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Liquid Crystals are of particular interest because of their
use in various devices such as LCDs, optical filters and
switches, beam-steering devices, LC-thermometers. This
is due to their electro-optical properties (anisotropic,
birefringent and tunable).

In this presentation, we develop an efficient and robust
numerical method for the simulation of Electromagnetic
Wave Propagation in Liquid Crystal Cells. We concentrate
on Nematic Liquid crystals.

The cases of both normal and oblique incidence are
examined and interesting phenomena such as hysteresis
and bistability are presented.
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Nematic Liquid Crystals

Nematic liquid crystals owe their properties to their
molecular structure. Their molecules are rod-like
(calametic) and in this mesophase they macroscopically
point in a preferred direction called the director.

The orientation of the directors determines the electrical
properties of the liquid crystal. Thus, the relative dielectric
tensor of the LC is a function of the director angle.

In the presence of an applied electric (or magnetic) field
above a certain intensity the directors reorient, changing
the optical properties of the liquid crystal. This is called the
Fréedericksz Transition.
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A Nematic Liquid Crystal Cell

Exterior Region 

Exterior Region 

Figure: A nematic liquid crystal cell. At the boundaries rigid
anchoring with homeotropic alignment is assumed.
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Problem Dynamics

Here, a uniform plane wave polarized along the plane of
incidence (xz-plane) (pump beam, usually a laser) excites
the LC, changing the orientation angle of the directors.

This alters the dielectric tensor and hence affects the
intensity of the electric and magnetic fields inside the cell.
In turn, the new light intensity leads to corresponding new
values for the director field.

This a coupled problem. The set of Maxwell equations
modeling the propagation of the electromagnetic wave is
intrinsically linked to the Nonlinear Differential Equation for
the director field.
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Geometry
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Figure: Propagation of an EM-wave that is obliquely incident to a
nematic LC-cell. Regions 1, 2 and 3: Before, inside and after the
LC-cell respectively.
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EM-wave propagation inside the cell is modeled by the
time-harmonic Maxwell Equations

∇× E = −jωµ0H ,

∇× H = jωε0ε̂E ,

(1a)
(1b)

E : electric field intensity
H : magnetic field intensity
ε0 : electric permittivity of free space
µ0 : magnetic permeability of free space
η0 : intrinsic impedance of vacuum (η0 =

√
µ0/ε0)

ε̂ is the LC relative permittivity tensor, with components
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ε̂(z) =

εxx (z) 0 εxz(z)
0 εyy (z) 0

εzx (z) 0 εzz(z)

 , (2a)

and
εxx = n2

e sin2 θ(z) + n2
o cos2 θ(z),

εxz = εzx = (n2
e − n2

o) sin θ(z) cos θ(z),

εyy = n2
o, (2b)

εzz = n2
e cos2 θ(z) + n2

o sin2 θ(z) .

no : the ordinary refractive index (wave polarized perpendicular
to the directors)

ne : the extraordinary refractive index (wave polarized parallel
to the directors)
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Because the incident wave is propagating in the xz-plane, the
field components are independent of the y coordinate, i.e.,

∂F
∂y

= 0 where F = Ex ,Ey ,Ez ,Hx ,Hy or Hz .

Thus, Eqs. (1,2) in component form read:

∂Ey

∂z
= jωµ0Hx ,

∂Hy

∂z
= −jωε0[εxxEx + εxzEz ], (3a)

∂Ex

∂z
=
∂Ez

∂x
− jωµ0Hy ,

∂Hx

∂z
=
∂Hz

∂x
+ jωε0εyyEy , (3b)

∂Ey

∂x
= −jωµ0Hz ,

∂Hy

∂x
= jωε0[εzxEx + εzzEz ]. (3c)
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Region 1
Incident electric and magnetic fields:

E i = (ax cos θi − az sin θi) E0e−j(k i ·r) , (4a)

H i =
ns

η0
(aki × E i) , (4b)

k i = aki k0ns : wave vector
k0 = ω

√
µ0ε0 : wavenumber in vacuum

aki = ax sin θi + az cos θi : unit vector in direction of propagation
ns : refractive index of exterior region
r = axx + azz : position vector of observation point

in xz-plane

Therefore,
E i = (ax cos θi − az sin θi) E0 e−jk0ns(x sin θi+z cos θi ) , (5a)

H i = ay
nsE0

η0
e−jk0ns(x sin θi+z cos θi ). (5b)



Region 1 (continued)
Snell’s law of reflection implies θr = θi . Hence, the reflected wave
propagates in the direction of the unit vector akr = ax sin θi − az cos θi .

Therefore,

E r = (−ax cos θi − az sin θi) ΓE0 e−jk0ns(x sin θi−z cos θi ), (6a)

H r =
ns

η0
akr × E r = ay

nsΓE0

η0
e−jk0ns(x sin θi−z cos θi ) , (6b)

where Γ is the reflection coefficient in the plane of incidence.

Consequently, in the lower exterior region, the total field is simply the
superposition of the incident and reflected fields

E = E i + E r = (ax cos θi − az sin θi) E0 e−jk0ns(x sin θi+z cos θi )

− (ax cos θi + az sin θi) ΓE0 e−jk0ns(x sin θi−z cos θi ) ,

H = H i + H r = ay
nsE0

η0
e−jk0ns(x sin θi+z cos θi )

+ ay
ΓnsE0

η0
e−jk0ns(x sin θi−z cos θi ) .

(7a)

(7b)
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Region 3

Similarly, the transmitted fields in the upper region are given by

E t = (ax cos θt − az sin θt ) TE0 e−jk0ns(x sin θt+z cos θt ),

H t = ay
nsTE0

η0
e−jk0ns(x sin θt+z cos θt )

(8a)

(8b)

where θt = θi and T is the copolarized transmission coefficient
at the upper interface, which separates the crystal and the
exterior region.
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Region 2

To satisfy continuity of the tangential fields for all x at a fixed z-plane,
the fields inside the LC-cell are written:

E(z, x) = E(z) e−jk0nsx sin θi and H(z, x) = H(z) e−jk0nsx sin θi . (9)

So, the field components are of the form

F (x , z) = F (z) e−j k0ns x sin θi (10)

where F = Ex ,Ey ,Ez ,Hx ,Hy or Hz .

Clearly,
∂F (x , z)

∂x
= −jk0SF (x , z), (11)

where S = ns sin θi . Substituting (11) into (3), employing (10)
and manipulating yields:



∂u1

∂z
= j k0 [c11u1 + c14u4] ,

∂u2

∂z
= j k0 u3 ,

∂u3

∂z
= j k0 c32 u2 ,

∂u4

∂z
= j k0 [c41u1 + c44u4] .

(12a)

(12b)

where

u1 = Ex , u2 = Ey , u3 = η0Hx , u4 = η0Hy ,

c11 = (εzx/εzz)S, c14 = (S2/εzz)− 1, c32 = εyy − S2 ,

c41 = (εxzεzx/εzz)− εxx , c44 = S(εxz/εzz) .

The LC cell is then subdivided into N layers of thickness d . Each of
these layers is assumed to be homogeneous and anisotropic. The
dielectric properties of the layer are characterized by ε̂ in Eq. (2a) and
thus depend on the director field θ evaluated at the midpoint of the
layer.

The solutions of Eqs. (12) have the following generic form:

um(z) ∝ e−jk0nz , (13)

where m = 1,2,3,4 and n is the unknown refractive index inside the
homogeneous LC layer.



Substituting Eq. (13) into Eqs. (12) results in the following system of
algebraic equations:

(n + c11)u1 + c14u4 = 0, (14a)
nu2 + u3 = 0, (14b)

c32u2 + nu3 = 0, (14c)
c41u1 + (n + c44)u4 = 0. (14d)

For the homogeneous system (14) to have a nontrivial solution,
det (A) = 0, which leads to the following algebraic equation for n

(n2 − c32) [(n + c11)(n + c44)− c41c14] = 0 , (15)

which admits solutions

n1,2 = ±
√

c32 , n3,4 = −c11 ±
√

c14c41. (16)

Eqs. (14a, 14d) and solutions n3,4 correspond to an incident plane
wave polarized in a direction parallel to the plane of incidence.

Eqs. (14b, 14c) and solutions n1,2 correspond to an incident plane
wave polarized in a direction perpendicular to the plane of incidence.



Region 2 (continued)

Because εxy = εyx = εyz = εzy = 0, the two polarizations are fully
decoupled (see Eqs. 14).

This means that an incident plane wave polarized in a direction
perpendicular to the plane of incidence will not generate field
components inside the LC that are polarized in the parallel direction
and vice-versa.

To trigger the formation of an extraordinary wave inside the LC cell,
the incident plane wave must be polarized in a direction parallel to the
plane of incidence. Therefore:

u1(z) = A e−j k0 n3 z + B e−j k0 n4 z ,

u4(z) = −
(

c41

n3 + c44

)
A e−j k0 n3 z −

(
c41

n4 + c44

)
B e−j k0 n4 z ,

(17a)

(17b)

where n3 and n4 are given by Eqs. (16). Note also that

u1(x , z) = u1(z) e−j k0 x sin θi ,

u4(x , z) = u4(z) e−j k0 x sin θi .

(18a)

(18b)
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Mode-Matching

The unknown coefficients are obtained by enforcing the
continuity of the tangential fields at the interfaces. As
mentioned earlier, the LC is subdivided into N equally thin
homogeneous layers.

The first interface is between the lower exterior region
(Region 1) and the first layer of the LC and the last
interface is between the last LC-layer and Region 3. The
total number of interfaces is equal to N + 1. This leads to
2N + 2 linear equations with 2N + 2 unknowns.

Two of these correspond to the reflection and transmission
coefficients in the plane of incidence. The remaining
unknowns correspond to the modal expansion coefficients
representing the fields inside the LC.
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Lower Exterior Region:

u1(z) = E0 cos θie−jnsk0z cos θi − ΓE0 cos θiejnsk0z cos θi ,

u4(z) = nsE0e−jnsk0z cos θi + nsΓE0ejnsk0z cos θi .

(19a)

(19b)

LC Region:

u1,m(z) = Ame−j k0 n3 (z−dm) + Bme−j k0 n4 (z−dm),

u4,m(z) = −CAAje−j k0 n3 (z−dm) − CBBme−j k0 n4 (z−dm),

(20a)

(20b)

where CA = c41/ (n3 + c44), CB = c41/ (n4 + c44), and dm = (m − 1)d ;
m = 1,2, . . .N, where the index m indicates the layer number.

Upper Exterior Region:

u1(z) = TE0 cos θie−jnsk0(z−dN+1) cos θi ,

u4(z) = nsTE0e−jnsk0(z−dN+1) cos θi .

(21a)

(21b)

Note: The z coordinate was transformed to z − z0, where z0
corresponds to the z coordinate of the lower layer interface.
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Enforcing the continuity of u1 and u4 at each of the N + 1 interfaces yields

z = 0 : ΓE0 cos θi + A1 + B1 = E0 cos θi ,
: −nsΓE0 − CAA1 − CBB1 = nsE0 ,

z = d : A1e−j k0 n3 d + B1e−j k0 n4 d − A2 − B2 = 0 ,
A1CAe−j k0 n3 d + B1CBe−j k0 n4 d − A2CA − B2CB = 0 ,

...
...

z = (m − 1)d : Am−1e−j k0 n3 d + Bm−1e−j k0 n4 d − Am − Bm = 0 ,
Am−1CAe−j k0 n3 d + Bm−1CBe−j k0 n4 d − AmCA − BmCB = 0 ,

...
...

z = Nd : ANe−j k0 n3 d + BNe−j k0 n4 d − E0 cos θiT = 0,
: CAANe−j k0 n3 d + CBBNe−j k0 n4 d − nsE0 cos θiT = 0.

The above system is solved using LU decomposition to obtain the
expansion coefficients and the reflection and transmission coefficients at
the lower and upper interfaces, respectively.
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Non-Linear ODE for the Director Field
The orientation of the directors inside a LC in the presence of an
electromagnetic field is governed by the following functional which represents
the total free energy per unit volume:

F =

∫ [
1
2

k11(∇ · n̂)2 +
1
2

k22[n̂ · (∇× n̂)]2 +
1
2

k33||n̂ × (∇× n̂)||2 − I
c

ñ(θ)

]
d3r ,

(22)
where

ñ =
n0ne√

n2
0 sin2 θ + n2

e cos2 θ
and n̂ = (sin θ,0, cos θ) , (23)

c the speed of light in a vacuum, I = 1
2<[(E ×H∗) ·az ] = 1

2<[ExH∗y ] the local light
intensity, and k11, k22 and k33 are the splay, twist and bend elastic constants.
Functional F attains its minimal value when the Euler-Lagrange equation

∂f
∂θ
− d

dz
∂f
∂θz

= 0 (24)

holds, where f is the integrand in Eqn. (22)



Substituting Eqn. (23) into the integrand of (22) yields

f =
1
2

k11θ
2
z sin2 θ +

1
2

k33θ
2
z cos2 θ − I

c
n0ne√

n2
0 sin2 θ + n2

e cos2 θ
. (25)

Replacing (25) into the Euler-Lagrange equation and rearranging leads to
the nonlinear ODE for the directors

θzz −
k sin 2θ

2(1− k sin2 θ)
θ2

z +
α(z) sin 2θ

(1− k sin2 θ)(1− β sin2 θ)3/2
= 0, (26)

where k = (k33 − k11)/k33 , β = 1− (n0/ne)2 and α(z) =
βnoI(z)
2ck33

.
Utilizing the definition of the Fréedericksz threshold intensity, IFr ,

IFr =
ck33π

2

noβL2 (27)

(26) can be expressed as

θzz −
1
2

k sin 2θ
(1− k sin2 θ)

θ2
z

+
1
2

(π
L

)2 I
IFr

sin 2θ
(1− k sin2 θ)(1− β sin2 θ)3/2

= 0. (28)
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Boundary Conditions

The orientation of the directors versus the z coordinate is
posed as a two-point boundary value problem, governed
by (28), and a set of boundary conditions at the walls of the
cell.

For strong anchoring, the two boundary conditions are of
Dirichlet type:

θ(z = 0) = 0 and θ(z = L) = 0. (29)

For soft anchoring, the boundary conditions are of Robin
type expressed as first-order differential equations:

k33(1− k sin2 θ)

(
dθ
dz

)
+

1
2

(
dF
dz

)
= 0 at z = 0,L , (30)

where F (θ) = C cos2 θ + C4 cos4 θ is known as the
interfacial potential.



Finite Difference Schemes

3-point explicit scheme:

θk+1
i =

1
3

[
θk

i+1 + θk
i + θk

i−1 −
k sin 2θk

i (θk
i+1 − θk

i−1)2

8(1− k sin2 θk
i )

]

+
1
6

(π
L

)2 I
IFr

h2 sin 2θk
i

(1− k sin2 θk
i )(1− β sin2 θk

i )3/2
. (31)

5-point explcit scheme:

θk+1
i =

1
8

[
θk

i+2 + θk
i+1 + 4θk

i + θk
i−1 + θk

i−2

]
−

5k sin 2θk
i

64(1− k sin2 θk
i )

(θk
i+1 − θk

i−1)2

+
5h2

16

(π
L

)2 I
IFr

sin 2θk
i

(1− k sin2 θk
i )(1− β sin2 θk

i )3/2
. (32)

Derivation:

θ′′ =
θi+2 + θi+1 − 4θi + θi−1 + θi−2

5h2 + O(h2). (33)
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3-point semi-implicit scheme:

(1− ω1)
(
θm+1

i+1 − 2θm+1
i + θm+1

i−1

)
+ ω1(θm

i+1 − 2θm
i + θm

i−1)

−
k sin 2θm

i

8(1− k sin2 θm
i )

[
(1− ω2)(θm

i+1 − θm
i−1)(θm+1

i+1 − θ
m+1
i−1 ) + ω2(θm

i+1 − θm
i−1)2

]
+

1
2

(π
L

)2 I
IFr

h2 sin 2θm
i

(1− k sin2 θm
i )(1− β sin2 θm

i )3/2
= 0, (34)

where ω1, ω2 are the relaxation parameters for the second and first
derivatives, respectively.

Note: The 5-point scheme reverts to a 3-point scheme near the
boundaries.

The Robin type boundary conditions for soft anchoring, (30) are
discretized as follows:

θk+1
i = θk

i+1 −
h sin θi

(
C cos θi + 2C4 cos3 θi

)
k33(1− k sin2 θi)

, at z = 0 , (35a)

θk+1
i = θk

i−1 −
h sin θi

(
C cos θi + 2C4 cos3 θi

)
k33(1− k sin2 θi)

, at z = L . (35b)



Convergence Rate

Figure: Comparison of the convergence rates of the proposed finite
difference schemes for Methoxybenzylidene butylaniline (MBBA) and
homeotropic alignment.
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θ = θ(z) for θi = 0 and homeotropic b.c.s
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Figure: The directors’ tilt angle as a function of space (0 ≤ z ≤ L/2)
for four different biased intensities.
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Figure: θmax vs scaled incident intensity for MBBA (λ = 632.8 nm, no = 1.544,
ne = 1.758, k11 = 6.95× 10−12 N, k33 = 8.99× 10−12 N) and PAA (λ = 480 nm,
no = 1.595, ne = 1.995, k11 = 9.26× 10−12 N, k33 = 18.1× 10−12 N). For both
cases, the refractive index of the exterior region ns = no . For MBBA
B = 0.25(1− k − 2.25β) > 0, whereas for PAA B < 0.
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Figure: Maximum director angle (θm) and interfacial director angle (θo) versus the
normalized applied magnetic field. MBBA liquid crystal cell at a temperature T = 39.5◦
having the following specifications: L = 2.9µm, λ = 632.8 nm, no = 1.5507,
ne = 1.7352, k11 = 5.3× 10−12 N, k33 = 5.7× 10−12 N. The exterior region is glass.
Soft anchoring is applied at the liquid crystal-to-wall interface with an interfacial
potential F (θ) = 47.0cos2θ − 18.0cos4θ µN/m.
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Summary

A numerical method is presented for treating
electromagnetic wave propagation in Nematic Liquid
Crystal cells. The problem is governed by the Maxwell
time-harmonic equations coupled with a nonlinear ODE for
the tilt angle of the directors.

These are solved iteratively; the Mode-Matching Technique
is used for the Maxwell equations and a semi-implicit Finite
Difference scheme is employed for the ODE governing the
director field.

The proposed method was validated by comparing the
obtained results for some indicative parameter values with
published data and were found to be in very good
agreement.

Finally, the method is used to treat a variety of cases
revealing including finite anchoring and oblique incidence.
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