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Introduction: Drop coalescence and applications

Applications of multiphase systems: Emulsions - Food; drugs; cosmetics; composite
materials; chemicals; petroleum; etc.
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Drop-to-drop interaction in simple shear flow at Ca = 0.25
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Schematic sketch of the problem
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Head-on collision in axisymmetric compressional flow,
insoluble surfactant.
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Mathematical model: Hydrodynamic part.

In the drops:

∇ · v = 0; −∇pd + µ∇2v = 0; Stokes equations in the drops (1)

In the film:
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; uint = v1; BC at the interface (5)
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Mathematical model: Surfactant transport.

On the interface z = h/2:
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In the drops:
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= 0 C(r, z = 0) = Γ(r)/K. (9)

σ(r) = σpure − Γ(r)RGT ; RG gas constant; T absolute temperature. (10)
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Mathematical model: Initial conditions.

For the film thickness:

h(r, t = 0)) = hini +
r2

Req
, R−1eq =

1

2

(
R−11 +R−12

)
(11)

For the surfactant distribution:

- initially clean interfaces:

Γ(r, t = 0) = 0; C(r, z, t = 0) = Cini (12)

- equilibrium surfactant distribution in the film and on the interfaces:

Γ(r, t = 0) = KCini; C(r, z, t = 0) = Cini (13)

Transformation and Parameters:

r∗ =
r

Reqa′
; h∗ =

h

Reqa′2
; z∗ =

z

Reqa′
, a′ =

a

Req
λ∗; K∗; Pe∗intf ; Pe∗; C∗ini
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Numerical method: Hydrodynamic part in the drops.

BIM for the flow in the drops: The velocity in the drops is given by

v(x) =

∫
∂V

2J(r) ·T(y) · n dS,

where n is the inward normal to V with boundary ∂V and

J = (1/8π)(I/|x− y|+ (x− y)(x− y)/|x− y|3).

Let
x = (r∗, 0, z), y = (r′ cos θ, r′ sin θ, 0), T(y) = (T1,T2,T3),

then

x− y = (r∗ − r′ cos θ,−r′ sin θ, z), |x− y| =
√
r∗2 + r′2 − 2r∗r′ cos θ + z2,

T(y) · n = T3(y) = (|T3| cos θ, |T3| sin θ, 0), |T3| = τd(r
′),
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Thus
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Numerical method: Hydrodynamic part in the film.
Convection diffussion in the drops and on the interface

Forth-order, hyperbolic-type equation for h(r, t) is solved by an Euler explicit
scheme in time and a second order FD scheme on non-uniform mesh in space.

Requirements for numerical stability:

(∆t)I ≤ const ·min
j

(
∆r3j
h2j

)
; (∆t)II ≤

24

λ
·min

j

(
∆r4j
h5j

)

Adaptive mesh/step are used both for the time as well as space discretization: ∆t
of order 10−4 − 10−9 and in the film region ∆r in the range 0.1− 0.01

The convection-diffusion equation for the surfactant concentration on the interface,
Γ(r, t) is solved in similar manner as that for h(r, t).

The convection-diffusion equation for the surfactant concentration in the drops,
C(r, z, t) is solved by Euler implicit or Crank-Nikolson scheme with respect z and
Euler explicit with respect r.
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Numerical tests. Evolution of the minimal film thickness, hmin

λ = 1; K = 0.2; Pe = 1000; Peint =∞
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Numerical results. Flow in the drops, λ = 1; K = 0.2; Pe = 1000; Peint =∞
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Film profile and the concentration on the interface.
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The evolution of the film thickness at different Pe
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Future work:

• Investigation of the effect of the parameters

• Both phases soluble surfactant
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Thank you for your patience and attention!
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