
Gabbay Separation for the Duration Calculus1

Dimitar P. Guelev @ ORCID2

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria3

http://www.math.bas.bg/~gelevdp/4

Abstract5

Gabbay’s separation theorem about linear temporal logic with past has proved to be one of the most6

useful theoretical results in temporal logic. In particular it enables a concise proof of Kamp’s seminal7

expressive completeness theorem for LTL. In 2000, Alexander Rabinovich established an expressive8

completeness result for a subset of the Duration Calculus (DC), a real-time interval temporal logic.9

DC is based on the chop binary modality, which restricts access to subintervals of the reference time10

interval, and is therefore regarded as introspective. The considered subset of DC is known as the11

⌈P ⌉-subset in the literature. Neighbourhood Logic (NL), a system closely related to DC, is based12

on the neighbourhood modalities, also written ⟨A⟩ and ⟨Ā⟩ in the notation stemming from Allen’s13

system of interval relations. These modalities are expanding as they allow writing future and past14

formulas to impose conditions outside the reference interval. This setting makes temporal separation15

relevant: is expressive power ultimately affected, if past constructs are not allowed in the scope of16

future ones, or vice versa? In this paper we establish an analogue of Gabbay’s separation theorem17

for the ⌈P ⌉-subset of the extension of DC by the neighbourhood modalities, and the ⌈P ⌉-subset of18

the extension if DC by the neighbourhood modalities and chop-based analogue of Kleene star. We19

show that the result applies if the weak chop inverses, a pair binary expanding modalities are given20

the role of the neighbourhood modalities, by virtue of the inter-expressibility between them and the21

neighbourhood modalities in the presence of chop.22

Keywords: Gabbay separation · Neighbourhood Logic · Duration Calculus · expanding modal-23

ities24

2012 ACM Subject Classification Author: Please fill in 1 or more \ccsdesc macro25

Keywords and phrases Gabbay separation · Duration Calculus · expanding modalities26

Digital Object Identifier 10.4230/LIPIcs...27

Introduction28

Separation for Linear Temporal Logic (LTL, cf., e.g., [28]) was established by Dov Gabbay29

in [14]. Separation is about expressing temporal properties without making reference to30

the past in the scope of future constructs and vice versa. Gabbay proved that such a31

restriction does not affect the ultimate expressive power of past LTL, by a syntactically32

defined translation from arbitrary formulas to ones that are separated, i.e., satisfy the33

restriction. The applications of this theorem are numerous and important on their own right.34

They include a concise proof of Kamp’s seminal expressive completeness result for LTL (see,35

e.g., [13]), the elimination of the past modalities from LTL, which simplifies the study of36

extensions of LTL, c.f., e.g., [10], Fisher’s clausal normal form for past LTL [12], other normal37

forms [19, 15], etc. In this paper we establish an analogue of Gabbay’s separation theorem for38

the extension of a subset of the Duration Calculus (DC) with a pair of expanding modalities39

known as the neighbourhood modalities, with and without the chop-based analogue of Kleene40

star, which is also called iteration in DC.41

The Duration Calculus (DC, [33, 31]) is an extension of real time Interval Temporal42

Logic (ITL), which was first proposed by Moszkowski for discrete time [24, 25, 11]. DC is43

a real-time interval-based predicate logic for the modeling of hybrid systems. Unlike time44

points, time intervals, the possible worlds in DC, have an internal structure of subintervals.45

This justifies calling modalities like chop introspective for their providing access to these46

© Dimitar P. Guelev;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gelevdp@math.bas.bg
https://orcid.org/0000-0002-3101-7433
http://www.math.bas.bg/~gelevdp/
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Gabbay Separation for DC

subintervals only. Modalities for reaching outside the reference interval are called expanding.47

Several sets of such modalities have been proposed in the literature.48

In this paper we prove a separation theorem for the ⌈P ⌉-subset of DC with the expanding49

neighbourhood modalities ✸l and ✸r added to DC’s chop and iteration. The system based50

on ✸l and ✸r only, also written ⟨A⟩ and ⟨A⟩ after Allen’s interval relations [3], is called51

Neighbourhood Logic (NL, [4]) whereas we target DC with ✸l and ✸r. Our theorem holds52

with iteration excluded too. We write DC-NL (DC-NL∗) for DC with ✸l and ✸r (and53

iteration). In separated formulas, ✸d cannot not appear in the scope of other modalities,54

except ✸d, d = l, r. ✸r-free formulas are regarded as past, and ✸l-free formulas are future.55

The strict forms of past (future) formulas are defined by further restricting chop and iteration56

to occur only in the scope of a ✸l (✸r). DC is a predicate logic. We prove that formulas in each57

of ⌈P ⌉-subsets of DC-NL and DC-NL∗ have separated equivalents in their respective subsets.58

These subsets are compatible with the system from Rabinovich’s expressive completeness59

result [30]. We also show that the weak chop inverses, which are binary expanding modalities,60

are expressible using ✸l and ✸r in the considered subset. Their use in the Mean-value61

Calculus, another system from the DC family, was studied in [26]. ✸l and ✸r are definable62

using the weak chop inverses. Consequently, our separation theorem applies to the extensions63

of DC and DC∗ by the weak chop inverses too.64

The technique of our proofs builds on our finds from [16] which led to establishing65

separation for discrete time ITL.66

Structure of the paper: Section 1 gives preliminaries on DC and DC∗, the weak chop67

inverses, and a supplementary result on quantification over state in DC. In Section 2 we68

state our separation theorem for the ⌈P ⌉-subsets of DC-NL and DC-NL∗ and give a simple69

example application. Section 3 is dedicated to the proof. The transformations for separating70

DC-NL and DC-NL∗ formulas are given in Sections 3.2 and 3.3, respectively, and use a71

lemma which is given in the preceding Section 3.1. Section 4 is about the expressibility of72

the weak chop inverses in the ⌈P ⌉-subsets of DC-NL and DC-NL∗, using the lemma from73

Section 3.1 too. This implies that separation works for the extensions of DC and DC∗ by74

this pair of expanding modalities too. We conclude by pointing to some related work and75

making some comments on the relevance of the result.76

1 Preliminaries77

An in-depth presentation of DC and its extensions can be found in [31]. The syntax of the78

⌈P ⌉-subset of DC is built starting from a set V of state variables. It includes state expressions79

S and formulas A. Let P stand for a state variable. The BNFs are:80

S ::= 0 | P | S ⇒ S A ::= ⊥ | ⌈⌉ | ⌈S⌉ | A ⇒ A | A; A81

Semantics Given a set of state variables V , the type of valuations I is V × R → {0, 1}.82

Valuations I are required to have finite variability:83

For any P ∈ V and any bounded interval [a, b] ⊂ R there exists a finite sequence84

t0 = a < t1 < . . . < tn = b such that λt.I(P, t) is constant in (ti−1, ti), i = 1, . . . , n.85

The value It(S) of state expression S at time t ∈ R is defined by the clauses:86

It(0) =̂ 0, It(P) =̂ I(P, t), It(S1 ⇒ S2) =̂ max{It(S2), 1 − It(S1)}.87

D. P. Guelev XX:3

Satisfaction has the form I, [a, b] |= A, where [a, b] ⊂ R. The defining clauses are:88

I, [a, b] ̸|= ⊥, I, [a, b] |= ⌈⌉ iff a = b,

I, [a, b] |= ⌈S⌉ iff a < b and It(S) = 1 for all but finitely many t ∈ [a, b],
I, [a, b] |= A ⇒ B iff I, [a, b] |= B or I, [a, b] ̸|= A,

I, [a, b] |= A; B iff I, [a, m] |= A and I, [m, b] |= B for some m ∈ [a, b].

89

The connectives ¬, ∧, ∨ and ⇔ are defined as usual in both state expressions and formulas.90

Furthermore 1 =̂ 0 ⇒ 0 and ⊤ =̂ ⊥ ⇒ ⊥. A formula A is valid in DC, written |= A, if91

I, [a, b] |= A for all I and all intervals [a, b]. In this paper we consider the extension of the92

⌈P ⌉-subset of DC by the neighbourhood modalities ✸d, d ∈ {l, r}. The defining clauses for93

their semantics are as follows:94

I, [a, b] |= ✸lA iff I, [l, a] |= A for some l ≤ a, I, [a, b] |= ✸rA iff I, [b, r] |= A for some r ≥ b.95

The universal duals ✷d of ✸d are defined by putting ✷dA =̂ ¬✸d¬A, d ∈ {l, r}. Chop A; B is96

written A⌢B in much of the literature. We write DC-NL for the extension of DC by ✸l and97

✸r. We also consider DC-NL∗, the extension of DC-NL by iteration, the chop-based form of98

Kleene star, included. The defining clause for this operator is99

I, [a, b] |= A∗ iff a = b or there exist an increasing finite sequence m0 = a < m2 < · · · < mn = b

such that I, [mi−1, mi] |= A for i = 1, . . . , n.
100

Iteration is interdefinable with positive iteration A+ =̂ A; (A∗), which we assume to be the101

derived one of the two: |= A∗ ⇔ ⌈⌉ ∨ A+.102

Predicate DC and NL include a (defined) flexible constant ℓ for the length b−a of reference103

interval [a, b]. Using ℓ, chop can be defined in NL:104

A; B =̂ ∃x∃y(x + y = ℓ ∧ ✸l✸r(A ∧ ℓ = x) ∧ ✸r✸l(B ∧ ℓ = y)).105

This definition is not available in NL’s ⌈P ⌉-subset, hence the need to specify DC-NL.106

Quantification over state in DC is defined by the clause107

I, [a, b] |= ∃ P A iff I ′, [a, b] |= A for some I ′ s. t. I ′(Q, t) = I(Q, t) and all Q ∈ V \ {P}, t ∈ R.108

Quantification over state is expressible in the ⌈P ⌉-subset of DC∗:109

I Theorem 1. For every ⌈P ⌉-formula A in DC∗ and every state variable P there exists a110

(quantifier-free) ⌈P ⌉-formula B in DC∗ such that |= B ⇔ ∃ P A.111

Mind that B is not guaranteed to be iteration-free, even in case A is.112

This theorem follows from a correspondence between stutter-invariant regular languages113

and the ⌈P ⌉-subset that led to the decidability of the ⌈P ⌉-subset in [32]. It is not our114

contrubution, but the transformations from its proof supplement those from our other proofs.115

Notation In this paper write ε, possibly with subscripts, to denote optional occurrences of116

the negation sign ¬, e.g, εQ below. We write [A/B]C to denote the result of simultaneously117

replacing all the occurrences of B by A in C, e.g., [0/P]S below.118

Proof of Theorem 1. Following [32], A translates into a regular expression over the alphabet119

120

Σ =̂ {
∧

Q is a state variable in A

εQQ : εQ is either ¬ or nothing} . (1)121

XX:4 Gabbay Separation for DC

The translation clauses are as follows:122

t(⊥) =̂ ∅ t(⌈S⌉) =̂ ({σ ∈ Σ :|= σ ⇒ S})+ t(A; B) =̂ t(A); t(B)
t(⌈⌉) =̂ ϵ (the empty string) t(A ⇒ B) =̂ t(B) ∪ Σ∗ \ t(A) t(A∗) =̂ t(A)∗123

Up to equivalence, t can be inverted. Regular expressions admit complementation- and ∩-free124

equivalents; hence these operations can be omitted in the converse translation t̄:125

t̄(∅) =̂ ⊥ t̄(a) =̂ ⌈a⌉ for a ∈ Σ t̄(R1 ∪ R2) =̂ t̄(R1) ∨ t̄(R2) t̄(R∗) =̂ t̄(R)∗

t̄(ε) =̂ ⌈⌉ t̄(Σ∗) =̂ ⌈⌉ ∨ ⌈1⌉ t̄(R1; R2) =̂ t̄(R1); t̄(R2)
126

Given a regular expression R = t(A), t̄(R′) is equivalent to A for any R′ that defines the127

same language as R. Applying t̄ to a complementation- and ∩-free equivalent R′ to t(A)128

produces an equivalent to A with ∨ as the only propositional connective, except possibly129

inside state expressions. Given this, ∃ P can be eliminated from formulas of the form t̄(R′):130

|= ∃ P ⊥ ⇔ ⊥ |= ∃ P ⌈S⌉ ⇔ ⌈[0/P]S ∨ [1/P]S⌉+ |= ∃ P (A1; A2) ⇔ ∃ P A1; ∃P A2

|= ∃ P ⌈⌉ ⇔ ⌈⌉ |= ∃ P (A1 ∨ A2) ⇔ ∃ P A1 ∨ ∃ P A2 |= ∃ P A∗ ⇔ (∃ P A)∗.
131

The equivalence ∃ P ⌈S⌉ above hinges on the finite variability of It(P). J132

The weak chop inverses A/B and A\B, cf., e.g., [26], are defined by the clauses:133

I, [a, b] |= A/B iff for all r ≥ b, if I, [b, r] |= B then I, [a, r] |= A.

I, [a, b] |= A\B iff for all l ≤ a, if I, [l, a] |= B then I, [l, b] |= A.
134

✸lA and ✸rA can be defined as ¬(⊥\A) and ¬(⊥/A), respectively. In Section 4 we show135

how A/B and A\B can be expressed using ✸l and ✸r too for ⌈P ⌉-formulas A and B, but136

with the expressing formulas built in a more complex way.137

Separation as Known for LTL We relate the setting and statement of Gabbay’s separation138

theorem about past LTL as our work builds in the example of this theorem. Let p stand for139

an atomic proposition. Discrete time LTL formulas with past have the syntax:140

A ::= ⊥ | p | A ⇒ A | ⃝ A | A U A | −⃝A | A S A141

−⃝ and S are the past mirror operators of ⃝ and U. −⃝- and S-free formulas are called future142

formulas, and ⃝- and U-free formulas are called past. Formulas of the form ⃝ F where F143

is future are called strictly future. In [14], Dov Gabbay demonstrated that any formula in144

LTL with past is equivalent to a Boolean combination of past and strictly future formulas145

for flows of time which are either finite or infinite, in either the future or the past, or both.146

Modal heights h✸l
(.), h✸r

and h∗(.) of formulas wrt the neighbourhood modalities and147

iteration, aka Kleene star appear in our inductive reasoning below. In general, h(A) denotes148

the length of the longest chain of A’s subformulas, including A itself, with the main connective149

being the specified modality wrt the (transitive closure of) the subformula relation.150

2 The Separation Theorem151

In this section we formulate the main contrubution of the paper, Theorems 2 and 3, which is152

a separation theorem for the ⌈P ⌉-subsets of DC-NL and DC-NL∗, and use the theorem to153

demonstrate the expressibility of an interval-based version of the ‘past-forgetting’ operator154

from [18] as a simple example application.155

D. P. Guelev XX:5

We call DC-NL (DC-NL∗) formula F (non-strictly) future if it has the syntax156

F ::= C | ¬F | F ∨ F | ✸rF157

where C stands for a DC (DC∗) formula, where chop and iteration are the only modalities.158

Non-strictly past formulas are defined similarly, with ✸l instead of ✸r. A separated formula159

is a Boolean combination of past and future formulas.160

Following the example of LTL, we call Boolean combinations of ✸l-, resp. ✸r-formulas161

with non-strict past, resp. future operands strictly past, resp. strictly future formulas.162

Such formulas can impose no conditions on the reference interval; they only refer to the163

adjacent past and future parts of the timeline. These adjacent parts still include the164

respective endpoints of the reference interval. However the ⌈P ⌉ construct cannot discern165

interpretations I of the state variables such that λt.I(P, t) differ at finitely many time points166

only. Unlike that, in discrete time an extra step away from the present time using −⃝, resp.,167

⃝ is necessary to prevent a formula from imposing conditions on the reference time point168

or a reference interval’s endpoint. The shared time point ‘prevents’ chop of discrete time169

ITL from being a separating conjunction in the sense of [29], whereas DC chop meets the170

requirements. Separated formulas are Boolean combinations of strictly past formulas, strictly171

future formulas and introspective (just DC∗) formulas, where the only modalities are chop172

and iteration, that are known as introspective too.173

I Theorem 2. Let A be a ⌈P ⌉-formula in DC-NL (DC-NL∗). Then there exists a separated174

⌈P ⌉-formula A′ in DC-NL (DC-NL∗) such that |= A ⇔ A′.175

In Section 4 we demonstrate the inter-expressibility between (./.) and (.\.), and ✸l and ✸r,176

respectively. This implies that Theorem septhmmain holds for the weak chop inverses instead177

of the respective ✸d, d ∈ {l, r} too:178

I Theorem 3. Let A be a ⌈P ⌉-formula in the extension of DC (DC∗) by (./.) and (.\.).179

Then there exists a separated ⌈P ⌉-formula A′ in DC (DC∗) such that |= A ⇔ A′.180

An Example Application: Expressing the N operator The temporal operator N (‘now’)181

was proposed for past LTL in [18], see also [17], as a means for preventing ‘access’ into the182

past beyond the time of applying N. Assuming σ =̂ σ0σ1 . . . to be a sequence of states183

σ, i |=LTL NA iff σiσi+1 . . . , 0 |=LTL A .184

If an arbitrary closed interval D ⊆ R, and not only the whole of R, is allowed to be the time185

domain, N can be defined for (real-time) DC-NL too. With such time domains, the endpoints186

of ‘all time’ can be identified, because, e.g., D, I, [a, b] |= ✷l⌈⌉ iff a = min D. (Since the187

⌈P ⌉-subset of DC-NL is merely topological, as opposed to metric, it cannot distinguish open188

time domains from R.) We can define N on intervals by putting:189

D, I, [a, b] |= NlA iff {x ∈ D : x ≥ a}, I, [a, b] |= A

D, I, [a, b] |= NrA iff {x ∈ D : x ≤ b}, I, [a, b] |= A
190

Theorem 2 entails that Nl and Nr are expressible in DC-NL:191

I Proposition 4. DC-NL + Nl, Nr has the same expressive power as DC-NL.192

Proof. Let A′ be a separated equivalent of A. Then |= NdA ⇔ [✸d(B ∧ ⌈⌉)/✸dB : B ∈193

Subf(A′)]A′, d ∈ {l, r}. J194

XX:6 Gabbay Separation for DC

3 The Proof of Separation for DC-NL and DC-NL∗
195

In this section we propose a set of valid equivalences which, if appropriately used as trans-196

formation rules starting from some arbitrary given formula from the ⌈P ⌉-subset of DC-NL∗,197

lead to a separated formula in DC-NL∗. If the given formula is iteration-free, i.e., in DC-NL,198

then so is the separated equivalent. This amounts to proving Theorem 2.199

Our key observation is that formulas which are supposed to be evaluated at intervals that200

extend some given interval into either the future or the past have equivalents which consist of201

subformulas to be evaluated at the given interval and subformulas to be evaluated at intervals202

which are adjacent to it, these two subintervals being appropriately referenced using chop as203

parts of the enveloping interval. In our proof of separation, this observation is refered to as a204

lemma that states the possibility to express any introspective formula as a case distinction of205

chop-formulas with the LHS (RHS) operands of chop forming a full system. The lemma can206

be seen as a generalization of the guarded normal form, which is ubiquitous in process logics,207

with the full systems of guards describing a primitive opening move replaced by full systems208

of interval-based temporal conditions to be satisfied at whatever prefixes (suffixes) of the209

reference runs necessary. Later on we use the lemma in expressing (./.) ((.\.)) in terms of210

✸r (✸l) too.211

3.1 The Key Lemma212

A finite set of formulas A1, . . . , An is a full system, if |=
n∨

k=1
Ak and, given 1 ≤ k1 < k2 ≤ n,213

|= ¬(Ak1 ∧ Ak2).214

I Lemma 5. Let A be a ⌈P ⌉-formula in DC (DC∗). Then there exists an n < ω and some215

DC (DC∗) ⌈P ⌉-formulas Ak, A′
k, k = 1, . . . , n, such that A1, . . . , An form a full system and216

|= A ⇔
n∨

k=1
Ak; A′

k and |= A ⇔
n∧

k=1
¬(Ak; ¬A′

k). (2)217

Furthermore, h∗(Ak) ≤ h∗(A) and h∗(A′
k) ≤ h∗(A).218

Informally, this means that, I, [a, b] |= A iff whenever m ∈ [a, b] and I, [a, m] |= Ak, I, [m, b] |=219

A′
k holds. Furthermore, for every m ∈ [a, b] there is a unique k such that I, [a, m] |= Ak.220

Interestingly, the construct ¬(F ; ¬G) used in the second equivalence (2) is regarded as a221

form of temporal implication, written F Z⇒ G, in ITL [23, 5]. This construct is akin to222

suffix implication [2], see also [1]. It requires the suffix of an interval to satisfy B, if the223

complementing prefix satisfies A. Much like ⇒’s being the right adjoint of ∧, Z⇒ is the right224

adjoint of chop:225

|= A Z⇒ (B Z⇒ C) ⇔ (A; B) Z⇒ C .226

Since chop is a separating conjunction in DC, Z⇒ also fits the description of the corresponding227

bunched implication [29]. In this paper we stick to the notation in terms of chop for both Z⇒228

and its mirror ¬(¬G; F).229

Proof of Lemma 5. Induction on the construction of A. For ⊥, ⌈⌉ and ⌈P ⌉, we have:230

⊥ ⇔ (⊤; ⊥) ⌈⌉ ⇔ (⌈⌉; ⌈⌉)∨(¬⌈⌉; ⊥) ⌈P ⌉ ⇔ (⌈P ⌉; (⌈P ⌉∨⌈⌉))∨(⌈⌉; ⌈P ⌉)∨(¬(⌈⌉∨⌈P ⌉); ⊥)231

D. P. Guelev XX:7

Let B1, . . . , Bn, B′
1, . . . , B′

n satisfy 2 for B and C1, . . . , Cm, C ′
1, . . . , C ′

m satisfy 2 for C. Then:232

B op C ⇔
n∨

k=1

m∨
l=1

(Bk ∧ Cl; (B′
k op C ′

l)), op ∈ {⇒, ∨, ∧, ⇔}

B; C ⇔
n∨

k=1

∨
X⊆{1,...,m}

(
Bk ∧

∧
l∈X

(B; Cl) ∧
∧

l ̸∈X

¬(B; Cl)
)

;
(

(B′
k; C) ∨

∨
l∈X

C ′
l

)233

For the equivalence about iteration, let C =̂ B ∨ ⌈⌉ and C1, . . . , Cm, C ′
1, . . . , C ′

m be as above.234

Then B∗ ⇔ C∗, and:235

B∗ ⇔
∨

X⊆{1,...,m}

(∧
l∈X

(B∗; Cl) ∧
∧

l ̸∈X

¬(B∗; Cl)
)

;
(∨

l∈X

(C ′
l ; B∗)

)
236

The equivalences on the right in (2) are written similarly. The RHSs of these equivalences237

have the form required in the lemma. Using these equivalences as transformation rules238

bottom up, an arbitrary A can be given that form.239

A direct check is sufficient for establishing (2) about ⊥, ⌈⌉ and ⌈P ⌉. The case of B op C,240

esp. op = ⇒, admits the proof that works for the Guarded Normal Form in [6].241

For the equivalence on the left in (2) about B; C, (⇒), let I, [a, b] |= B; C, t, m ∈ [a, b], and242

I, [a, m] |= B and I, [m, b] |= C. Assuming I, [a, b] |= B; C, if t ∈ [a, m], then I, [a, m] |= Bk243

for some unique k. If t ∈ [m, b], then a unique X ⊆ {1, . . . , m} exists such that I, [a, m] |=244

B; Cl holds iff l ∈ X. The conjunctions of Bk ∧
∧

l∈X

(B; Cl) ∧
∧

l ̸∈X

¬(B; Cl), k = 1, . . . , n,245

X ⊆ {1, . . . , m} form a full system because so do both the Bks, and the conjunctions246 ∧
l∈X

(B; Cl)∧
∧

l ̸∈X

¬(B; Cl), X ⊆ {1, . . . , m}. Since I, [a, m] |= B and I, [m, b] |= C, for an [a, t]247

satisfying the member of this full system for any given k and X, we can conclude that I, [t, b] |=248

(B′
k; C) ∨

∨
l∈X

C ′
l from the assumptions on the B′

ks and the C ′
ls. For the converse implication249

(⇐), let [a, b] be an arbitrary interval, t ∈ [a, b], and I, [a, t] |= Bk ∧
∧

l∈X

(B; Cl) ∧
∧

l ̸∈X

¬(B; Cl),250

which is bound to be true for some unique pair k, X. Then, I, [t, b] |= B′
k; C implies251

I, [a, b] |= Bk; B′
k; C, and I, [m, b] |= C ′

l implies I, [a, b] |= B; Cl; C ′
l for any l ∈ X. In both252

cases I, [a, b] |= B; C follows because |= Bk; B′
k ⇒ B and |= Cl; C ′

l ⇒ C. The ⇐ direction253

similarly follows from |= Bk; B′
k ⇒ B and |= C ⇒ Cl; C ′

l for some appropriately chosen254

k and l. The LHS equivalence (2) about B∗ is established similarly, with the use of C255

facilitating a uniform handling of the case of B∗ holding trivially at 0-length intervals. The256

RHS equivalences (2) follow from the LHS ones by the assumption that the Aks form a full257

system.258

Observe that this equivalence satisfies h∗(Bk) ≤ h∗(B) and h∗(B′
k) ≤ h∗(B), where Bk259

and B′
k can be identified from the syntax of the RHS. The non-increase of h∗(.) can be260

checked directly for the equivalences which do not feature iteration explicitly too, but may261

nevertheless become used for processing formulas with iteration. This implies h∗(Ak) ≤ h∗(A)262

and h∗(A′
k) ≤ h∗(A). J263

The time mirror image of Lemma 5 holds too, with the time mirror of (2) reading264

|= A ⇔
n∨

k=1
A′

k; Ak and |= A ⇔
n∧

k=1
¬(¬A′

k; Ak).265

The proof is no different because all the modalities are symmetrical wrt the direction of time.266

For this reason, in the sequel we omit ‘mirror’ statements and their proofs.267

XX:8 Gabbay Separation for DC

On the complexity of the transformations from Lemma 5. Interestingly, a peak268

(exponential) blowup in the transformations from Lemma 5’s proof occurs in the clause for269

chop and not the clause for ¬, the typical source of such blowups. However, a closer look at270

the inductive assumptions shows that the pairwise inconsistency achieved at the cost of using271

Ak ∧
∧

l∈X

(A; Bl) ∧
∧

l ̸∈X

¬(A; Bl) for all k ∈ {1, . . . , m} and the 2n different X ⊆ {1, . . . , m} in272

the required full system is instrumental for the correctness of the clause about the binary273

Boolean connectives, where negation is obtained for op =⇒ and B = ⊥. Hence this blowup274

can be linked to the alternation of ¬ and monotone operators such as chop that is common275

in proofs of the non-elementariness of the blowup upon reaching normal forms.276

Lemma 5 admits an automata-theoretic proof, along the lines of the proof of Theorem 1.277

We have sketched such a proof for discrete time ITL in [16]. That proof leads to different278

Ak and A′
k satisfying (2) for the same A, and allows a non-elementary upper bound on the279

length of these formulas to be established using the size of a deterministic FSM recognizing280

A. Unlike the automata-based proof, the equivalences of this proof suggest transformations281

that are valuable for their compositionality and their validity in DC in general, and not just282

for the ⌈P ⌉-subset. Furthermore, the proof given here facilitates establishing that ∗-height is283

not increased upon moving to the RHSs of (2).284

3.2 Separating the Neighbourhood Modalities in DC-NL and DC-NL∗
285

In this section we prove Theorem 2 by showing how occurrences of ✸d can be taken out of the286

scope of chop, ✸d, d ∈ {l, r}, l =̂ r, r =̂ l and iteration. The transformations that we propose287

are supposed to be applied bottom up, on formulas with chop, iteration or ✸d, d ∈ {l, r},288

as the main connective, and assuming that the operands of these connectives are already289

separated. If the main connective is ✸d, then we need to target only the ✸d-subformulas in290

✸d’s operand, possibly at the cost of introducing some ✸d-subformulas in the scope of chop,291

to be subsequently extracted from there too. If the main connective is chop or iteration, then292

separation requires extracting the occurrences of ✸d for both d = l and d = r.293

To show that the above transformations combine into a terminating procedure which294

produces a separated formula, for DC-NL, we reason by induction on the ✸d-height of295

the relevant formulas. In the case of DC-NL∗, we also keep track of ∗-height, which is296

not increased upon applying Lemma 5, nor by the transformations for separating formulas297

with ✸l, ✸r or chop as the main connective, but can be increased upon eliminating an298

‘intermediate’ appearance of a quantification over state by an application of Theorem 1. The299

use of such a quantification in the course of transformations, and the subtle observations on300

the quantified formulas which enable the conclusion that this potential increase of ∗-height is301

unrelated to termination become clear in due course below. In most of the cases, we give302

detail only on the extracting of ✸r-subformulas, because of the time symmetry.303

Separating ✸d-formulas Let d = l; the case of d = r is its mirror. Since304

|= ✸l(A1 ∨ A2) ⇔ ✸lA1 ∨ ✸lA2 , (3)305

the availability of DNF for A of ✸lA makes it sufficient to consider the case of A of the form306

P ∧
n∧

k=1
εk✸rFk where P is (non-strictly) past and F1, . . . , Fn are future. Observe that307

|= ✸l

(
P ∧

n∧
k=1

εk✸rFk

)
⇔ ✸lP ∧

n∧
k=1

((⌈⌉ ∧ εk✸rFk); ⊤) . (4)308

D. P. Guelev XX:9

Transforming formulas according to (3) and (4) does not change ✸r-height but implies that309

finding a separated equivalent to ✸lA boils down to separating ((⌈⌉ ∧ ε✸rFk); ⊤), which are310

the chop-formulas. Here follow the transformations for doing this.311

Separating chop-formulas We need to consider only chop applied to conjunctions of312

introspective formulas and possibly negated past ✸l-formulas or future ✸r-formulas because313

|= (L1 ∨ L2); R ⇔ (L1; R) ∨ (L2; R) and L; (R1 ∨ R2) ⇔ (L; R1) ∨ (L; R2)314

Here ‘past’ (‘future’) restricts the operands of ✸l (✸r), making the formulas strictly past315

(future). Such formulas can be extracted from the left (right) operand of chop using that316

|= (L ∧ ε✸lP); R ⇔ (L; R) ∧ ε✸lP and |= L; (R ∧ ε✸rF) ⇔ (L; R) ∧ ε✸rF. (5)317

Much like (3), this does not affect ✸d-height. It remains to consider (L ∧
n∧

k=1
εk✸rFk); R,318

which, by virtue of the time symmetry, explains L; (R ∧
n∧

k=1
εk✸lPk) too.319

The transformations of formulas of the form (L∧ε✸rF); R below are about the designated320

ε✸rF only, and are supposed to be used repeatedly, if L has more conjuncts of this form.321

Transformations which extract designated ✸rF s (✸lP s) from (L ∧ ε✸rF); R (L; (R ∧ ε✸rP))322

can be applied in any order with no obstructive interaction occurring.323

(L∧✸rF); R: By (3), F can be assumed to be a conjunction C∧G where C is introspective324

and G is strictly future. Let Ck, C ′
k, k = 1, . . . , n, satisfy Lemma 5 for C. We can use that325

|= (L ∧ ✸r(C ∧ G)); R ⇔ (L; (R ∧ ((C ∧ G); ⊤))) ∨
n∨

k=1
(L; (R ∧ Ck)) ∧ ✸r(C ′

k ∧ G)326

and further process the RHS of ⇔ in it. The two disjuncts on the RHS above correspond327

to F being satisfied at an interval which is shorter, or the same length, or longer than the328

one which presumably satisfies R. Since Ck and C ′
k are introspective, the newly introduced329

formulas ✸r(C ′
k ∧ G) on the RHS of ⇔ are separated. (L; (R ∧ (C ∧ G; ⊤))) can be separated330

too because h✸r
(G) < h✸r

((L ∧ ✸rF); R).331

(L ∧ ¬✸rF); R: Then by the distributivity (3) of ✸r over ∨ again, ¬F can be assumed332

to have the form C ∨ G where C and G are like in the case of a non-negated ✸r-subformula.333

Satisfying (L ∧ ¬✸r¬(C ∨ G)); R requires (C ∨ G) to hold at all the intervals which start at334

the right end of the one where L presumably holds. Therefore we can use that335

|= (L ∧ ✷r(C ∨ G)); R ⇔
n∨

k=1
L; (R ∧ Ck ∧ ¬(¬(C ∨ G); ⊤)) ∧ ✷r(C ′

k ∨ G)336

where ✷r =̂ ¬✸r¬. Again, the RHS of that equivalence has a strictly future G to be further337

extracted from the left operand of the newly introduced (¬(C ∨ G); ⊤). This can be338

accomplished because h✸r
(G) < h✸r

((L ∧ ¬✸rF); R). Finally, whatever ✸r-subformulas339

happen to occur the separated equivalent of (¬(C ∨ G); ⊤), can be extracted from the chop340

where they appear in the right operand using (5).341

The transformations above are sufficient for establishing Theorem 2 about DC-NL. By342

Lemma 5, these transformations do not cause ∗-height to increase. This is relevant in343

separating formulas in DC-NL∗, which is explained next.344

XX:10 Gabbay Separation for DC

3.3 Separating iteration formulas345

To extract ✸l and ✸r from the scope of iteration, we use the inter-expressibility between346

iteration and quantification over state, and the expressibility of quantification over state in347

the ⌈P ⌉-subset of DC∗ (Theorem 1). Let B be some H1 ∨ . . . ∨ Hq where Hp, p = 1, . . . , q, is348

a conjunction of introspective formulas and possibly negated past ✸l-formulas and future349

✸r-formulas. This form of B can be achieved because B is assumed to be separated upon350

considering the separation of B∗. Furthermore, the operands of the past ✸l-conjuncts (future351

✸r-conjuncts) in H1, . . . , Hq can be assumed to be conjunctions of introspective and strictly352

past (future) formulas, because of (3).353

We introduce the state variables T, S1, . . . , Sq and first replace B∗ by the RHS of the354

valid equivalence355 (q∨
p=1

Hp

)∗

⇔ ⌈⌉ ∨ ∃ T∃ S1 . . . ∃ Sq

(
(⌈T ⌉; ⌈¬T ⌉) ∧

q∨
p=1

(⌈Sp⌉ ∧ Hp)
)+

. (6)356

in which, if a < b, I, [a, b] |= B∗ is stated to be equivalent to the existence of a partition of357

[a, b] into a finite sequence of maximal ⌈T ⌉; ⌈¬T ⌉-intervals [m0, m1], . . . , [mn−1, mn] where358

m0 = a < m1 < . . . < mn = b, with each of these intervals also satisfying some of359

⌈S1⌉,. . . ,⌈Sq⌉ and the corresponding Hp, p = 1, . . . , q. In the context of T, S1, . . . , Sq360

satisfying this condition, any future conjunct ε✸rF of Hj must hold at the intervals [mi−1, mi],361

i = 1, . . . , n, where ⌈Sj⌉ holds. The relevant mk can be identified by the conditions that362

Sp ∧¬T holds in a left neighbourhood of mi, and, for i < n, T holds in a right neighbourhood363

of mi. If I, [mi−1, mi] |= Hj , then, depending on ε, either I, [mi, z] |= F is required for364

some z ≥ mi or I, [mi, z] |= ¬F is required for all z ≥ mi. The extraction of ε✸rF can365

be achieved by ‘deleting’ ε✸rF from Hj and ‘inserting’ a dedicated conjunct outside the366

(.)+ of (6) to state that εF holds at the relevant [mi, z]. To write this new conjunct for a367

(non-negated) ✸rF , observe that, because of (3), F can be written as the conjunction C ∧ G368

of some introspective formula C and some strictly future formula G. Furthermore, let Ck, C ′
k,369

k = 1, . . . , m, satisfy (2) for C. Then the conjunct in question can be written as370

α(F, j) =̂

 ((⊤; ⌈Sj⌉) ⇒ ✸r(C ∧ G))∧
m∧

k=1
(⊤; ⌈Sj ∧ ¬T ⌉; ((⌈T ⌉; ⊤) ∧ ¬(C ∧ G; ⊤) ∧ Ck)) ⇒ ✸r(C ′

k ∧ G)

371

If ε is ¬, then, assuming C̄k, C̄ ′
k, k = 1, . . . , m, to satisfy (2) for ¬C, the conjunct in question372

can be written as373

β(F, j) =̂


((⊤; ⌈Sj⌉) ⇒ ¬✸r(C ∧ G))∧
¬(⊤; ⌈Sj ∧ ¬T ⌉; ((⌈T ⌉; ⊤) ∧ ((C ∧ G); ⊤)))∧
m∧

k=1
(⊤; ⌈Sj ∧ ¬T ⌉; ((⌈T ⌉; ⊤) ∧ C̄k)) ⇒ ✷r(C̄ ′

k ∨ ¬G) .

374

Let γ(ε, F, j) stand for β(F, j), if ε = ¬, and α(F, j), otherwise. Then375

|=
(

(⌈T ⌉; ⌈¬T ⌉) ∧
(

(⌈Sj⌉ ∧ K ∧ ε✸rF) ∨
q∨

p=1
p̸=j

(⌈Sp⌉ ∧ Hp)
))+

⇔(
(⌈T ⌉; ⌈¬T ⌉) ∧

(
(⌈Sj⌉ ∧ K) ∨

q∨
p=1
p̸=j

(⌈Sp⌉ ∧ Hp)
))+

∧ γ(ε, F, j).
(7)376

Extracting more conjuncts of the form ε✸rF from (what is left of) H1, . . . , Hq, can be377

continued by similarly processing the RHS of (7). The occurrences of G, which is strictly378

D. P. Guelev XX:11

future, in the left operands of chop in α(F, j) and β(F, j) need to be extracted too. This can379

be done because h✸r
(G) < h✸r

(✸rF). Past ✸l-conjuncts can be extracted similarly, using380

the time mirrors of (6), γ(ε, F, j) and (7). The repeated use of (7) and its and time mirror381

eventually lead to an introspective382

(⌈T ⌉; ⌈¬T ⌉) ∧
q∨

p=1
(⌈Sp⌉ ∧ Hp)383

in the scope (.)+, which concludes the extraction of the expanding formulas from the scope of384

iteration. Completing the transformations requires eliminating the ∃ T∃ S1 . . . ∃ Sq introduced385

in (6) too. Observe that the ✸l- and ✸r-subformulas which appear in the instances of γ(ε, F, j)386

introduced inside the scope of ∃ T∃ S1 . . . ∃ Sq have no occurrences of T , nor S1, . . . , Sq, and387

are linked with the remaining introspective subformulas, which may have such occurrences,388

by Boolean connectives only. Hence these ✸l- or ✸r-subformulas can be taken out of the389

scope of ∃ T∃ S1 . . . ∃ Sq using the De Morgan laws and390

|= ∃ S (X ∨ Y) ⇔ ∃ S X ∨ ∃ S Y, and, for S-free Z, |= ∃ S(X ∧ Z) ⇔ Z ∧ ∃ S X,391

This means that Theorem 1, which is about introspective formulas only, applies, and392

∃ T∃ S1 . . . ∃ Sq can be eliminated. Hence Theorem 2 holds about DC-NL∗ too.393

4 Expressing the Weak Chop Inverses by the Neighbourhood394

Modalities and Separation for the Weak Chop Inverses395

In this section we prove that the weak chop inverses are expressible in DC-NL, which means396

that separation applies to DC with these expanding modalities instead of ✸l and ✸r too.397

This means that Theorem 3 follows from Theorem 2.398

Suppose that A1, A2, B are separated formulas in DC-NL (DC-NL∗). Then the availability399

of conjunctive normal forms and the validity of the equivalences400

(A1 ∧ A2)/B ⇔ A1/B ∧ A2/B401

entails that we need to consider only formulas A/B where A is a disjunction of introspective402

formulas and future and past formulas. Past disjuncts P in the 1st operand of (./.) can be403

extracted using the validity of404

(A ∨ P)/B ⇔ P ∨ A/B.405

The following proposition shows how to express A/B in case A is a disjunction of introspective406

and possibly negated ✸r-formulas.407

I Proposition 6. Let A be a ⌈P ⌉-formula in DC (DC∗) and Ak, A′
k, k = 1, . . . , n satisfy408

Lemma 5 for A. Let B be a ⌈P ⌉-formula in DC-NL∗. Let F be a conjunction of possibly409

negated ✸r-formulas. Then410

|= (A ∨ F)/B ⇔
n∨

k=1
Ak ∧ ✷r(B ⇒ (A′

k ∨ F)) . (8)411

Proof. (⇒): Let I, [a, b] satisfy the RHS of (8). Consider an arbitrary r ≥ b such that412

I, [b, r] |= B. Since there is a (unique) k ∈ {1, . . . , n} such that I, [a, b] |= Ak. We have413

I, [a, r] |= A ∨ F because I, [b, r] |= A′
k ∨ F and |= Ak; A′

k ⇒ A by Lemma 5. The (⇐)414

direction is trivial to check and we omit it. J415

XX:12 Gabbay Separation for DC

The formula for A/B in terms of ✸l and ✸r in the RHS of (8) can be further separated416

to extract past subformulas of B from the scope of ✷r as in DC-NL (DC-NL∗). The above417

argument shows that (./.)-formulas whose operands are in the ⌈P ⌉-subset of DC-NL (DC-NL∗)418

have equivalents in the ⌈P ⌉-subset of DC-NL (DC-NL∗) themselves. Observe that, in the419

presence of chop, it takes only ✸r to eliminate (./.). Similarly, (.\.), which is about looking420

to the left of reference interval, can be eliminated using only chop and ✸l. As mentioned in421

the Preliminaries section, expressing ✸l and ✸r by means of (.\.) and (./.) is straightforward.422

This concludes our reduction of the ⌈P ⌉-subset of DC-NL (DC-NL∗) with the weak chop423

inverses to the ⌈P ⌉-subset of DC-NL (DC-NL∗), and entails that separation applies to that424

system too as stated in Theorem 3.425

Concluding Remarks426

In this paper we have shown how separation after Gabbay applies to the ⌈P ⌉-subsets of427

DC-NL and DC-NL∗, the extensions of DC by the neighbourhood modalities. These subsets428

correspond to the subset of DC whose expressive completeness was demonstrated in [30].429

The ⌈S⌉-construct, which is definitive for the ⌈P ⌉-subsets of DC-NL and DC-NL∗, has430

a considerable similarity with the homogeneity principle which is known from studies on431

neighbourhood logics of discrete time. That principle was proposed in [22, 20] and was432

adopted in a number of more recent works such as [7, 8, 9]. Unlike the locality principle from433

Moszkowski’s (standard) discrete time ITL, where the satisfaction of an atomic proposition434

p is determined by the labeling of the initial state of the reference interval, homogeneity435

means that atomic proposition p must label all the states in the reference interval for p436

to hold at that interval as a formula. The two variants are ultimately interdefinable, but437

facilitate applications in a slightly different way. Homogeneity can be compared with DC’s438

⌈P ⌉ because ⌈P ⌉ means that P is supposed to hold ‘almost everywhere’ in the reference439

interval. The main difference is that varying valuations at a single point interval is negligible440

in real-time NL and DC, whereas the labeling of the single point in such an interval can be441

referred to in discrete time. This makes the difference between DC’s chop being a separating442

conjunction [29] and ITL’s chop not fitting that description. It is known that past expanding443

modalities increase the ultimate expressive power of discrete time ITL [21], and not just its444

succinctness, the latter being the case in past LTL. This adds to the relevance of algorithmic445

methods for interval-based expanding modalities in general.446

Providing a separation theorem to the ⌈P ⌉-subset of DC-NL improves our understanding447

of the logic and may facilitate further results. One obvious avenue of future study would be448

to consider interval-based variants of the applications of separation that are known about449

point-based past LTL. In particular, one rather straightforward application would be to450

simplify the theoretical considerations that are needed for the study of extensions, especially451

branching time ones such as [27], by making it sufficient to consider future-only formulas,452

while still enjoying the succinctness contributed by the availability of past operators.453

References454

1 IEEE 1364-2005 - IEEE Standard for Verilog Hardware Description Language, 2005. URL:455

https://ieeexplore.ieee.org/document/1620780.456

2 IEEE 1850-2010 - IEEE Standard for Property Specification Language (PSL), 2010. URL:457

https://standards.ieee.org/standard/1850-2010.html.458

3 James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832–459

843, 1983. URL: http://doi.acm.org/10.1145/182.358434, doi:10.1145/182.358434.460

https://ieeexplore.ieee.org/document/1620780
https://standards.ieee.org/standard/1850-2010.html
http://doi.acm.org/10.1145/182.358434
https://doi.org/10.1145/182.358434

D. P. Guelev XX:13

4 Rana Barua, Suman Roy, and Zhou Chaochen. Completeness of neighbourhood logic. In461

Christoph Meinel and Sophie Tison, editors, STACS 99, Proceedings, volume 1563 of LNCS,462

pages 521–530. Springer, 1999. doi:10.1007/3-540-49116-3_49.463

5 Marc Boulé and Zeljko Zilic. Psl and sva assertion languages. In Generating Hardware464

Assertion Checkers: For Hardware Verification, Emulation, Post-Fabrication Debugging and465

On-Line Monitoring, pages 55–82. Springer Netherlands, Dordrecht, 2008. doi:10.1007/466

978-1-4020-8586-4_4.467

6 Howard Bowman and Simon Thompson. A Decision Procedure and Complete Axiomatisation of468

Finite Interval Temporal Logic with Projection. Journal of Logic and Computation, 13(2):195–469

239, 2003.470

7 Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, and Pietro Sala. Interval471

vs. point temporal logic model checking: an expressiveness comparison. In Akash Lal, S. Akshay,472

Saket Saurabh, and Sandeep Sen, editors, FSTTCS 2016, volume 65 of LIPIcs, pages 26:1–473

26:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.FSTTCS.474

2016.26.475

8 Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, and Pietro Sala. Interval476

vs. point temporal logic model checking: An expressiveness comparison. ACM Trans. Comput.477

Log., 20(1):4:1–4:31, 2019. doi:10.1145/3281028.478

9 Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, and Pietro Sala. Which479

fragments of the interval temporal logic HS are tractable in model checking? Theor. Comput.480

Sci., 764:125–144, 2019. doi:10.1016/j.tcs.2018.04.011.481

10 Laura Bozzelli, Aniello Murano, and Loredana Sorrentino. Alternating-time temporal logics482

with linear past. Theor. Comput. Sci., 813:199–217, 2020. doi:10.1016/j.tcs.2019.11.028.483

11 Antonio Cau, Ben Moszkowski, and Hussein Zedan. ITL web pages. URL:484

http://www.antonio-cau.co.uk/ITL/.485

12 Michael Fisher. A normal form for temporal logics and its applications in theorem-proving486

and execution. J. Log. Comput., 7(4):429–456, 1997. doi:10.1093/logcom/7.4.429.487

13 Dov Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal Logic: Mathematical Foundations488

and Computational Aspects. Volume I. Oxford University Press, 1994.489

14 Dov M. Gabbay. Declarative Past and Imperative Future: Executable Temporal Logic for490

Interactive Systems. In Proceedings of the Colloquium of Temporal Logic in Specification,491

volume 398 of LNCS, pages 67–89. Springer, 1989.492

15 Dimitar P. Guelev. A syntactical proof of the canonical reactivity form for past linear temporal493

logic. J. Log. Comput., 18(4):615–623, 2008. doi:10.1093/logcom/exn002.494

16 Dimitar P. Guelev and Ben Moszkowski. A separation theorem for discrete-time interval495

temporal logic. Journal of Applied Non-Classical Logics, 32(1):28–54, 2022. doi:10.1080/496

11663081.2022.2050135.497

17 François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Temporal logic with for-498

gettable past. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25499

July 2002, Copenhagen, Denmark, Proceedings, pages 383–392. IEEE Computer Society, 2002.500

doi:10.1109/LICS.2002.1029846.501

18 François Laroussinie and Philippe Schnoebelen. A hierarchy of temporal logics with past502

(extended abstract). In Patrice Enjalbert, Ernst W. Mayr, and Klaus W. Wagner, editors,503

STACS 94, Proceedings, volume 775 of LNCS, pages 47–58. Springer, 1994. doi:10.1007/504

3-540-57785-8_130.505

19 Zohar Manna and Amir Pnueli. A Hierarchy of Temporal Properties. In 9th Symposium on506

Principles of Distributed Computing, pages 377–408. ACM Press, 1990.507

20 Alberto Molinari, Angelo Montanari, Aniello Murano, Giuseppe Perelli, and Adriano Peron.508

Checking interval properties of computations. Acta Informatica, 53(6-8):587–619, 2016.509

doi:10.1007/s00236-015-0250-1.510

21 Dario Della Monica, Angelo Montanari, and Pietro Sala. The importance of the past in interval511

temporal logics: The case of propositional neighborhood logic. In Alexander Artikis, Robert512

https://doi.org/10.1007/3-540-49116-3_49
https://doi.org/10.1007/978-1-4020-8586-4_4
https://doi.org/10.1007/978-1-4020-8586-4_4
https://doi.org/10.1007/978-1-4020-8586-4_4
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.26
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.26
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.26
https://doi.org/10.1145/3281028
https://doi.org/10.1016/j.tcs.2018.04.011
https://doi.org/10.1016/j.tcs.2019.11.028
https://doi.org/10.1093/logcom/7.4.429
https://doi.org/10.1093/logcom/exn002
https://doi.org/10.1080/11663081.2022.2050135
https://doi.org/10.1080/11663081.2022.2050135
https://doi.org/10.1080/11663081.2022.2050135
https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.1007/3-540-57785-8_130
https://doi.org/10.1007/3-540-57785-8_130
https://doi.org/10.1007/3-540-57785-8_130
https://doi.org/10.1007/s00236-015-0250-1

XX:14 Gabbay Separation for DC

Craven, Nihan Kesim Cicekli, Babak Sadighi, and Kostas Stathis, editors, Logic Programs,513

Norms and Action - Essays in Honor of Marek J. Sergot on the Occasion of His 60th Birthday,514

volume 7360 of LNCS, pages 79–102. Springer, 2012. doi:10.1007/978-3-642-29414-3_6.515

22 Angelo Montanari, Aniello Murano, Giuseppe Perelli, and Adriano Peron. Checking interval516

properties of computations. In Amedeo Cesta, Carlo Combi, and François Laroussinie, editors,517

Proceedings of TIME 2014, pages 59–68. IEEE Computer Society, 2014. doi:10.1109/TIME.518

2014.24.519

23 Ben Moszkowski. Reasoning about Digital Circuits. Ph.D. thesis, Department of Computer Sci-520

ence, Stanford University, 1983. URL: http://www.antonio-cau.co.uk/ITL/publications/521

reports/thesis-ben.pdf.522

24 Ben Moszkowski. Temporal Logic For Multilevel Reasoning About Hardware. IEEE Computer,523

18(2):10–19, 1985.524

25 Ben Moszkowski. Executing Temporal Logic Programs. Cambridge University Press, 1986.525

URL: http://www.antonio-cau.co.uk/ITL/publications/reports/tempura-book.pdf.526

26 Paritosh K. Pandya. Some extensions to propositional mean-value caculus: Expressiveness527

and decidability. In Hans Kleine Büning, editor, CSL ’95, Selected Papers, volume 1092 of528

LNCS, pages 434–451. Springer, 1995. doi:10.1007/3-540-61377-3_52.529

27 Paritosh K. Pandya. Model checking CTL*[DC]. In Tiziana Margaria and Wang Yi, editors,530

TACAS 2001, Proceedings, volume 2031 of LNCS, pages 559–573. Springer, 2001. doi:531

10.1007/3-540-45319-9_38.532

28 Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE Symposium533

Foundations of Computer Science, pages 46–57. IEEE, 1977.534

29 David J. Pym. The semantics and proof theory of the logic of bunched implications, volume 26535

of Applied logic series. Kluwer, 2002.536

30 Alexander Moshe Rabinovich. Expressive completeness of duration calculus. Inf. Comput.,537

156(1-2):320–344, 2000. doi:10.1006/inco.1999.2816.538

31 Zhou Chaochen and Michael R. Hansen. Duration Calculus. A Formal Approach to Real-Time539

Systems. Springer, 2004.540

32 Zhou Chaochen, Michael R. Hansen, and Peter Sestoft. Decidability and undecidability541

results for duration calculus. In Patrice Enjalbert, Alain Finkel, and Klaus W. Wagner,542

editors, STACS 93, Proceedings, volume 665 of LNCS, pages 58–68. Springer, 1993. doi:543

10.1007/3-540-56503-5_8.544

33 Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A Calculus of Durations. Information545

Processing Letters, 40(5):269–276, 1991.546

https://doi.org/10.1007/978-3-642-29414-3_6
https://doi.org/10.1109/TIME.2014.24
https://doi.org/10.1109/TIME.2014.24
https://doi.org/10.1109/TIME.2014.24
http://www.antonio-cau.co.uk/ITL/publications/reports/thesis-ben.pdf
http://www.antonio-cau.co.uk/ITL/publications/reports/thesis-ben.pdf
http://www.antonio-cau.co.uk/ITL/publications/reports/thesis-ben.pdf
https://doi.org/10.1007/3-540-61377-3_52
https://doi.org/10.1007/3-540-45319-9_38
https://doi.org/10.1007/3-540-45319-9_38
https://doi.org/10.1007/3-540-45319-9_38
https://doi.org/10.1006/inco.1999.2816
https://doi.org/10.1007/3-540-56503-5_8
https://doi.org/10.1007/3-540-56503-5_8
https://doi.org/10.1007/3-540-56503-5_8

	1 Preliminaries
	2 The Separation Theorem
	3 The Proof of Separation for DC-NL and DC-NL*
	3.1 The Key Lemma
	3.2 Separating the Neighbourhood Modalities in DC-NL and DC-NL*
	3.3 Separating iteration formulas

	4 Expressing the Weak Chop Inverses by the Neighbourhood Modalities and Separation for the Weak Chop Inverses

