#### Towards a Parallel Maxwell Eigensolver

#### Peter Arbenz<sup>1</sup> Martin Bečka<sup>1</sup> Roman Geus<sup>2</sup> Ulrich Hetmaniuk<sup>3</sup>

<sup>1</sup>Institute of Computational Science, ETH Zürich

<sup>2</sup>Paul-Scherrer-Institute, Villigen

<sup>3</sup>Sandia National Laboratory, Albuquerque

PDEMAMIP'04, Slanchev Bryag BG, Sept 7-10, 2004.

#### Outline of the talk

The eigenvalue problem The eigensolver Preconditioning the correction equation Numerical experiments Summary

- The eigenvalue problem
- 2 The eigensolver
- 3 Preconditioning the correction equation
- 4 Numerical experiments



<ロ> (四) (四) (三) (三) (三)

-1

Statement of the problem View of a COMET cavity A mixed formulation The matrix eigenvalue problem Null space of A

#### Statement of the problem

Maxwell equations (after separation of time/space variables and after elimination of the magnetic field intensity) become eigenvalue problem

$$\begin{aligned} & \operatorname{curl}\operatorname{curl}\mathbf{e}(\mathbf{x}) = \lambda \ \mathbf{e}(\mathbf{x}), & \mathbf{x} \in \Omega, \\ & \operatorname{div}\mathbf{e}(\mathbf{x}) = 0, & \mathbf{x} \in \Omega, \\ & \mathbf{n} \times \mathbf{e} = 0, & \mathbf{x} \in \partial\Omega. \end{aligned} \tag{1}$$

Here, e is the electric field intensity.

· □ > · (司 > · (日 > · (日 > ·

Statement of the problem View of a COMET cavity A mixed formulation The matrix eigenvalue problem Null space of A

#### View of a COMET cavity



COMET cyclotron for cancer therapy at PSI (3m diameter) produced by Accel Instruments GmbH (www.accel.de)

Statement of the problem View of a COMET cavity A mixed formulation The matrix eigenvalue problem Null space of A

### A mixed formulation

(Kikuchi 1987)

Find  $(\lambda, \mathbf{e}, p) \in \mathbb{R} \times H_0(\operatorname{curl}; \Omega) \times H_0^1(\Omega)$  such that  $\mathbf{e} \neq \mathbf{0}$  and (a)  $(\operatorname{curl} \mathbf{e}, \operatorname{curl} \Psi) + (\operatorname{grad} p, \Psi) = \lambda(\mathbf{e}, \Psi), \quad \forall \Psi \in H_0(\operatorname{curl}; \Omega)$ (b)  $(\mathbf{e}, \operatorname{grad} q) = 0, \quad \forall q \in H_0^1(\Omega)$ (2)

Here, p is a Lagrange multiplier. (b) reflects the Helmholtz decomposition  $H_0(\operatorname{curl}; \Omega) = W_0 \oplus \operatorname{grad} H_0^1(\Omega)$  where  $W_0$  is the subset of divergence-free fields in  $H_0(\operatorname{curl}; \Omega)$ .

Statement of the problem View of a COMET cavity A mixed formulation The matrix eigenvalue problem Null space of A

#### The matrix eigenvalue problem

The evp for the time-harmonic Maxwell equation is given by

$$A\mathbf{x} = \lambda M \mathbf{x}, \qquad C^{\mathsf{T}} \mathbf{x} = \mathbf{0}. \tag{3}$$

where  $A = A^T \ge 0$  with huge nullspace,  $M = M^T > 0$ . The elements of A, M, and C are

$$A_{ij} = (\operatorname{curl} \Psi_i, \operatorname{curl} \Psi_j), \quad M_{ij} = (\Psi_i, \Psi_j), \qquad 1 \le i, j \le n,$$

and

$$C_{ik} = (\mathbf{e}_i, \mathbf{grad} \ q_k), \quad 1 \leq i \leq n, \ 1 \leq k \leq m \approx n/6.$$

Here, the  $\Psi_j$  are Nédélec (edge) element basis functions (Nédélec,1980) and the  $q_k$  are Lagrange (node) finite elements. Both quadratic elements, with hierarchical bases.

Statement of the problem View of a COMET cavity A mixed formulation The matrix eigenvalue problem Null space of A

### Null space of A

A sparse basis Y of the nullspace of A can easily be given (incidence matrix). Then, C = MY. The *M*-orthogonal projector onto  $\mathcal{R}(A) = \mathcal{N}(A)^{\perp_M} = \mathcal{N}(C^T)$  is given by

$$I - Y H^{-1} C^{T}$$
(4)

where H with elements

$$H_{kl} = (\operatorname{grad} \varphi_k, \operatorname{grad} \varphi_l)$$

is Poisson matrix for quadratic Lagrange elements on given FE mesh.

We execute our computations in  $\mathcal{N}(C^{T})$  to avoid computation of zero eigenvalues of (3) by applying (4) at the right places.

Symmetric Jacobi–Davidson (JDSYM) Remarks on JDSYM

#### Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

- Let V<sub>k</sub> = span{v<sub>1</sub>,..., v<sub>k</sub>} ⊂ N(C<sup>T</sup>), v<sub>k</sub><sup>T</sup>Mv<sub>j</sub> = δ<sub>kj</sub>, be the actual search space (not a Krylov space).
- Rayleigh-Ritz-Galerkin procedure: Extract Ritz pair (λ̃, q̃) in V<sub>k</sub> with λ̃ 'closest' to some target value τ.
- Convergence: If ||**r**<sub>k</sub>||<sub>M<sup>-1</sup></sub> ≡ ||(A − λ̃M) **q**||<sub>M<sup>-1</sup></sub> < ε||**q**||<sub>M</sub> then we have found an eigenpair
- Solve correction equation for t<sub>k</sub> ⊥<sub>M</sub> q̃,

 $(I-M\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T})(A-\eta_{k}M)(I-\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T}M)\mathbf{t}_{k}=-\mathbf{r}_{k}, \quad \tilde{\mathbf{q}}^{T}M\mathbf{t}_{k}=0.$  (5)

- *M*-orthonormalize  $(I YH^{-1}C^T)\mathbf{t}_k$  to  $\mathcal{V}_k$  to obtain  $\mathbf{v}_{k+1}$
- Expand search space: V<sub>k+1</sub> = span{v<sub>1</sub>, ..., v<sub>k+1</sub>}; <□ > <@ > <ē > <ē</p>

Symmetric Jacobi–Davidson (JDSYM) Remarks on JDSYM

#### Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

- Let V<sub>k</sub> = span{v<sub>1</sub>,..., v<sub>k</sub>} ⊂ N(C<sup>T</sup>), v<sub>k</sub><sup>T</sup>Mv<sub>j</sub> = δ<sub>kj</sub>, be the actual search space (not a Krylov space).
- Rayleigh-Ritz-Galerkin procedure: Extract Ritz pair (λ̃, q̃) in V<sub>k</sub> with λ̃ 'closest' to some target value τ.
- Convergence: If ||**r**<sub>k</sub>||<sub>M<sup>-1</sup></sub> ≡ ||(A − λ̃M) **q**||<sub>M<sup>-1</sup></sub> < ε||**q**||<sub>M</sub> then we have found an eigenpair
- Solve correction equation for  $\mathbf{t}_k \perp_M \tilde{\mathbf{q}}$ ,

 $(I-M\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T})(A-\eta_{k}M)(I-\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T}M)\mathbf{t}_{k}=-\mathbf{r}_{k}, \quad \tilde{\mathbf{q}}^{T}M\mathbf{t}_{k}=0.$  (5)

- *M*-orthonormalize  $(I YH^{-1}C^T)\mathbf{t}_k$  to  $\mathcal{V}_k$  to obtain  $\mathbf{v}_{k+1}$
- Expand search space:  $\mathcal{V}_{k+1} = \operatorname{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_{k+1}\}$ .

Symmetric Jacobi–Davidson (JDSYM) Remarks on JDSYM

#### Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

- Let V<sub>k</sub> = span{v<sub>1</sub>,..., v<sub>k</sub>} ⊂ N(C<sup>T</sup>), v<sub>k</sub><sup>T</sup>Mv<sub>j</sub> = δ<sub>kj</sub>, be the actual search space (not a Krylov space).
- Rayleigh-Ritz-Galerkin procedure: Extract Ritz pair (λ̃, q̃) in V<sub>k</sub> with λ̃ 'closest' to some target value τ.
- Convergence: If ||**r**<sub>k</sub>||<sub>M<sup>-1</sup></sub> ≡ ||(A − λ̃M) **q**̃||<sub>M<sup>-1</sup></sub> < ε||**q**̃||<sub>M</sub> then we have found an eigenpair
- Solve correction equation for  $\mathbf{t}_k \perp_M \tilde{\mathbf{q}}$ ,

 $(I - M\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T})(A - \eta_{k}M)(I - \tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T}M)\mathbf{t}_{k} = -\mathbf{r}_{k}, \quad \tilde{\mathbf{q}}^{T}M\mathbf{t}_{k} = 0.$  (5)

- *M*-orthonormalize  $(I YH^{-1}C^{T})\mathbf{t}_{k}$  to  $\mathcal{V}_{k}$  to obtain  $\mathbf{v}_{k+1}$
- Expand search space:  $\mathcal{V}_{k+1} = \operatorname{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_{k+1}\}.$

Symmetric Jacobi–Davidson (JDSYM) Remarks on JDSYM

#### Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

- Let V<sub>k</sub> = span{v<sub>1</sub>,..., v<sub>k</sub>} ⊂ N(C<sup>T</sup>), v<sub>k</sub><sup>T</sup>Mv<sub>j</sub> = δ<sub>kj</sub>, be the actual search space (not a Krylov space).
- Rayleigh-Ritz-Galerkin procedure: Extract Ritz pair (λ̃, q̃) in V<sub>k</sub> with λ̃ 'closest' to some target value τ.
- Convergence: If ||**r**<sub>k</sub>||<sub>M<sup>-1</sup></sub> ≡ ||(A − λ̃M) **q**̃||<sub>M<sup>-1</sup></sub> < ε||**q**̃||<sub>M</sub> then we have found an eigenpair
- Solve correction equation for  $\mathbf{t}_k \perp_M \tilde{\mathbf{q}}$ ,

$$(I - M\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T})(A - \eta_{k}M)(I - \tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T}M)\mathbf{t}_{k} = -\mathbf{r}_{k}, \quad \tilde{\mathbf{q}}^{T}M\mathbf{t}_{k} = 0.$$
 (5)

- *M*-orthonormalize  $(I YH^{-1}C^{T})\mathbf{t}_{k}$  to  $\mathcal{V}_{k}$  to obtain  $\mathbf{v}_{k+1}$
- Expand search space:  $\mathcal{V}_{k+1} = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}$ .

Symmetric Jacobi–Davidson (JDSYM) Remarks on JDSYM

### Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

- Let V<sub>k</sub> = span{v<sub>1</sub>,..., v<sub>k</sub>} ⊂ N(C<sup>T</sup>), v<sub>k</sub><sup>T</sup>Mv<sub>j</sub> = δ<sub>kj</sub>, be the actual search space (not a Krylov space).
- Rayleigh-Ritz-Galerkin procedure: Extract Ritz pair (λ̃, q̃) in V<sub>k</sub> with λ̃ 'closest' to some target value τ.
- Convergence: If ||**r**<sub>k</sub>||<sub>M<sup>-1</sup></sub> ≡ ||(A − λ̃M) **q**̃||<sub>M<sup>-1</sup></sub> < ε||**q**̃||<sub>M</sub> then we have found an eigenpair
- Solve correction equation for  $\mathbf{t}_k \perp_M \tilde{\mathbf{q}}$ ,

 $(I - M\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T})(A - \eta_{k}M)(I - \tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T}M)\mathbf{t}_{k} = -\mathbf{r}_{k}, \quad \tilde{\mathbf{q}}^{T}M\mathbf{t}_{k} = 0.$  (5)

- *M*-orthonormalize  $(I YH^{-1}C^{T})\mathbf{t}_{k}$  to  $\mathcal{V}_{k}$  to obtain  $\mathbf{v}_{k+1}$
- Expand search space:  $\mathcal{V}_{k+1} = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}$ .

Symmetric Jacobi–Davidson (JDSYM) Remarks on JDSYM

### Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

- Let V<sub>k</sub> = span{v<sub>1</sub>,..., v<sub>k</sub>} ⊂ N(C<sup>T</sup>), v<sub>k</sub><sup>T</sup>Mv<sub>j</sub> = δ<sub>kj</sub>, be the actual search space (not a Krylov space).
- Rayleigh-Ritz-Galerkin procedure: Extract Ritz pair (λ̃, q̃) in V<sub>k</sub> with λ̃ 'closest' to some target value τ.
- Convergence: If ||**r**<sub>k</sub>||<sub>M<sup>-1</sup></sub> ≡ ||(A − λ̃M) **q**̃||<sub>M<sup>-1</sup></sub> < ε||**q**̃||<sub>M</sub> then we have found an eigenpair
- Solve correction equation for  $\mathbf{t}_k \perp_M \tilde{\mathbf{q}}$ ,

$$(I - M\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T})(A - \eta_{k}M)(I - \tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T}M)\mathbf{t}_{k} = -\mathbf{r}_{k}, \quad \tilde{\mathbf{q}}^{T}M\mathbf{t}_{k} = 0.$$
(5)

- *M*-orthonormalize  $(I YH^{-1}C^{T})\mathbf{t}_{k}$  to  $\mathcal{V}_{k}$  to obtain  $\mathbf{v}_{k+1}$
- Expand search space:  $\mathcal{V}_{k+1} = \operatorname{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_{k+1}\}.$

Symmetric Jacobi-Davidson (JDSYM) Remarks on JDSYM

### Remarks on JDSYM

- Shift  $\eta_k$  is set to target value  $\tau$  initially and to the Rayleigh quotient  $\rho(\tilde{\mathbf{q}})$  close to convergence.
- If  $k = j_{\text{max}}$  reduce size of the search space to  $j_{\text{min}}$ . Use  $j_{\text{min}}$  'best' Ritz vectors in  $\mathcal{V}_{j_{\text{max}}}$  to define  $\mathcal{V}_{j_{\text{min}}}$ .
- The correction equation is solved only approximatively. We use a Krylov space method: QMRS (admits indefinite preconditioner).
- Eigenvectors corresponding to higher eigenvalues are computed in the orthogonal complement of previously computed eigenvectors.

Symmetric Jacobi–Davidson (JDSYM) Remarks on JDSYM

### Remarks on JDSYM

- Shift  $\eta_k$  is set to target value  $\tau$  initially and to the Rayleigh quotient  $\rho(\tilde{\mathbf{q}})$  close to convergence.
- If  $k = j_{\text{max}}$  reduce size of the search space to  $j_{\text{min}}$ . Use  $j_{\text{min}}$  'best' Ritz vectors in  $\mathcal{V}_{j_{\text{max}}}$  to define  $\mathcal{V}_{j_{\text{min}}}$ .
- The correction equation is solved only approximatively. We use a Krylov space method: QMRS (admits indefinite preconditioner).
- Eigenvectors corresponding to higher eigenvalues are computed in the orthogonal complement of previously computed eigenvectors.

Symmetric Jacobi–Davidson (JDSYM) Remarks on JDSYM

### Remarks on JDSYM

- Shift  $\eta_k$  is set to target value  $\tau$  initially and to the Rayleigh quotient  $\rho(\tilde{\mathbf{q}})$  close to convergence.
- If  $k = j_{\text{max}}$  reduce size of the search space to  $j_{\text{min}}$ . Use  $j_{\text{min}}$  'best' Ritz vectors in  $\mathcal{V}_{j_{\text{max}}}$  to define  $\mathcal{V}_{j_{\text{min}}}$ .
- The correction equation is solved only approximatively. We use a Krylov space method: QMRS (admits indefinite preconditioner).
- Eigenvectors corresponding to higher eigenvalues are computed in the orthogonal complement of previously computed eigenvectors.

Symmetric Jacobi–Davidson (JDSYM) Remarks on JDSYM

# Remarks on JDSYM

- Shift  $\eta_k$  is set to target value  $\tau$  initially and to the Rayleigh quotient  $\rho(\tilde{\mathbf{q}})$  close to convergence.
- If  $k = j_{\text{max}}$  reduce size of the search space to  $j_{\text{min}}$ . Use  $j_{\text{min}}$  'best' Ritz vectors in  $\mathcal{V}_{j_{\text{max}}}$  to define  $\mathcal{V}_{j_{\text{min}}}$ .
- The correction equation is solved only approximatively. We use a Krylov space method: QMRS (admits indefinite preconditioner).
- Eigenvectors corresponding to higher eigenvalues are computed in the orthogonal complement of previously computed eigenvectors.

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・

Preconditioning the correction equation Hierarchical basis preconditioning

#### Preconditioning the correction equation

The correction equation is given by

$$(I - M\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T})(A - \eta_{k}M)(I - \tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T}M)\mathbf{t}_{k} = -\mathbf{r}_{k}, \qquad \tilde{\mathbf{q}}^{T}M\mathbf{t}_{k} = 0.$$

We choose a preconditioner of the form

$$(I - M\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T})K(I - \tilde{\mathbf{q}}\tilde{\mathbf{q}}^{T}M)\mathbf{c} = \mathbf{b}, \qquad \tilde{\mathbf{q}}^{T}M\mathbf{c} = 0.$$
 (6)

where K is a preconditioner for  $A - \rho_k M$ . As we are looking for just a few of the smallest eigenvalues we take  $K \approx A - \sigma M$  where  $\sigma$  is close to the desired eigenvalues. We use the same K for all correction equations.

Preconditioning the correction equation Hierarchical basis preconditioning

#### Hierarchical basis preconditioning

For solving with K we employ the hierarchical basis (Bank, 1996): We arrange the matrix K in the form

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{pmatrix}, \qquad K = A - \sigma M.$$
(7)

In a 2-level algorithm  $K_{11}$  corresponds to a system on the coarser grid whence it is solved directly.

Here, solving with  $K_{11}$  is replaced by invoking the AMG multilevel solver ML in the Trilinos solver suite (Reitzinger/Schöberl, 2002; P. Vaněk et al., 2001; Tuminaro et al., 2004).

Preconditioning the correction equation Hierarchical basis preconditioning

Solving with K is replaced by one step of symmetric block Gauss–Seidel iteration

$$\mathbf{x}_{1}' := \mathcal{K}_{11}^{-1} \mathbf{b}_{1}, 
 \mathbf{x}_{2} := (\widetilde{\mathcal{K}}_{22})^{-1} (\mathbf{b}_{2} - \mathcal{K}_{21} \mathbf{x}_{1}'), 
 \mathbf{x}_{1} := \mathcal{K}_{11}^{-1} (\mathbf{b}_{1} - \mathcal{K}_{12} \mathbf{x}_{2}),$$
(8)

with  $\widetilde{K}_{22}$  only an approximation of  $K_{22}$ ,  $\widetilde{K}_{22} \approx K_{22}$ . Here,  $\widetilde{K}_{22}$  corresponds to one step of (undamped) Jacobi iteration.

(D) (A) (A) (A)

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

- The Trilinos Project is an effort to develop parallel solver algorithms and libraries within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific applications.
- See http://software.sandia.gov/trilinos/
- Provides means to distribute (multi)vectors and (sparse) matrices (Epetra and EpetraExt packages).
- Provides solvers that work on these distributed data. Here we use iterative solvers and preconditioners (package AztecOO), smoothed aggregation multilevel AMG preconditioner (ML), direct solver wrappers (Amesos) and data distribution for parallelization (EpetraExt interface to Zoltan/ParMETIS).

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

- The Trilinos Project is an effort to develop parallel solver algorithms and libraries within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific applications.
- See http://software.sandia.gov/trilinos/
- Provides means to distribute (multi)vectors and (sparse) matrices (Epetra and EpetraExt packages).
- Provides solvers that work on these distributed data. Here we use iterative solvers and preconditioners (package AztecOO), smoothed aggregation multilevel AMG preconditioner (ML), direct solver wrappers (Amesos) and data distribution for parallelization (EpetraExt interface to Zoltan/ParMETIS).
- Quality of documentation depends on package.

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

- The Trilinos Project is an effort to develop parallel solver algorithms and libraries within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific applications.
- See http://software.sandia.gov/trilinos/
- Provides means to distribute (multi)vectors and (sparse) matrices (Epetra and EpetraExt packages).
- Provides solvers that work on these distributed data. Here we use iterative solvers and preconditioners (package AztecOO), smoothed aggregation multilevel AMG preconditioner (ML), direct solver wrappers (Amesos) and data distribution for parallelization (EpetraExt interface to Zoltan/ParMETIS).
- Quality of documentation depends on package.

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

- The Trilinos Project is an effort to develop parallel solver algorithms and libraries within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific applications.
- See http://software.sandia.gov/trilinos/
- Provides means to distribute (multi)vectors and (sparse) matrices (Epetra and EpetraExt packages).
- Provides solvers that work on these distributed data. Here we use iterative solvers and preconditioners (package AztecOO), smoothed aggregation multilevel AMG preconditioner (ML), direct solver wrappers (Amesos) and data distribution for parallelization (EpetraExt interface to Zoltan/ParMETIS).
- Quality of documentation depends on package.

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

- The Trilinos Project is an effort to develop parallel solver algorithms and libraries within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific applications.
- See http://software.sandia.gov/trilinos/
- Provides means to distribute (multi)vectors and (sparse) matrices (Epetra and EpetraExt packages).
- Provides solvers that work on these distributed data. Here we use iterative solvers and preconditioners (package AztecOO), smoothed aggregation multilevel AMG preconditioner (ML), direct solver wrappers (Amesos) and data distribution for parallelization (EpetraExt interface to Zoltan/ParMETIS).
- Quality of documentation depends on package.

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

### Example of using Trilinos

// Example of solving a linear system with AztecOO.

// create a linear map
Epetra\_Map RowMap(NumGlobalElements, 0,
Communicator);

// create an Epetra\_Matrix
Epetra\_CrsMatrix A(Copy, RowMap, NumEntriesPerRow);

// fill a row with values
A.InsertGlobalValues(GlobalRow, NumEntries, Values,
Indices);

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

// create a linear problem
Epetra\_LinearProblem Problem(&A, &x, &b);

```
// create an AztecOO instance
AztecOO Solver(Problem);
```

```
Solver.SetAztecOption(AZ_precond, AZ_Jacobi);
Solver.Iterate(1000, 1E-9);
```

(日) (四) (三) (三) (三)

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

# BeoWulf Cluster

- 32 dual-node PC cluster
  - 2 AMD Athlon 1.4 GHz processors/node
  - 2 GB main memory
  - 160 GB local disk
- Myrinet
  - 2000 Mbit/s
- Software
  - Linux 2.4.20
  - MPICH 1.2.5
  - Trilinos Developer Version (March)



(日) (日) (日) (日) (日)

크

#### Matrices

| grid    | $n_{A-\sigma M}$ | nnz <sub>A-σM</sub> | n <sub>H</sub> | nnz <sub>H</sub> |
|---------|------------------|---------------------|----------------|------------------|
| cop40k  | 231668           | 4811786             | 46288          | 1163834          |
| box170k | 1030518          | 20767052            | 209741         | 5447883          |

Table: Matrices used for numerical experiments





The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

# Data distribution

#### • Definition of an artificial graph

The blocks of A, M, K, H, and C are stored *independently*. Distribution is by rows. A map defines which row goes on which processor.

For the distribution with ParMETIS a 'graph' G is defined that contains a node for each vertex, edge, and face of the finite element mesh that 'participates' at the computation. Gis defined by suitable submatrices of M, H, and C.

| Outline of the talk                     | The Software Environment: Trilinos |
|-----------------------------------------|------------------------------------|
| The eigenvalue problem                  | Example of using Trilinos          |
| The eigensolver                         | The Hardware Environment           |
| Preconditioning the correction equation | Matrices                           |
| Numerical experiments                   | Data distribution                  |
| Summary                                 | Timings                            |

More precisely we define a graph G as

$$G = \begin{bmatrix} H_{11} & C_{11}^{T} & \widehat{C}_{21}^{T} \\ C_{11} & M_{11} & \widehat{M}_{12} \\ \widehat{C}_{21} & \widehat{M}_{21} & \widehat{M}_{22} \end{bmatrix}.$$
 (9)

ParMETIS tries to distribute the matrix such that the number of nonzero elements per processor is balanced (load balance) and such that the number of edge cuts is minimal (little communication).

・ 同 ト・ ・ ヨ ト・・

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

#### • Typical distribution of *M* on 8 processors



matrix order 13'260 # nonzeros 533'122 533'122/8 = 66'640 85-90% of nonzeros in block diagonal

イロト イヨト イヨト イヨト

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

# Timings

Timings are given for computing the 5 smallest positive eigenvalues using JDSYM with the 2-level preconditioner ( $K_{11}$ : ML,  $K_{22}$ : diagonal) on the Beowulf (Merlin) in dedicated mode. System with H was solved using PCG with ML preconditioner.

#### Some JDSYM parameters

itmax=200 linitmax=50 kmax=5 jmin=6 jmax=15 tau=0.0e+00 jdtol=1.0e-08 eps\_tr=1.0e-03 toldecay=1.5e+00 sigma=1.5e+00 linsolver=qmrs blksize=1

The Software Environment: Trilinos Example of using Trilinos The Hardware Environment Matrices Data distribution Timings

|    | cop40k  |          |         |         |                    |                        |
|----|---------|----------|---------|---------|--------------------|------------------------|
| р  | t [sec] | $E(p)^1$ | t(Prec) | t(Proj) | n <sub>outer</sub> | n <sup>avg</sup> inner |
| 2  | 1241    | 1.00     | 38%     | 16%     | 55                 | 19.38                  |
| 4  | 637     | 0.97     | 37%     | 17%     | 54                 | 19.24                  |
| 6  | 458     | 0.90     | 39%     | 18%     | 54                 | 19.69                  |
| 8  | 330     | 0.94     | 39%     | 17%     | 53                 | 19.53                  |
| 10 | 266     | 0.93     | 39%     | 19%     | 52                 | 19.17                  |
| 12 | 240     | 0.86     | 41%     | 20%     | 54                 | 19.61                  |
| 14 | 211     | 0.84     | 42%     | 20%     | 55                 | 19.36                  |
| 16 | 186     | 0.83     | 44%     | 20%     | 54                 | 19.17                  |

<sup>1</sup>Efficiency relative to execution time t(2)

Peter Arbenz et al.

Towards a Parallel Maxwell Eigensolver

(口) (聞) (言) (言) 三国

|    | box170k |            |         |         |                    |                        |
|----|---------|------------|---------|---------|--------------------|------------------------|
| р  | t [sec] | $E(p)^{2}$ | t(Prec) | t(Proj) | n <sub>outer</sub> | n <sup>avg</sup> inner |
| 2  | —       | —          | —       | —       | —                  |                        |
| 4  | 7720    | 1.00       | 28%     | 22%     | 54                 | 22.39                  |
| 6  | 2237    | 2.30       | 39%     | 23%     | 55                 | 22.47                  |
| 8  | 1744    | 2.21       | 38%     | 23%     | 55                 | 23.51                  |
| 10 | 1505    | 2.05       | 38%     | 25%     | 56                 | 22.54                  |
| 12 | 1224    | 2.10       | 38%     | 25%     | 54                 | 22.02                  |
| 14 | 1118    | 1.97       | 39%     | 24%     | 55                 | 23.76                  |
| 16 | 932     | 2.07       | 38%     | 25%     | 54                 | 22.30                  |

<sup>2</sup>Efficiency relative to execution time t(4)

Peter Arbenz et al.

Towards a Parallel Maxwell Eigensolver

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Summary

 We presented some preliminary results on a parallel implementation of the symmetric Jacobi-Davidson algorithm (JDSYM).

- Trilinos framework
- Data distribution by Zoltan/ParMETIS
- Correction equations are solved approximatively with QMRS and a 2-level hierarchical basis preconditioner enriched with the aggregated multilevel preconditioner ML
- Equations on coarsest grid are solved with SuperLU
- We should improve the K<sub>22</sub> solver and the matrix (re)distribution.

# Summary

 We presented some preliminary results on a parallel implementation of the symmetric Jacobi-Davidson algorithm (JDSYM).

- Trilinos framework
- Data distribution by Zoltan/ParMETIS
- Correction equations are solved approximatively with QMRS and a 2-level hierarchical basis preconditioner enriched with the aggregated multilevel preconditioner ML
- Equations on coarsest grid are solved with SuperLU
- We should improve the K<sub>22</sub> solver and the matrix (re)distribution.

# Summary

 We presented some preliminary results on a parallel implementation of the symmetric Jacobi-Davidson algorithm (JDSYM).

- Trilinos framework
- Data distribution by Zoltan/ParMETIS
- Correction equations are solved approximatively with QMRS and a 2-level hierarchical basis preconditioner enriched with the aggregated multilevel preconditioner ML
- Equations on coarsest grid are solved with SuperLU
- We should improve the K<sub>22</sub> solver and the matrix (re)distribution.

# Summary

 We presented some preliminary results on a parallel implementation of the symmetric Jacobi-Davidson algorithm (JDSYM).

#### $\ensuremath{\textcircled{0}}$ Ingredients of the present parallel JDSYM are

- Trilinos framework
- Data distribution by Zoltan/ParMETIS
- Correction equations are solved approximatively with QMRS and a 2-level hierarchical basis preconditioner enriched with the aggregated multilevel preconditioner ML
- Equations on coarsest grid are solved with SuperLU
- We should improve the K<sub>22</sub> solver and the matrix (re)distribution.

# Summary

 We presented some preliminary results on a parallel implementation of the symmetric Jacobi-Davidson algorithm (JDSYM).

#### $\ensuremath{\textcircled{0}}$ Ingredients of the present parallel JDSYM are

- Trilinos framework
- Data distribution by Zoltan/ParMETIS
- Correction equations are solved approximatively with QMRS and a 2-level hierarchical basis preconditioner enriched with the aggregated multilevel preconditioner ML
- Equations on coarsest grid are solved with SuperLU
- We should improve the K<sub>22</sub> solver and the matrix (re)distribution.

Tuning the code and more extensive experiments are required

# Summary

 We presented some preliminary results on a parallel implementation of the symmetric Jacobi-Davidson algorithm (JDSYM).

#### $\ensuremath{\textcircled{0}}$ Ingredients of the present parallel JDSYM are

- Trilinos framework
- Data distribution by Zoltan/ParMETIS
- Correction equations are solved approximatively with QMRS and a 2-level hierarchical basis preconditioner enriched with the aggregated multilevel preconditioner ML
- Equations on coarsest grid are solved with SuperLU
- We should improve the K<sub>22</sub> solver and the matrix (re)distribution.
- Tuning the code and more extensive experiments are required.

# Summary

 We presented some preliminary results on a parallel implementation of the symmetric Jacobi-Davidson algorithm (JDSYM).

- Trilinos framework
- Data distribution by Zoltan/ParMETIS
- Correction equations are solved approximatively with QMRS and a 2-level hierarchical basis preconditioner enriched with the aggregated multilevel preconditioner ML
- Equations on coarsest grid are solved with SuperLU
- We should improve the K<sub>22</sub> solver and the matrix (re)distribution.
- Tuning the code and more extensive experiments are required.

# Summary

 We presented some preliminary results on a parallel implementation of the symmetric Jacobi-Davidson algorithm (JDSYM).

#### Ingredients of the present parallel JDSYM are

- Trilinos framework
- Data distribution by Zoltan/ParMETIS
- Correction equations are solved approximatively with QMRS and a 2-level hierarchical basis preconditioner enriched with the aggregated multilevel preconditioner ML
- Equations on coarsest grid are solved with SuperLU
- We should improve the K<sub>22</sub> solver and the matrix (re)distribution.
- Iuning the code and more extensive experiments are required.

▶ ★ 個 ▶ ★ 臣 ▶ ★ 臣 ▶