heren is the identifier of the stack. Let the variables of a stack with identifiern, bexn
1 , . . . , xn

m.
P (R) can be programmed to use the same namesx1, . . . , xm for the variablesxn

1 , . . . , xn
m of
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whatever stackR can be part of, andId for the identifier of this stack. Letθn be the substitu-
tion [n/Id, xn

1/x1, . . . , xn
m/xm]. ThenθnP (R) will stand for the instance ofP (R) which can

appear in the implementation of a stack with identifiern. We assume that the queuesLu and
Ls, the doorε, the coming-down tokend and an auxiliary variablet are amongx1, . . . , xm

for the sake of simplicity.
Let b′ be an auxiliary process to acquire a coming-down token from the appropriate queue

and transfer control to the topmost service of the stack:
(while Lu = ∅ ∧ Ls = ∅ do skip;
if ε ∧ Lu 6= ∅ then (

d := head(Lu); Lu := tail(Lu); ε = 0
) else (

d := head(Ls); Lu := tail(Ls)); A
)
)

Let b′′ be an auxiliary process to feed tokens toLu andLs from the network. Let, given the
stack identifierId, theTokensAvailable(Id) indicate whether the network contains tokens
bound for this stack. LetgetToken (Id, t) assignt a Id-bound token from the network, if
it contains any tokens bound for this stack. Thenb′′ can be programmed by means of the
auxiliary boolean functionTokensAvailable and atomic commandgetToken as follows:

if TokensAvailable(Id) then (
getToken (Id, t);
if UserToken(t) then Lu := Lu ∗ t else Ls := Ls ∗ t

)
else skip

Let s1 be an auxiliary process to output to the network whatever token the last service in the
stack produces:

if d 6= δ then (putToken (d); d := δ) else skip
Now, given thatR1 · . . . · Rk is the list of services in the stack, the behaviour of the stack

can be represented by the formula

θn[[[s1]]n/A][[[P (Rk)]]n/A] . . . [[[P (R1)]]n/A]([[b′]]∗n ∧ [[b′′]]∗n′) . (11)

The occurrence ofA in P (Ri) guarantees that upon terminatingRi transfers control toRi+1

for i = 1, . . . , k − 1, andRk transfers control tos1. Control gets transferred only ifRi

terminates withd 6= δ. The indexn′ in [[b′′]]n′ here can be chosen to be e.g.N + n + 1,
whereN is the greatest value that a stack identifier can take, to ensure that the two processes
corresponding to each stack in a system interleave correctly.

To describe the behaviour of several stacks running concurrently in the same network,
one can take the conjunction of the formulas (11) withn ranging over the identifiers of the
stacks in the system andRn

1 · . . . ·Rn
kn

, being the list of services of stack with identifiern.

4 The SMV feature construct in terms of substitutions

In this section we show that the feature construct introduced in [10] to the input language of
SMV [7] fits into our scheme of representing feature integration as the insertion of substitu-
tions. We first show how the description of a system in SMV can be translated into an appro-
priateDC formula, written using substitutions of predicate symbols. The predicate symbols
subject to these substitutions and the predicates which substitute them stand for the names
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of the components of the modelled system which are subject to change by the integration
of features and these components themselves, respectively. Finally, the integration of fea-
tures as it can be described using the SMV feature construct is done by inserting appropriate
substitutions in the original formula.

Assumptions about the initial SMV description and its form

For the sake of simplicity, we assume that the description of the basic, that is, feature-free,
system consists of a single main module.1 We assume that all the assignment statements in
the considered main module are of one of the two forms:

next(〈variable〉) := 〈expression〉;
init(〈variable〉) := 〈expression〉;

and all variables occur in the left hand side ofexactlyone assignment of each of the two
kinds, possibly with non-deterministic expressions on the right hand side. We assume that the
expressions above arecase expressions with disjoint guards and possibly nondeterministic
unconditional subexpressions. (All SMV programs can be rewritten into this form.)

Under all the above restrictions, such an arbitrary single simple SMV module can be
regarded as a set of variablesX, a set of next value assignments and initial value assignments:

next(x) := case

gx,0 : vx,0;
...
gx,Nx−1 : vx,Nx−1;

esac

init(x) := case

hx,i : wx,0;
...
hx,i : wx,Mx−1;

esac

Givenx, let ex andfx stand for the expressions on the right side of the corresponding next
and initial value assignments.

We deal with thetreat and theimpose components of the feature construct for SMV
first here.

As in the previous sections, given the setX of the variables which occur in the consid-
ered system description, we assume that the vocabulary of our logical language contains the
temporal variables namedx andx′ for everyx ∈ X. We also assume that the syntax of the
gs, vs,hs andws is the same as that of the terms in the chosen logical language. Using this
convention, a description of any finite initial subinterval of a behaviour of a system can be
written in the form:

∧
x∈X

((
` = 1 ∧

∧
i<Nx

(gx,i ⇒
∨

v∈vx,i

x′ = v)
)∗
∧

( ∧
i<Mx

(hx,i ⇒
∨

w∈wx,i

x = w;>)
))

(12)

Here, as above, we assume that the temporal variablesx andx′ from our logical vocabu-
lary denote the initial and the final values of the corresponding SMV variablex ∈ X in every
reference interval, and therefore satisfy the axiom (5).

1Of course, what comes below is hardly like what users of SMV have these days. Arguably, it only has
comparable potential expressivity.
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Making the description feature-ready

In order to enable the alteration of a system’s description by means of substitution, we need to
have symbols to subject to substitution at the places which we intend to allow the integration
of features to affect. (This is so, because substitution is simplest to define if its target is an
atomic entity.) Theimpose andtreat statements in the SMV feature construct prescribe the
alteration of expressions to be assigned to variables and the alteration of the meaning of vari-
able occurrences in such expressions. This means that we need to be able to substitute these
expressions and the occurrences of variables in them. Variable occurrences are represented
by atomic entities in (12), but the possibly ambiguous right hand sides of SMV assignments
are represented as flexible predicates on the variablesx andx′, which, givenx ∈ X, stand
for init(x) andnext(x) in (12). To introduce symbols in their places, we rewrite (12) in the
form:


λu.
∧

i<Nx

(gx,i ⇒
∨

v∈vx,i

u = v) / Ex,

λu.
∧

i<Mx

(hx,i ⇒
∨

w∈wx,i

u = w) / Fx
: x ∈ X


 ∧

x∈X

((` = 1 ∧ Ex(x
′))∗ ∧ (Fx(x);>))

︸ ︷︷ ︸
B

(13)

Clearly, (12) and (13) evaluate to the same formula. Using the predicate lettersEx andFx as
place holders enables the presentation of practically arbitrary restrictions on the initial and
subsequent values of the variablesx ∈ X. We need this, because of the possibility to have
nondeterministic assignments. Similarly, although variables’ occurrences on the right hand
side of assignment are atomic, it is not sufficient to use them immediately as place holders
to be substituted by terms, because SMV expressions which occur intreat statements can
be nondeterministic too, and therefore produce more than a single term in the chosen logical
form of description. That is why we further partition (12). To do this, we assume that the
temporal variables̃x, x ∈ X, are fresh wherever they occur, and we introduce the fresh
unary predicate lettersVx, x ∈ X. Informally, Vx(u) denotes thatu equals the current value
of the SMV variablex. We denote the set of SMV variables which occur in a given SMV
expressione by V ar(e). Given thatv1, . . . , vn is a finite set of SMV variables, we abbreviate
the quantifier prefix∃ṽ1 . . . ∃ṽn by ∃v∈{v1,... ,vn}ṽ. Using this notation, we replace (13) by

[λu.u = x/Vx : x ∈ X]︸ ︷︷ ︸
S2

S ′1S
′′
1︸ ︷︷ ︸

S1

B (14)

whereS ′1 andS ′′1 denote

[λu.∃y∈V ar(ex)ỹ(
∧

y∈V ar(ex)

Vy(ỹ) ∧ [ỹ/y : y ∈ V ar(ex)]
∧

i<Nx

(gx,i ⇒
∨

v∈vx,i

u = v))/Ex, : x ∈ X]

and

[λu.∃y∈V ar(fx)ỹ(
∧

y∈V ar(fx)

Vy(ỹ) ∧ [ỹ/y : y ∈ V ar(fx)]
∧

i<Mx

(hx,i ⇒
∨

w∈wx,i

u = w))/Fx : x ∈ X]

respectively The advantage of this apparently longer form of description is that now the effect
of integrating features withtreat statements can be represented by substitutions onVx, to
be inserted betweenS2 andS1. Similarly, integrating features withimpose statements can be
represented by substitutions onEx andFx, to be inserted betweenS1 andB. The precise form
of these substitutions is explained below. Clearly, (13) is equivalent to (14). In the sequel we
briefly denote (14) byS2S1B.
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Describing the integration of a feature

Consider the SMV feature which, for the sake of simplicity, consists of the singleimpose

statement targetting some variabley ∈ X
if ci then impose next(y) := ei;

and the singletreat statement targetting some variablez ∈ X
if ct then treat z = et;

Let ei andet be of the same form asex andfx, x ∈ X, above. Predicates like the ones inS ′1
andS ′′1 for ex andfx, x ∈ X, can be written to representei andet too. Let us denote these
unary predicates by[[ei]] and[[et]] respectively, and assume, just as in the case ofex andfx, that
they are defined in terms ofV ar(ei) andV ar(et), respectively. Then, given the description
S2S1B of the feature-free system considered above, the result of integrating this feature into
this system can be described by

S2(StS1)|{Ex,Fx:x∈X}SiB (15)

whereS|A denotes the restriction of a substitutionS to a set of symbolsA, and

St = [λu.∃y∈V ar(et,ct)ỹ(
∧

y∈V ar(et,ct)

Vy(ỹ) ∧ [ỹ/y : y ∈ V ar(et, ct)]

(
([[et]](u) ∧ ct)∨
(Vz(u) ∧ ¬ct)

)
)/Vz]

Si = [λu.∃y∈V ar(ei,ci)ỹ(
∧

y∈V ar(ei,ci)

Vy(ỹ) ∧ [ỹ/y : y ∈ V ar(ei, ci)]

(
([[ei]](u) ∧ ci)∨
(Ey(u) ∧ ¬ci)

)
)/Ey]

Integrating more than one feature

The integration of complex features can be regarded as the integration of a sequence of fea-
tures of the simple form studied above. In case several features get integrated into a system in
a sequence, the ones which get integrated later affect the ones which get integrated earlier, but
not the other way around. The straightforward way to express this in terms of substitutions is
as follows.

Let F1, . . . , Fr be features, each consisting of either a singletreat statement or a single
impose statement. LetSt,k be the substitution which corresponds to thetreat statement
of the featureFk in the way introduced above, in caseFk has atreat statement, or be the
vacuous (identity) substitution otherwise,k = 1, . . . , r. Let, similarly, Si,k represent the
impose statement ofFk, if Fk has one. Then the subsequent integration ofF1, . . . , Fr into
the system described byS2S1B can be described by the formula

S2St,r . . . St,1S1Si,1 . . . Si,rB

A simple way to motivate this approach is to notice that the composition of substitutions
StS1Si in the description (15) of a featured system has the role played byS1 alone in the
description (14) of the corresponding basic system. This means that subsequent acts of in-
tegrating featuresFk, . . . , Fr, should correspond to inserting substitutionsSi,k, . . . , Si,r,
which correspond toimpose statements, and substitutionsSt,k, . . . , St,r, which correspond
to treat statements, on the right and on the left hand sides ofSt,k−1 . . . St,1S1Si,1 . . . Si,k−1,
. . . , St,r . . . St,1S1Si,1 . . . Si,r, respectively. Yet this approach is incorrect, because the com-
posite substitution which is obtained this way prescribes thatall thetreat statements affect
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the meaning ofall the impose statements, disregarding the order of their integration. For
instance, according to (14) thetreat statement of the considered feature affects itsimpose,
regardless to the intention of the feature’s author, which might have been to exercise the effect
of thetreat statement on the basic system’s description only.

The cause for this paradox is that a composition of substitutions of the kind ofStS1Si

from (14) can be safely regarded as equivalent to a single substitution of the kind ofS1 only
when applied to a formula likeB, because the symbolsEx, x ∈ X, which are subject to
substitution inB are in the domain of bothS1 andStS1Si. Unlike S1, StS1Si substitutes
symbols from amongVx, x ∈ X too. That is why, in order to obtain a version ofStS1Si

which is strictly of the same form asS1, we need to take the restriction ofStS1Si to the set
of symbols{Ex : x ∈ X} instead of the entireStS1Si. That is why we put the result (14) of
integrating a single feature to a system in the form

S2(StS1)|{Ex,Fx:x∈X}SiB .

Now it can be safely assumed that(StS1)|{Ex,Fx:x∈X}Si plays the role ofS1 in the description
of the result of integrating the considered feature into the considered system. Consequently,
the integration of a sequence of single-statement featuresF1, . . . , Fr can be described by
substitutions in the form:

S2(St,r . . . (St,1S1)|{Ex,Fx:x∈X}Si,1 . . . )|{Ex,Fx:x∈X} . . . Si,rB

5 Verification of feature-ready descriptions and features

A Hoare triple{P}code{Q} can be written inDC as

P ∧ [[code]] ⇒ [x′/x]Q ,

wherex andx′ represent the vectors of the initial and the final values of program variables like
above. That is why standard verification methods apply straighforwardly to the verification
problems which appear in this paper. Here we only briefly mention some opportunities for
verification which appear due to our choice of representation for systems and features.

Refinement of feature descriptions

Let the featureFi be described by the substitutionsFi,n, . . . , Fi,1 and letSnFi,n . . . SkFi,k =
[λx1 . . . xni

.ϕS⊕Fi
j /Aj : j = 1, . . . ,m], i = 1, 2. Then, as long as all the occurrences of

A1, . . . , Am in Sk−1 . . . S1B are positive,

|= SnF1,n . . . SkF1,kSk−1 . . . S1B ⇒ α

and

|= ϕS⊕F2
j ⇒ ϕS⊕F1

j , j = 1, . . . , m, (16)

imply |= SnF2,n . . . SkF2,kSk−1 . . . S1B ⇒ α . The condition (16) can be used to define a
relation of refinement between features of similar type.

Let us assume that no place holder occurs in more than one formula in a feature-ready de-
scriptionSn . . . S1B. This restriction entails a one-to-one correspondence between the place
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holders and the mutable parts of the considered system and allows us to associate require-
ments on mutable parts with place holders. Assume that all the place holders in the consid-
ered system have positive occurrences only. Let the place holderA occur in the substitution
Sk. Let Sk+1 be [. . . , λx1 . . . xm.ϕA/A, . . . ]. Then a requirementρA can be imposed on the
mutable part instantiatingA by putting

|= Sn . . . Sk+2ϕA ⇒ ρA . (17)

It is natural to assume that a mutable part of the system will satisfy its requirement, provided
that its subparts satisfy their respective requirements. This means that (17) can be replaced
by:

|= [λx1 . . . xm.ρC/C : C ∈ A]ϕA ⇒ ρA . (18)

whereA stands for the set of all the place holders involved.

6 Integrating variables

Along with other things, integration of features can bring additional variables. In fact, the
SMV feature construct enables the addition of variables in its full form, but we only focus
on this feature construct’s more specific elements in Section 4. Adding variables that are
only handled individually requires no special care upon the integration of a feature. However,
it is necessary to be able to vary the scope of operations which are to affect the values of
collections of variables that are to be handled similarly, so that variables that features can
contribute be included in the appropriate collections. Usingx = e to denote that variable
x evaluates toe at a certain time is convenient as long as only fixed sets of variables are
involved in every description. Revising collections of variables upon feature integration can
be achieved, if equality= is replaced by a flexible binary predicateM (for Memory) with
its first place being of an also newly introduced sortVN for names for variables (or memory
locations), and the second place being of the already known sort of variables’ values.

Now unary predicates can be introduced to designate the collections of variables in ques-
tion. For example, a feature-ready form of the property

M(v7, z) ⇒ M(v8, z) ∧ . . . ∧M(v15, z) (19)

that enables the members of the conjunction to be changed is

[(λv : VN ).v = v8 ∨ . . . ∨ v = v15/H]︸ ︷︷ ︸
S1

(∀v : VN )(M(v7, z) ∧H(v) ⇒ M(v, z))︸ ︷︷ ︸
B

Substitutions that revise the definitions of such unary predicates in feature descriptions can
be used to define revisions of the scope of the respective operations upon feature integration.
For example

S1[(λv : VN ).H(v) ∨ v = v16 ∨ . . . ∨ v = v31/H]B

denotes that the valuez of v7 is the same as that of16 morevariables, as compared to (19),
where only9 variables are said to have the same value.
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Concluding remarks

We have shown that several formalisations for feature integration can be fit in the scheme of
decomposing descriptions and recomposing them with the features included as substitutions
of predicate letter place holders by (parameterised) predicates.

The feature integration construct for SMV [10] is the most complex case for the analysis
we present, because of the diversity of ways in which substitution appears to implement the
integration of a composite feature. Besides, the feature construct for SMV is the one where
substitution appears in the most explicit form of all. Chaining of substitutions appears in the
most general form in the case of the stack service model [12].

In our attempt to put all the cases in a unified framework we have found that there are
readily available formal methods, such asDC, which have been developed for more general
purposes, and can be part of our approach to features. This paper has been written withDC
as the system of logic to illustrate the form of analysis we have pursued, because of the
very small added cost on description inDC in the cases considered. However, we believe
that our approach can be similarly successful with a variety of logical systems, if not for the
conciseness of presentation, at least when description stages can be assisted by a tool, and
with the benefit of better mechanizability of the verification stage.

The approach suggests that a system needs to be (1) described in a feature-ready form,
(2) features should be described as revisions ofthis feature-ready form, and finally (3) inter-
actions can be searched for at the various levels of mutability subdivision of the system with
respect to the requirements that can be formulated in the feature-ready form. Search for inter-
actions can be carried out in the form of verification of properties, which are either associated
with the entire system, or with its various mutable parts, just like with feature constructs in
general. The most decisive part of the job is, of course, to obtain the feature-ready description
of the system. We believe that automating this cannot be done for the sole reasons of verify-
ing, let alone for finding interactions. It should rather be part of the overall design process of
the basic system. Being relevant to the partitioning of the work on the design and, possibly, of
the implementation of a system, tool support for maintaining a feature-ready form should be
part of a respective specification language. A conclusion that can be made here is that the ca-
pacity to describe feature integration is plausible not only for programming and specification
languages meant for the specialist user, but also for intermediate languages that can possibly
combine descriptions of diverse original forms that target diverse forms of implementation:
very roughly speaking, both hardware and software. The gap between maintaining and ob-
taining a feature-ready form is a problem which the approach reveals as a very important one,
if maximal automation is to be sought in all possible steps. The feature-readiness of a system
can be decisive for its lifetime and creating feature-readiness is a development stage that de-
velopers are (ideally) well aware of and give it priority. Again, the flexibility in describing the
existing practices of creating feature-readiness, rather than proposing particular architectures
and then advocating the use of a corresponding system of techniques and tools, is the goal
of this work. Further bringing the correspondences between such architectures to a level of
precision can possibly contribute to understanding them and deciding how to enhance some
of them or use them in parallel.
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