# A Four-Level Conservative Finite Difference Scheme for Boussinesq Paradigm Equation

#### Natalia Kolkovska

Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgaria, e-mail: natali@math.bas.bg

Fifth International Conference on Application of Mathematics in Technical and Natural Sciences, Albena, 2013

Supported by Bulgarian National Science Fund Grant DDVU 02/71



- Boussinesq Paradigm Equation
  - Introduction
  - Properties to the Boussinesq equation
- Numerical method
  - Finite Difference Schemes
  - Discrete conservation law
  - Convergence
- Numerical results
  - Numerical algorithm
  - Tables

#### Introduction

We study the Cauchy problem for

## the Boussinesq Paradigm Equation (BPE)

$$\frac{\partial^2 u}{\partial t^2} = \Delta u + \beta_1 \Delta \frac{\partial^2 u}{\partial t^2} - \beta_2 \Delta^2 u + \Delta f(u), \quad x \in \mathbb{R}^n, \ t > 0,$$
$$u(x,0) = u_0(x), \quad \frac{\partial u}{\partial t}(x,0) = u_1(x),$$

on the unbounded region  $\mathbb{R}^n$  with asymptotic boundary conditions  $u(x,t) \to 0$ ,  $\Delta u(x,t) \to 0$  as  $|x| \to \infty$ , where  $\Delta$  is the Laplace operator,  $\beta_1$  and  $\beta_2$  are positive constants.

#### Introduction

We study the Cauchy problem for

## the Boussinesq Paradigm Equation (BPE)

$$\frac{\partial^2 u}{\partial t^2} = \Delta u + \beta_1 \Delta \frac{\partial^2 u}{\partial t^2} - \beta_2 \Delta^2 u + \Delta f(u), \quad x \in \mathbb{R}^n, \ t > 0,$$
$$u(x,0) = u_0(x), \quad \frac{\partial u}{\partial t}(x,0) = u_1(x),$$

on the unbounded region  $\mathbb{R}^n$  with asymptotic boundary conditions  $u(x,t) \to 0$ ,  $\Delta u(x,t) \to 0$  as  $|x| \to \infty$ ,

where  $\Delta$  is the Laplace operator,  $\beta_1$  and  $\beta_2$  are positive constants.

This is a 4-th order differential equation in x and 2-nd order in t with non-linearity contained in the term f(u).

f is a polynomial of u. Examples:  $f(u) = \alpha u^2$ ;  $f(u) = au^3 + bu^5$ .

# Numerical methods for BPE, references

- finite difference methods (Ortega, Sanz Serna, 1990; Christov, 1994);
- finite element methods (Pani, 1997);
- spectral method with Christov functions (Christou, 2010);
- Godunov-type central-upwind scheme (Chertock, Christov, Kurganov, 2011)
- theoretical analysis, numerical implementation, comparison of several FDS (Kolkovska, 2010; Christov, Vasileva, Kolkovska, 2010; Kolkovska, Dimova, 2011, 2012);
- vector additive schemes (multicomponent alternating direction method) (Kolkovska, Angelow, 2013);

We assume that the functions  $u_0$ ,  $u_1$  and f(u) satisfy such regularity conditions that BPE has a unique solution which is smooth enough.

# Properties to the Boussinesq equation

Let  $\|\cdot\|$  denote the standard norm in  $L_2(\mathbb{R}^n)$ . Define the energy functional

$$E\left(u(t)\right) = \left\|\left(-\Delta\right)^{-1/2} \frac{\partial u}{\partial t}\right\|^{2} + \beta_{1} \left\|\frac{\partial u}{\partial t}\right\|^{2} + \left\|u\right\|^{2} + \beta_{2} \left\|\nabla u\right\|^{2} + \int_{R^{n}} F(u) du$$

with

$$F(u) = \int_0^u f(s) ds$$

#### Theorem (Conservation law)

The solution u to Boussinesq problem satisfies the following energy identity

$$E(u(t)) = E(u(0)) \quad \forall t \in [0, T].$$

We obtain similar energy identities for the solutions of the FDS employed in the discretization of BPE.

## Notations for case n = 2:

- Domain  $\Omega = [-L_1, L_1] \times [-L_2, L_2]$ ,  $L_1, L_2$  sufficiently large;
- a uniform mesh with steps  $h_1$ ,  $h_2$  in  $\Omega$ :  $x_i = ih_1$ ,  $i = -M_1$ ,  $M_1$ ;  $y_i = jh_2$ ,  $j = -M_2$ ,  $M_2$ ;
- $\tau$  the time step,  $t_k = k\tau, k = 0, 1, 2, ...;$
- mesh points  $(x_i, y_j, t_k)$ ;
- $v_{(i,j)}^{(k)}$  denotes the discrete approximation  $u(x_i, y_j, t_k)$ ;
- notations for some discrete derivatives of mesh functions:
  - $v_{t,(i,j)}^{(k)} = (v_{(i,j)}^{(k+1)} v_{(i,j)}^{(k)})/\tau;$
  - $v_{\bar{x}\times,(i,j)}^{(k)} = \left(v_{(i+1,j)}^{(k)} 2v_{(i,j)}^{(k)} + v_{(i-1,j)}^{(k)}\right)/h_1^2;$
  - $v_{\bar{t}t,(i,j)}^{(k)} = \left(v_{(i,j)}^{(k+1)} 2v_{(i,j)}^{(k)} + v_{(i,j)}^{(k-1)}\right)/\tau^2;$
  - $\Delta_h v = v_{\bar{x}x} + v_{\bar{y}y}$  the 5-point discrete Laplacian.
  - $(\Delta_h)^2 v = v_{\bar{x}x\bar{x}x} + v_{\bar{y}y\bar{y}y} + 2v_{\bar{x}x\bar{y}y}$  the discrete biLaplacian

The second time derivative at the time level  $t^k + \tau/2$  is approximated with error  $O(\tau^2)$  using four consecutive time levels (k+2), (k+1), (k) and (k-1) as

$$v_{\hat{t}\hat{t}}^{(k)} = 0.5(v^{(k+2)} - v^{(k+1)} - v^{(k)} + v^{(k-1)})\tau^{-2}.$$

For the approximation of  $\Delta_h v$  and  $(\Delta_h)^2 v$  we introduce two symmetric approximations to  $u(\cdot, t^k + \tau/2)$  with real parameters  $\theta$  and  $\mu$ :

$$v^{\theta(k)} = \theta v^{(k+2)} + (0.5 - \theta) v^{(k+1)} + (0.5 - \theta) v^{(k)} + \theta v^{(k-1)},$$
  
$$v^{\mu(k)} = \mu v^{(k+2)} + (0.5 - \mu) v^{(k+1)} + (0.5 - \mu) v^{(k)} + \mu v^{(k-1)}$$

The second time derivative at the time level  $t^k + \tau/2$  is approximated with error  $O(\tau^2)$  using four consecutive time levels (k+2), (k+1), (k) and (k-1) as

$$v_{\hat{t}\hat{t}}^{(k)} = 0.5(v^{(k+2)} - v^{(k+1)} - v^{(k)} + v^{(k-1)})\tau^{-2}.$$

For the approximation of  $\Delta_h v$  and  $(\Delta_h)^2 v$  we introduce two symmetric approximations to  $u(\cdot, t^k + \tau/2)$  with real parameters  $\theta$  and  $\mu$ :

$$v^{\theta(k)} = \theta v^{(k+2)} + (0.5 - \theta) v^{(k+1)} + (0.5 - \theta) v^{(k)} + \theta v^{(k-1)},$$
  
$$v^{\mu(k)} = \mu v^{(k+2)} + (0.5 - \mu) v^{(k+1)} + (0.5 - \mu) v^{(k)} + \mu v^{(k-1)}$$

For the approximation of non-linear term we use

$$\frac{F(v^{(k+1)}) - F(v^{(k)})}{v^{(k+1)} - v^{(k)}}.$$

Note that function f(v) is a polynomial of v, thus the integrals F(v) could be explicitly evaluated!



#### Four level FDS:

$$(I - \beta_1 \Delta_h)(v^{(k+2)} - v^{(k+1)} - v^{(k)} + v^{(k-1)})/(2\tau^2)$$
$$- \Delta_h v^{\theta(k)} + \beta_2(\Delta_h)^2 v^{\mu(k)} = \Delta_h \frac{F(v^{(k+1)}) - F(v^{(k)})}{v^{(k+1)} - v^{(k)}}$$

Here I stands for the identity operator. Initial values  $v^{(0)}$ ,  $v^{(1)}$  and  $v^{(-1)}$  on time levels t=0,  $t=\tau$  and

Initial values  $v^{(2)}$ ,  $v^{(2)}$  and  $v^{(-2)}$  on time levels t=0,  $t=\tau$  at t=- au are evaluated by formulas

$$v_{i,j}^{(0)} = u_0(x_i, y_j),$$

$$v_{i,j}^{(1)} = u_0(x_i, y_j) + \tau u_1(x_i, y_j)$$

$$+ 0.5\tau^2 (I - \beta_1 \Delta_h)^{-1} (\Delta_h u_0 - \beta_2 (\Delta_h)^2 u_0 + \Delta_h f(u_0)) (x_i, y_j),$$

$$v_{\bar{t}t(i,j)}^{(0)} = \left(v_{(i,j)}^{(1)} - 2v_{(i,j)}^{(0)} + v_{(i,j)}^{(-1)}\right) \tau^{-2}$$

$$= (I - \beta_1 \Delta_h)^{-1} (\Delta_h u_0 - \beta_2 \Delta_h^2 u_0 + \Delta_h f(u_0)) (x_i, y_i).$$

## Discrete conservation law

Consider the space of functions, which vanish on the boundary of  $\Omega_h$ , with the scalar product

$$\langle v, w \rangle = \sum_{i,j} h_1 h_2 v_{(i,j)}^{(k)} w_{(i,j)}^{(k)};$$

We define operators

$$A = -\Delta_h$$

$$B = I - \beta_1 \Delta_h - 2\tau^2 \theta \Delta_h + 2\tau^2 \beta_2 \mu (\Delta_h)^2$$

A , B - self-adjoint and positive definite operators for  $\theta \geq 0$  and  $\mu > 0$ 



We introduce the linear functional  $E_{h,L}(v^{(k)})$  as

$$E_{h,L}(v^{(k)}) = 0.5 \left\langle A^{-1}Bv_t^{(k)}, v_t^{(k-1)} \right\rangle + 0.5 \left\langle v^{(k)} + \beta_2 Av^{(k)}, v^{(k)} \right\rangle$$

and the full discrete energy functional  $E_h(v^{(k)})$  as

$$E_h(v^{(k)}) = E_{h,L}(v^{(k)}) + \left\langle F(v^{(k)}), 1 \right\rangle.$$

#### Theorem (Discrete conservation law )

The solution to the considered FDS satisfies the energy equalities

$$E_h(v^{(k)}) = E_h(v^{(0)}), \qquad k = 1, 2, \dots$$

i.e. the discrete energy is conserved in time.

Our calculations confirm that the discrete energy functional  $E_h(v^{(k)})$  is preserved in time with a high accuracy (for  $t \in (0,20]$  - with  $10^{-8}$  error)

## Theorem (Convergence of the method)

Assume that f is a polynomial of u and that:

(i) parameters  $\theta$  and  $\mu$  satisfy the operator inequality

$$A^{-1} + \beta_1 I + \tau^2 (2\theta - 0.5)I + \tau^2 \beta_2 (2\mu - 0.5)A > \epsilon I, \ \epsilon > 0$$
 with some positive real number  $\epsilon$  independent on h,  $\tau$ , u;

- (ii)  $u \in C^{4,4}(\mathbb{R}^2 \times [0, T);$
- (iii) the discrete solution v is bounded in the maximal norm.

Let 
$$M \ge \max_{i,j,k \le N} \left( |u(x_i, y_j, t_k)|, |v_{i,j}^{(k)}| \right)$$
 and  $\tau < C_1 M^{-1}$ .

## Theorem (Convergence of the method)

Assume that f is a polynomial of u and that:

(i) parameters  $\theta$  and  $\mu$  satisfy the operator inequality

$$A^{-1} + \beta_1 I + \tau^2 (2\theta - 0.5)I + \tau^2 \beta_2 (2\mu - 0.5)A > \epsilon I$$
,  $\epsilon > 0$  with some positive real number  $\epsilon$  independent on  $h$ ,  $\tau$ ,  $u$ ;

- (ii)  $u \in C^{4,4}(\mathbb{R}^2 \times [0, T);$
- (iii) the discrete solution v is bounded in the maximal norm.

Let 
$$M \ge \max_{i,j,k \le N} \left( |u(x_i,y_j,t_k)|, |v_{i,j}^{(k)}| \right)$$
 and  $\tau < C_1 M^{-1}$ .

Then the discrete solution v converges to the exact solution u as  $|h|, \tau \to 0$  and there is a constant C (independent of h,  $\tau$  and u) such that the following estimate holds for the error z = u - v:

$$\epsilon ||z_t^{(k)}|| + ||z^{(k)} + z^{(k+1)}|| + ||A^{1/2}(z^{(k)} + z^{(k+1)})|| \le Ce^{Mt^k} \left(|h|^2 + \tau^2\right)$$

Table: Restrictions on parameters  $\theta$ ,  $\mu$  for validity of condition (i) in the convergence Theorem

| μ               | θ                  | sufficient conditions                                                                    |  |
|-----------------|--------------------|------------------------------------------------------------------------------------------|--|
| $\mu \geq 0.25$ | $\theta \geq 0.25$ | no restrictions                                                                          |  |
| $\mu \geq 0.25$ | $\theta < 0.25$    | $\tau^2 < \frac{\beta_1 - \epsilon + \tau^2 (2\mu - 0.5)\beta_2 4/L^2}{(0.5 - 2\theta)}$ |  |
| $\mu < 0.25$    | $\theta \geq 0.25$ | $\tau^2 < h^2 \frac{\beta_1 - \epsilon}{4n(0.5 - 2\mu)\beta_2}$                          |  |
| $\mu < 0.25$    | $\theta < 0.25$    | $\tau^2 < h^2 \frac{\beta_1 - \epsilon + \tau^2 (2\theta - 0.5)}{4n(0.5 - 2\mu)\beta_2}$ |  |

Here  $L = \max(L_1, L_2)$  is the semi-length of the computational domain and n = 1, 2 is the dimension.



Combining convergence Theorem with the embedding theorems we get error estimates in the uniform norm:

#### Corollary

Under the assumptions of the main Theorem the finite difference scheme admits the following error estimate in the uniform norm:

$$\begin{split} & \max_i |z_i^{(k)} + z_i^{(k+1)}| \leq C e^{Mt^k} \left( |h|^2 + \tau^2 \right), n = 1; \\ & \max_{i,j} |z_i^{(k)} + z_i^{(k+1)}| \leq C e^{Mt^k} \sqrt{\ln(\max\{N_1,N_2\})} \left( |h|^2 + \tau^2 \right), n = 2. \end{split}$$

The above estimates are optimal for the 1D case and *almost* optimal (up to a logarithmic factor) for the 2D case.

#### Numerical algorithm

- 1. Evaluate  $v^{(0)}$ ,  $v^{(1)}$ ,  $v^{(-1)}$  from the initial conditions;
- 2. For k = 0, 1, 2, ... do  $(v^{(k-1)}, v^{(k)}, v^{(k+1)})$  are known):

$$(I - \beta_1 \Delta_h)(v^{(k+2)})/(2\tau^2) - \theta \Delta_h v^{(k+2)} + \mu \beta_2 \Delta_h^2 v^{(k+2)}$$

$$= \Delta_h \frac{F(v^{(k+1)}) - F(v^{(k)})}{v^{(k+1)} - v^{(k)}} - (0.5 - \mu)\beta_2(\Delta_h)^2 (v^{(k+1)} + v^{(k)})$$

$$- \mu \beta_2 \Delta_h^2 v^{(k-1)} + (0.5 - \theta)\Delta_h (v^{(k+1)} + v^{(k)}) + \theta \Delta_h v^{(k-1)}$$

$$+ (I - \beta_1 \Delta_h)(v^{(k+1)} + v^{(k)}) - v^{(k-1)})/(2\tau^2)$$

#### Numerical algorithm

- 1. Evaluate  $v^{(0)}$ ,  $v^{(1)}$ ,  $v^{(-1)}$  from the initial conditions;
- 2. For k = 0, 1, 2, ... do  $(v^{(k-1)}, v^{(k)}, v^{(k+1)})$  are known):

$$(I - \beta_1 \Delta_h)(v^{(k+2)})/(2\tau^2) - \theta \Delta_h v^{(k+2)} + \mu \beta_2 \Delta_h^2 v^{(k+2)}$$

$$= \Delta_h \frac{F(v^{(k+1)}) - F(v^{(k)})}{v^{(k+1)} - v^{(k)}} - (0.5 - \mu)\beta_2(\Delta_h)^2 (v^{(k+1)} + v^{(k)})$$

$$- \mu \beta_2 \Delta_h^2 v^{(k-1)} + (0.5 - \theta)\Delta_h (v^{(k+1)} + v^{(k)}) + \theta \Delta_h v^{(k-1)}$$

$$+ (I - \beta_1 \Delta_h)(v^{(k+1)} + v^{(k)} - v^{(k-1)})/(2\tau^2)$$

#### Remarks:

if  $\mu \neq 0$  - 4-th order elliptic equation for  $v^{(k+2)} \Rightarrow$  choose  $\mu = 0!$  for  $\mu = 0$  - second order elliptic equation for  $v^{(k+2)}$  - the numerical method is efficient!

No inner iterations are needed for evaluation of  $v^{(k+2)}$ .

Despite this fact, this method is conservative!

## **Preliminaries**

• An analytical solution of the 1D equation (one solitary wave):

$$u(x, t; x_0, c) = \frac{3}{2} \frac{c^2 - 1}{\alpha} \operatorname{sech}^2 \left( \frac{x - x_0 - ct}{2} \sqrt{\frac{c^2 - 1}{\beta_1 c^2 - \beta_2}} \right),$$

where  $x_0$  is the initial position of the peak of the solitary wave,

- Parameters:  $\alpha=3$ ,  $\beta_1=1.5$ ,  $\beta_2=0.5$ , c is the wave speed.
- Initial conditions for one solitary wave or two solitary waves:

$$u(x,0) = u(x,0;-40,2) + u(x,0;50,-1.5)$$

$$\frac{du}{dt}(x,0) = u(x,0;-40,2)_t + u(x,0;50,-1.5)_t$$

• schemes with  $\mu=0$  and several  $\theta$ :  $\theta=0.25$ ,  $\theta=0.5$ ,  $\theta=0$ .



# One solitary wave

Errors in uniform norm and rate of convergence for  $t \in [0, 20], \ \theta = 0.5$ 

|        | c=           | 2          | c=0.5     |            |  |
|--------|--------------|------------|-----------|------------|--|
| h      | Error        | Rate       | Error     | Rate       |  |
| 0.1    | 0.0011424    |            | 0.0094145 |            |  |
| 0.05   | 0.00028569   | 1.99954544 | 0.0022174 | 2.08601543 |  |
| 0.025  | 7.1534 e-005 | 1.99783019 | 0.0005475 | 2.01793817 |  |
| 0.0125 | 1.9402 e-005 | 1.88234306 | 0.0001359 | 2.01031351 |  |

- $\tau = h\sqrt{(\beta_1/(8\beta_2))}$ ,  $\epsilon = 0.5\beta_1$ ,  $\tau^2 < 0.5\beta_1$
- The error is the difference between the calculated and the exact solution in uniform norm for t = 20.
- The calculations confirm the schemes are of order  $O(h^2 + \tau^2)$ .

# One solitary wave, Different parameters $\theta$

Errors in uniform norm for  $t \in [0, 40]$ , c = 2

| h      | $\theta = 0.5$ | $\theta = 0.25$ | $\theta = 0$ | Error <sub>0.5</sub> /Error <sub>0</sub> |
|--------|----------------|-----------------|--------------|------------------------------------------|
| 0.2    | 0.0253530      | 0.0128760       | 0.0047763    | 5.3080837                                |
| 0.1    | 0.0063896      | 0.0032394       | 0.0011790    | 5.4195081                                |
| 0.05   | 0.0015989      | 0.0008109       | 0.0002938    | 5.4423227                                |
| 0.025  | 0.0003999      | 0.0002029       | 7.3306e-05   | 5.4554879                                |
| 0.0125 | 0.0001014      | 5.252e-05       | 1.678e-05    | 6.0446961                                |

- The error is the difference between the calculated and the exact solution in uniform norm for t = 40.
- For one solitary wave the scheme with  $\theta=0$  is 5 to 6 times more precise than the scheme with  $\theta=0.5!$

# Interaction of two solitary waves with different speeds

Errors in uniform norm and rate of convergence for  $t \in [0,40]$ 

| h    | $\theta = 0.5$ |            | $\theta = 0$    |            |  |
|------|----------------|------------|-----------------|------------|--|
|      | error          | rate       | error           | rate       |  |
| 0.08 |                |            |                 |            |  |
| 0.04 | 0.00231463     |            | 0.00034355      |            |  |
| 0.02 | 0.00057865     | 2.00002063 | 8.55658155e-005 | 2.31582697 |  |
| 0.01 | 0.00013966     | 2.05076806 | 1.71856875e-005 | 2.00541487 |  |

- For every h the error is calculated by Runge method as  $E_1^2/(E_1-E_2)$  with  $E_1=\|u_{[h]}-u_{[h/2]}\|$ ,  $E_2=\|u_{[h/2]}-u_{[h/4]}\|$ , where  $u_{[h]}$  is the calculated solution with step h for t=40.
- The numerical rate of convergence is  $(\log E_1 \log E_2)/\log 2$ .
- The calculations confirm the schemes are of order  $O(h^2 + \tau^2)$ .
- For two solitary waves the scheme with  $\theta=0$  is 6 to 7 times more precise than the scheme with  $\theta=0.5!$

## Comparison with a 3-level conservative scheme

#### Errors in uniform norm for one and two solitary waves

|        | 1 soliton, T=40 |         |        | 2 solitons, T=80 |          |
|--------|-----------------|---------|--------|------------------|----------|
|        | 4-level         | 3-level |        | 4-layer          | 3-level  |
| h h    | $\theta = 0.25$ | Con.FDS | h      | $\theta = 0.25$  | Con.FDS  |
| 0.2    | 0.01288         | 0.14412 | 0.2    |                  |          |
| 0.1    | 0.00324         | 0.03753 | 0.1    | 0.04019          |          |
| 0.05   | 0.00081         | 0.00948 | 0.05   | 0.01907          | 0.102754 |
| 0.025  | 0.00020         | 0.00238 | 0.025  | 0.009212         | 0.026027 |
| 0.0125 | 5.25e-05        | 0.00059 | 0.0125 | 0.004010         | 0.006528 |

- for one solitary wave: the 4-level FDS is approximately 10 times more precise than the 3-level FDS;
- for two solitary waves: the 4-level FDS is approximately 2 times more precise than the 3-level FDS.

With respect to the error magnitude the 'new' four-level scheme performs much better than the 'old' three-level schemes!

*Justification*: Consider both FDS. We expand all terms in Taylor series about the point  $(x_i, t^{(k)} + \tau/2)$  or  $(x_i, t^k)$  and get for the leading terms

$$R_{4-lev} = \frac{1}{8} \alpha \Delta_h \frac{\partial f}{\partial u}(x_i, t^{(k)} + \tau/2) \frac{\partial^2 u}{\partial t^2}(x_i, t^{(k)} + \tau/2),$$

$$R_{3-lev} = \frac{1}{4} \alpha \Delta_h \frac{\partial f}{\partial u}(x_i, t^k) \frac{\partial^2 u}{\partial t^2}(x_i, t^k).$$

Thus,  $R_{3-lev} \approx 2 * R_{4-lev}$ . This has essential impact on the total error, when the solution has large derivatives!

#### Concluding remarks:

- We develop a four level FDS for BPE.
- The 4-level FDS is conservative, i.e. the discrete energy of the numerical solution is preserved in time.
- Error estimates in the uniform norm and in the first Sobolev norm are obtained.
- For  $\mu = 0$  the numerical algorithm for evaluation of the discrete solution is efficient.
- The numerical experiments show good agreement with the theoretical results.

# Thank you for your attention!