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Abstract

In the present paper we provide a multivariate generalization of the
Euler-Maclaurin formula which is based on an appropriate multivariate
extension of the Bernoulli functions.
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1 Introduction

One of the most beautiful devices of classical analysis which has found numerous
applications in number theory and divergent series, see Ramanujan [2, p. 7 in
Vol. 1, Chapters 7,8], Hardy [11, Chapter 13], and which plays profound role in
numerical integration Davis-Rabinowitz [4, Chapter 2.9], is the Euler-Maclaurin
formula.

In the present paper we provide a multivariate generalization of the Euler-
Maclaurin formula which is based on an appropriate multivariate extension of
the Bernoulli functions. As a cornerstone of our generalization we take the
property of the Euler-Maclaurin formula, which might be called reproduction
with respect to neighboring domains the explanation of which follows.

1. The celebrated summation formula of Euler-Maclaurin is the following
(cf. [11, p. 323], [4, p. 109], Chakravarti [3], Gel’fond [9], Luogeng-Yuan [12]):

1
2
f (0) +

n−1∑
i=1

f (i) +
1
2
f (n) (1)

=

n∫
0

f (t) dt+
k∑

j=1

B2j

(2j)!

[
f (2j−1) (n)− f (2j−1) (0)

]
+Rs (f)

with remainder term Rs(f) of even order or of odd order as follows

Rs (f) =


−

n∫
0

P2k (t) f (2k) (t) dt for f in C2k [0, n]
n∫
0

P2k+1 (t) f (2k+1) (t) dt for f in C2k+1 [0, n] .
(2)

The Bernoulli functions Pk (t) are defined in Section 2. Here appear the
so-called Bernoulli numbers (the even ones), given by B2j = [(2j)!]P2j (0) =
[(2j)!]P2j (1) . By making a change of the variables in (1), namely t �−→ a+ ht,
where h = (b− a) /n, we obtain the quadrature form of the Euler-Maclaurin
formula (cf. [31, Ch. 7.21], [4, p. 109])

b∫
a

f (t) dt = h

[
1
2
f (a) +

n−1∑
i=1

f (a+ ih) +
1
2
f (b)

]
(3)

−
k∑

j=1

B2j

(2j)!
h2j
[
f (2j−1) (b)− f (2j−1) (a)

]
+Rc (f) ,
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where the remainder term Rc(f) has the even order or odd order form

Rc (f) =


h2k

b∫
a

P2k

(
n t−a

b−a

)
f (2k) (t) dt for f in C2k [a, b]

−h2k+1
b∫
a

P2k+1

(
n t−a

b−a

)
f (2k+1) (t) dt for f in C2k+1 [a, b] .

This formula is called quadrature since it gives an approximation to the
integral on the left-hand side through the so-called compound trapezoidal rule

TR (f) = h

[
1
2
f (a) +

n−1∑
i=1

f (a+ ih) +
1
2
f (b)

]

minus linear combinations of the odd order derivatives, which we will call bound-
ary terms,

BT (f) =
k∑

j=1

B2j

(2j)!
h2j
[
f (2j−1) (b)− f (2j−1) (a)

]
.

The remainder termRc (f) on the right-hand side of (3) is thought of as the error
of the approximation. This terminology applies clearly also to the summation
Euler-Maclaurin formula.

Now we may formulate the meaning of the reproduction property. Let us
write formula (3) for two neighboring intervals having the same length, then the
terms containing derivatives at the common midpoint cancel each other. Or,
more generally, imagine that we write formula (3) (putting n = 1) for every
subinterval [a+ jh, a+ (j + 1)h] , j = 0, ..., n− 1. After summing we see that
the terms with interior derivatives cancel and we obtain formula (3) itself, i.e. it
has reproduced itself! We see that the periodicity of the Bernoulli polynomials
plays an essential role.

In a similar way the reproduction property is seen by the summation formula
(1).

2. Having in mind the reproduction property as a main motivation we
will produce a quite different type of multivariate generalization of the Euler-
Maclaurin formula compared to the usual.

The usual way in which the Euler-Maclaurin formula is generalized, see
Sobolev [26], Mikhlin [20, Chapter 10], Stroud [29, and refs. there], [23], has for
an object to obtain an approximation of the integral in terms of values of the
function at the integer points (or the points of some lattice), or, from the point
of view of summation formulas, the sum over integer points is expressed through
the integral over the domain solely, Shaneson [25, and refs. tere]. In general, this
is the standard polynomial paradigm on which the one-dimensional quadrature
and the multivariate cubature formulas are based, Engels [6], Lyness-Cools [18],
[22], [23], namely, the formulas are exact for polynomials up to a certain degree.
So far, (to the authors’ knowledge) none of the results obtained in these refer-
ences generalizes the reproduction with respect to neighboring domains property.
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On the other hand, our multivariate approach gives approximation of the
integral of the d−variable function f over a d−dimensional domain by integrals
of the same function f over surfaces of lower dimension, d − 1, d − 2, etc., in
such a way that the formula obtained would possess the property of reproduc-
tion with respect to neighboring domains (at least for some special domains).
An important feature of this approach is that we obtain formulas which are
exact for functions which are polyharmonic of a certain degree or which are
solutions to similar higher order partial differential equations. The last fact is
a manifestation of what we call polyharmonicity paradigm. It has proved to
be very successful in treating problems in multivariate approximation through
polyharmonic functions and in Spline Theory and Wavelet Analysis based on
piecewise polyharmonic functions (polysplines), see [13], [14], [16], as well as in
applications of multivariate polysplines to optimal recovery and cubature formu-
las, see [15]. It may be taken as an alternative starting point of our multivariate
approach to the Euler-Maclaurin formulas as well.

3. One of the discoveries of the present research was the observation that
the theory of the one-dimensional Bernoulli polynomials may be viewed in the
framework of theHodge theory. Namely, due to the basic property of the classical
Bernoulli functions

[
B∗

k+1 (t)
]′ = (k + 1)B∗

k (t) and by their 1−periodicity the
following equality is obvious

∫ 1

0 B∗
k (t) dt = 0. The last is necessary for the

solubility of the problem u′′ (t) = B∗
k (t) , for 0 ≤ t ≤ 1, in terms of 1-periodic

functions u, i.e. of the corresponding Poisson problem on the one-dimensional
torus. Further, the solution u of the Poisson problem on the one-dimensional
torus is uniquely determined by the orthogonality condition

∫ 1

0
u (t) dt = 0.

Thus having found the first two 1−periodic Bernoulli functions B∗
1(t) =

t − 1/2, for 0 < t < 1 , B∗
1 (0) = 0, and B∗

0(t) = [B∗
1(t)]

′ = 1 − δ(t) ,
for 0 ≤ t < 1, the series of Bernoulli functions can be constructed by split-
ting them into two independent series. The first one B∗

0 , B
∗
2 , B

∗
4 , · · · con-

sists of all even order Bernoulli functions. By using B∗
2k we construct B

∗
2k+2 ,

k = 0, 1, 2, . . . as the unique 1-periodic solution of the Poisson problem u′′(t) =
B∗

2k(t), satisfying
∫ 1

0 u(t)dt = 0 on the one-dimensional torus. The second se-
ries B∗

1 , B
∗
3 , B

∗
5 , · · · consists of all odd order Bernoulli functions. Analgo-

usly, B∗
2k+3 is the unique 1−periodic solution of the Poisson problem v′′(t) =

B∗
2k+1(t), satisfying

∫ 1

0
v(t)dt = 0 on the one-dimensional torus. This new treat-

ment of splitting the series of the one-variate Bernoulli functions into two inde-
pendent series on the basis of the Poisson periodic problem gives rise to their
multivariate extension that we are going to present in this paper. This gen-
eral framework motivates our definition of multivariate Bernoulli functions and
delineates the perspective of even more considerable generalizations.

Let us note that 1−periodic functions can be considered as functions, defined
on the unit circle. As usually, the unit circle S

1 is obtained through factorization
of the interval [0, 1] by identifying the points 0 and 1 and having measure 1. The
generalized function B∗

0 is orthogonal to the constants also, but in generalized
sense.

It is of basic importance to choose proper initial functions P0,d (x) and
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P1,d (x) , the analogs to B∗
0 and B∗

1 in order to get Euler-Maclaurin cubature
possessing desired properties as reproduction with respect to neighboring domains
and being exact, say for the infinite dimensional space of all polyharmonic func-
tions of given order. For the proper choice of such we are lead by the idea
explained above to approximate the integral

∫
D f(x)dx by a linear combination

of integrals over manifolds of lower dimension, not only zero-dimensional.
We obtain two series of multivariate Euler-Maclaurin formulas in the unit

cube Duc = [0, 1]d ⊂ R
n. The first series P2k,d is based on a proper general-

ization of the even order Bernoulli functions P2k which appear in formula (1).
We choose as initial function, see below formula (11), the following one:

P0,d (x) = d−
d∑

k=1

∞∑
j=−∞

δ (xk − j) .

The second series P2k+1,d corresponds to the odd order Bernoulli functions
P2k+1. Here we choose as initial function the following one:

P1,d (x) =
d∏

j=1

B1 (xj) .

The main purpose of the present paper is to study the even order case which
is related to the function P0,d (x) .

As said above, the one-dimensional Bernoulli functions satisfy [B∗
k (t)]

′ =
kB∗

k−1 (t) or that is equivalent [P
∗
k (t)]

′ = P ∗
k−1 (t). In a similar way our mul-

tivariate Bernoulli functions are 1−periodic in every variable and satisfy the
equation

∆P2k+1,d = P2k−1,d and ∆P2k,d = P2k−2,d for k = 1, 2, . . . ,

as well as the orthogonality condition
∫

Duc
Pk,d (x) dx = 0. Let us remark that

the last condition is evidently true for P0,d and P1,d. Within the Hodge theory
it is a necessary condition for the solubility of the Poisson problem

∆u (x) = Pk,d (x)

on the torus S
d, cf. Griffiths-Harris [10, p. 89], and represents the orthogonality

to the harmonic space on the torus which consists of the constants only [10,
p. 89]. Now the solution u is determined up to a constant on the torus since
by the same argument the weak harmonic space consists only of the constant
functions. Thus, u is uniquely determined by putting∫

Duc

u (x) dx = 0.

Following this way, having the functions P0,d and P1,d appropriately chosen
we produce two independent series of multivariate Bernoulli functions P2k,d
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(even order multivariate Bernoulli functions) and P2k+1,d (odd order multivari-
ate Bernoulli functions).

We prove that (see (19) below)

P2k,d (x) =
d∑

j=1

P2k (xj)

where P2k are the one-dimensional normalized Bernoulli functions. So far, for
the odd order we have multiple Fourier series expression, namely,

P2k+1,d (x) = (−1)d+k 1

(2π)2k

∞∑
l1=1

...

∞∑
ld=1

1

|l|2k


d∏

j=1

2 sin (2πljxj)
2πlj

 ,

where l = (l1, l2, . . . , ld) and |l| = (l21 + l22 · · ·+ l2d
)1/2 .

4. In this paper we give in details a multivariate extension of the Euler-
Maclaurin formula that corresponds to the even order multivariate Bernoulli
functions, i.e. with even order remainder term. The formula of Euler-Maclaurin
type which we obtain for the unit cube Duc = [0, 1]d ⊂ R

d may be written as
(see Theorem 3, page 19, below)∫

Duc

f (x) dx =
1
n

∑
0≤l≤n
1≤j≤d

γl

∫
Sj,l

f (x) dσl,x (4)

+
d∑

j=1

m∑
k=1

1
n2k

d−1︷ ︸︸ ︷
1∫

0

...

1∫
0

{
∂

∂xj
∆k−1f (x)|xj=1 −

∂

∂xj
∆k−1f (x)|xj=0

}

× P2k,d (nx)|xj=0 dx1...dxj−1dxj+1...dxd +
1

n2m
Rc

2m (f) ,

where for the integers l, j, with 0 ≤ l ≤ n, 1 ≤ j ≤ d, we have denoted the
hyperplanes

S
j,l
= {x = (x1..., xd) ∈ Duc : xj = l/n}

and the constants

γl =
{
1/(2d) for l = 0, n,
1/d for 1 ≤ l ≤ n− 1.

Here, dσl,x denotes the d − 1-dimensional Lebesgue measure on every surface
S

j,l
.
The term

1
n

∑
0≤l≤n
1≤j≤d

γl

∫
Sj,l

f (x) dσl,x

is a generalization of the composed trapezoidal rule.
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Now we see that the next terms containing the difference of derivatives

∂

∂xj
∆k−1f (x)|xj=1 −

∂

∂xj
∆k−1f (x)|xj=0

are analog to the boundary terms with the difference of derivatives

f (2j−1) (1)− f (2j−1) (0)

in (3), where we have taken for clearness the case of the unit interval, a = 0, b =
1. Also the functions P2k,d are 1−periodic in every variable.

Hence, it follows immediately that formula (4) possesses the above pro-
claimed property of reproduction with respect to neighboring domains. Indeed,
if we add more neighboring cubes, the interior terms containing ∂

∂xj
∆k−1f (x)

will cancel due to the periodicity of P2k,d. Consequently, we will have also the
stability with respect to subdivisions property.

Let us point out that the cubature formula (4) possesses an acceleration effect
with respect to the order of approximation, and the reproduction with respect to
the neighboring domains property implies a minimal computational complexity
of the cubature formula (4) which makes it very efficient from algorithmic point
of view.

The even order remainder term (that is called an approximation error also)
is of the form

Rc
2m (f) =

1
d

∫
Duc

P2m,d (nx)∆mf (x) dx

which will be considered in general to be bounded.
As seen from the representation of the remainder term R2m (f) , our cubature

formula (4) is exact for the class of functions which are polyharmonic of order
m in the cube Duc, i.e. satisfy ∆mf (x) = 0 for x ∈ Duc (for basic facts on
polyharmonic functions see Aronszajn-Creese-Lipkin [1]).

The meaning of formula (4) is that we subdivide the unit cube Duc into nd

smaller cubes of sides 1
n , and on the right-hand side of the cubature we have

integrals over the boundaries Sj,l of the small cubes. So, the formula (4) is a
compound cubature formula of Euler-Maclaurin type.

Let us remark that for d = 1 the cubature formula (4) is the well known
univariate Euler–Maclaurin quadrature (3) with even order remainder term.

5. The proofs in general rely upon the invertability of the Laplace operator
on the d−dimensional torus (the Hodge theory for 0−forms).

6. After the main results of the present work were obtained the authors
made a search through MathSciNet under keyword ”Euler-Maclaurin” by title
and review text. The number of references on May 16, 2000 was 388. There
are quite few dealing with multivariate generalizations of the Euler-Maclaurin
formula and we hope that we have mentioned above some of the main references
(which also contain further references).

We have to point out to the wide circle of papers of S.L. Sobolev and his
school in the area of cubature formulas, [26, and refs. therein], and Müller-
Freeden [19], where the integral functional

∫
D
f(x)dx is approximated through
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linear combinations of function values, i.e. through Dirac delta functions. The
formulas are exact for a given power of a fixed elliptic operator of second order
(∆ in [26] and ∆ + λ in [19]). The main feature is that they choose as initial
function

P0,d (x) = 1−
∑

α∈Zd

δd (x− α)

(considered as error functional in [26]) where δd is the d−dimensional Dirac
delta function. So far such a choice does not produce multivariate Bernoulli
functions and respectively does not generalize the reproduction property.

The results of the present paper were announced in [5]. The results concern-
ing the odd order case will be presented in detail in a forthcoming paper.

2 Univariate Bernoulli functions

To make the things clear we remind the basic properties of the one-dimensional
Bernoulli polynomials. We shall denote by Bk (t) the one-dimensional Bernoulli
polynomials in the interval [0, 1] and through B∗

k (t) their periodic continuation
which are called Bernoulli functions. We shall give a multivariate extension of
a normed version of the Bernoulli functions, the functions Pk (t) = B∗

k (t) /k! .
They seem to be somewhat more convenient to deal with. For simplicity we will
call them also Bernoulli functions. We will list some of the properties of the one-
dimensional Bernoulli polynomials and functions. We display the 1−periodic on
the whole real line Bernoulli functions Pk (t) (cf. [11, p. 320-322], [4, p. 107], [17,
Chapter 1]) as follows:P0 (t) = 1− δ(t), for 0 ≤ t < 1, and P1 (t) = t− 1/2, for
0 < t < 1, P1 (0) = 0. Moreover we have:

P2k (t) = (−1)k−1
∞∑

l=1

2 cos (2πlt)

(2πl)2k
for k ≥ 0, (5)

where for k = 0 the series is considered in generalized sense and

P2k+1 (t) = (−1)k−1
∞∑
l=1

2 sin (2πlt)

(2πl)2k+1
for k ≥ 0.

The Bernoulli functions have the following properties: P ′
k+1 (t) = Pk (t) , for

k ≥ 0 and P2k+1 (0) = P2k+1 (1) = 0, for k ≥ 0. In addition

P2k (0) = P2k (1) =
B2k

(2k)!
= (−1)k−1

∞∑
l=1

2

(2πl)2k
for k ≥ 1.

The classical polynomials of Bernoulli are defined like (cf. [17, Chapter 1])
Bk (t) = (k!)Pk (t) , for k ≥ 0 and 0 < t < 1, so we may write B0(t) = 1,
B1(t) = t− 1/2 and B2(t) = t2 − t+ 1/6.

The usual definition of the Bernoulli polynomials is often through generating
polynomials, or using the Bernoulli numbers, cf. [11, p. 320-322]. As it is explain

8



in the Introduction, point 3, they can be defined by splitting into two series on
the basis of the Poisson problem on the torus T

1 = S
1 which will be a starting

point for the multivariate generalization.

3 Even order Euler-Maclaurin multivariate for-
mula

Our consideration in the multivariate case will parallel the results in the one-
dimensional case which may be found in, e.g., [11, Chapter XIII],[4, p. 107].
Here we assume that the appropriate derivatives of the function f exist and
are continuous. In the multidimensional setting we shall consider the cube
Dn = [0, n]

d and we shall work with integer multi-indexes α = (α1, ..., αd) ∈ Z
d.

We introduce the subdivision of Dn into smaller unit cubes

Dα =
d∏

i=1

[αi, αi + 1] (6)

= α+Duc for 0 ≤ αi ≤ n− 1,

where Duc = [0, 1]
d
. Now the d−dimensional torus

T
d = (S)d

is also obtained through factorization of Duc or which is the same

T
d = R

d/Zd.

Let us remark that we will use this representation in order to take into account
the property of the Bernoulli polynomials being 1−periodic.

In order to make a reasonable multivariate generalization of the Euler-
Maclaurin formula we remark that the zero order Bernoulli function is in fact
given by

P0 (t) = 1−
∞∑

j=−∞
δ (t− j) (7)

but not simply by 1 as is usually taken in [21, p. 19], [27, p. 120]. This follows
through

P ′
1 (t) = P0 (t) = 1− δ(t) for 0 ≤ t < 1

in distributional sense. Like a distribution, the function P0 satisfies property

〈P0, 1〉 =
∫ 1

0

P0 (t) dt = 0. (8)

Then the problem
u′′ (t) = P0 (t) (0 ≤ t ≤ 1) (9)
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has a periodic solution, or which is the same, the problem considered on the
one-dimensional torus T

1 has a solution determined up to a constant. This is
a classical fact from the theory of ordinary differential equations. On the other
hand it may be considered as a result about the Laplace operator on the one-
dimensional torus T

1 = S
1. In order to emphasize on the analogy between the

one-dimensional and the multidimensional case we will refer to the Hodge theory
for 0−forms on the torus, see ([10, p. 91],[30, Ch. 6]), in which the orthogonality
condition (8) is necessary for solubility of problem (9) on the one-dimensional
torus T

1.
Now the function P2 (t) is a continuous periodic solution to the equation (9)

and is uniquely determined like such through the additional condition∫ 1

0

P2 (t) dt = 0.

Hence, we obtain inductively the periodic functions P4, P6,..., using the Green
operator, (cf. [10, p. 91]), which also satisfy∫ 1

0

P2k (t) dt = 0 (10)

etc.
Let us go back to the multivariate setting. We introduce the following

notations:

x̂j = (x1, ..., xj−1, xj+1, ..., xd) and d̂xj = dx1...dxj−1dxj+1...dxd.

We will define in the d−dimensional setting the zero order d−dimensional
Bernoulli function by putting:

P0,d (x) = d−
d∑

k=1

∞∑
j=−∞

δ (xk − j) for x = (x1, ..., xd) ∈ R
d. (11)

Here we have denoted the delta functions of the hyperplanes by

δ (xk − j) = δ (xk − j) 1x̂k
, (12)

where 1x̂k
denotes the unity function on the variables x̂k and δ denotes the

one-dimensional delta-function.
Notice that the function P0,d in (11) satisfies the orthogonality condition

〈P0,d , 1〉 =

d︷ ︸︸ ︷
1∫

0

...

1∫
0

P0,d (x) dx = 0. (13)

Then we will look for the 1−periodic solution in all variables to the Poisson
problem

∆P2,d (x) = P0,d (x) (14)
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which satisfies the orthogonality condition

〈P2,d , 1〉 = 0. (15)

Similar to above, condition (13) is a necessary and sufficient one for the solubility
of problem (14), and condition (15) provides uniqueness, cf. [10, p. 91]. The
uniqueness follows from the fact that the only periodic harmonic functions are
the constants, or which is the same, the only harmonic functions on the torus
are the constants, see [10, p. 89].

The unique solution is easy to check to be given by the second Bernoulli
function in dimension d :

P2,d (x) =
d∑

j=1

P2 (xj) .

The last function is periodic and satisfies both (14), (15), the last due to (10).

3.1 First Order Formula of Euler-Maclaurin for the Unit
Cube Duc = [0, 1]d

The idea is to replace the ordinary differential operator d2/dx2 through the
Laplace operator ∆. Assuming that f ∈ C2

(
Duc

)
we obtain

∫
Duc

∆f (x)P2,ddx =

1∫
0

...

1∫
0

∆f (x)P2,d (x) dx

=
d∑

j=1

1∫
0

...

1∫
0

∂2

dx2
j

f (x)P2,d (x) dx.
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We apply integration by parts twice (or use the Green formula, which is the
same) in the domain Duc and obtain the following:∫

Duc

∂2

dx2
j

f (x)P2,d (x) dx

=

1∫
0

...

1∫
0

∂2

dx2
j

f (x)P2,d (x) dx

=

1∫
0

...

1∫
0

∑
k �=j

∂2

dx2
j

f (x)P2 (xk) dx+

1∫
0

...

1∫
0

∂2

dx2
j

f (x)P2 (xj) dx

=

d−1︷ ︸︸ ︷
1∫

0

...

1∫
0

(
∂

dxj
f (x)|xj=1 −

∂

dxj
f (x)|xj=0

) d∑
k=1
k �=j

P2 (xk) + P2 (1)

 d̂xj

−

d︷ ︸︸ ︷
1∫

0

...

1∫
0

∂

dxj
f (x)P1 (xj) dx.

Let us denote

Ij =

d−1︷ ︸︸ ︷
1∫

0

...

1∫
0

(
∂

dxj
f (x)|xj=1 −

∂

dxj
f (x)|xj=0

) d∑
k=1
k �=j

P2 (xk) + P2 (1)

 d̂xj .

Since

1∫
0

...

1∫
0

∂

dxj
f (x)P1 (xj) dx

= −
1∫

0

...

1∫
0

f (x) dx+
1
2

d−1︷ ︸︸ ︷
1∫

0

...

1∫
0

(
f (x)|xj=1 + f (x)|xj=0

)
d̂xj
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we obtain

d︷ ︸︸ ︷
1∫

0

...

1∫
0

∆f (x)P2,d (x) dx

=
d∑

j=1

Ij + d

1∫
0

...

1∫
0

f (x) dx− 1
2

d∑
j=1

d−1︷ ︸︸ ︷
1∫

0

...

1∫
0

(
f (x)|xj=1 + f (x)|xj=0

)
d̂xj .

Hence, the simplest Euler-Maclaurin formula becomes

d︷ ︸︸ ︷
1∫

0

...

1∫
0

f (x) dx = TR (f)−BT (f) +
1
d

d︷ ︸︸ ︷
1∫

0

...

1∫
0

∆f (x)P2,d (x) dx, (16)

where we have put for the boundary terms

BT (f) =
1
d

d∑
j=1

Ij

and for the so-called ”trapezoidal rule”:

TR (f) =
1
2d

d∑
j=1

d−1︷ ︸︸ ︷
1∫

0

...

1∫
0

(
f (x)|xj=1 + f (x)|xj=0

)
d̂xj

=
1
2d

∫
∂Duc

f (x) dσx,

where dσx is the surface element on the piecewise smooth surface ∂Duc. Let us
remark that the function P2(·) is periodic and continuous with period 1 on the
whole line, and consequently P2,d (·) is periodic in every variable with period 1.

The above formula expresses the multiple d−dimensional integral
1∫
0

···
1∫
0

f (x) dx

through integrals of dimension d− 1.
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3.2 The Two-dimensional Case

In the two-dimensional case, d = 2 we obtain

1∫
0

1∫
0

f (x, y) dxdy

=
1
4


1∫

0

[f (1, y) + f (0, y)] dy +

1∫
0

[f (x, 1) + f (x, 0)] dx


− 1
2


1∫

0

(P2 (1) + P2 (y))
[
∂

dx
f (1, y)− ∂

dx
f (0, y)

]
dy

+

1∫
0

(P2 (1) + P2 (x))
[
∂

dy
f (x, 1)− ∂

dy
f (x, 0)

]
dx


+
1
2

1∫
0

1∫
0

∆f (x, y)P2,d (x, y) dxdy.

Hence, after putting for the ”trapezoidal rule”

TR (f) =
1
4


1∫

0

[f (1, y) + f (0, y)]dy +

1∫
0

[f (x, 1) + f (x, 0)] dx


and for the boundary terms

BT (f) =
1
2


1∫

0

(P2 (1) + P2 (y))
[
∂

dx
f (1, y)− ∂

dx
f (0, y)

]
dy

+

1∫
0

(P2 (1) + P2 (x))
[
∂

dy
f (x, 1)− ∂

dy
f (x, 0)

]
dx

 ,

we obtain an expression for the integral

1∫
0

1∫
0

f (x, y) dxdy = TR (f)−BT (f) +
1
2

1∫
0

1∫
0

∆f (x, y)P2,d (x, y) dxdy

which is a sum of a cubature formula and a remainder containing ∆f (x, y) .

The above formula evidently expresses the multiple integral
1∫
0

1∫
0

f (x, y) dxdy

through integrals of dimension 1 and is exact for functions harmonic in the cube.
Let us remark the analogy with the one-dimensional case where the simplest
Euler-Maclaurin formula is exact for linear polynomials.
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3.3 The Higher Order Formula of Euler-Maclaurin for the
Unit Cube [0, 1]d

Further we will proceed inductively by defining the multivariate Bernoulli func-
tions through the recurrent system of Poisson equations

∆P2k,d (x) = P2k−2,d (x) for k ≥ 2, (17)

where P2k is continuous and periodic and satisfies the orthogonality condition

〈P2k,d (x) , 1〉 = 0. (18)

The unique solution to (17) is easy to find, it is given by

P2k,d (x) =
d∑

j=1

P2k (xj) . (19)

Now we are prepared to carry out the next step. Assuming that f ∈ C4
(
Duc

)
we apply the formula of Green ([1, p. 9]) (or make twice integration by parts,
which is the same) and due to ∆P4,d (x) = P2,d (x) we obtain the following:∫

Duc

∆f (x)P2,d (x) dx

=
∫

Duc

∆f (x)∆P4,d (x) dx

=
∫

Duc

∆2f (x)P4,d (x) dx

+
∫

∂Duc

{
∆f (x)

∂

∂νx
P4,d (x) − ∂

∂νx
∆f (x)P4,d (x)

}
dσx.

Using the properties of the one-dimensional Bernoulli polynomials we may sim-
plify the boundary integral in above expression and obtain∫

∂Duc

∆f (x)
∂

∂νx
P4,d (x) dσx = 0.

Indeed, on every flat piece xj = 0 or xj = 1 of the boundary ∂Duc we have the
following:

∂

∂νx
P4,d (x) =

∂

∂xj
P4,d (x)|xj=0 or xj=1 = P3 (xj)|xj=0 or xj=1 = 0.

Hence, the above equality becomes∫
Duc

∆f (x)P2,d (x) dx

=
∫

Duc

∆2f (x)P4,d (x) dx−
∫

∂Duc

∂

∂νx
∆f (x)P4,d (x) dσx .
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Similarly, we make use of

∂

∂νx
P2k,d (x) =

∂

∂xj
P2k,d (x)|xj=0 or xj=1 = P2k−1 (xj)|xj=0 or xj=1 = 0 (20)

for k ≥ 2.
We will now prove a formula of Euler-Maclaurin type.

Theorem 1 Let the even order Bernoulli function P2k,d be given by (19). Let
the function f ∈ C2m

(
Duc

)
. Then∫

Duc

f (x) dx (21)

= TRDuc (f)−
1
d

m∑
k=1

∫
∂Duc

∂

∂νx
∆k−1f (x)P2k,d (x) dσx+

+
1
d

∫
Duc

∆mf (x)P2m,d (x) dx,

where the trapezoidal sum is

TRDuc (f) =
1
2d

∫
∂Duc

f (x) dσx.

Proof. We apply induction argument and obtain by using (20)∫
Duc

∆jf (x)P2,d (x) dx

=
∫

Duc

∆j+1f (x)P4,d (x) dx−
∫

∂Duc

∂

∂νx
∆jf (x)P4,d (x) dσx

for j ≥ 1. Hence,∫
Duc

f (x) dx

= TRDuc (f)−BTDuc (f) +
1
d

∫
Duc

∆1f (x)P2,d (x) dx

= TRDuc (f)−
1
d

m∑
k=1

∫
∂Duc

∂

∂νx
∆k−1f (x)P2k,d (x) dσx

+
1
d

∫
Duc

∆mf (x)P2m,d (x) dx,

which proves the theorem.
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3.4 The Higher order Summation Formula of Euler-Maclaurin
Type for the Cube [0, n]d

Here we do the analog to the one-dimensional subdivision of the interval into n
equal subintervals.

Evidently, we have from (6) the following equality

Dn =
⋃

i=1,...,d

α∈Z
d

0≤αi≤n−1

Dα .

We choose a natural number n ≥ 1. Due to the periodicity of the functions
P2k,d we may write formula (21) for every domain Dα, 0 ≤ αi ≤ n− 1, namely,

∫
Dα

f (x) dx

= TRDα (f)−
1
d

m∑
k=1

∫
∂Dα

∂

∂νx
∆k−1f (x)P2k,d (x) dσx

+
1
d

∫
Dα

∆mf (x)P2m,d (x) dx .

Finally, we obtain the summation formula of Euler-Maclaurin type for the
cube Dn = [0, n]

d :

Theorem 2 For every function f ∈ C2m
(
Dn

)
the following formula holds:∫

Dn

f (x) dx (22)

= TRDn (f)−BTDn (f) +
1
d

∫
Dn

∆mf (x)P2m,d (x) dx,

where the trapezoidal sum is

TRDn (f) =
1
d

n−1∑
k=1

d∑
j=1

d−1︷ ︸︸ ︷
n∫

0

...

n∫
0

f (x)|xj=k d̂xj +
1
2d

∫
∂Dn

f (x) dσx,

and the boundary terms are

BTDn (f)

=
1
d

m∑
k=1

d∑
j=1

d−1︷ ︸︸ ︷
n∫

0

...

n∫
0

{
∂

∂xj
∆k−1f (x)|xj=n − ∂

∂xj
∆k−1f (x)|xj=0

}
P2k,d (x)|xj=0 d̂xj .
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Proof. We sum up over α ∈ Z
d with 0 ≤ αi ≤ n− 1 and obtain∫

Dn

f (x) dx =
∑

i=1,...,d

α∈Z
d

0≤αi≤n−1

∫
Dα

f (x) dx

= TRDn (f)−
1
d

m∑
k=1

∫
∂Dn

∂

∂ν
∆k−1f (x)P2k,d (x) dσ

+
1
d

∫
Dn

∆mf (x)P2m,d (x) dx,

where we have put

TRDn (f) =
∑

i=1,...,d
0≤αi≤n−1

TRDα (f)

=
1
d

n−1∑
k=1

d∑
j=1

d−1︷ ︸︸ ︷
n∫

0

...

n∫
0

f (x)|xj=k d̂xj +
1
2d

∑
k=0
k=n

d∑
j=1

d−1︷ ︸︸ ︷
n∫

0

...

n∫
0

f (x)|xj=k d̂xj

=
1
d

n−1∑
k=1

d∑
j=1

d−1︷ ︸︸ ︷
n∫

0

...

n∫
0

f (x)|xj=k d̂xj +
1
2d

∫
∂Dn

f (x) dσd−1,x.

Let us remark that the integrals on the interior boundaries ∂Dα , namely∫
∂Dα

∂

∂νx
∆k−1f (x)P2k,d (x) dσx,

have cancelled due to continuity of P2k,d (x) , k ≥ 1 and the fact that ∂
∂νx

∆k−1f (x)
is continuous and with different signs when taken for neighboring cubes.

Due to the periodicity of P2k,d (x) the rest of the terms on the boundary
∂Dn group and give the following :

BTDn (f) =
1
d

m∑
k=1

∫
∂Dn

∂

∂νx
∆k−1f (x)P2k,d (x) dσ

=
1
d

m∑
k=1

d∑
j=1

d−1︷ ︸︸ ︷
n∫

0

...

n∫
0

{
∂

∂xj
∆k−1f (x)|xj=n − ∂

∂xj
∆k−1f (x)|xj=0

}
P2k,d (x)|xj=0 d̂xj .

This finishes the proof.
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3.5 The cubature Formula of Euler-Maclaurin Type

We apply formula (22) to the function g (x) = f
(

x
n

)
and after making the

change of variables x = ny, we obtain a cubature formula of Euler-Maclaurin
type:

Theorem 3 For every function f ∈ C2m
(
Duc

)
the following formula holds∫

Duc

f (y) dy = TR (f)−BT (f) +R (f) , (23)

where the trapezoidal sum is given by

TR (f) =
1
nd

n−1∑
k=1

d∑
j=1

d−1︷ ︸︸ ︷
1∫

0

...

1∫
0

f (y)|yj=k/n d̂yj+
1
2nd

∑
k=0
k=n

d∑
j=1

d−1︷ ︸︸ ︷
1∫

0

...

1∫
0

f (y)|yj=k/n d̂yj

the boundary terms by

BT (f) =
1
d

d∑
j=1

m∑
k=1

1
n2k

d−1︷ ︸︸ ︷
1∫

0

...

1∫
0

{
∂

∂yj
∆k−1

y f (y)|yj=1 −
∂

∂yj
∆k−1

y f (y)|yj=0

}
× P2k,d (ny)|yj=0 d̂yj

and the remainder by

R (f) =
1

dn2m

∫
Duc

∆m
y f (y)P2m,d (ny) dy.

Remark 4 Let us remark that the above formula possesses the reproduction
with respect to neighboring domains property. This is evident due to the specific
form of the boundary terms in BT (f) which cancel at the interior points if a
neighboring cube is added. Let us remark that for d = 1 the above cubature for-
mula coincides with the one - dimensional Euler-Maclaurin quadrature formula
(3) with even order remainder term.

Another immediate result is the following:

Corollary 5 The summation formula (22) is exact for polyharmonic functions
of order m in Dn. The cubature formula (23) is exact for functions polyharmonic
of order m in Duc.

Theorem 3 implies that the cubature formula (23) possesses an acceleration
effect concerning the order of approximation. The next corollary shows the
approximate effectiveness of the cubature formula (23).
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Corollary 6 Let the function f ∈ C2m be 1−periodic in every variable. Let
|∆mf | ≤M. Then in the notations of Theorem 3 the following estimate holds∣∣∣∣∫

Duc

f (y) dy − TR (f)
∣∣∣∣ ≤MC

ζ (2m)
n2m

where C = 2/[(2π)2m] and ζ (·) denotes the Riemann zeta function.

Proof. The proof follows directly from Theorem 3 and the representation
of the Bernoulli functions P2k in (5),(19). .

3.6 The Euler–Maclaurin formula for arbitrary domains

A natural effect of the periodicity of the multivariate Bernoulli functions P2k,d

is that all results above hold for the case of an arbitrary domain with smooth
boundary. One has to add some more terms on the boundary. We confine
ourselves to only stating the cubature formula.

Theorem 7 Let the bounded domain G have a smooth boundary which does
not intersect itself. Then for every function f ∈ C2m

(
G
)

the following cubature
formula of Euler–Maclaurin type holds∫

G

f (y) dy (24)

= TR (f)−
m∑

k=1

1
n2k

∫
∂G

∂

∂νy
∆k−1f (y)P2k,d (ny) dσy

+
m∑

k=1

1
n2k

∫
∂G

∆k−1f (y)
∂

∂νy
P2k,d (ny) dσy

+
1

dn2m

∫
G

∆mf (y)P2m,d (ny) dy

where the trapezoidal sum is given by

TR (f) =
1
2dn

∞∑
k=−∞

d∑
j=1

∫
{G,yj=k/n}

indG (y) f (y)|yj=k/n d̂yj

and the index indG (y) is defined for every point y ∈ G as 1 if y ∈ ∂G and as 2
if y ∈ G; for y out of the closure of G we have indG (y) = 0.

The proof follows from the cubature formula (23) and Green’s formula [1].
Let us remark that the additional boundary terms appear since the functions

∂
∂νy

P2k,d (ny) may be non-zero on the boundary ∂G. The above formula may be
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written also if the boundary is only piecewise smooth. Then the index indG (y)
has to be changed appropriately.
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