
An Application of Temporal Projection to
Interleaving Concurrency

Ben Moszkowski1 and Dimitar P. Guelev2

1 School of Computing Science,
Newcastle University, Newcastle upon Tyne, UK

benmos63@gmail.com
2 Department of Algebra and Logic,

Institute of Mathematics and Informatics, Sofia, Bulgaria
gelevdp@math.bas.bg

Abstract. We revisit the earliest temporal projection operator Π in
discrete-time Propositional Interval Temporal Logic (PITL) and use it to
formalise interleaving concurrency. The logical properties of Π as a nor-
mal modality and a way to eliminate it in both PITL and conventional
point-based Linear-Time Temporal Logic (LTL), which can be viewed
as a PITL subset, are examined. We also formalise concurrency without
Π, and relate the two approaches. Furthermore, Π and another stan-
dard PITL projection operator are interdefinable and both suitable for
reasoning about different time granularities. We mention other (mostly
interval-based) temporal logics with similar forms of projection, as well
as some related applications and international standards.

Keywords: interleaving concurrency · interval temporal logic · temporal
projection · time granularities

1 Introduction

Temporal intervals, which are finite and infinite state sequences, offer a com-
pellingly natural and flexible way to model computational processes involving
hardware or software. Interval Temporal Logic (ITL) [35], [19], [36] is an estab-
lished formalism for reasoning about such phenomena. In ITL, satisfaction of
formulas is defined at intervals rather than time points which are used in other
temporal logics. ITL operators for sequentially combining formulas A;B (“A
chop B”) and A∗ (“A chop-star”) are related to the concatenation and Kleene
star operators for regular expressions.

In the early 1980s, we proposed in [35], [19] a simple binary temporal operator
Π for time granularities and projection to enhance ITL’s usefulness for formalis-
ing digital circuits. Here we revisit Π’s logical properties and use it to formalise
interleaving concurrency. We also discuss a related operator for modelling time
granularities and related work on temporal projection in general.

Structure of the paper: Section 2 overviews propositional ITL. Section 3 looks
at the projection operator Π. Section 4 uses Π to formalise concurrent programs
and also shows how to do this without Π. Section 5 discusses related work.

2 Propositional Interval Temporal Logic

For an in-depth presentation of PITL we refer the reader to [39]; see also [36], [31]
and the ITL web pages [27]. The version of PITL used here has the syntax

A ::= true | p | ¬A | A ∨ A | ©A | A UA | A;A | A∗ , (1)

where p denotes a propositional variable. Owing to our purposes here, the Until
operator U is included. We define false, ∧, ⊃ and ≡ as usual.

PITL models time using discrete (linear) state sequences. The set of states Σ
is the powerset 2V of the set V of propositional variables, so each state in Σ sets
every propositional variable p, q, . . . to true or false. Local PITL is the (standard)
version of PITL with such state-based variables (instead of interval-based ones).
An interval σ = σ0σ1 . . . is any element of Σ+ ∪ Σω. If σ is finite, its interval
length |σ| is the number of σ’s states minus 1, otherwise ω. Given i ≤ j ≤ |σ|,
j < ω, σi..j denotes σi . . . σj , and σi↑ is the suffix subinterval σiσi+1 . . . of σ. We
write σ |= A for interval σ satisfies A. Formula A is valid if all intervals satisfy
A. The definition of σ |= A by induction on the construction of A is as follows,
where i, j, k, ki and n are natural numbers:

σ |= true for any σ σ |= p iff p ∈ σ0 σ |= ¬A iff σ 6|= A

σ |= A ∨ B iff σ |= A or σ |= B σ |= ©A iff |σ| ≥ 1 and σ1↑ |= A

σ |= A UB iff, for some k ≤ |σ|, σk↑ |= B and for all j < k, σj↑ |= A

σ |= A;B iff for some k ≤ |σ|, σ0..k |= A and σk↑ |= B, or |σ| = ω and σ |= A

σ |= A∗ iff either (1) |σ| = 0,
or (2) there exists a finite sequence k0 = 0 < k1 < . . . < kn ≤ |σ|

such that for all i < n, σki..ki+1 |= A, and σkn↑ |=A,
or (3) |σ| = ω and there exists an infinite sequence

k0 = 0 < k1 < . . . such that σki..ki+1 |= A for all i < ω.

In the first case for chop, intervals σ0..k and σk↑ have overlapping state σk.
Cases (1)-(3) for chop-star concern zero, nonzero but finite, and infinite (“chop-
omega”) iterations, respectively. Chop here is weak, like the weak version W of
U, for potentially nonterminating programs which ignore B. Strong chop, which
forces the left subinterval to be finite, is derivable.

Consider a sample 5-state interval σ with the following alternating values for
the variable p: p ¬p p ¬p p. Here are four formulas σ satisfies:

p (©¬© true);¬p p ∧ (true;¬p)
(
p ∧ ©©(p ∧ ¬© true)

)∗
.

For example, (©¬© true);¬p is true since σ’s prefix subinterval σ0σ1 satisfies
©¬© true (which is true exactly on 2-state intervals) and the adjacent suffix
subinterval σ1 . . . σ4 satisfies ¬p because p 6∈ σ1. The formula (p ∧ ©©¬© true)∗

is true since σ’s subintervals σ0σ1σ2 and σ2σ3σ4 both satisfy p ∧ ©©¬© true,
but σ does not satisfy formulas ¬p, (©¬© true); p and true; (¬p ∧ ¬(true; p)).

Table 1. Some Useful Derived LTL Operators

w©A =̂ ¬©¬A Weak Next more =̂ © true ≥ 2 states

empty =̂ ¬more One state skip =̂ © empty = 2 states

3A =̂ true UA Eventually 2A =̂ ¬3¬A Always

inf =̂ 2more Infinite interval finite =̂ ¬inf Finite interval

fin A =̂ 2(empty ⊃ A) Final state (weak) halt w =̂ 2(w ≡ empty) Halt upon test

Let w, w1 and w2 denote state formulas, which have no temporal operators.
Conventional LTL can be viewed as the subset of PITL with just the temporal
operators © and U. The infinite state sequences that are common with LTL are
just infinite intervals. Table 1 shows useful derived LTL operators.

Here are some sample valid PITL formulas:

A ⊃ (A;true) skip∗ inf ≡ true; false (w∧A);B ≡ w∧(A;B) A ≡ (empty ;A) .

We note that PITL without chop-star has the same expressiveness as LTL.
With chop-star, PITL has the same expressiveness as LTL with the addition of
propositional quantification (explicitly defined later in Sect. 4). That is, having
propositional quantification instead of chop-star gives the same regular expres-
siveness for finite intervals and ω-regular expressive power (i.e., MSO(ω,<)) for
infinite intervals. The LTL operator U is also expressible using chop, © and quan-
tification. More details about PITL’s expressiveness are found in [35], [38], [39].

3 Temporal Projection

The binary temporal operator Π for state projection [35], [19] provides a way to
examine dynamic behaviour at certain points in time and ignore all intermediate
states. Given an interval σ and a state formula w, let σ|w denote the sequence of
σ’s states satisfying w. If σ is infinite, σ|w can be finite or infinite. The definition
of Π, whose first argument is supposed to be a state formula, is

σ |= w Π A iff σi |= w, for some i ≤ |σ|, and σ|w |= A .

For example, σ |= p Π 2q if p is true at some state of σ, and q is true whenever p
is, i.e., if σ |= 3p ∧ 2(p ⊃ q). We can generalise Π to permit arbitrary formulas
for selecting projected states by using σ|B = 〈σi : i ≤ |σ|, σi↑ |= B〉 to define
σ |= B Π A. This does not alter Π’s meaning when B is a state formula.

For a fixed w, w Π A is a normal unary modality on A. Its accessibility
relation σ 7→ σ|w is deterministic. This entails the validity of the standard modal
axioms K and Dc, and the necessitation rule N [6, 23]. These are normally
written in terms of the “universal” dual ¬(w Π ¬A) of w Π A, denoted w Πu A:

(K) w Πu (A ⊃ B) ⊃ (w Πu A ⊃ w Πu B), (Dc) w Π A ⊃ w Πu A, (N)
A

w Πu A
.

K, Dc and N are sufficient to infer equivalences such as:

w Π (A ∧ B) ≡ w Π A ∧ w Π B

w Πu A ∧ w Π B ⊃ w Π (A ∧ B)

w Πu (A ⊃ B) ∧ w Π A ⊃ w Π B .

The following valid formulas are specific to Π:

2(w1 ≡ w2) ⊃ (w1 Π A) ≡ (w2 Π A)

w1 Π (w2 Π A) ≡ (w1 ∧ w2) Π A (2)

w Πu A ≡ 2¬w ∨ w Π A, w Π A ≡ 3w ∧ w Πu A (3)

w1 Π 3w2 ⊃ 3w2, 2w2 ⊃ w1 Πu 2w2 (4)

The equivalences (3) give a simpler way to define Π and Πu in terms of each
other because 3w is available to indicate whether the reference interval has a
nonempty projection. The implications (4) facilitate importing and exporting
properties into and from the scope of Π.

The valid equivalences below form a complete axiomatisation of Π relative to
basic PITL and show that every PITL formula with Π has a Π-free equivalent.

w Π true ≡ 3w w Π (A ∨ B) ≡ w Π A ∨ w Π B
w Π p ≡ (¬w) U (w ∧ p) w Π (A UB) ≡ (w Π A) U (w Π B)
w Π ¬A ≡ 3w ∧ ¬(w Π A) w Π ©A ≡ (¬w) U (w∧©(w Π A))
w Π (A;B) ≡ (w Π A); (w ∧ w Π B)
w Π (A∗) ≡ ¬w U

(
w ∧ ((w Π A) ∧ fin w)∗; w©2¬w

)
The equivalences about the LTL operators show that LTL formulas with Π have
Π-free LTL equivalents too.

By (2), A ≡ w Π B entails w Π A ≡ w Π B, so A has an equivalent of the
form w Π B iff |= A ≡ w Π A. This may be useful for synthesising a controller
to be run in parallel with other code from a global requirement R. The synthesis
is possible only if |= R ≡ (w Π R), where w marks the controller’s time slices.
The latter reduces to a basic ITL validity after eliminating Π from w Π R.

We originally defined Π so that σ |= w Π A vacuously holds when σ|w has
no states [19], [35]. This holds for Πu in this paper. Projection is false when
no projection interval exists for the real-time projection operators from [15–17],
and likewise for the projection operator from [36], [37] discussed in Sect. 4.2.

4 Formalisation of Imperative Concurrent Programs

We now look at a way to formalise in ITL imperative concurrent programs in
which processes are interleaved. The availability of sequential composition oper-
ators such as chop has long made ITL well suited for expressing sequential and
concurrent programs and executing them in ITL-based interpreters, as we previ-
ously investigated in [36]. Such an interpreter for an ITL programming language

subset called Tempura is available from [27]. ITL has also been productively used
for symbolic execution for theorem proving [2, 3]. Some later research by others
on expressing concurrent programs in variants of ITL is discussed in Sect. 5.

The approach described here is specifically meant to correspond to the popu-
lar notion of state transition systems (based on Keller’s work [30] and extensively
surveyed by Baier and Katoen [1]; see also [7], [31]), where at any time only one
of the program’s processes is allowed in global time to make a transition from
the current state to its immediate successor state and possibly make assignments
involving just these two adjacent states. This is a quite widely employed stan-
dard assumption for interleaving found in frameworks including Manna-Pnueli
Reactive Systems [33] (see also [4], [31]), Lamport’s TLA+ [32] (including the
TLC model checker), Jones’ Rely-Guarantee Conditions [28] (see also [43]), the
SPIN model checker [22] and Partial Order Reduction [7], [1] used by some model
checkers such as SPIN. Our intention is to develop a framework that a priori
seeks to maximise the use of ITL together with the operator Π for the inter-
leaving model. Projection constructs are not strictly required (since they can be
eliminated, as discussed later in Sect. 4.1), but we consider them here because
they bring succinctness and clarity.

Interleaved parallel composition We now define

A |||p B =̂ p Π A ∧ (¬p) Π B

to express that two formulas A and B operate concurrently in an interleaved
manner with a boolean variable p indicating which is active in any given state.
We refer to this three-operand interleaving operator as |||−. It is commutative
and associative, subject to suitable manipulations of the middle operand:

|= A |||p B ≡ B |||¬p A (5)

|= (A |||p B) |||q C ≡ A |||p∧q (B |||q C) (6)

|= A |||p (B |||q C) ≡ (A |||p B) |||p∨q C (7)

Commutativity is easily proved, as is associativity with the next valid equiva-
lence:

|= p Π (A |||q B) ≡ (p ∧ q) Π A ∧ (p ∧ ¬q) Π B .

Whenever irrelevant, |||−’s middle operand can be quantified away:

A ||| B =̂ ∃p. (A |||p B) .

Here, σ |= ∃p. C holds iff σ′ |= C holds for some interval σ′ identical to σ
except possibly for p’s behaviour. 3 The definition of ||| here corresponds to

3 As noted in the introduction, such quantification does not increase PITL’s expres-
siveness: quantified formulas have equivalent quantifier-free ones. Here is how to
express U: |= A U B ≡ 3B ∧ ∃p.

(
p ∧ 2(p ⊃ (B ∨ (A ∧ © p)))

)
(e.g., see [31, p. 84]),

where the following straightforward valid equivalences are used: inf ≡ (true; false),
finite ≡ ¬inf , 3C ≡ (finite;C) (with 2 still being 3’s dual: 2C ≡ ¬3¬C).

Baier and Katoen’s notion in [1]. With the middle operand quantified away, |||
is commutative and associative in the usual way. Both Π and |||− are expressible
using either ||| or |||−, so these operators can be taken as a primitive instead of
Π:

|= A |||w B ≡ (2w ∧ A) ||| (2¬w ∧ B)

|= w Π A ≡ A |||w true ∨ (2w ∧ A) .

The equivalence for expressing w Π A needs two cases because, unlike w Π A,
the disjunct A |||w true ensures that sometimes w is false.

Multiple processes with process identifiers When dealing with multiple
processes, it can be convenient to associate a numerical index with each one. An
auxiliary variable pid can be readily used for this. For instance, for a formula
A |||p B with two processes, we can take pid to range over {0, 1} and construct it
using the formula 2(pid = if p then 0 else 1). For any expression e and formula
A, define e :: A to specify that e is the process id for A:

e :: A =̂ 2(pid = e) ∧ A .

The existence of a suitable pid then readily ensures the validity of A ||| B ≡
∃pid . (0 :: A ||| 1 :: B). The proof uses the validity of A |||pid=0 B ≡ (0 ::
A ||| 1 :: B). The techniques easily generalise to any number of processes (e.g.,
0 :: A1 ||| 1 :: A2 ||| 2 :: A3).

The rest of the imperative constructs When formalising programs and
processes, the framework here takes the liberty of assuming that data variables’
range over finite domains. Besides various constants such as the bit values 0
and 1, we also employ some finite sets and lists to deal with such program
variables. For any given finite set of program variables, this can in principle be
propositionally encoded.

Table 2 contains imperative programming constructs which can be viewed as
derived operators in ITL. We let \ denote set difference. Labels are optional,
normally only added to each atomic assignment and noop, and do not affect
program operation. When specified, lab’s value is the active process’s current
label. Labelling just the atomic statements suffices to fully determine lab’s value
in all states but the final one, if the process terminates. Hence, each process ends
with another labelled formula of the form li : empty .

As we already noted, interleaving-based transition systems only perform as-
signments involving two states adjacent in global time. However, a process within
|||− in projected time might not see the next global state even if the current pro-
jected and current global states are identical. For example, suppose the current
global interval is s1s2s3s4 Therefore, assignments from current global state
s1 should involve s1 and the next global state s2. If a process in |||− sees the
current projected interval s1s4 . . . without states s2 and s3, then any := within
|||− that sees the current state s1 cannot see global state s2 and so cannot access
s2 with © to assign variables. Such an instance of © instead sees the next pro-
jected state s4 (although an alternative approach without projection in Sect. 4.1

Table 2. Some imperative programming constructs expressed in ITL

a := e =̂ skip ∧ nval [.a] = e
∧ ∀v ∈ (dom(nval) \ {.a}). (nval [v] = v̂)

a1, . . . , an := e1, . . . , en =̂ skip ∧ nval [.a1] = e1 ∧ · · · ∧ nval [.an] = en
∧ ∀v ∈ (dom(nval) \ {.a1, . . . , .an}). (nval [v] = v̂)

noop =̂ skip ∧ ∀v ∈ dom(nval). (nval [.v] = v̂)

li : A =̂ lab = li ∧ A

empty (Already defined in Table 1)

A;B (Already defined as primitive ITL operator in Sect. 2)

if w then A else B =̂ (w ∧ A) ∨ (¬w ∧ B)

while w do A =̂ (¬w ∧ A)∗; (empty ∧ w)

for some times do A =̂ A∗

A tB =̂ A ∨ B (Nondeterministic choice)

can indeed see state s2 by simply employing ©). Exactly the same issue ap-
plies to the remaining program variables which := needs to frame (i.e., leave
unchanged) and likewise for noop.

The assignment construct := instead uses state formulas and a state variable
nval which is a record (i.e., a finite list indexed by field names and like records in
Lamport’s TLA+ [32]). The purpose of nval is to store in the current projected
state the values which are to be assigned to variables in the next global state
(itself normally only accessible from outside of the scope of |||−). In effect, nval
helps tunnel from projected to global time. For each program variable a, nval
has an element nval [.a], where .a is a field name constant (like a quoted atom in
Lisp) serving as a subscript (TLA+ uses strings such as “a” to index records).
The assignment a := e does not actually change a or frame the remaining pro-
gram variables (i.e., it does not explicitly keep them unchanged). Instead, in the
current projected state (which is also the current global state), a := e treats its
first operand as a kind of reference (i.e., .a) and just sets nval [.a] equal to e, and
nval [.b] equal to b’s current value for every other (unaltered) program variable
b. The desired setting of a’s and b’s values in the next global state (to equal the
current values of nval [.a] and nval [.b], respectively) is handled separately outside
of |||− in global time, as discussed later, where the operator © can indeed access
the next global state.

The field name constant .a can serve as a reference to the variable a itself
because we let a be accessible via .a using the dereferencing construct .â (e.g.,
the equality .â = a is valid). We can abbreviate nval [.a] as nval .a (as in TLA+,
where nval [“a”] = nval .a). This shorthand is not applicable if the subscript is a
variable whose value is a field name constant. For example, if b equals .a, then

Process Pr0: Process Pr1:

l0 : x := 1; l2 : x := 1− x;
l1 : empty l3 : empty

A. Let dom(nvalPr) = {.x}. Initially x = 0.

Process Pr ′0: Process Pr ′1:

l′0 : x := 1; while y = 0 do
l′1 : y := 1; l′3 : noop;
l′2 : empty l′4 : x := 1− x;

l′5 : empty

B. Let dom(nvalPr′) = {.x, .y}.
Initially both x = 0 and y = 0.

Fig. 1. Simple concurrent programs Pr and Pr ′

nval [b] equals both nval [.a] and nval .a (e.g., |= b = .a ⊃ nval [b] = nval .a) but
not necessarily nval .b.

As in TLA+, we can regard the record nval as a function from field name con-
stants to values, and let dom(nval) denote nval ’s domain which is in fact the set
of these field name constants. Hence, dom(nval) can serve as a set of references
to the program variables for use in the semantics of atomic statements (described
shortly) when framing variables (e.g., for an assignment a := e, we need to ex-
plicitly formalise in the logic that all program variables referenced by dom(nval)
besides a remain unchanged.) For example, one concurrent program Pr ′ consid-
ered shortly has just two program variables x and y, so dom(nval) = {.x, .y},
where .x and .y are the field name constants associated with x and y, respec-
tively. The set dom(nval) especially helps to formalise framing for programs with
several variables.

The framing construct iframe now defined, when used in global states, ensures
that intended assignments of values recorded in nval in each projected state
actually take effect on the program variables themselves in the next global state:

iframe =̂ 2
(
more ⊃ ∀v ∈ dom(nval). (nval [v] = © v̂)

)
.

For example, if dom(nval) = {.a}, then iframe is semantically equivalent to both
of the formulas 2(more ⊃ nval [.a] = .â) and 2(more ⊃ nval .a = a).

Here are sample valid formulas involving iframe (assume dom(nval) = {.a}):

|= iframe ∧ 2(more ⊃ nval .a = a) ⊃ 2(more ⊃ (© a) = a) (8)

|= iframe ∧ (¬p) Πu 2(more ⊃ nval .a = a) ⊃ p Πu iframe . (9)

According to (8), if iframe controls a and also nval .a always equals a (except
maybe at the end), then © a also always equals a (except maybe at the end),
so, in other words, a is stable. Implication (9) describes that if iframe controls a
and also in time projected by ¬p, nval .a always equals a (except maybe at the
end), then iframe as well controls a within time projected by p.

Figure 1 shows two simple concurrent programs Pr and Pr ′. The next formula
for Pr includes initialisation and framing (as noted in Fig. 1, dom(nvalPr) =
{.x}):

x = 0 ∧ iframe ∧ Pr0 |||r Pr1 .

Process Petersoni, for i ∈ {0, 1}
for some times do (

l0 : noop;
l1 : flagi := 1;
l2 : turn := 1;

while(flag1−i = 1 ∧ turn = 1− i) do
l3 : noop;
l4 : noop; /* Enter critical section */
l5 : noop; /* Critical section */
l6 : flagi := 0; /* Leave critical section */
l7 : noop

);
l8 : empty

Let dom(nvalPeterson) = {.flag0, .flag1, .turn}.
Initially both flag0 = 0 and flag1 = 0, but turn’s initial value is unimportant.

Fig. 2. Version of Peterson’s algorithm with processes Peterson0 and Peterson1

The middle operand r of |||− here need not be quantified away because we only
use |||− on the left side of ⊃. The first program can terminate with x equal to 0
or 1, but the second program ensures x ends equal to 0, as formalised below (as
noted in Fig. 1, dom(nvalPr ′) = {.x, .y}):

|= x = 0 ∧ y = 0 ∧ iframe ∧ Pr ′0 |||r Pr ′1 ⊃ fin(x = 0 ∧ y = 1) .

The labels help link conditions on state to control points. Here is an example
stating that x will equal 1 when process Pr ′1 is at label l′4:

|= x = 0 ∧ y = 0 ∧ iframe ∧ Pr ′0 |||r Pr ′1 ⊃ ¬r Π (lab = l′4 ⊃ x = 1) .

The next construct is a shorthand to test the current label in a process:

atp li =̂ p Π (lab = li)

atp{li1 , . . . , lik} =̂ p Π (lab ∈ {li1 , . . . , lik}) .

The previously discussed translation of Π to LTL in Sect. 3 ensures that atp li
can be expressed in LTL as ¬p U (p ∧ lab = li).

Figure 2 shows Peterson’s mutual exclusion algorithm [42]. The two processes
do not simultaneously access their critical sections (labels l5 and l6). Below are
some valid properties, where we let init denote flag0 = 0 ∧ flag1 = 0 (also, as
noted in Fig. 2, dom(nvalPeterson) = {.flag0, .flag1, .turn}):

|= init ∧ iframe ∧ Peterson0 |||r Peterson1

⊃ 2¬(atr{l5, l6} ∧ at¬r{l5, l6})
(10)

|= init ∧ iframe ∧ Peterson0 |||r Peterson1

⊃ 2(atr l0 ⊃ 3 atr l5) ∧ 2(at¬r l0 ⊃ 3 at¬r l5)

|= init ∧ iframe ∧ (inf ∧ Peterson0) |||r (inf ∧ Peterson1)
⊃ 23 atr l0 ∧ 23 atr l5 ∧ 23 at¬r l0 ∧ 23 at¬r l5

|= Petersoni ⊃ 2(more ⊃ nval .flag1−i = flag1−i)

|= Petersoni ⊃ 2(more ⊃ nval .turn = turn ∨ nval .turn = 1− i) .

Implication (10) concerns mutual exclusion. Surprisingly, variants with l4 or
{l4, l5} instead of {l5, l6} are not valid: Suppose Peterson0’s process is active
(i.e., r is true) with lab = l4 (so atr l4 holds). If Peterson1’s currently inactive
process is beyond l2 and l3 but before l4, it could later on have lab = l4 when
in its next active state entering its critical section. Then at¬r l4 would be true
now! Hence, our approach has an interesting idiom to formalise behaviour.

4.1 Formalising Interleaving without Projection

As already discussed above, modelling of interleaving with Π needs the variable
nval and the iframe construct to ensure that each assignment to a program vari-
able is suitably performed between two globally adjacent states. An alternative
framework without Π now presented avoids the need for either nval or iframe
and so is even closer to the interleaving semantics described by Baier and Ka-
toen [1]. Instead of using a record nval , we simply let pvars denote the set of
program variables’ field name constants to play a role like that of dom(nval).

The only constructs in Table 2 which need to be changed are the assignment
operator :=, noop and empty . Below is a definition of the alternative construct
:=′ for assigning to a single variable, where pvars is the set of program variable’s
field name constants:

a :=′ e =̂ (© a) = e ∧ ∀v ∈ pvars \ {.a}. ((© v̂) = v̂)
∧ active ∧ ©

(
finite ∧ 2(more ⊃ ¬active)

)
.

Here the operator © helps assign to a and frame other program variables over
the first two (global) states. The variable active is initially true, but then false
in the finite number of subsequent (intermediate) states, except in the last state,
to indicate inactivity. Note that :=′ does not determine active’s value in the last
state since this is left for a follow-on atomic statement to do. Similar definitions
for multiple assignments and the alternative construct noop′ are omitted here.
A variant of empty ′ ensures active holds in a process’s final state:

empty ′ =̂ empty ∧ active .

Any such process A has the valid implication A ⊃ (active ∧ fin active).

Here are variants of Π and |||− which seem suitable:

w π A =̂ ¬w U
(
(w ∧ Aw

active); (w ∧ w©2¬w)
)

A |||′w B =̂ (active ∧ w) π A ∧ (active ∧ ¬w) π B .

The construct w π A is similar to w Π A, but instead of projection, π uses the
variable active to restrict A’s active steps to when w holds. Properties of Π such
as (2) can be adapted to π. The role of π in the definition of |||′− is similar to that
of Π in the definition of |||−. Variants of the properties of commutativity (5) and

associativity (6)-(7) for |||− can also be shown for |||′−. It is possible to formally
relate programs with the projected and global constructs. Here is one possibility:

|= iframe ∧ 2active ⊃ Pgm1 ≡ Pgm2 ,

where Pgm1 uses :=, ||| and so forth, which are replaced in Pgm2 with primed
versions such as :=′ and |||′, and we let sets dom(nval) and pvars be equal.

Incidentally, as a handy shorthand we can let pvarsˆ denote the record with
indices in pvars such that for each .a ∈ pvars, the record element pvarsˆ[.a]
equals a’s value. For example, the equality (© pvarsˆ) = pvarsˆ keeps program
variables’ values unchanged in the next state. Also, nval [dom(nval) \ {.a}] can
denote the record equalling nval but without element nval [.a].

4.2 Comparison of State Projection with Time-Step Projection

Somewhat after Π was introduced in [19], [35], another binary ITL operator was
proposed in [36] (see also [37], [31]) for what can be referred to as time-step
projection. It is alternatively written as proj , 4 or \\. Unlike for Π, temporal
connectives almost always occur in both operands of proj . For finite σ,

σ |= A proj B iff there exists n ≥ 0 and i0 = 0 < i1 < . . . < in = |σ| such that
σik . . . σik+1

|= A, for each k < n, and σi0 . . . σin |= B .

Intuitively, A defines time steps and B is interpreted over the interval formed of
the endpoints of a sequence of such steps that links the endpoints of the reference
interval. The formula A∗ is expressible as A proj true, so it expresses the mere
possibility to represent the reference interval as a sequence of time steps specified
by A. Note that an interval may admit more than one suitable partitioning.

The definition of proj generalises to infinite time by allowing an infinite
number of adjacent finite subintervals. The validity of the implication

inf ⊃ A proj true ≡ (finite ∧ A)∗

shows how the operator proj can express chop-omega.
A primary application of proj is to define coarser time granularities, and it

is included in the Tempura programming language for such purposes, whereas
Π is best fit for interleaving concurrency. A variant of proj for projecting from
real to discrete time has been studied in [20], [15].

Π and, consequently, parallel composition |||−, can be expressed using proj :

|= p Π A ≡ ¬p U
(
p ∧ ((© halt p) proj A); w©2¬p

)
.

Conversely, proj can be defined using Π and propositional quantification,
which, as noted in Sect. 2, does not add expressiveness to PITL:

|= A proj B ≡ ∃p. (p ∧ (A ∧ finite ∧ © halt p)∗ ∧ p Π B) ,

where variable p does not occur in A or B.

5 Related Work

Projection in the Duration Calculus Dang [8] proposed for the Duration
Calculus (DC) [45], [44], [41] a real-time version of the projection operator Π
written / to reason about interleaving concurrency in hybrid systems. An oper-
ator for parallel composition involving global time is also defined by Dang. The
definition does not use projection, although some connections to it are demon-
strated. Guelev and Dang [17] further investigated this topic and other aspects of
/. However, the approach does not define a simple nestable propositional three-
operand concurrency operator such as |||− and |||′− (and their two-operand vari-
ants) or look at various associated valid properties presented here. A complete
axiomatisation of DC with / is given in [18]. In [16], / is used to specify that
pairs of corresponding flexible non-logical symbols from isomorphic predicate
ITL vocabularies have the same meaning in projected subintervals. It is shown
that this entails the existence of interpolants for implications between formulas
written in the two vocabularies as in Craig’s classical interpolation theorem.

Other kinds of temporal projection Several research groups have subse-
quently proposed and studied other forms of temporal projection [36], [37],
[20] for use with ITL, DC and further variants such as Projection Temporal
Logic [9–11] and RGITL [2, 3]. RGITL, which combines Jones’ Rely-Guarantee
Conditions [28] with ITL, also assumes interleaving and involves temporal pro-
jection and local time. It has concurrency operators which are akin to ||| but
defined without using an explicit projection operator, and, as the authors ac-
knowledge, are much more complicated to handle. RGITL has been used ex-
tensively to reasoning about interleaved concurrent programs in the KIV proof
verifier. Maybe Π can help elucidate RGITL’s operators.

Our new approach aims to avoid as much as possible the need to intro-
duce new primitive temporal constructs (such as RGITL’s addition of branching-
time constructs) and assumptions about time. For example, reasoning in RGITL
about an individual process involving both its own next step and the system’s
(environment’s) next step uses for each program variable x two additional primed
variants x′ and x′′ associated with these. Of course, our purist approach (both
with and without a projection operator) will have some limitations (e.g., it might
indeed be incompatible with RGITL’s overall goals), but we would like to thor-
oughly research and assess the situation in future case studies and comparisons
involving a range of concurrent applications.

Jones et al. observe in [29] that RGITL could perhaps be quite attractive
(“seductive” in their words), although it might be too expressive, particularly
for an unskilled person. On the other hand, recent experience by Newcombe et
al. [40] at Amazon Web Services with successfully specifying and verifying subtle
industrial-strength concurrent algorithms using Lamport’s TLA+ [32] supports
the view that logics which can equally express algorithms and their correctness
properties are desirable, and can with care be made sufficiently accessible to sig-
nificantly benefit nonspecialists. More evaluation and comparison will be needed
to see whether powerful and general interval-based frameworks are overkill in
relation to other approaches specifically developed for the required purposes.

Eisner et al. [13, 14] have developed LTL@, which adds a clock operator to
LTL to deal with time granularities in hardware systems. This is included in
the international standards Property Specification Language (PSL, IEEE Stan-
dard 1850 [24]) [12] and SystemVerilog Assertions (SVA, in IEEE Standard
1800 [26]) [5]. The clock operator adds succinctness but not expressiveness and is
its own dual. It requires modifying the semantics of formulas (e.g., “|=” includes
both a state sequence and clock). The authors point out that the use of the term
“projection” for the clock operator in LTL@ and standards which adapt it is
imprecise since states in between the projected ones are still accessible (unlike
for Π). A similar construct called the sampling operator is found in temporal ‘e’
(part of IEEE Standard 1647 [25] and influenced by ITL [34], [21]).

Conclusions

We have explored new uses of the oldest known projection operator for ITL and
also related it with other such constructs. In future work, we would like to apply
this approach to larger concurrent applications. This research would include of
an evaluation of the merits of the two approaches presented here for formalising
concurrency in ITL with and without projection. Our plans also include explor-
ing formal connections with RGITL and Projection Temporal Logic as well as
clocked-based logics such as LTL@ (all mentioned in Sect. 5).

Acknowledgments. This research was partially supported by Royal Society In-
ternational Exchanges grant IE141148 and the EPSRC Uncover project (Ref.:
EP/K001698/1). We thank Maciej Koutny and the anonymous reviewers for
their comments and suggestions.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
2. Bäumler, S., Balser, M., Nafz, F., Reif, W., Schellhorn, G.: Interactive verification

of concurrent systems using symbolic execution. AI Commun. 23(2–3), 285–307
(2010)

3. Bäumler, S., Schellhorn, G., Tofan, B., Reif, W.: Proving linearizability with tem-
poral logic. Formal Aspects of Computing 23(1), 91–112 (2011)

4. Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Addison-
Wesley, second edn. (2006)

5. Cerny, E., Dudani, S., Havlicek, J., Korchemny, D.: SVA: The Power of Assertions
in SystemVerilog. Springer, second edn. (2015)

6. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge, England (1980)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge,
Massachusetts (1999)

8. Dang Van Hung: Projections: A technique for verifying real-time programs in DC.
Tech. Rep. 178, UNU/IIST, Macau (1999), also in Proc. Conf. on Information
Technology and Education, Ho Chi Minh City, Vietnam, January 2000

9. Duan, Z.: An Extended Interval Temporal Logic and a Framing Technique for Tem-
poral Logic Programming. Ph.D. thesis, Dept. Comp. Sci., Newcastle University,
UK (1996), http://hdl.handle.net/10443/2075, tech. rep. 556

10. Duan, Z., Koutny, M., Holt, C.: Projection in temporal logic programming. In:
Pfenning, F. (ed.) LPAR ’94. LNCS, vol. 822, pp. 333–344. Springer (1994)

11. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Science of
Computer Programming 70(1), 31–61 (2008)

12. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer (2006)
13. Eisner, C., Fisman, D.: Temporal logic made practical. In: Clarke, E.M., Henzinger,

T.A., Veith, H. (eds.) Handbook of Model Checking. Springer (Expected 2016),
http://www.cis.upenn.edu/~fisman/documents/EF_HBMC14.pdf

14. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Van Campenhout, D.: The def-
inition of a temporal clock operator. In: Baeten, J.C., Lenstra, J.K., Parrow, J.,
Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 857–870. Springer (2003)

15. Guelev, D.P.: A complete proof system for first-order interval temporal logic with
projection. J. Log. Comput. 14(2), 215–249 (2004)

16. Guelev, D.P.: Logical interpolation and projection onto state in the Duration Cal-
culus. J. Applied Non-Classical Logics 14(1–2), 181–208 (2004)

17. Guelev, D.P., Dang Van Hung: Prefix and projection onto state in duration calcu-
lus. Electr. Notes Theor. Comput. Sci. 65(6), 101–119 (2002)

18. Guelev, D.P., Dang Van Hung: A relatively complete axiomatisation of projection
onto state in the Duration Calculus. J. Applied Non-Classical Logics 14(1-2), 149–
180 (2004)

19. Halpern, J., Manna, Z., Moszkowski, B.: A hardware semantics based on temporal
intervals. In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 278–291. Springer
(1983)

20. He, J.: A behavioral model for co-design. In: Wing, J.M., Woodcock, J., Davies, J.
(eds.) FM’99, Vol. II. LNCS, vol. 1709, pp. 1420–1438. Springer (1999)

21. Hollander, Y., Morley, M., Noy, A.: The e language: A fresh separation of concerns.
In: Proc. TOOLS Europe 2001: 38th Int’l Conf. on Technology of Object-Oriented
Languages and Systems, Components for Mobile Computing. pp. 41–50. IEEE
Computer Society Press (2001)

22. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional (2003)

23. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge,
London (1996)

24. IEEE: Standard for Property Specification Language (PSL), Standard 1850-2010.
ANSI/IEEE, New York (2010)

25. IEEE: Standard for the Functional Verification Language e, Standard 1647-2011.
ANSI/IEEE, New York (2011)

26. IEEE: Standard for SystemVerilog–Unified Hardware Design, Specification, and
Verification Language, Standard 1800-2012. ANSI/IEEE, New York (2012)

27. ITL web pages. http://www.antonio-cau.co.uk/ITL/
28. Jones, C.B.: Tentative steps toward a development method for interfering pro-

grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (Oct 1983)
29. Jones, C.B., Hayes, I.J., Colvin, R.J.: Balancing expressiveness in formal ap-

proaches to concurrency. Formal Asp. Comput. 27(3), 475–497 (2015)
30. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–

384 (1976)
31. Kröger, F., Merz, S.: Temporal Logic and State Systems. Texts in Theoretical

Computer Science (An EATCS Series), Springer (2008)
32. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Professional (2002)
33. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:

Specifications. Springer, New York (1992)
34. Morley, M.J.: Semantics of temporal e. In: Melham, T.F., Moller, F.G. (eds.)

Banff’99 Higher Order Workshop: Formal Methods in Computation, Ullapool,
Scotland, 9–11 Sept. 1999. pp. 138–142. Univ. Glasgow, Dept. Comp. Sci., tech.
rep. (1999)

35. Moszkowski, B.: Reasoning about Digital Circuits. Ph.D. thesis, Department of
Computer Science, Stanford University (Jun 1983), tech. rep. STAN–CS–83–970

36. Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press,
Cambridge, England (1986)

37. Moszkowski, B.: Compositional reasoning about projected and infinite time.
In: Proc. 1st IEEE Int’l Conf. on Engineering of Complex Computer Systems
(ICECCS’95). pp. 238–245. IEEE Computer Society Press (1995)

38. Moszkowski, B.: A hierarchical completeness proof for Propositional Interval Tem-
poral Logic with finite time. J. Applied Non-Classical Logics 14(1–2), 55–104 (2004)

39. Moszkowski, B.: A complete axiom system for propositional Interval Temporal
Logic with infinite time. Log. Meth. Comp. Sci. 8(3:10), 1–56 (2012)

40. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

41. Olderog, E.R., Dierks, H.: Real-Time Systems: Formal Specification and Automatic
Verification. Cambridge University Press, Cambridge, England (2008)

42. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett.
12(3), 115–116 (1981)

43. de Roever, W.P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel, M.,
Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge University Press (2001)

44. Zhou Chaochen, Hansen, M.R.: Duration Calculus: A Formal Approach to Real-
Time Systems. Springer (2004)

45. Zhou Chaochen, Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991)

