We suppose that the region \(D \) and the operator \(T \) are given.

The boundary operator are given

\[
\left\{ \begin{array}{l}
\Gamma_1 \in \mathbb{R},
\Gamma_2 \in \mathbb{R},
\end{array} \right.
\]

Let \(D \) be an arbitrary differential operator of order \(2 \).

* Let \(D \) be a bounded domain in \(\mathbb{R}^n \) and the operator \(T(x) \) be the general boundary operator.

** Let \(D \) be an arbitrary differential equation.

** Notes:**

1. *Boundary* conditions.
2. *Differential* boundary conditions.
5. *Applications* of boundary conditions.
8. *Approximation* methods.

References:

5. *Applications* of boundary conditions. 19.
The set \(\mathcal{V} = \{ v \mid v = (v_1, \ldots, v_n) \} \) is the vector space of all \(n \)-dimensional vectors.

Theorem 1

Let the vector measure \(\mathcal{P} \) be given.

Theorem 2

Let \(\mathcal{V} \) be an \(n \)-dimensional vector space and \(\mathcal{P} \) a vector measure on \(\mathcal{V} \).

For a given continuous function \(f : \mathcal{V} \to \mathcal{R} \),

\[\int f d\mathcal{P} = \sum_{i=1}^{n} f(v_i) \mathcal{P}(v_i) \]

for any \(v \in \mathcal{V} \).

Example

Let \(\mathcal{P} \) be the Lebesgue measure on \(\mathcal{V} \).

Then

\[\int f d\mathcal{P} = \sum_{i=1}^{n} f(v_i) \mathcal{P}(v_i) \]

for any \(v \in \mathcal{V} \).

Note

The following theorems are special cases of the above theorems.

Theorem 3

Let \(\mathcal{P} \) be a vector measure on \(\mathcal{V} \).

Then

\[\int f d\mathcal{P} = \sum_{i=1}^{n} f(v_i) \mathcal{P}(v_i) \]

for any \(v \in \mathcal{V} \).

Proof

The proof is similar to the one for the one-dimensional case.