1° Classical problems

Consider a system of two differential equations with one unknown function

$$\begin{cases} p_1 U = f_1, \\ p_2 U = f_2 \end{cases}$$

If the system has a solution u and p,, p, commute, then $p_2 f_1 = p_1 f_2$

Hence, the latter equation is necessary for the local solvability of the genuine system (but not sufficient, for take p, =p!)

2° Compatibility operators

Let A be a differential operator of type $E \rightarrow F$ and order m on a C^{∞} manifold X.

This operator is called overdetermined if there is a differential operator B with BA = 0 (and $B \neq 0$).

A differential operator A^{1} is called a compatibility operator for A if $A^{1}A=C$ and from BA=0 it follows that B factors through A^{1} , i.e., $B=CA^{1}$.

The "formal" theory says that any A has a combatibility operator

3° C° Poincaré lemma

Pick a compatibility operator A for

One says that the C Poincare lemma holds for A if for any open set U on X and each $f \in C^{\infty}(U, F)$ satisfying $A^{1}f = 0$ in U there is an open set V=U and $u\in C^{\infty}(V,E)$, such that Au=f

If A is not elliptic there is counterexample of Hans Levi (1953). In the elliptic case the problem is open if $n \neq 2$.

4° Reduction to selfadjoint operators

Consider a bounded operator T: H, - H,

in Hilbert spaces.

The equation Tu = f has a solution only if $f \perp Nul T^*$.

L. Let $f \perp Nul T^*$. Then the equation Tu = f has a solution if and only if so does $T^*Tu = T^*f$.

For the unbounded operator $T: D_T \to L^2(\mathfrak{D}, F)$ on $L^2(\mathfrak{D}, E)$ induced by a differential operator A the condition $f \perp Nul T$ reduces to $f \perp \mathcal{H}^2(\mathfrak{D}):=\{g \in D_{A^1} \mid D_{A^*}: A^1g = A^*g = 0\}.$

5° Iterations

Suppose M is a selfadjoint operator on a Hilbert space H.

Th. If $\|M\| \le 1$ then the limit $\lim_{N\to\infty} M^N$ exists in the strong topology of $\mathcal{L}(H)$, and

$$1 = \pi_{\text{Nul}(1-M)} + \sum_{n=0}^{\infty} M^{n} (1-M).$$

Proof Since

$$M = \int_{0^{-}} a dE_{a}$$

it follows that

$$\lim_{N\to\infty} M^N = \lim_{N\to\infty} \int_{0-}^{1} a^N dE_2$$

$$= E_1.$$

6° Green operators

Let D be a relatively compact domain with C^{∞} boundary on X.

Using the Green function G for A^*A on X yields an integral representation $U = MU + T_{\mathfrak{D}}AU$

For all $u \in H^m(\mathfrak{D}, E)$, where $T_{\mathfrak{D}} = G A^* \chi_{\mathfrak{D}}$. The Hermitian Form $H_{\mathfrak{D}}(u,v) := (Ae(u), Ae(u))$ is a scalar product on $H^m(\mathfrak{D}, E)$ inducing

the same topology, and $f_{\mathfrak{D}}(T_{\mathfrak{D}}f, v) = (f, Av)_{2\mathfrak{D}}f$

series $Rf := \sum_{n=0}^{\infty} (1 - T_{\mathcal{D}} A)^n T_{\mathcal{D}} f$ converges in $H_{\infty}^{m}(\mathfrak{D}, E)$.

7° Hodge decomposition

Th. For any $f \in L^2(\mathfrak{D}, F)$ satisfying $A^1 f = \mathcal{V}$,

F=TH(D)F + ARF.

Denote by D_A the set of $u \in H_{eoc}^{m}(\mathfrak{D}, E)$ such that

- 1) Au & L2(D, F);
- 2) there is $\{u_j\} = H^m(\mathfrak{D}, E)$ with $u_j \rightarrow u$ in $H^m_{ec}(\mathfrak{D}, E)$ and $Au_j \rightarrow Au$ in $L^2(\mathfrak{D}, F)$.

Col. Let $f \in L^2(\mathfrak{D}, F)$. Then there is a

 $u \in D_A$ with Au = f iff $A^1f = 0$ and $f \perp H^1(\mathfrak{D})$.

8° Neumann problem

Write A for the maximal operator

 $L^{2}(\mathfrak{D},E) \rightarrow L^{2}(\mathfrak{D},F)$ induced by A.

The operator $\Delta = A A^* + A^{1*} A^1$ on $L^2(9)$

with domain

 $\mathcal{D}_{\Delta} := \left\{ u \in \mathcal{D}_{A^1} \cap \mathcal{D}_{A^*} : A^* u \in \mathcal{D}_{A^1}, A^1 u \in \mathcal{D}_{A^{1*}} \right\}$

is called the generalised Laplacian.

It is easy to verify that

 $\mathcal{H}^{1}(\mathfrak{D}) = Nul \Delta.$

L. (weak orthogonal decomposition)

 $L^{2}(\mathfrak{D},F)=\mathcal{H}^{1}(\mathfrak{D})\oplus\overline{\Delta}$

If $\mathcal{H}'(\mathfrak{D})=0$ for small \mathfrak{D} then the C^{∞} Poincaré Lemma. Holds