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History of Liquid Crystals

In 1888, Austrian botanist and chemist Friedrich Reinitzer (1857-1927),
whilst experimenting with cholesteryl benzoate, observed striking color
effects and discovered that it exhibited a double melting point: At 145.5◦C
it melts into a cloudy liquid, and at 178.5◦C it melts again and the cloudy
liquid becomes clear.

He collaborated with the German crystallographer Otto Lehmann (1855-
1922), who examined the intermediate cloudy fluid, and reported seeing
crystallites. Lehmann devised the name "liquid crystals" in his 1904 work
"Flüssige Kristalle".
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Thermotropic

Figure : Dependence of liquid crystal materials on temperature.
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Brilliant Colors

Figure : Images of liquid crystals using optical microscopy and
polarized light.



Figure : Top: 5CB using optical microscopy and polarized light. Bot-
tom: Chemical formulas of E7 and 5CB type LCs.



Applications of Liquid Crystals
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The versatility of LCs is due to their electro-optical properties (anisotropic,
birefringent and tunable).

Nematic liquid crystals owe their properties to their molecular structure.
Their molecules are rod-like (calametic) and in this mesophase they
macroscopically point in a preferred direction called the director.

The orientation of the directors determines the electrical properties of the
liquid crystal. Thus, the relative dielectric tensor of the LC is a function
of the director angle.
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Patch Antenna with NLC Substrate
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Figure : Patch antenna design (Liu and Langley, Electronics Letters, 2008)
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Modern wireless communications systems require use of multiple anten-
nas residing on small platforms (e.g. tablets, smartphones). Reducing
the antenna count saves valuable space for additional functionalities and
features. This can be achieved by using frequency-agile antennas.

Very little work has been done on the design, modeling, and testing
of LC-based patch antennas. Previous works used effective values in
their models ignoring the LC material anisotropy (Liu and Langley 2008)
whereas others also did not consider losses (Martin et al. 2003, Bose
and Sinha 2008).

Here, the geometry proposed by Liu and Langley is used to test the
accuracy of our model. Our method consists of:

I. Accurately solving for the director field inside the liquid crystal un-
der certain biasing conditions. The obtained values are used to
obtain the LC’s permittivity and loss tangent tensors.

II. Using the tensors as input, the radiation characteristics of the LC-
based patch antenna are obtained.



Part I: Characterizing the LC layer

y
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An external DC (low-frequency AC) electric field is applied to the NLC-
cell. This excites the LC, changing the orientation angle of the directors.

This alters the dielectric tensor and hence affects the intensity of the
electric field inside the cell. In turn, the field intensity leads to corre-
sponding new values for the director field.

This a coupled problem. The (quasi-static) Poisson equation in a charge-
free region which governs the electric field inside the LC is intrinsically
linked to the nonlinear PDE for the director field.
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Non-Linear PDE for the Director Field

Assuming z-invariance and no twist, the director orientation is defined by
the unit vector in the xy−plane n̂ = (cosφ, sinφ,0), where φ = φ(x , y) is the
director tilt angle.

The response of the directors in the presence of an electric field is governed
by the Oseen-Frank free energy functional

F =
1
2

∫ [
k11(∇ · n̂)2 + k22[n̂ · (∇× n̂)]2

+k33|n̂ × (∇× n̂)|2 − ε0
[
∆ε(n̂ · ~E)2 + ε⊥|~E |2

]]
d3r (1)

k11, k22, and k33 : splay, twist and bend elastic constants
~E = (Ex ,Ey ,Ez) : electric field
ε0 : electric permittivity of free space
∆ε = ε‖ − ε⊥ : birefringence
ε‖ : relative permittivity of crystal in direction parallel to director
ε⊥ : relative permittivity of crystal in direction perpendicular to

director
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- Functional F in Eq. (1) can be minimized using the Euler-Lagrange equation

∂f
∂φ

− ∂

∂x
∂f
∂φx

− ∂

∂y
∂f
∂φy

= 0 , (2)

where

f =
1
2
[
k11(cosφφy − sinφφx )2 + k33(cosφφx + sinφφy )2

− ε0[∆ε(cosφEx + sinφEy )2 + ε⊥(E2
x + E2

y + E2
z )] ] .

(3)

- Substituting (3) into (2), and manipulating yields the Nonlinear PDE for the director field

2(k11 sin2 φ+ k33 cos2 φ)
∂2φ

∂x2 + 2(k11 cos2 φ+ k33 sin2 φ)
∂2φ

∂y2

−(k11 − k33) sin 2φ
[

(
∂φ

∂x
)2 − (

∂φ

∂y
)2
]
− 2(k11 − k33)

[
sin 2φ

∂2φ

∂x∂y
+ cos 2φ

∂φ

∂x
∂φ

∂y

]
+ ε0∆ε[sin 2φ(E2

y − E2
x ) + 2 cos 2φEx Ey ] = 0.

(4)

Strong anchoring: Dirichlet BC’s.

φ(x , y) = φ0 (= 2◦) at y = 0, d . (5)
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The Potential Equation

The DC/low-frequency AC electric field in the structure is governed by Poisson’s
quasistatic equation in a charge-free region:

∇ · (ε̂∇V ) = 0, (6)

where ε̂ is the relative permittivity tensor of the non-homogeneous LC medium
given by

ε̂(x , y) =

εxx (x , y) εxy (x , y) 0
εyx (x , y) εyy (x , y) 0

0 0 εzz(x , y)

 , (7a)

with components

εxx = ε⊥ + ∆ε cos2 φ(x , y),

εxy = εyx = ∆ε sinφ(x , y) cosφ(x , y),

εyy = ε⊥ + ∆ε sin2 φ(x , y),

εzz = ε⊥ .

(7b)
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- Utilizing (6, 7) and assuming z-invariance, we obtain the equation governing
the electric potential inside the LC

εxx
∂2V
∂x2 + εyy

∂2V
∂y2 + 2εxy

∂2V
∂x∂y

+

(
∂εxx

∂x
+
∂εxy

∂y

)
∂V
∂x

+

(
∂εxy

∂x
+
∂εyy

∂y

)
∂V
∂y

= 0.
(8)

∂V
∂x

∣∣∣
x=xL

=
∂V
∂x

∣∣∣
x=xR

= 0 ,

V (x , y = d) = V0 for x ∈ [xL1 , xR1 ] ∪ [xL2 , xR2 ] ,

V (x , y = 0) = 0 ∀x ∈ [xL, xR] ,

(9a)

(9b)
(9c)

- The electric field at a point in the crystal is computed by taking the gradient of
the electric potential

~E = −∇V (10)

- The coupled system of equations (4, 8) is to be solved iteratively until
convergence is reached.
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Algorithm Outline

For each applied voltage value V0:

1 Initial values are assumed for the director field.

2 The relative permittivities are evaluated and then the equation (8) for the
electric potential is solved.

3 Once the electric potential is obtained, the electric field is calculated by
taking the gradient of V . Knowing the governing field distribution, equa-
tion (4) is solved to obtain the tilt angle of the directors throughout the
crystal.

4 Steps 2-3 are repeated until convergence is reached.

5 Once the director field is known throughout the LC, the average value is
calculated. This is used to compute the relative permittivity tensor and
the loss tangents.



Finite Difference Schemes
Eqn (4) is discretized by utilizing FD approximations.

(a) Three-point Explicit Scheme:

φn+1
i,j =

(
1

ω + Ĉ8

)[
ωφn

i,j +
7∑

i=1

Ĉi

]
(11)

where

Ĉ1 = C1(φn
i+1,j + φn

i−1,j) , Ĉ2 = C2(φn
i,j+1 + φn

i,j−1),

Ĉ3 = C3(φn
i+1,j+1 − φn

i+1,j−1 − φn
i−1,j+1 + φn

i−1,j−1) ,

Ĉ4 = C4(φn
i+1,j − φn

i−1,j)(φn
i,j+1 + φn

i,j−1) ,

Ĉ5 = C5(φn
i,j+1 − φn

i,j−1)2 , Ĉ6 = C6(φn
i+1,j − φn

i−1,j)
2,

Ĉ7 = C7 , Ĉ8 = 2(C1 + C2) ,

and

C1 = 2(k11 sin2 φn
i,j + k33 cos2 φn

i,j)/D
2
x , C2 = 2(k11 cos2 φn

i,j + k33 sin2 φn
i,j)/D

2
y ,

C3 = (k33 − k11) sin 2φn
i,j/2DxDy , C4 = (k33 − k11) cos 2φn

i,j/2DxDy ,

C5 = (k33 − k11) sin 2φn
i,j/4D2

y , C6 = (k11 − k33) sin 2φn
i,j/4D2

x ,

C7 = ε0∆ε[sin 2φn
i,j(E

2
y − E2

x ) + 2 cos 2φn
i,jExEy ] .

The relaxation parameter ω was introduced in order to accelerate convergence.



Fourth-order finite differences were employed resulting in the five-point explicit scheme:

(b) Five-point Explicit Scheme:

φn+1
i,j =

(
1

ω + Ĉ8

)[
ωφn

i,j +
7∑

i=1

Ĉi

]
(12)

where

Ĉ1 = C1

(
−φn

i+2,j + 16φn
i+1,j + 16φn

i−1,j − φn
i−2,j

)
, Ĉ2 = C2

(
−φn

i,j+2 + 16φn
i,j+1 + 16φn

i,j−1 − φn
i,j−2

)
,

Ĉ3 = C3

(
φn

i+2,j+2 − 8φn
i+2,j+1 + 8φn

i+2,j−1 − φn
i+2,j−2 − 8φn

i+1,j+2 + 64φn
i+1,j+1 − 64φn

i+1,j−1 + 8φn
i+1,j−2

+ 8φn
i−1,j+2 − 64φn

i−1,j+1 + 64φn
i−1,j−1 − 8φn

i−1,j−2 − φn
i−2,j+2 + 8φn

i−2,j+1 − 8φn
i−2,j−1 + φn

i−2,j−2 ) ,

Ĉ4 = C4

(
−φn

i+2,j + 8φn
i+1,j − 8φn

i−1,j + φn
i−2,j

)
·
(
−φn

i,j+2 + 8φn
i,j+1 − 8φn

i,j−1 + φn
i,j−2

)
,

Ĉ5 = C5

(
−φn

i,j+2 + 8φn
i,j+1 − 8φn

i,j−1 + φn
i,j−2

)2
, Ĉ6 = C6

(
−φn

i+2,j + 8φn
i+1,j − 8φn

i−1,j + φn
i−2,j

)2
,

Ĉ7 = C7 , Ĉ8 = 30(C1 + C2),

and

C1 = (k11 sin2 φn
i,j + k33 cos2 φn

i,j)/(6D2
x ) , C2 = (k11 cos2 φn

i,j + k33 sin2 φn
i,j)/(6D2

y ),

C3 = (k33 − k11) sin 2φn
i,j/(72DxDy ) , C4 = (k33 − k11) cos 2φn

i,j/(72DxDy ),

C5 = (k33 − k11) sin 2φn
i,j/(144D2

y ) , C6 = (k11 − k33) sin 2φn
i,j/(144D2

x ),

C7 = ε0∆ε[sin 2φn
i,j(E

2
y − E2

x ) + 2 cos 2φn
i,jExEy ] .
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The implicit numerical scheme is more stable and robust compared to the two
aforementioned explicit schemes. Disadvantage: A linear system of equations
must be solved at every iteration.

(c) Three-point Implicit Scheme:

C1
∂2φn+1

∂x2 + C2
∂2φn+1

∂y2 + C3
∂2φn+1

∂x∂y

+C4

[
ω3
∂φn+1

∂x
∂φn

∂y
+ ω3

∂φn

∂x
∂φn+1

∂y
+ (1− 2ω3)

∂φn

∂x
∂φn

∂y

]
+C5

[
ω2
∂φn+1

∂y
∂φn

∂y
+ (1− ω2)

∂φn

∂y
∂φn

∂y

]
+C6

[
ω1
∂φn+1

∂x
∂φn

∂x
+ (1− ω1)

∂φn

∂x
∂φn

∂x

]
+ C7 = 0 .

where Ci ’s for i = 1, . . . ,7 were defined earlier. The parameters ω1, ω2, and
ω3 take values between 0 and 1. The derivative terms are discretized and re-
arranged.
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Comparison/Remarks on Numerical Schemes

The problem was solved for benchmark geometries that ap-
peared in the literature. All three FD schemes provided
identical results.

Computational time: The five-point scheme with relax-
ation provides faster results as compared to the three-point
scheme.

Stability: The relaxation parameter plays an important role
in the stability (and convergence speed) of both explicit schemes.

The implicit scheme provides a robust method for the so-
lution of the underlined problem. However, the implementa-
tion of the method requires solution of a matrix system per
iteration which is computationally expensive.
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Discretization of Poisson’s equation

A similar approach is followed in the discretization of Poissson’s
equation. The second-order discretized equation inside the crystal is

V k+1
ij =

{
εxx
ij

V k
i+1,j + V k

i−1,j

(∆x)2 + εyy
ij

V k
i,j+1 + V k

i,j−1

(∆y)2

+ 2εxy
ij

V k
i+1,j+1 − V k

i+1,j−1 − V k
i−1,j+1 + V k

i−1,j−1

4∆x∆y
(13)

+

(
εxx
i+1,j − εxx

i−1,j

2∆x
+
εyx
i,j+1 − ε

yx
i,j−1

2∆y

)
V k

i+1,j − V k
i−1,j

2∆x

+

(
εxy
i+1,j − ε

xy
i−1,j

2∆x
+
εyy
i,j+1 − ε

yy
i,j−1

2∆y

)
V k

i,j+1 − V k
i,j−1

2∆y

}
.



The high-frequency regime

εh
‖ , εh

⊥ : Relative permittivities in the parallel and perpendicular directions for micro- and mm-
wave (high-frequency) regime.

tan δ‖ , tan δ⊥ : Loss tangents for parallel and perpendicular orientations. Required because
the LC material is lossy at these frequencies.

The complex relative permittivities are given by

εc
‖ = εh

‖(1 − i tan δ‖), εc
⊥ = εh

⊥(1 − i tan δ⊥), (14)

with

εc
xx = εc

⊥ + ∆εc cos2 φ(x , y) = εh
xx (1 − tan δxx ), (15)

εc
xy = εc

yx = ∆εc sinφ(x , y) cosφ(x , y) = εh
xy (1 − tan δxy ),

εc
yy = εc

⊥ + ∆εc sin2 φ(x , y) = εh
yy (1 − tan δyy ),

εc
zz = εc

⊥ = εh
zz(1 − tan δzz),

where

εh
xx = εh

⊥ + ∆εh cos2 φ(x , y),

εh
xy = εh

yx = ∆εh sinφ(x , y) cosφ(x , y),

εh
yy = εh

⊥ + ∆εh sin2 φ(x , y),

εh
zz = εh

⊥.
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Substituting (14) into (15) and rearranging leads to the following
expressions for the tan δ values of the tensor entries:

tan δxx =
εh⊥ tan δ⊥ + (εh‖ tan δ‖ − εh⊥ tan δ⊥) cos2 φ

εh⊥ + ∆εh cos2 φ
,

tan δxy = tan δyx =
εh‖ tan δ‖ − εh⊥ tan δ⊥

∆εh
, (16)

tan δyy =
εh⊥ tan δ⊥ + (εh‖ tan δ‖ − εh⊥ tan δ⊥) sin2 φ

εh⊥ + ∆εh sin2 φ
,

tan δzz = tan δ⊥.
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Electric Potential
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Figure : Electric potential distribution for V0 = 2V (left) and V0 = 6V (right).
Merck E7: k11 = 11.1×10−12 N, k33 = 17.1×10−12 N, ε‖ = 19 and ε⊥ = 5.2.
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Director Tilt-Angle

 

 

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

10

20

30

40

50

60

70

 

 

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

10

20

30

40

50

60

70

80

Figure : Director tilt-angle distribution for V0 = 2V (left) and V0 = 6V (right).
Merck E7: k11 = 11.1×10−12 N, k33 = 17.1×10−12 N, ε‖ = 19 and ε⊥ = 5.2.
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2010 at 30 GHz.
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High-frequency tensor entries of the dielectric
constant versus bias voltage.
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Figure : Comparison with experimental measurements for V0 = 10V.
Agreement with our simulations is very good, especially for resonant
frequency.
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Figure : Tuning the LC-based patch antenna. Return loss Vs frequency for various
applied voltages. Note the proximity of the 4 V and 10 V graphs.
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Figure : Resonant Frequency Vs Voltage. Frequency tuning range between 5.45 and
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Figure : Realized gain patterns for V0 = 0, 2, 4V (left, center, right) at
resonance. Top: yz-plane; Bottom: yx-plane (principle planes).



Summary

An accurate model for LC-based patch antennas was developed
taking into account the dielectric anisotropy and losses of the LC
material. The method consisted of:

(a) Accurately solving the coupled PDE problem obtaining the director field dis-
tribution inside the LC.

(b) Utilizing HFSS to compute the radiation characteristics of the LC-based
patch antenna using the material tensors of the LC under different bias
fields.

The simulation results were compared to measurements that ap-
peared in the literature demonstrating good agreement, very good
tuning range, and attractive radiation characteristics.

Liquid crystals are promising materials in microwave engineering
with potential applications in antenna technology.

Additional experimental work must be conducted on the character-
ization of liquid crystals in the lower microwave frequency range,
enabling their widespread use in reconfigurable antenna design
and fabrication.
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