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Abstract. This paper presents a probabilistic extension of Neighbour-
hood Logic (NL,[14, 1]). The study of such an extension is motivated by
the need to supply the Probabilistic Duration Calculus (PDC, [10, 4])
with a proof system. The relation between the new logic and PDC is
similar to that between DC [15] and ITL [12, 3]. We present a complete
proof system for the new logic.

Introduction

The Probabilistic Duration Calculus (PDC) was introduced in [10] as an exten-
sion of Duration Calculus[15]. The approach to introducing PDC is as follows:
Consider some finite probabilistic timed automaton A. The behaviours of A can
be represented as a set M of DC models. The probabilistic laws that govern the
working of A are used to introduce probability on the subsets of M. Given a
DC formula D, the term µ(D)(t) denotes the probability of those models from
M that satisfy D at the interval [0, t]. Terms of this sort are the component of
PDC language that is new in PDC, relative to DC. In [10] the authors focused
on the case of discrete time for the sake of simplicity. In a later work, [4], PDC
was introduced for the case of real time too.

Both papers present examples of specification by PDC and a number of valid
PDC formulas, that represent basic properties of the probabilistic operator µ. A
section on specification by PDC can be found in [11] too. However, no complete
proof system for PDC has been proposed so far.

DC is an extension of Interval Temporal Logic (ITL), and so is its proof
system. ITL has a complete proof system with respect to an abstract class of
frames[3]. In this paper, we introduce Probabilistic Neighbourhood Logic (PNL)
by generalising the semantics of PDC. PNL is designed to take the role that
ITL has for DC, yet for PDC. PNL is based on Neighbourhood Logic (NL,
[14]), which is another interval-based temporal logic, closely related to ITL.
Unlike ITL, NL has modal operators which allow reference to intervals outside
the current one. This feature has proved useful for the axiomatisation of the
probabilistic operator of PNL. NL has a proof system, that is complete with
respect to an abstract semantics, which is similar to that of ITL[1].

In this paper we extend the proof system of NL to obtain a complete one
for PNL for a similarly abstract semantics. Earlier versions of PNL have been
studied by the author in [6, 7] and by Vladimir Trifonov in [13].



1 Preliminaries on Neighbourhood Logic

Neighbourhood logic is a classical first order predicate logic with equality and
two unary normal modal operators.

1.1 Language

A language of NL is determined by a countable set of individual variables x,
y, . . . , and several other sets of symbols. These are constant symbols c, d, . . . ,
function symbols f , g, . . . and relation symbols R, S, . . . . Symbols of every kind
can be either rigid or flexible, depending on the way they are interpreted.

Given the sets of symbols, the terms t and the formulas ϕ of the corresponding
NL languages are defined by the BNFs:

t ::= c|x|f(t, . . . , t)
ϕ ::= ⊥|R(t, . . . , t)|(ϕ ⇒ ϕ)|∃xϕ|3lϕ|3rϕ
Function symbols and relation symbols are assigned arity to denote the num-

ber of arguments they admit. Every NL language contains the rigid constant
symbol 0, the rigid binary function symbol +, the rigid binary relation symbols
= and ≤ and the flexible constant `.

Individual variables are regarded as rigid. Formulas and terms which contain
no flexible symbols, are called rigid too. The set of individual variables that have
free occurrences in a formula ϕ is denoted by FV (ϕ).

1.2 Frames, Models and Satisfaction

Definition 1. A NL time domain is a linearly ordered set. A NL duration
domain is an algebraic system of the type 〈D,+(2), 0(0),≤(2)〉 which satisfies the
axioms:
(D1) x + (y + z) = (x + y) + z
(D2) x + 0 = x
(D3) x + y = x + z ⇒ y = z
(D4) ∃z(x + z = y)
(D5) x + y = y + x

(D6) x ≤ x
(D7) x ≤ y ∧ y ≤ x ⇒ x = y
(D8) x ≤ y ∧ y ≤ z ⇒ x ≤ z
(D9) x ≤ y ⇔ ∃z(x + z = y ∧ 0 ≤ z)

We use ≤ to denote both the ordering of time and duration domains.

Definition 2. Given a time domain 〈T,≤〉, the set of the closed intervals {[τ1, τ2] :
τ1, τ2 ∈ T, τ1 ≤ τ2} in T is denoted by I(T ). Given a time domain 〈T,≤〉 and a
duration domain 〈D, +, 0,≤〉, a measure function m is a surjective function of
type I(T ) → D, which satisfies the axioms:
(M1) m(σ) = m(σ′) ∧min σ = min σ′ ⇒ max σ = max σ′

(M2) max σ1 = min σ2 ⇒ m(σ1) + m(σ2) = m(σ1 ∪ σ2)
(M3) m(σ) = x + y ⇒ ∃σ′(minσ′ = min σ ∧m(σ′) = x).

Definition 3. A tuple of the kind 〈〈T,≤〉, 〈D,+, 0,≤〉, m〉, where 〈T,≤〉 is a
time domain, 〈D,+, 0,≤〉 is a duration domain, and m is a measure from I(T )
to D, is called NL frame.



Clearly, if a measure function from a time domain 〈T,≤〉 to a duration do-
main 〈D,+, 0,≤〉 exists, 〈D,≤〉 is isomorphic to 〈T,≤〉. For this reason NL is
usually regarded as having just duration domains in its frames. We keep the
two components of NL frames distinct for the sake of compatibility with ITL
semantics, where they may differ more.

Let L be an NL language.

Definition 4. Let F = 〈〈T,≤〉, 〈D, +, 0,≤〉,m〉, where 〈T,≤〉 be an NL frame.
A function I which is defined on the set of symbols of L and satisfies the require-
ments:
I(x), I(c) ∈ D for individual variables x and rigid constants c
I(f) ∈ (Dn → D) for n-place rigid function symbols f
I(R) ∈ (Dn → {0, 1}) for n-place rigid relation symbols R
I(c) ∈ (I(T ) → D) for flexible constants c
I(f) ∈ (I(T )×Dn → D) for n-place flexible function symbols f
I(R) ∈ (I(T )×Dn → {0, 1}) for n-place flexible relation symbols R
I(0) = 0, I(+) = +, I(`) = m, I(≤) is ≤ and I(=) is =
is called interpretation of L into F .

Definition 5. A model for L is a tuple of the kind 〈F, I〉, where F is a frame,
and I is an interpretation of L into F .

Given a frame F , we denote its components by 〈TF ,≤F 〉, 〈DF ,+F , 0F ,≤F 〉
and mF , respectively. The same applies to models. We denote the frame and the
interpretation of a model M by FM and IM , respectively.

Given a symbol s from L, interpretations I and J of L into frame F are said
to s-agree, if I(s′) = J(s′) for L symbols s′ other than s.

Definition 6. Let M be a model for L. Let σ ∈ I(TM ). The values Iσ(t) of
terms t from L are defined as follows:
Iσ(x) = IM (x), Iσ(c) = IM (c) for variables x and rigid constants c
Iσ(f(t1, . . . , tn)) = IM (f)(Iσ(t1), . . . , Iσ(tn)) for rigid n-place function symbols f
Iσ(f(t1, . . . , tn)) = IM (f)(σ, Iσ(t1), . . . , Iσ(tn)) for flexible n-place function symbols f
The relation M, σ |= ϕ for formulas ϕ from L is defined as follows:
M, σ 6|= ⊥
M, σ |= R(t1, . . . , tn) iff IM (R)(Iσ(t1), . . . , Iσ(tn)) = 1 for rigid relation symbols R
M, σ |= R(t1, . . . , tn) iff IM (R)(σ, Iσ(t1), . . . , Iσ(tn)) = 1 for flexible relation symbols R
M, σ |= (ϕ ⇒ ψ) iff either M, σ |= ψ, or M,σ 6|= ϕ
M, σ |= ∃xϕ iff 〈FM , J〉, σ |= ϕ for some J that x-agrees with IM

M, σ |= 3lϕ iff M, σ′ |= ϕ for some σ′ ∈ I(TM ) such that max σ′ = min σ
M, σ |= 3rϕ iff M, σ′ |= ϕ for some σ′ ∈ I(TM ) such that min σ′ = max σ

1.3 Abbreviations

Along with ordinary classical first order predicate logic abbreviations and infix
notation, the following NL-specific abbreviations are used:



3c
dϕ ⇀↽ 3d3dϕ 2dϕ ⇀↽ ¬3d¬ϕ 2c

dϕ ⇀↽ ¬2c
d¬ϕ d ∈ {l, r}, l = r and

r = l.
The modal operator (.; .) of ITL is defined as an abbreviation in NL by putting:

(ϕ; ψ) ⇀↽ ∃x∃y(x + y = ` ∧3c
l (ϕ ∧ ` = x) ∧3c

r(ψ ∧ ` = y)), x, y 6∈ FV ((ϕ;ψ)).

1.4 Proof System for NL

The proof system of NL consists of axioms for classical first order predicate logic
with equality, the axioms D1-D9 and the following axioms and rules:
(A1) 3dϕ ⇒ ϕ if ϕ is rigid.
(A2) 0 ≤ l
(A3) 0 ≤ x ⇒ 3d(` = x)
(A4) 3d(ϕ ∨ ψ) ⇒ 3dϕ ∨3dψ

(A4′) 3d∃xϕ ⇒ ∃x3dϕ
(A5) 3d(` = x ∧ ϕ) ⇒ 2d(` = x ⇒ ϕ)
(A6) 3c

dϕ ⇒ 2d3dϕ
(A7) ` = x ⇒ (ϕ ⇔ 3c

d(` = x ∧ ϕ))
(A8) 0 ≤ x ⇒ 0 ≤ y ⇒ 3d(` = x ∧3d(` = y ∧3dϕ)) ⇒ 3d(` = x + y ∧3dϕ)

(Mono)
ϕ ⇒ ψ

3dϕ ⇒ 3dψ (Nec)
ϕ

2dϕ (MP )
ϕ ϕ ⇒ ψ

ψ (G)
ϕ

∀xϕ
Substitution [t/x]ϕ of variable x by term t in formula ϕ is allowed in proofs

only if either t is rigid, or x does not occur in the scope of modal operators in ϕ.
This system is complete with respect to the above semantics[1].

2 Probabilistic Timed Automata: an Introductory
Example to PNL

Here we slightly generalise the notion of finite probabilistic timed automaton
from [4].

Definition 1. A finite probabilistic timed automaton is a system of the kind
A = 〈S,A, s0, 〈D, +, 0,≤〉, 〈qa, a ∈ A〉, 〈Pa : a ∈ A〉〉, where

S is a finite set of states;
A ⊂ {〈s, s′〉 : s, s′ ∈ S, s 6= s′} is a set of transitions;
s0 ∈ S is called initial state;
〈D, +, 0,≤〉 is a duration domain;
qa ∈ [0, 1] is the choice probability for transition a ∈ A;
Pa ∈ (D → [0, 1]) is the duration distribution of transition a.
Given A with its components named as above, As, denotes {s′ ∈ S : 〈s, s′〉 ∈

A}. 〈qa : a ∈ A〉 are required to satisfy
∑

a∈As

qa = 1 for As 6= ∅. 〈Pa : a ∈ A〉,
are required to satisfy Pa(0) ≥ 0, to be non-strictly monotonic and to converge
towards 1.

An automaton A of the above kind works by going through a finite or infinite
sequence of states s0, s1, . . . , sn, . . . such that 〈si, si+1〉 ∈ A for all i. Each
transition has a duration, di. Thus, individual behaviours of A are recorded as
sequences of the kind 〈a0, d0〉, . . . 〈an, dn〉, . . ., ai ∈ A, di ∈ D, where the initial
state of a0 is s0, and every transition arrives at the initial state of the next one.



Having arrived at state s, A chooses transition a ∈ As with probability qa. The
probability for its duration to be no bigger than d is Pa(d).

Given a language L for NL with a 0-place temporal relation symbol a for
every a ∈ A, a behaviour 〈ai, di〉, i = 0, 1, . . . can be represented as a model
〈F, I〉 for this language, where F = 〈〈D,≤〉, 〈D, +, 0,≤〉, λσ. maxσ −min σ〉 by

putting I(a)(σ) = 1 iff a = ai and σ =

[
∑
j<i

di,
∑
j≤i

di

]
for some i.

Some properties of A behaviours can be straightforwardly expressed under
this convention. For example, if a = 〈s, s′〉 ∈ A,

3c
ra ⇒ ¬

(
∨

b6∈As′
3rb

)

means that a behaviour which ends at a can only continue with a transition
whose initial state is the final state of a, and

a ⇒ ¬(a; ` 6= 0)
means that no transition can begin at some time point and end in two distinct
time points.

Now consider the set M of all the interpretations of L into F that represent
behaviours of A in the above way. We need the following definition:

Definition 2. Let τ ∈ TF . We say that interpretations I and J of L into F τ -
agree iff they coincide for rigid symbols from L, and coincide for flexible symbols
from L on intervals σ such that max σ ≤ τ .

The probabilistic components 〈qa : a ∈ A〉 and 〈Pa : a ∈ A〉 of A can be used to
endow M with probabilistic structure as follows:

For every τ ∈ D and every I ∈ M a probability measure PI,τ is in-
troduced on the subsets of MI,τ = {I ′ ∈ M : I ′ τ -agrees with I}.
Given N ⊂ MI,τ , PI,τ (N) denotes the probability for A to continue a
behaviour that is described by I up to time τ by one from N.

Assume that, in addition to the temporal relation symbols a ∈ A, L contains the
rigid symbols qa and Pa, a ∈ A, and they are interpreted by the corresponding
components of A in all the interpretations from M. Assume that we introduce
an operator p to L in the following way

◦ If ϕ is a formula, then p(ϕ) is a term.
◦ Iσ(p(ϕ)) = PI,max σ({I ′ ∈ MI,max σ : ∃τ ≥ min σ 〈F, I ′〉, [min σ, τ ] |= ϕ})

In words, let p(ϕ) evaluate under I to the probability of the set of those inter-
pretations of L which are continuations of I from time max σ on and satisfy ϕ
at some interval starting at time minσ.

Using p, the probabilistic law about A behaviours can be expressed as follows:
a ⇒ p((a; b ∧ ` = x)) = qb.Pb(x), if a = 〈s, s′〉 and b = 〈s′, s′′〉 for some

s, s′, s′′ ∈ S;
a ⇒ p((a; b)) = 0 otherwise.

To carry out this way of introducing p and its interpretation rigorously, we can
consider models that consist of a NL frame F , a set of interpretations M of L



into F , and a system of probability measures PI,τ , I ∈ M, τ ∈ TF , as specified
as above.

Having in mind that the values of p-terms are not necessarily similar to
durations, F should contain a separate domain for probabilities too. Accordingly,
languages that interpretations from M are defined on should have a sort for this
domain. This is essentially what PNL models are.

3 A Formal Definition of PNL

3.1 Languages

A PNL language is built starting from the same kinds of symbols as a NL
language. PNL languages are two-sorted. Together with the well-known sort of
durations, they have a sort of probabilities. Along with the arity, each non-logical
symbol of a PNL language has a description of the sorts of each of its arguments,
and of its value, in case it is an individual variable, a constant or a function
symbol. For example, the function symbols Pa from automata-related languages
take an argument of the duration sort to make a term of the probability sort.
A PNL language should contain countably many individual variables of both
sorts. Together with the symbols 0, +, =, ≤ and ` of the sort of durations, PNL
languages always contain the rigid constants 0 and 1, the rigid function symbol
+, and the rigid relation symbols ≤ and = of the new sort of probabilities. Using
the same notation for both probability and duration 0, + and = does not cause
confusion.

The BNF for formulas is as in NL. The BNF for terms in NL languages is
extended to capture the terms that express probability in PNL languages as
follows:

t ::= x|c|f(t, . . . , t)|p(ϕ, t, . . . , t)
Terms of the kind f(t, . . . , t) are well-formed only if the sorts of the subterms t
match the requirements for f . A similar condition applies to atomic formulas.
Terms of the kind p(ϕ, t, . . . , t) (p-terms) have the probability sort. They contain
one formula-argument ϕ and as many term arguments, as are the free variables
of ϕ. Let x1, . . . , xn be the free variables of ϕ, listed in the order of their first
free occurrences in ϕ. Then p(ϕ, t1, . . . , tn) is well-formed, iff ti has the sort of
xi, i = 1, . . . , n. Besides p(ϕ, x1, . . . , xn) is abbreviated to p(ϕ). This looks the
same as for closed ϕ, but is no source of confusion. We put

FV (p(ϕ, t1, . . . , tn)) =
n⋃

i=1

FV (ti)

and
[t/x]p(ϕ, t1, . . . , tn) ⇀↽ p(ϕ, [t/x]t1, . . . , [t/x]tn).

The symbol p is not a non-logical symbol in PNL languages. Its role is rather
like that of modal operators, yet it is used to construct terms, not formulas.



3.2 Frames, Models and Satisfaction

In order to enable a finite complete first order proof system for PNL, we intro-
duce probability domains in PNL abstractly, like the other NL domains:

Definition 1. A system of the kind 〈U,+(2), 0(0), 1(0)〉 is a probability domain,
if it satisfies the axioms:
(U1) x + (y + z) = (x + y) + z
(U2) x + 0 = x
(U3) x + y = y + x
(U4) x + y = x + z ⇒ y = z

(U5) x + y = 0 ⇒ x = 0
(U6) ∃z(x + z = y ∨ y + z = x)
(U7) 0 6= 1

The classical probability domain is 〈R+,+, 0, 1〉. Another example is 〈{ i
n :

i < ω},+, 0, 1〉, where n is a fixed positive integer.
We assume that the linear ordering ≤ which is defined by the equivalence

x ≤ y ↔ ∃z(x + z = y) is available for probability domains.

Definition 2. A tuple of the kind 〈〈T,≤〉, 〈D, +, 0〉, 〈U,+, 0, 1〉,m〉 is a PNL
frame, if 〈〈T,≤〉, 〈D,+, 0〉,m〉 is an (ordinary, one-sorted) NL frame, and 〈U,+, 0, 1〉
is a probability domain.

Interpretations of symbols from PNL languages into PNL frames are defined
like in (one-sorted) NL languages. Of course, the types of the functions and
relations that symbols evaluate to should match the types of the symbols. Be-
sides, the obligatory symbols 0, 1, +, and ≤ of the probability sort should be
interpreted by the corresponding components of the frame’s probability domain.

The setting given in the previous section makes it clear that the values of
the probability measures PI,τ are relevant to the interpretation of p-terms only
for some, formula-definable subsets of the set of interpretations that is part of
every PNL model. These subsets are difficult to describe prior to defining the
relation |= in corresponding model. On the other hand, requesting PI,τ to be
defined on the entire powersets of interpretations would render the forthcoming
completeness theorem unreasonably difficult to prove.

That is why, before defining PNL models, we introduce an auxiliary notion
of partial PNL models:

Definition 3. Let L be a language for PNL. A triple 〈F,M, P 〉 is a partial
PNL model for L if F is a PNL frame, M is a set of interpretations of the
non-logical symbols of L into F , and P = 〈PI,τ : I ∈ M, τ ∈ TF 〉 is a system
of partial functions PI,τ ∈ (2MI,τ → UF ), where MI,τ = {I ′ ∈ M : I ′ τ -agrees
with I}, which satisfy the equalities

PI,τ (∅) = 0, PI,τ (MI,τ ) = 1, PI,τ (N1)+PI,τ (N2) = PI,τ (N1∪N2)+PI,τ (N1∩N2).

for whichever N1,N2 ⊆ MI,τ PI,τ is defined.

In the above definition PI,τ are partial probability functions on the sets of
interpretations MI,τ . They take the abstract kind of probabilities we introduced
as their values.

We proceed to define the satisfaction relation |= on partial PNL models. In
order to define |= for formulas of the kind ∃xϕ, we need a technical definition:



Definition 4. Given an interpretation I of language L into frame F and a non-
logical symbol s from L, Ia

s stands for the interpretation of L into F that s-agrees
with I and interprets s as a. Given a set of interpretations N of L into F , Na

s

is {Ia
s : I ∈ N}. Given a partial function f : 2A → UF , the partial function

fa
s : 2Aa

s → UF is defined by putting fa
s (Na

s) = f(N), if f(N) is defined. If
f(N) is undefined, then fa

s (N) is undefined too. Given a partial PNL model
M = 〈F,M, P 〉, Ma

s is 〈F,Ma
s , 〈(PI,τ )a

s : I ∈ M, τ ∈ TF 〉〉.
Obviously Ma

s is a partial PNL model, if M is one. We abbreviate (. . . Ia1
s1

. . .)an
sn

to Ia1,...,an
s1,...,sn

. The same applies to models M .
Values Iσ(t) of terms t and the modelling relation |= are partially defined in

PNL models by simultaneous induction on the length of terms and formulas.
The clauses about the kinds of terms and formulas that are known from NL
are as in NL: Given a PNL model M = 〈F,M, P 〉 and I ∈ M, the clause for
M, I, σ |= ϕ is the same as that for 〈F, I〉, σ |= ϕ. Each clause applies only if
the entities on its right side are defined. The only clause which is subjected to a
somewhat greater change is the one about existential formulas:
M, I, σ |= ∃xϕ iff there exists an a such that a ∈ DF , in case x is a duration variable,

and a ∈ Uf , in case x is a probability variable, and Ma
x , Ia

x , σ |= ϕ
The new, PNL-specific clause is about p-terms. Given a well-formed p-term

p(ϕ, t1, . . . , tn), Iσ(p(ϕ, t1, . . . , tn)) is

PI,max σ({I ′ ∈ MI,max σ : ∃τ ≥ min σ M Iσ(t1),...,Iσ(tn)
x1, ... ,xn

, (I ′)Iσ(t1),...,Iσ(tn)
x1, ... ,xn

, [min σ, τ ] |= ϕ}),

only if PI,max σ is defined for the given set. In case ϕ is closed, this definition
simplifies to

Iσ(p(ϕ)) = PI,max σ({I ′ ∈ MI,max σ : ∃τ ≥ min σ M, I ′, [min σ, τ ] |= ϕ}).

In words, given an interpretation I ∈ M and an interval σ, Iσ(p(ϕ)) repre-
sents the probability of the set of those interpretations I ′ ∈ M which are like I
up to the end of the interval σ and satisfy ϕ at some interval which has the same
beginning as σ. For a modelled system’s behaviour which is represented by I for
the time until maxσ, this term can represent the probability for this behaviour
to continue so that ϕ eventually gets satisfied in the specified kind of interval.

In the general case the operator p evaluates the above probability under the
assumption that the free variables of ϕ evaluate to the values which t1, . . . , tn
have in the current interval σ.

Note that interpretations I ′ which max σ-agree with the selected one I may
happen to satisfy ϕ at intervals [min σ, τ ] where τ ≤ max σ. In this case satis-
faction of ϕ may happen to be a simple consequence of maxσ-agreeing with I,
and no substantial probability evaluation is involved. For example

(ϕ;>) ⇒ p(ϕ) = 1
is a valid PNL formula, if ϕ is retrospective (see definition 1), that is, if ϕ does
not specify properties of interpretations beyond the end of the current interval.

Having defined (partial) |= on partial PNL models, we are ready to define
PNL total models:



Definition 5. A partial PNL model M is a (total) PNL model, if values of
terms and satisfaction of formulas from the corresponding language are every-
where defined in M .

For the rest of the paper only total PNL models are considered.

4 A Complete Proof System for PNL

We need to specify a special class of PNL formulas, in order to introduce our
proof system.

4.1 Retrospective Formulas and Interpretations Which τ -agree

Definition 1. We call NL formulas that can be defined by the BNF
ϕ ::= ⊥|R(t, . . . , t)|¬ϕ|(ϕ ∧ ϕ)|(ϕ; ϕ)|3lϕ|∃xϕ

retrospective.

There is a close connection between retrospective formulas and interpretations
that τ -agree:
Proposition 1. Let F be a frame and τ ∈ TF . Let I and J be interpretations
of L into F that τ -agree. Let σ ∈ I(TF ) and max σ ≤ τ . Then 〈F, I〉, σ |= ϕ iff
〈F, J〉, σ |= ϕ for all retrospective ϕ from L.

Since occurrences of modal operators can be removed from rigid formulas
due to A1, rigid formulas share the properties of retrospective formulas.

4.2 The System

The proof system for PNL that we propose is an extension of that for NL with
the axioms U1-U7 about probabilities, and the following axioms and rules:
(P⊥) p(⊥) = 0
(P>) p(>) = 1

(P+) p(ϕ) + p(ψ) = p(ϕ ∨ ψ) + p((ϕ;>) ∧ (ψ;>))
(P=) x1 = y1 ∧ . . . ∧ xn = yn ⇒ p(ϕ, x1, . . . , xn) = p(ϕ, y1, . . . , yn)

(P3)
ϕ ⇒ (3c

l ψ ⇒ 3c
l χ)

ϕ ⇒ p(ψ) ≤ p(χ) if ϕ is retrospective, (P;)
ϕ ⇒ ¬(ϕ; ` 6= 0)

(ϕ; p(ψ) = x) ⇒ p((ϕ; ψ)) = x
Note that in the above axioms and rules terms like p(ϕ) should be understood

as abbreviations of the kind p(ϕ, x1, . . . , xn), as stated in Subsection 3.1. This
means that these axioms and rules have instanced with formulas that have free
variables. P3 and P; can be applied only to theorems of PNL. Substitution in
p-terms is allowed in proofs only if the substitute term is rigid.

The soundness of the above system is established in the ordinary way. Given
a PNL language L, we denote the set of all PNL theorems in L by PNLL.

Consistency and maximal consistency are defined for sets of formulas in a
PNL language with respect to the above proof system in the ordinary way. We
have the following completeness result about our proof system:
Theorem 1. Let Γ be a set of formulas from a PNL language L. Then Γ is
consistent iff there exists a model M = 〈F,M, P 〉 for L, an interpretation I ∈ M
and an interval σ ∈ I(TF ) such that M, I, σ |= Γ .

A proof of this theorem can be found in [7, 9].



5 Chapman-Kolmogorov’s Equality for Composition in
PNL

The means to express sequential composition of (probabilistic) processes in PNL
is the defined operator (.; .). In this section we extend the semantics of PNL
and its proof system so that probabilities of formulas with (.; .) satisfy Chapman-
Kolmogorov’s equality about sequential composition under reasonable assump-
tions.

Since this equality involves integration, probability domains are extended
with multiplication, which is needed to define integration. Multiplication of prob-
abilities is required to satisfy the axioms:
(U8) x.1 = x
(U9) x.(y.z) = (x.y).z
(U10) x.y = y.x

(U11) x.(y + z) = x.y + x.z
(U12) x.y = x.z ∧ x 6= 0 ⇒ y = z
(U13) x 6= 0 ⇒ ∃y(x.y = z)

We extend the proof system of PNL by the rules:

(P )
ϕ ⇒ ¬(ϕ; ` 6= 0)

` = 0 ∧ p(ϕ ∧ θ ⇒ p((ϕ;ψ)) ≤ x) = 1 ⇒ p((ϕ ∧ θ; ψ)) ≤ x.p(ϕ ∧ θ)

(P )
ϕ ⇒ ¬(ϕ; ` 6= 0)

` = 0 ∧ p(ϕ ∧ θ ⇒ p((ϕ;ψ)) ≥ x) = 1 ⇒ p((ϕ ∧ θ; ψ)) ≥ x.p(ϕ ∧ θ)
For a formula ϕ to specify a step in some process, it is natural to expect that

`PNL ϕ ⇒ ¬(ϕ; ` 6= 0). That is why the latter formula is used as a premiss for
P and P . Let ϕ be a formula from some PNL language L. Let M = 〈F,M, P 〉
be a model for L. Let σ0 ∈ I(TF ) be a 0-length interval and I0 ∈ M. Let
f = λI.PI,τ ′(MI′,[τ,τ ′],(ϕ;ψ)). Then the equality of Chapman-Kolmogorov can
be expressed as:

PI0,τ (MI0,σ,(ϕ;ψ)) =
∫

I∈MI0,σ,ϕ

f(I)dPI0,τ .

The integral which occurs above is defined as the least upper bound of the

sums of the kind
n∑

i=1

inf
I∈Ai

f(I)PI0,τ (Ai), in case it is equal to the greatest lower

bound of the sums of the kind
n∑

i=1

sup
I∈Ai

f(I)PI0,τ (Ai), where {A1, . . . , An} ranges

over the finite partititions of MI0,σ,ϕ for which PI0,τ (Ai), i = 1, . . . , n is defined.
In order to enable this definition, we need to require that the linear ordering

of UF is complete. Unfortunately, this cannot be enforced by first-order means.
In the general case we can show that the above rules entail the following approx-
imation of Chapman-Kolmogorov’s equality for models M = 〈F,M, P 〉 which
validate them:

Let I0 ∈ M, and σ ∈ I(TF ) be a 0-length interval. Let ϕ and ψ be formulas,
and ϕ satisfy the premiss of our rules. Let n < ω. Then there exists a partitition
{Ai : i ≤ n} of MI0,σ,ϕ such that (i − 1) < n.f(I) ≤ i for I ∈ Ai, i = 0, . . . , n,

and moreover
n∑

i=1

(i− 1).PI0,τ (Ai) ≤ n.PI0,τ (MI0,σ,(ϕ;ψ)) ≤
n∑

i=0

i.PI0,τ (Ai).

Clearly, in the case U = R+, this is equivalent to the precise equality.



Conclusions

We believe that, by introducing PNL and finding a complete proof system for
it, we have made the task of obtaining a similar system for PDC a lot simpler.
In fact, PNL has the expressive power of PDC, except for state expressions and
their durations. However they can be introduced to PNL using the construc-
tions presented in, e.g. [5]. This makes it reasonable to believe that PNL is an
appropriate tool for the specification and verification of probabilistic behaviour
of real-time systems.
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