
Perturbation Solution for the 2D Shallow-Water
Waves

Michail D. Todorov

Faculty of Applied Mathematics and Computer Science
Technical University of Sofia, Bulgaria

(Work done in collaboration with and supervision of Prof. C. I.
Christov from ULL)

3rd International Conference AMiTaNS’11, 20-25 June
2011, Albena, Bulgaria

M. D. Todorov Perturbation Solution for the 2D Shallow-Water Waves



Outline

Problem Formulation

Boussinesq Paradigm Equation

Perturbation Method

Governing System

Difference Schemes

Results and Discussion

References

M. D. Todorov Perturbation Solution for the 2D Shallow-Water Waves



Outline of the Problem

Boussinesq’s equation (BE) was the first model for the
propagation of surface waves over shallow inviscid fluid layer.
He found an anlytical solution of his equation and thus proved
that the balance between the steepening effect of the
nonlinearity and the flattening effect of the dispersion
maintains the shape of the wave. This discovery can be
properly termed ‘Boussinesq Paradigm.’
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Outline of the Problem

Apart from the significance for the shallow water flows, this
paradigm is very important for understanding the particle-like
behavior of nonlinear localized waves. As it should have been
expected, most of the physical systems are not fully integrable
(even in one spatial dimension) and only a numerical approach
can lead to unearthing the pertinent physical mechanisms of
the interactions.
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Outline of the Problem

The overwhelming majority of the analytical and numerical
results obtained so far are for one spatial dimension, while in
multidimension, much less is possible to achieve analytically,
and almost nothing is known about the unsteady solutions
that involve interactions, especially when the full-fledged
Boussinesq equations are involved.
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Outline of the Problem

In the present work, we undertake an asymptotic
semi-analytical solution for moderate phase speeds and
compare the results with the above mentioned numerical
works.

M. D. Todorov Perturbation Solution for the 2D Shallow-Water Waves



Boussinesq Paradigm Equation (BPE)

As shown in Christov(2001), the consistent implementation of the
Boussinesq method yields the following Generalized Wave Equation
(GWE) for f = φ(x , y , 0; t):

ftt +2β∇f ·∇ft +βft∆f +
3β2

2
(∇f )2∆f −∆f +

β

6
∆2f − β

2
∆f t = 0.

(1)
Eq. (1) is the most rigorous amplitude equation that can be
derived for the surface waves over an inviscid shallow layer, when
the length of the wave is considered large in comparison with the
depth of the layer. It was derived only in 2001. Besides it a
plethora of different inconsistent Boussinesq equations are still
vigorously investigated. The most popular are the versions that
contain a quadratic nonlinearity which are useful from the
paradigmatic point of view.
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Boussinesq Paradigm Equation (BPE)

Unfortunately, Boussinesq did some additional unnecessary
assumptions, which rendered his equation incorrect in the sense of
Hadamard. We term the original model the ‘Boussinesq’s
Boussinesq Equation’ (BBE). During the years, it was ‘improved’
in a number of works. The mere change of the incorrect sign of
the fourth derivative in BBE yields the so-called ‘good’ or ‘proper’
Boussinesq equation (BE). A different approach to removing the
incorrectness is by changing the spatial fourth derivative to a
mixed fourth derivative, which resulted into an equation know
nowadays as the Regularized Long Wave Equation (RLWE) or
Benjamin–Bona–Mahony equation (BBME).
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Boussinesq Paradigm Equation (BPE)

In fact, the mixed derivative occurs naturally in Boussinesq
derivation (see Eq. (1)), and was changed by Boussinesq to a
fourth spatial derivative under an assumption that ∂t ≈ c∂x , which
is currently known as the ‘Linear Impedance Relation’ (or LIA).
The LIA has produced innumerable instances of unphysical results.
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Boussinesq Paradigm Equation (BPE)

Boussinesq applied the LIA also to the nonlinear terms, and
neglected the cubic nonlinearity. This simplified the nonlinear
terms of Eq. (1) to a point where Boussinesq was able to find the
first sech solution for the permanent localized wave. The actual
nonlinearity is important because it provides for the Galilean
invariance of the model. We focus here on the following
two-dimensional amplitude equation:

wtt = ∆
[
w − α(w3 − σw5) + β1wtt − β2∆w

]
, (2)

where w is the surface elevation, β1, β2 > 0 are two dispersion
coefficients. The parameter σ accounts for the relative importance
of the quintic nonlinearity term. We term this equation the
Qubic-Quintic Boussinesq Paradigm Equation (QQBPE).
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Boussinesq Paradigm Equation (BPE)

An important advantage of the QQBPE is that its energy is the
following functional, namely,

dE

dt
= 0, E =

1

2

∫ ∞

−∞

[
(
∂w

∂t
)2 + (

∂w

∂x
)2 − 2

3
w4

+
1

3
σw6 + β1(

∂2w

∂t∂x
)2 + (

∂2w

∂x2
)2

]
dx . (3)

The blow up occurs when the negative term can start increasing in
time. This happens when the amplitude of the function w
increases. Unlike the BPE with quadratic nonlinearity, when the
amplitude increases, the quintic term in QQBPE will dominate and
will make the energy functional positive, which limits the increase
of the amplitude. All this means that no blow-up can be expected
for QQBPE. For smaller w , the energy can become even negative.
because the fourth order term dominated the sixth-order on.
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Boussinesq Paradigm Equation (BPE)

In one spatial dimension, an analytical solution was found in
Maugin&Cadet (1991) for a system involving the QQBPE. This
analytical solution was used in Christov& Maugin (1995) to
investigate the collision dynamics in 1D. As usual, an analytical
solution in 2D is not available. To find an approximation to the 2D
solution is the objective of the present work. We follow Christov&
Choudury (2011) and create an asymptotic solution valid for small
phase speeds of the soliton.
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Boussinesq Paradigm Equation (BPE)

For the numerical interaction of 2D Boussinesq solitons, one needs
the shape of a stationary moving solitary wave in order to
construct an initial condition. To this end, introduce relative
coordinates x̂ = x − c1t, ŷ = y − c2t, in a frame moving with
velocity (c1, c2). Since there is no evolution in the moving frame
v(x , y , t) = u(x̂ , ŷ), and the following equation holds for u:

(c2
1ux̂ x̂ + 2c1c2ux̂ ŷ + c2

2uŷ ŷ ) = (ux̂ x̂ + uŷ ŷ )− [(u3 − σu5)x̂ x̂

+ (u3 − σu5)ŷ ŷ )]− (ux̂ x̂ x̂ x̂ + 2ux̂ x̂ ŷ ŷ + uŷ ŷ ŷ ŷ )

+ β1[c
2
1 (ux̂ x̂ x̂ x̂ + ux̂ x̂ ŷ ŷ )

+ 2c1c2(ux̂ x̂ x̂ ŷ + ux̂ ŷ ŷ ŷ ) + c2
2 (ux̂ x̂ ŷ ŷ + uŷ ŷ ŷ ŷ )].
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Boussinesq Paradigm Equation (BPE)

The so-called asymptotic boundary conditions (a.b.c.) read
u → 0, for x̂ → ±∞, ŷ → ±∞. The a.b.c.’s are invariant under
rotation of the coordinate system, hence it is enough to consider
solitary propagating along one of the coordinate axes, only. We
chose c1 = 0, c2 = c 6= 0. Without fear of confusion we will ‘reset’
the names of the independent variables to x , y and omit in what
follows the hat over the function u.
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Perturbation Method

The small parameter does not multiply the highest derivative,
hence the expansion is regular. When c = 0, the solution possesses
a radial symmetry, and we consider the expansion

u(x , y) = u0(r) + εu1(x , y) + ε2u2(x , y) + O(ε3), r =
√

x2 + y2.
(4)

Here we note that

(u0 + εu1 + ε2u2)
3 ≈ u3

0 + 3εu0u
2
1 + 3ε2(u0u

2
1 + u2

0u2) + O(ε3),
(5)

(u0 + εu1 + ε2u2)
5 ≈ u5

0 + 5εu4
0u1 + 10ε2u3

0u
2
1 + 5ε2u4

0u2 + O(ε3),
(6)
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Perturbation Method

Now, neglecting the terms of order O(ε3), we get for the three
lowest orders in ε the following system

1

r

d

dr
r

d

dr

[
u0(r)− u3

0(r) + σu5
0(r)−

1

r

d

dr
r
du0

dr

]
= 0,

(7a)

ε
[
− d2

dy2
u0 + β1

d4

dy4
u0 + ∆u1 − 3∆(u2

0u1) + 5σ∆(u4
0u1)−∆2u1

]
= 0.

(7b)

ε2
[
− d2

dy2
u1 + β1

d4

dy4
u1 + ∆u2 − 3∆(u0u

2
1 + u2

0u2) + 10σ∆(u3
0u

2
1)

+5σ∆(u4
0u2)− 2∆(u0u2)−∆2u2

]
= 0.

(7c)
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Perturbation Method

We prefer to treat the above system in polar coordinates because
then the region is unbounded only with respect to one of the
variables (the polar radius r).
In this work we limit ourselves to the O(ε) approximation.
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The governing system

We get the following equations
1. for u0(r) = F (r):

F (r)− F 3(r) + σF 5(r)− 1

r

d

dr
r
dF

dr
= 0. (8a)

2.

−G (r) + 3F 2(r)G (r)− 5σF 4(r)G (r) +
d2G

dr2
+

1

r

dG

dr
= −1

2
F (r).

(8b)
3.

r
d

dr

1

r3

d

dr
r2

[
− H(r) + 3F 2(r)H(r)− 5σF 4(r)H(r) + r

d

dr

1

r3

d

dr
r2H(r)

]
=

1

2

[ d2

dr2
F (r)− 1

r

d

dr
F (r)

]
, (8c)
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The Governing System

When one is faced with singularities that arise from the use of
specific coordinates (e.g., polar coordinates), one has to ensure the
proper behavior of the functions in the point of singularity by
imposing additional (purely mathematical) conditions in the
geometric singularity called ‘behavioral’. The behavioral conditions
at the origin arise from the fact that there is a singularity in the
operator:

H ′(0) = H ′′′(0) = G ′(0) = G ′′′(0) = 0, (9a)

while the behavioral conditions at infinity are the asymptotic
boundary conditions (a.b.c.):

G (r),H(r)→ 0 for r →∞. (9b)

The equations possess non-trivial solutions provided a nontrivial
solution is found F (r) 6≡ 0. Thus, one can tackle the bifurcation
problem while finding the function F (r).
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Difference Schemes

The boundary value problem Eqs. (8),(9) is to be solved
numerically. We use a grid which is staggered by 1

2h from the
origin r = 0, while it coincides with the “numerical infinity”,
r = r∞. Thus

ri =
(
i − 1

2

)
h, ri± 1

2
= ri ± 1

2h, h = r∞/(N − 0.5),

where N is the total number of points. The staggered grid gives a
unique opportunity to create difference approximations for the
Bessel operators involved in our model that take care of the
singularities of the respective Bessel operator automatically,
without the need to impose explicit behavioral boundary conditions
in the origin. This is made possible by the fact that r− 1

2
= 0.
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Results and Discussion

To present the results, we fist find the appropriate best-fit analytic
expressions for the functions F ,G ,H, and then construct an
analytic expression. We found the following best fit approximation
for the shape of the stationary propagating soliton for β2 = 1,
namely:

w s(x , y , t; c) = f (x , y) + c2[g(x , y) + h(x , y) cos(2θ)], (10)

f (x , y) =
1.0032

cosh r

1 + 0.3r2

(1 + 0.2r + 0.65r2)1.25
,

g(x , y) == 0.203

(
1.2

cosh r
− 0.3

cosh 2r

)
(1 + 0.1r2)0.25,

h(x , y) = 0.6
0.5r2 + 0.4r4

5.2 + 1.3
√

r + 2.7r + 7r2 + 3.2r3 + 1.4r4 + 0.095r6

where r(x , y) =
√

x2 + y2, and θ(x , y) = arctan(y/x).
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Function F (r)

Figure: 1. Function F (r)
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Function G (r)

Figure: 2. Function G (r)
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Function H(r)

Figure: 3. Function H(r)
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The shapes of the 2D Boussinesq solitons, c1 = 0, c2 = 0.3

Figure: 4.
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The shapes of the 2D Boussinesq solitons, c1 = 0, c2 = 0.6

Figure: 5.
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Thanks

Thank you for your kind attention !
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