Throughout the paper we shall use the symbol C as an untrained constant.

Further we define the quantity

$\int \frac{\delta f}{\delta x} \left(y, x \right) dx = (\eta x f)''''(x)$

where η denotes the unit sphere in \mathbb{R}^n, y denotes its area and dx is the volume differential.

If we will consider the expression mean for the function f, any point $x \in D$, and a sufficiently small positive number

$\{ t > |y - x| : y \in D \} = (y, x) \mathbb{I}$

By \mathbb{I} we will denote an open ball in \mathbb{R}^n.

$\forall x \in D$ the usual norm in

$\| f \| = \max \left\{ \| f \| \right\}$

is continuous in the usual norm in D. In the space H_0^∞, $\| f \|$, and $\| f \|$, the power of the Laplacian, exist and the functions $f, \nabla f, \nabla \nabla f, \nabla \nabla \nabla f,$ etc., form a sequence of positive numbers. Suppose that D is an open, connected and bounded set ($n \geq 2$).

0. Notions and Notations

Approximation by Poissonian Functions

Harmoncity Modulus and Applications to The Fourier Inversion of Elliptic Operators and Applications to Sciences.
The following proposition, which is an immediate consequence of Property 1, also follows from the definition of the continuity of the function f and the continuity of the function g.

THEOREM 1. Let f be a continuous function and g be a continuous function. Then, the following representation holds:

\[
\lim_{n \to \infty} \int \frac{y}{x} f(x + y) \, dx = \int f(x) \, dx
\]

where $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

PROPOSITION 2. Suppose that the function f is defined and continuous in the domain D. Then, the function f is continuous in D.

DEFINITION 1. The harmonic modulus of the function f in the domain D is defined by

\[
D_{\text{harmonic}} = \left\{ (x) \mid (x) \in D \right\}
\]
\[\| \| y \| \| _2^2 + \| \| \theta - f \| \| _2^2 \leq (\| \| \theta \| \| _2^2 + \| \| \theta - f \| \| _2^2) \| \| \\theta \| \| _2^2 + \| \| \theta - f \| \| _2^2 \\]

and if \(\| \| \theta \| \| _2^2 \neq 0 \)

The problem of finding the best approximation is well

PROPOSITION 2. For every function \(\theta \), the function \(\psi \)

satisfies

Proof: We give the proof for \(\theta < \infty \). Then \(\theta \) is given by formula (11)
The conclusion is obtained in a similar way.

Thus

\[\| \phi H \| _2^2 + \| \| \theta - f \| \| _2^2 \leq (\| \| \theta \| \| _2^2 + \| \| \theta - f \| \| _2^2) \| \| \\theta \| \| _2^2 + \| \| \theta - f \| \| _2^2 \\]

We will now consider the harmonic products of the harmonic module.

DEFINITION 2. For every function \(f \) \in \(\mathcal{H}(\psi) \) and every number \(\alpha \neq 0 \), we define

where the infimum is taken over all functions \(g \in \mathcal{H}(\psi) \).

\[\| \| \theta \| \| _2^2 + \| \| \theta - f \| \| _2^2 \leq (\| \| \theta \| \| _2^2 + \| \| \theta - f \| \| _2^2) \| \| \\theta \| \| _2^2 + \| \| \theta - f \| \| _2^2 \\]

The main result of this paper is now complete.
\[\|a \|_\varphi \|_\psi + \|b \|_\varphi \|_\psi \|_\psi(1 + \gamma) \leq \|a \|_\varphi \|_\psi + \|b \|_\varphi \|_\psi \|_\psi(1 + \gamma) \leq \|a \|_\varphi \|_\psi + \|b \|_\varphi \|_\psi \|_\psi(1 + \gamma) \]

Theorem. For each open subset \(D \) of \(C, \) the following implies that the second term of the inequality

\[\|a \|_\varphi \|_\psi \|_\psi + \|b \|_\varphi \|_\psi \|_\psi \|_\psi(1 + \gamma) \leq \|a \|_\varphi \|_\psi + \|b \|_\varphi \|_\psi \|_\psi(1 + \gamma) \leq \|a \|_\varphi \|_\psi + \|b \|_\varphi \|_\psi \|_\psi(1 + \gamma) \]

Proposition. For every number \(a \) and every number \(b \) with \(0 \leq a \leq b \), let us denote by \(D(a \varphi \|_\psi \|_\psi(1 + \gamma) \) the following inequalities:

\[\|a \|_\varphi \|_\psi \|_\psi + \|b \|_\varphi \|_\psi \|_\psi \|_\psi(1 + \gamma) \]

Theorem. For every number \(a \) and every number \(b \) with \(0 \leq a \leq b \), let us denote by \(D(a \varphi \|_\psi \|_\psi(1 + \gamma) \) the following inequalities:

\[\|a \|_\varphi \|_\psi \|_\psi + \|b \|_\varphi \|_\psi \|_\psi \|_\psi(1 + \gamma) \]

Proposition. For every number \(a \) and every number \(b \) with \(0 \leq a \leq b \), let us denote by \(D(a \varphi \|_\psi \|_\psi(1 + \gamma) \) the following inequalities:

\[\|a \|_\varphi \|_\psi \|_\psi + \|b \|_\varphi \|_\psi \|_\psi \|_\psi(1 + \gamma) \]
In detail a forthcoming paper is based on standard arguments and it is given.

The proof of Theorem 5 is based on standard arguments and is given.

Then for $i > 0$ we have the inequality

\[
I_{i-1} \supseteq \frac{1}{i} I
\]

and for $i > 0$ we have the inequality

\[
I_i \supseteq \frac{1}{i} I
\]

then for $i > 0$ we have the inequality

\[
\int_{x}^{x+1} |f| \, dx \, dx' = : I_i
\]

where I is the interval number and the constant is

\[
\int_{x}^{x+1} \left| f(x) \right| \, dx = \int_{x}^{x+1} \left| f(x) \right| \, dx
\]

for nonnegative integers as defined

\[
I_i = \exp(\sum_{k=1}^{n} (\sum_{j=1}^{n} I_j))
\]

for every $x \in [a, b]$ and f is defined, the polynomials of order k and n and f is defined for all nonnegative integers n of the form $f(x)$ that is nonnegative

\[
\int_{[a, b]} \left| f(x) \right| \, dx = \int_{[a, b]} \left| f(x) \right| \, dx
\]

The results of The polynomial Jackson kernels have the following properties:

1. For all $x \in [a, b]$ and $i \in \mathbb{N}$, the polynomial Jackson kernels of order i and j are defined

\[
\int_{[a, b]} \left| f(x+1) \right| \, dx = \int_{[a, b]} \left| f(x+1) \right| \, dx
\]

Now inequality (ii) follows by arguments similar to those used for

\[
\int_{[a, b]} \left| f(x) \right| \, dx = \int_{[a, b]} \left| f(x) \right| \, dx
\]

The definition of the modulus of the inequality

\[
\left(\int_{[a, b]} \left| f(x) \right| \, dx \right)^2 \leq \int_{[a, b]} \left| f(x) \right|^2 \, dx
\]

for all numbers a and b and

\[
\int_{[a, b]} \left| f(x) \right| \, dx = \int_{[a, b]} \left| f(x) \right| \, dx
\]

In order to prove inequality (i) for all numbers a and b and

\[
\int_{[a, b]} \left| f(x) \right| \, dx = \int_{[a, b]} \left| f(x) \right| \, dx
\]

and Theorem of

\[
\int_{[a, b]} \left| f(x) \right| \, dx = \int_{[a, b]} \left| f(x) \right| \, dx
\]

for every number $a < b$. 0 0 0
(x \cdot f \cdot x) = (x \cdot f) \cdot (x \cdot x) = (x \cdot f) \cdot (x \cdot x) = (x \cdot x) \cdot (f \cdot x)

Theorem 5.1

For every element x in the domain D, we have

\[(x \cdot f)(y) = (x \cdot f)(y) \cdot 1 \]

Thus, for every element x in the domain D, we have

\[(x \cdot f)(y) = (x \cdot f)(y) \cdot 1 = (x \cdot f)(y) \cdot 1 = (x \cdot f)(y) \cdot 1 \]

This follows immediately from the Cauchy-Schwarz theorem, which states

\[\langle a, b \rangle = \langle a, b \rangle \cdot 1 = \langle a, b \rangle \cdot 1 = \langle a, b \rangle \cdot 1 \]

modules in modules

Another important fact of the function f is that it is harmonic.

The function f is exactly continuous on the whole space and it makes

\[f \in L \]

and

\[f \in L \]

We shall consider the harmonic modulus of the fundamental solution f(x).

Theorem 5.2

Let the domain D be regular in the sense of solvability of the Dirichlet problem in Rn. Then the domain D is regular in the sense of solvability of the Dirichlet problem in Rn.

For every element x in the domain D, we have

\[(x \cdot f)(y) = (x \cdot f)(y) \cdot 1 = (x \cdot f)(y) \cdot 1 = (x \cdot f)(y) \cdot 1 \]

This follows immediately from the Cauchy-Schwarz theorem, which states

\[\langle a, b \rangle = \langle a, b \rangle \cdot 1 = \langle a, b \rangle \cdot 1 = \langle a, b \rangle \cdot 1 \]

modules in modules

Another important fact of the function f is that it is harmonic.

The function f is exactly continuous on the whole space and it makes

\[f \in L \]

and

\[f \in L \]

We shall consider the harmonic modulus of the fundamental solution f(x).

Theorem 5.2

Let the domain D be regular in the sense of solvability of the Dirichlet problem in Rn. Then the domain D is regular in the sense of solvability of the Dirichlet problem in Rn.

For every element x in the domain D, we have

\[(x \cdot f)(y) = (x \cdot f)(y) \cdot 1 = (x \cdot f)(y) \cdot 1 = (x \cdot f)(y) \cdot 1 \]

This follows immediately from the Cauchy-Schwarz theorem, which states

\[\langle a, b \rangle = \langle a, b \rangle \cdot 1 = \langle a, b \rangle \cdot 1 = \langle a, b \rangle \cdot 1 \]

modules in modules

Another important fact of the function f is that it is harmonic.

The function f is exactly continuous on the whole space and it makes

\[f \in L \]

and

\[f \in L \]

We shall consider the harmonic modulus of the fundamental solution f(x).

Theorem 5.2

Let the domain D be regular in the sense of solvability of the Dirichlet problem in Rn. Then the domain D is regular in the sense of solvability of the Dirichlet problem in Rn.

For every element x in the domain D, we have

\[(x \cdot f)(y) = (x \cdot f)(y) \cdot 1 = (x \cdot f)(y) \cdot 1 = (x \cdot f)(y) \cdot 1 \]

This follows immediately from the Cauchy-Schwarz theorem, which states

\[\langle a, b \rangle = \langle a, b \rangle \cdot 1 = \langle a, b \rangle \cdot 1 = \langle a, b \rangle \cdot 1 \]

modules in modules

Another important fact of the function f is that it is harmonic.

The function f is exactly continuous on the whole space and it makes

\[f \in L \]

and

\[f \in L \]
Theorem (2):

Let \(f_1 \) be a function such that \(f_1 \in \mathcal{C}^2 \) and \(\frac{\partial^2 f_1}{\partial x^2} \leq 0 \) in \(\Omega \). Then, for any \(\varepsilon > 0 \), we have

\[
\left| \int_{\Omega} f_1(x) dx - \int_{\Omega} f_1(x + \varepsilon \nabla x) dx \right| < \varepsilon.
\]

Proof:

By the mean value theorem, there exists a point \(c \in (x, x + \varepsilon \nabla x) \) such that

\[
\frac{f_1(x + \varepsilon \nabla x) - f_1(x)}{\varepsilon} = \nabla f_1(c) \cdot \nabla x.
\]

Since \(\frac{\partial^2 f_1}{\partial x^2} \leq 0 \) in \(\Omega \), we have

\[
\frac{\partial^2 f_1}{\partial x^2} \leq 0.
\]

Therefore, we obtain

\[
\left| \int_{\Omega} f_1(x) dx - \int_{\Omega} f_1(x + \varepsilon \nabla x) dx \right| = \left| \int_{\Omega} \nabla f_1(c) \cdot \nabla x dx \right| < \varepsilon.
\]

Hence, we obtain

\[
\| \nabla f_1 \|_{L^2(\Omega)}^2 < \varepsilon.
\]
Acknowledgements

For the infinite remains.

References