
Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Towards a Parallel Maxwell Eigensolver

Peter Arbenz1 Martin Bečka1 Roman Geus2

Ulrich Hetmaniuk3

1Institute of Computational Science, ETH Zürich

2Paul-Scherrer-Institute, Villigen

3Sandia National Laboratory, Albuquerque

PDEMAMIP’04, Slanchev Bryag BG, Sept 7–10, 2004.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

1 The eigenvalue problem

2 The eigensolver

3 Preconditioning the correction equation

4 Numerical experiments

5 Summary

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Statement of the problem
View of a COMET cavity
A mixed formulation
The matrix eigenvalue problem
Null space of A

Statement of the problem

Maxwell equations (after separation of time/space variables and
after elimination of the magnetic field intensity) become eigenvalue
problem

curl curl e(x) = λ e(x), x ∈ Ω,

div e(x) = 0, x ∈ Ω,

n× e = 0, x ∈ ∂Ω.

(1)

Here, e is the electric field intensity.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Statement of the problem
View of a COMET cavity
A mixed formulation
The matrix eigenvalue problem
Null space of A

View of a COMET cavity

COMET cyclotron for cancer ther-
apy at PSI (3m diameter)
produced by Accel Instruments
GmbH (www.accel.de)

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Statement of the problem
View of a COMET cavity
A mixed formulation
The matrix eigenvalue problem
Null space of A

A mixed formulation

(Kikuchi 1987)

Find (λ, e, p) ∈ IR× H0(curl; Ω)× H1
0 (Ω) such that e 6= 0 and

(a) (curl e, curl Ψ) + (grad p,Ψ) = λ(e,Ψ), ∀Ψ ∈ H0(curl; Ω)
(b) (e, grad q) = 0, ∀q ∈ H1

0 (Ω)
(2)

Here, p is a Lagrange multiplier.
(b) reflects the Helmholtz decomposition
H0(curl; Ω) = W0 ⊕ grad H1

0 (Ω) where W0 is the subset of
divergence-free fields in H0(curl; Ω).

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Statement of the problem
View of a COMET cavity
A mixed formulation
The matrix eigenvalue problem
Null space of A

The matrix eigenvalue problem

The evp for the time-harmonic Maxwell equation is given by

Ax = λMx, CTx = 0. (3)

where A = AT ≥ 0 with huge nullspace, M = MT > 0.
The elements of A, M, and C are

Aij = (curl Ψi , curl Ψj), Mij = (Ψi ,Ψj), 1 ≤ i , j ≤ n,

and

Cik = (ei , grad qk), 1 ≤ i ≤ n, 1 ≤ k ≤ m ≈ n/6.

Here, the Ψj are Nédélec (edge) element basis functions
(Nédélec,1980) and the qk are Lagrange (node) finite elements.
Both quadratic elements, with hierarchical bases.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Statement of the problem
View of a COMET cavity
A mixed formulation
The matrix eigenvalue problem
Null space of A

Null space of A

A sparse basis Y of the nullspace of A can easily be given
(incidence matrix). Then, C = MY .
The M-orthogonal projector onto R(A) = N (A)⊥M = N (CT) is
given by

I − YH−1CT (4)

where H with elements

Hkl = (grad ϕk , grad ϕl)

is Poisson matrix for quadratic Lagrange elements on given FE
mesh.
We execute our computations in N (CT) to avoid computation of
zero eigenvalues of (3) by applying (4) at the right places.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Symmetric Jacobi–Davidson (JDSYM)
Remarks on JDSYM

Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

Let Vk = span{v1, . . . , vk} ⊂ N (CT), vT
k Mvj = δkj , be the

actual search space (not a Krylov space).

Rayleigh–Ritz–Galerkin procedure: Extract Ritz pair (λ̃, q̃)
in Vk with λ̃ ‘closest’ to some target value τ .

Convergence: If ‖rk‖M−1 ≡ ‖(A− λ̃M) q̃‖M−1 < ε‖q̃‖M

then we have found an eigenpair

Solve correction equation for tk ⊥M q̃,

(I−Mq̃q̃T)(A−ηkM)(I−q̃q̃TM)tk =−rk , q̃TMtk = 0. (5)

M-orthonormalize (I − YH−1CT)tk to Vk to obtain vk+1

Expand search space: Vk+1 = span{v1, . . . , vk+1}.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Symmetric Jacobi–Davidson (JDSYM)
Remarks on JDSYM

Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

Let Vk = span{v1, . . . , vk} ⊂ N (CT), vT
k Mvj = δkj , be the

actual search space (not a Krylov space).

Rayleigh–Ritz–Galerkin procedure: Extract Ritz pair (λ̃, q̃)
in Vk with λ̃ ‘closest’ to some target value τ .

Convergence: If ‖rk‖M−1 ≡ ‖(A− λ̃M) q̃‖M−1 < ε‖q̃‖M

then we have found an eigenpair

Solve correction equation for tk ⊥M q̃,

(I−Mq̃q̃T)(A−ηkM)(I−q̃q̃TM)tk =−rk , q̃TMtk = 0. (5)

M-orthonormalize (I − YH−1CT)tk to Vk to obtain vk+1

Expand search space: Vk+1 = span{v1, . . . , vk+1}.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Symmetric Jacobi–Davidson (JDSYM)
Remarks on JDSYM

Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

Let Vk = span{v1, . . . , vk} ⊂ N (CT), vT
k Mvj = δkj , be the

actual search space (not a Krylov space).

Rayleigh–Ritz–Galerkin procedure: Extract Ritz pair (λ̃, q̃)
in Vk with λ̃ ‘closest’ to some target value τ .

Convergence: If ‖rk‖M−1 ≡ ‖(A− λ̃M) q̃‖M−1 < ε‖q̃‖M

then we have found an eigenpair

Solve correction equation for tk ⊥M q̃,

(I−Mq̃q̃T)(A−ηkM)(I−q̃q̃TM)tk =−rk , q̃TMtk = 0. (5)

M-orthonormalize (I − YH−1CT)tk to Vk to obtain vk+1

Expand search space: Vk+1 = span{v1, . . . , vk+1}.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Symmetric Jacobi–Davidson (JDSYM)
Remarks on JDSYM

Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

Let Vk = span{v1, . . . , vk} ⊂ N (CT), vT
k Mvj = δkj , be the

actual search space (not a Krylov space).

Rayleigh–Ritz–Galerkin procedure: Extract Ritz pair (λ̃, q̃)
in Vk with λ̃ ‘closest’ to some target value τ .

Convergence: If ‖rk‖M−1 ≡ ‖(A− λ̃M) q̃‖M−1 < ε‖q̃‖M

then we have found an eigenpair

Solve correction equation for tk ⊥M q̃,

(I−Mq̃q̃T)(A−ηkM)(I−q̃q̃TM)tk =−rk , q̃TMtk = 0. (5)

M-orthonormalize (I − YH−1CT)tk to Vk to obtain vk+1

Expand search space: Vk+1 = span{v1, . . . , vk+1}.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Symmetric Jacobi–Davidson (JDSYM)
Remarks on JDSYM

Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

Let Vk = span{v1, . . . , vk} ⊂ N (CT), vT
k Mvj = δkj , be the

actual search space (not a Krylov space).

Rayleigh–Ritz–Galerkin procedure: Extract Ritz pair (λ̃, q̃)
in Vk with λ̃ ‘closest’ to some target value τ .

Convergence: If ‖rk‖M−1 ≡ ‖(A− λ̃M) q̃‖M−1 < ε‖q̃‖M

then we have found an eigenpair

Solve correction equation for tk ⊥M q̃,

(I−Mq̃q̃T)(A−ηkM)(I−q̃q̃TM)tk =−rk , q̃TMtk = 0. (5)

M-orthonormalize (I − YH−1CT)tk to Vk to obtain vk+1

Expand search space: Vk+1 = span{v1, . . . , vk+1}.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Symmetric Jacobi–Davidson (JDSYM)
Remarks on JDSYM

Symmetric Jacobi–Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

Let Vk = span{v1, . . . , vk} ⊂ N (CT), vT
k Mvj = δkj , be the

actual search space (not a Krylov space).

Rayleigh–Ritz–Galerkin procedure: Extract Ritz pair (λ̃, q̃)
in Vk with λ̃ ‘closest’ to some target value τ .

Convergence: If ‖rk‖M−1 ≡ ‖(A− λ̃M) q̃‖M−1 < ε‖q̃‖M

then we have found an eigenpair

Solve correction equation for tk ⊥M q̃,

(I−Mq̃q̃T)(A−ηkM)(I−q̃q̃TM)tk =−rk , q̃TMtk = 0. (5)

M-orthonormalize (I − YH−1CT)tk to Vk to obtain vk+1

Expand search space: Vk+1 = span{v1, . . . , vk+1}.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Symmetric Jacobi–Davidson (JDSYM)
Remarks on JDSYM

Remarks on JDSYM

Shift ηk is set to target value τ initially and to the Rayleigh
quotient ρ(q̃) close to convergence.

If k = jmax reduce size of the search space to jmin. Use jmin

‘best’ Ritz vectors in Vjmax to define Vjmin
.

The correction equation is solved only approximatively. We
use a Krylov space method: QMRS (admits indefinite
preconditioner).

Eigenvectors corresponding to higher eigenvalues are
computed in the orthogonal complement of previously
computed eigenvectors.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Symmetric Jacobi–Davidson (JDSYM)
Remarks on JDSYM

Remarks on JDSYM

Shift ηk is set to target value τ initially and to the Rayleigh
quotient ρ(q̃) close to convergence.

If k = jmax reduce size of the search space to jmin. Use jmin

‘best’ Ritz vectors in Vjmax to define Vjmin
.

The correction equation is solved only approximatively. We
use a Krylov space method: QMRS (admits indefinite
preconditioner).

Eigenvectors corresponding to higher eigenvalues are
computed in the orthogonal complement of previously
computed eigenvectors.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Symmetric Jacobi–Davidson (JDSYM)
Remarks on JDSYM

Remarks on JDSYM

Shift ηk is set to target value τ initially and to the Rayleigh
quotient ρ(q̃) close to convergence.

If k = jmax reduce size of the search space to jmin. Use jmin

‘best’ Ritz vectors in Vjmax to define Vjmin
.

The correction equation is solved only approximatively. We
use a Krylov space method: QMRS (admits indefinite
preconditioner).

Eigenvectors corresponding to higher eigenvalues are
computed in the orthogonal complement of previously
computed eigenvectors.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Symmetric Jacobi–Davidson (JDSYM)
Remarks on JDSYM

Remarks on JDSYM

Shift ηk is set to target value τ initially and to the Rayleigh
quotient ρ(q̃) close to convergence.

If k = jmax reduce size of the search space to jmin. Use jmin

‘best’ Ritz vectors in Vjmax to define Vjmin
.

The correction equation is solved only approximatively. We
use a Krylov space method: QMRS (admits indefinite
preconditioner).

Eigenvectors corresponding to higher eigenvalues are
computed in the orthogonal complement of previously
computed eigenvectors.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Preconditioning the correction equation
Hierarchical basis preconditioning

Preconditioning the correction equation

The correction equation is given by

(I −Mq̃q̃T)(A− ηkM)(I − q̃q̃TM)tk = −rk , q̃TMtk = 0.

We choose a preconditioner of the form

(I −Mq̃q̃T)K (I − q̃q̃TM)c = b, q̃TMc = 0. (6)

where K is a preconditioner for A− ρkM.
As we are looking for just a few of the smallest eigenvalues we take
K ≈ A− σM where σ is close to the desired eigenvalues.
We use the same K for all correction equations.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Preconditioning the correction equation
Hierarchical basis preconditioning

Hierarchical basis preconditioning

For solving with K we employ the hierarchical basis (Bank, 1996):
We arrange the matrix K in the form[

K11 K12

K21 K22

](
x1

x2

)
=

(
b1

b2

)
, K = A− σM. (7)

In a 2-level algorithm K11 corresponds to a system on the coarser
grid whence it is solved directly.
Here, solving with K11 is replaced by invoking the AMG multilevel
solver ML in the Trilinos solver suite (Reitzinger/Schöberl, 2002;
P. Vaněk et al., 2001; Tuminaro et al., 2004).

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Preconditioning the correction equation
Hierarchical basis preconditioning

Solving with K is replaced by one step of symmetric block
Gauss–Seidel iteration

x′1 := K−1
11 b1,

x2 := (K̃22)
−1(b2 − K21x

′
1),

x1 := K−1
11 (b1 − K12x2),

(8)

with K̃22 only an approximation of K22, K̃22 ≈ K22. Here, K̃22

corresponds to one step of (undamped) Jacobi iteration.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

The Software Environment: Trilinos

The Trilinos Project is an effort to develop parallel solver
algorithms and libraries within an object-oriented software
framework for the solution of large-scale, complex
multi-physics engineering and scientific applications.

See http://software.sandia.gov/trilinos/

Provides means to distribute (multi)vectors and (sparse)
matrices (Epetra and EpetraExt packages).

Provides solvers that work on these distributed data. Here we
use iterative solvers and preconditioners (package AztecOO),
smoothed aggregation multilevel AMG preconditioner (ML),
direct solver wrappers (Amesos) and data distribution for
parallelization (EpetraExt interface to Zoltan/ParMETIS).

Quality of documentation depends on package.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

The Software Environment: Trilinos

The Trilinos Project is an effort to develop parallel solver
algorithms and libraries within an object-oriented software
framework for the solution of large-scale, complex
multi-physics engineering and scientific applications.

See http://software.sandia.gov/trilinos/

Provides means to distribute (multi)vectors and (sparse)
matrices (Epetra and EpetraExt packages).

Provides solvers that work on these distributed data. Here we
use iterative solvers and preconditioners (package AztecOO),
smoothed aggregation multilevel AMG preconditioner (ML),
direct solver wrappers (Amesos) and data distribution for
parallelization (EpetraExt interface to Zoltan/ParMETIS).

Quality of documentation depends on package.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

The Software Environment: Trilinos

The Trilinos Project is an effort to develop parallel solver
algorithms and libraries within an object-oriented software
framework for the solution of large-scale, complex
multi-physics engineering and scientific applications.

See http://software.sandia.gov/trilinos/

Provides means to distribute (multi)vectors and (sparse)
matrices (Epetra and EpetraExt packages).

Provides solvers that work on these distributed data. Here we
use iterative solvers and preconditioners (package AztecOO),
smoothed aggregation multilevel AMG preconditioner (ML),
direct solver wrappers (Amesos) and data distribution for
parallelization (EpetraExt interface to Zoltan/ParMETIS).

Quality of documentation depends on package.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

The Software Environment: Trilinos

The Trilinos Project is an effort to develop parallel solver
algorithms and libraries within an object-oriented software
framework for the solution of large-scale, complex
multi-physics engineering and scientific applications.

See http://software.sandia.gov/trilinos/

Provides means to distribute (multi)vectors and (sparse)
matrices (Epetra and EpetraExt packages).

Provides solvers that work on these distributed data. Here we
use iterative solvers and preconditioners (package AztecOO),
smoothed aggregation multilevel AMG preconditioner (ML),
direct solver wrappers (Amesos) and data distribution for
parallelization (EpetraExt interface to Zoltan/ParMETIS).

Quality of documentation depends on package.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

The Software Environment: Trilinos

The Trilinos Project is an effort to develop parallel solver
algorithms and libraries within an object-oriented software
framework for the solution of large-scale, complex
multi-physics engineering and scientific applications.

See http://software.sandia.gov/trilinos/

Provides means to distribute (multi)vectors and (sparse)
matrices (Epetra and EpetraExt packages).

Provides solvers that work on these distributed data. Here we
use iterative solvers and preconditioners (package AztecOO),
smoothed aggregation multilevel AMG preconditioner (ML),
direct solver wrappers (Amesos) and data distribution for
parallelization (EpetraExt interface to Zoltan/ParMETIS).

Quality of documentation depends on package.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

Example of using Trilinos

// Example of solving a linear system with AztecOO.

// create a linear map
Epetra Map RowMap(NumGlobalElements, 0,
Communicator);

// create an Epetra Matrix
Epetra CrsMatrix A(Copy, RowMap, NumEntriesPerRow);

// fill a row with values
A.InsertGlobalValues(GlobalRow, NumEntries, Values,
Indices);

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

// ========== AZTECOO INTERFACE ============
// create vectors x and b
Epetra Vector x(Map);
Epetra Vector b(Map);
b.Random();

// create a linear problem
Epetra LinearProblem Problem(&A, &x, &b);

// create an AztecOO instance
AztecOO Solver(Problem);

Solver.SetAztecOption(AZ precond, AZ Jacobi);
Solver.Iterate(1000, 1E-9);

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

BeoWulf Cluster

32 dual-node PC cluster

2 AMD Athlon 1.4 GHz processors/node
2 GB main memory
160 GB local disk

Myrinet

2000 Mbit/s

Software

Linux 2.4.20
MPICH 1.2.5
Trilinos Developer Version (March)

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

Matrices

grid nA−σM nnzA−σM nH nnzH

cop40k 231668 4811786 46288 1163834

box170k 1030518 20767052 209741 5447883

Table: Matrices used for numerical experiments

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

Data distribution

Definition of an artificial graph
The blocks of A, M, K , H, and C are stored independently.
Distribution is by rows. A map defines which row goes on
which processor.
For the distribution with ParMETIS a ‘graph’ G is defined
that contains a node for each vertex, edge, and face of the
finite element mesh that ‘participates’ at the computation. G
is defined by suitable submatrices of M, H, and C .

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

More precisely we define a graph G as

G =

H11 CT
11 ĈT

21

C11 M11 M̂12

Ĉ21 M̂21 M̂22

 . (9)

ParMETIS tries to distribute the matrix such that the number of
nonzero elements per processor is balanced (load balance) and such
that the number of edge cuts is minimal (little communication).

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

Typical distribution of M on 8 processors

matrix order 13’260
nonzeros 533’122
533’122/8 = 66’640
85-90% of nonzeros
in block diagonal

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

Timings

Timings are given for computing the 5 smallest positive
eigenvalues using JDSYM with the 2-level preconditioner (K11:
ML, K22: diagonal) on the Beowulf (Merlin) in dedicated mode.
System with H was solved using PCG with ML preconditioner.

Some JDSYM parameters
itmax=200 linitmax=50 kmax=5 jmin=6 jmax=15
tau=0.0e+00 jdtol=1.0e-08 eps tr=1.0e-03
toldecay=1.5e+00 sigma=1.5e+00
linsolver=qmrs blksize=1

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

cop40k

p t [sec] E (p)1 t(Prec) t(Proj) nouter navg
inner

2 1241 1.00 38% 16% 55 19.38
4 637 0.97 37% 17% 54 19.24
6 458 0.90 39% 18% 54 19.69
8 330 0.94 39% 17% 53 19.53
10 266 0.93 39% 19% 52 19.17
12 240 0.86 41% 20% 54 19.61
14 211 0.84 42% 20% 55 19.36
16 186 0.83 44% 20% 54 19.17

1Efficiency relative to execution time t(2)
Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

The Software Environment: Trilinos
Example of using Trilinos
The Hardware Environment
Matrices
Data distribution
Timings

box170k

p t [sec] E (p)2 t(Prec) t(Proj) nouter navg
inner

2 — — — — — —
4 7720 1.00 28% 22% 54 22.39
6 2237 2.30 39% 23% 55 22.47
8 1744 2.21 38% 23% 55 23.51
10 1505 2.05 38% 25% 56 22.54
12 1224 2.10 38% 25% 54 22.02
14 1118 1.97 39% 24% 55 23.76
16 932 2.07 38% 25% 54 22.30

2Efficiency relative to execution time t(4)
Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Summary

1 We presented some preliminary results on a parallel
implementation of the symmetric Jacobi-Davidson algorithm
(JDSYM).

2 Ingredients of the present parallel JDSYM are

Trilinos framework
Data distribution by Zoltan/ParMETIS
Correction equations are solved approximatively with QMRS
and a 2-level hierarchical basis preconditioner enriched with
the aggregated multilevel preconditioner ML
Equations on coarsest grid are solved with SuperLU

3 We should improve the K22 solver and the matrix
(re)distribution.

4 Tuning the code and more extensive experiments are required.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Summary

1 We presented some preliminary results on a parallel
implementation of the symmetric Jacobi-Davidson algorithm
(JDSYM).

2 Ingredients of the present parallel JDSYM are

Trilinos framework
Data distribution by Zoltan/ParMETIS
Correction equations are solved approximatively with QMRS
and a 2-level hierarchical basis preconditioner enriched with
the aggregated multilevel preconditioner ML
Equations on coarsest grid are solved with SuperLU

3 We should improve the K22 solver and the matrix
(re)distribution.

4 Tuning the code and more extensive experiments are required.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Summary

1 We presented some preliminary results on a parallel
implementation of the symmetric Jacobi-Davidson algorithm
(JDSYM).

2 Ingredients of the present parallel JDSYM are

Trilinos framework
Data distribution by Zoltan/ParMETIS
Correction equations are solved approximatively with QMRS
and a 2-level hierarchical basis preconditioner enriched with
the aggregated multilevel preconditioner ML
Equations on coarsest grid are solved with SuperLU

3 We should improve the K22 solver and the matrix
(re)distribution.

4 Tuning the code and more extensive experiments are required.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Summary

1 We presented some preliminary results on a parallel
implementation of the symmetric Jacobi-Davidson algorithm
(JDSYM).

2 Ingredients of the present parallel JDSYM are

Trilinos framework
Data distribution by Zoltan/ParMETIS
Correction equations are solved approximatively with QMRS
and a 2-level hierarchical basis preconditioner enriched with
the aggregated multilevel preconditioner ML
Equations on coarsest grid are solved with SuperLU

3 We should improve the K22 solver and the matrix
(re)distribution.

4 Tuning the code and more extensive experiments are required.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Summary

1 We presented some preliminary results on a parallel
implementation of the symmetric Jacobi-Davidson algorithm
(JDSYM).

2 Ingredients of the present parallel JDSYM are

Trilinos framework
Data distribution by Zoltan/ParMETIS
Correction equations are solved approximatively with QMRS
and a 2-level hierarchical basis preconditioner enriched with
the aggregated multilevel preconditioner ML
Equations on coarsest grid are solved with SuperLU

3 We should improve the K22 solver and the matrix
(re)distribution.

4 Tuning the code and more extensive experiments are required.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Summary

1 We presented some preliminary results on a parallel
implementation of the symmetric Jacobi-Davidson algorithm
(JDSYM).

2 Ingredients of the present parallel JDSYM are

Trilinos framework
Data distribution by Zoltan/ParMETIS
Correction equations are solved approximatively with QMRS
and a 2-level hierarchical basis preconditioner enriched with
the aggregated multilevel preconditioner ML
Equations on coarsest grid are solved with SuperLU

3 We should improve the K22 solver and the matrix
(re)distribution.

4 Tuning the code and more extensive experiments are required.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Summary

1 We presented some preliminary results on a parallel
implementation of the symmetric Jacobi-Davidson algorithm
(JDSYM).

2 Ingredients of the present parallel JDSYM are

Trilinos framework
Data distribution by Zoltan/ParMETIS
Correction equations are solved approximatively with QMRS
and a 2-level hierarchical basis preconditioner enriched with
the aggregated multilevel preconditioner ML
Equations on coarsest grid are solved with SuperLU

3 We should improve the K22 solver and the matrix
(re)distribution.

4 Tuning the code and more extensive experiments are required.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

Outline of the talk
The eigenvalue problem

The eigensolver
Preconditioning the correction equation

Numerical experiments
Summary

Summary

1 We presented some preliminary results on a parallel
implementation of the symmetric Jacobi-Davidson algorithm
(JDSYM).

2 Ingredients of the present parallel JDSYM are

Trilinos framework
Data distribution by Zoltan/ParMETIS
Correction equations are solved approximatively with QMRS
and a 2-level hierarchical basis preconditioner enriched with
the aggregated multilevel preconditioner ML
Equations on coarsest grid are solved with SuperLU

3 We should improve the K22 solver and the matrix
(re)distribution.

4 Tuning the code and more extensive experiments are required.

Peter Arbenz et al. Towards a Parallel Maxwell Eigensolver

	Outline of the talk
	The eigenvalue problem
	Statement of the problem
	View of a COMET cavity
	A mixed formulation
	The matrix eigenvalue problem
	Null space of A

	The eigensolver
	Symmetric Jacobi--Davidson (JDSYM)
	Remarks on JDSYM

	Preconditioning the correction equation
	Preconditioning the correction equation
	Hierarchical basis preconditioning

	Numerical experiments
	The Software Environment: Trilinos
	Example of using Trilinos
	The Hardware Environment
	Matrices
	Data distribution
	Timings

	Summary

