Numerical Study of Traveling Wave Solutions to 2D Boussinesq Equation

BIOMATH Conference 2014, BAS, Sofia

K. Angelow, N. Kolkovska

Posing The Problem

Hyperbolic Equation

Boussinesq Paradigm Equation (BPE): $u_{tt} - \Delta u - \beta_1 \Delta u_{tt} + \beta_2 \Delta^2 u + \Delta F(u) = 0, \quad F(u) \coloneqq \alpha u^2$ $u : \Re^2 \times [0,T] \rightarrow \Re$ $(x, y, t) \rightarrow u(x, y, t)$

- ➢ Origins^{1,2}
- Model
- Properties
 - soliton solution
 - behavior of the soliton

¹Christov, C. I. 2001, 'An energy-consistent Galilean-invariant dispersive shallow-water model', Wave Motion 34, 161–174. ²Christov, C. I. 1995a, Conservative difference scheme for Boussinesq model of surface waves, in, In: 'Proc. ICFD V', Oxford University Press, pp. 343–349.

Hyperbolic Equation

Elliptic (Stationary) Equation

- Variable change³
- Stationary BPE (S BPE)
 - solutions of type U(x, y, t) = V(x, y-Ct):

$$\beta c^2 (E - \Delta) v_{\overline{yy}} - \beta \Delta v + \Delta^2 v + \alpha \beta \Delta (v^2) = 0, \quad (S BPE)$$

with $\beta = \beta_1 / \beta_2$ and $\alpha, \beta > 0$.

Equation (S BPE) as a second order system (SYS):

$$-(1-c^{2}\beta)\Delta v + \beta(1-c^{2})v + \alpha\beta v^{2} = w$$
$$-\Delta w = c^{2}\beta(E-\Delta)v_{xx}$$

³Kolkovska, N. 2001, 'Two families of finite difference schemes for multidimensional Boussinesq paradigm equation. In: AIP CP, vol. 1301, pp. 395–403 (2010)

Elliptic Equation

Solver Algorithm

Simple Iteration Method

Add artifical time

- Add false time derivatives
- Solve the new pertinent transient equation system

•Wait for \tilde{v} and \hat{w} to converge

$$\frac{\partial \hat{v}}{\partial t} - (1 - c^2 \beta) \Delta \hat{v} + \beta (1 - c^2) \hat{v} + \alpha \beta \theta \hat{v}^2 = \hat{w} \quad (SIM.1)$$
$$\frac{\partial \hat{w}}{\partial t} - \Delta \hat{w} = c^2 \beta (E - \Delta) \hat{v}_{xx}. \quad (SIM.2)$$

Finite Differences

Additional Tools

The trivial solution must be avoided
 Fix the value of the function in point (0, 0)⁴

- $v(0,0) = \theta$
- $\tilde{v} = \theta v$ and $\hat{w} = \theta w$

$$-(1-c^{2}\beta)\Delta\hat{v} + \beta(1-c^{2})\hat{v} + \alpha\beta\theta\hat{v}^{2} = \hat{w} \quad (SYS.1)$$
$$-\Delta\hat{w} = c^{2}\beta(E-\Delta)\hat{v}_{xx} \quad (SYS.2)$$

>The value of θ is found from the equation (S BPE)⁴

$$\theta = \frac{(1 - c^2 \beta) \Delta \hat{v} - \beta (1 - c^2) \hat{v} + \hat{w}}{\alpha \beta}\Big|_{x=0, y=0} \quad (TH)$$

⁴C. I. Christov, Numerical implementation of the asymptotic boundary conditions for steadily propagating 2D solitons of Boussinesq type equation, Math. Computers Simul., 82 (2012) 1079 - 1092.

Boundary Condition

Solution Asymptotics
 1/r² asymptotics decay at infinity⁴

$$\beta c^2 v_{\overline{yy}} - \beta \Delta v - \beta c^2 \Delta v_{\overline{yy}} + \Delta^2 v + \alpha \beta \Delta (v^2) = 0, \quad (S BPE)$$

• Assume that $(\partial^n/\partial r^n)v$ has $(1/r^{n+2})$ asymptotics decay at infinity

$$\frac{\partial^2}{\partial y^2} \equiv \sin^2 \theta \frac{\partial^2}{\partial r^2} + \frac{\cos^2 \theta}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\sin 2\theta}{r} \frac{\partial^2}{\partial r \partial \theta} - \frac{\sin 2\theta}{r^2} \frac{\partial}{\partial \theta} + \frac{\cos^2 \theta}{r} \frac{\partial}{\partial r}.$$
$$c^2 v_{yy} = \Delta v, \quad (\inf f)$$
$$v(x, y), \Delta v(x, y) \longrightarrow \infty \quad \text{as} \quad r = \sqrt{x^2 + y^2} \longrightarrow \infty$$

⁴C. I. Christov, Numerical implementation of the asymptotic boundary conditions for steadily propagating 2D solitons of Boussinesq type equation, Math. Computers Simul., 82 (2012) 1079 - 1092.

Using the given properties of the equation:

- 1/r² asymptotics decay at infinity
 the symmetry of the solution
- ➤ positive/negative domains

the following formula is obtained for the boundary condition:

$$\overline{v}(x, y) = \mu \frac{(1 - c^2)x^2 - y^2}{(1 - c^2)x^2 + y^2} \quad (vB)$$

$$\overline{w}(x, y) = \overline{\mu} \frac{(1 - c^2)x^2 - y^2}{(1 - c^2)x^2 + y^2} \quad (wB)$$

Validation

New Stop Criterion

- Choose neutral condition the 1/r² profile of the solution
- better convergence results for all finite difference schemes
- legit results
 - solution
 - boundary function

x-y cross-sections of the solution

Upper panels:

-The absolute value of the function on log-log plots.

-Black line describes (vB) function with the respective μ parameter

Lower panels show: -Plots display *vr*² values along the vertical z-axis

The solution settles down as the number of points $N_x = N_y$ per simulation increases!

The efect of the mesh size. Lower panels: the function scaled by r^2 . N_x , N_y – number of mesh-points along x, y axis.

Validation - Algorithm's Convergence

1. Runge's formula for convergence rate

2. Diff between Chr and Nat solutions

	FDS	h	Errors E _i in L ₂	Conv Rate	Errors E _i in L _∞	Conv Rate	Diff D _i in L ₂	Diff D _i in L _∞
a	Chr O(h²)	0.2 0.1 0.05	1.4232e-02 3.2384e-03	2.135	1.6732e-02 3.9976e-03	2.065	9.9534e-09	1.5086e-08 6.3317e-06 1.7911e-08
	Nat O(h²)	0.2 0.1 0.05	1.4228e-02 3.2416e-03	2.134	1.6729e-02 4.0012e-03	2.063	6.7328e-08	
	Chr O(h ⁴)	0.2 0.1 0.05	1.7575e-03 1.1329e-04	3.955	2.4992e-03 1.6753e-04	3.898	1.8764e-08	2.7887e-08 5.0020e-06 8.6233e-08
	Nat O(h ⁴)	0.2 0.1 0.05	1.7548e-03 1.1584e-04	3.921	2.4957e-03 1.7092e-04	3.868	5.5434e-08	
	Chr O(h ⁶)	0.4 0.2 0.1	2.0981e-02 3.6129e-04	5.859	2.9345e-02 5.9043e-04	5.635	1.0594e-08	1.3942e-08 1.4391e-07 4.9035e-08
	Nat O(h ⁶)	0.4 0.2 0.1	2.0981e-02 3.6134e-04	5.859	2.9345e-02 5.9050e-04	5.635	3.0651e-08	

 $(\log E_1 - \log E_2) / \log 2$

 $E_1 = \left\| \hat{v}_{[h]} - \hat{v}_{[h/2]} \right\|, E_2 = \left\| \hat{v}_{[h/2]} - \hat{v}_{[h/4]} \right\|,$

2. $D_1 = \|\hat{v}.Chr_{[h]} - \hat{v}.Nat_{[h]}\|, D_2 = \|\hat{v}.Chr_{[h/2]} - \hat{v}.Nat_{[h/2]}\|, D_3 = \|\hat{v}.Chr_{[h/4]} - \hat{v}.Nat_{[h/4]}\|$

Derivative Convergence

FDS	h	errors in L_2	Conv. Rate	errors in L_{∞}	Conv. Rate
c=0.45	0.8				
$O(h^2)$	0.4	2.9698e-01		4.2497e-01	
	0.2	6.8742e-02	2.1111	8.6465e-02	2.2972
c=0.1	0.8				
$O(h^2)$	0.4	3.4849e-01		3.0271e-01	
	0.2	8.7696ee-02	1.9905	7.5691e-02	1.9998
c=0.45	0.8				
$O(h^6)$	0.4	1.0766e + 00		1.2316e + 00	
	0.2	3.5768e-02	4.91117	5.8927e-02	4.3855
c=0.1	0.8				
$O(h^6)$	0.4	8.0095e-01		9.8911e-01	
	0.2	1.5680e-02	5.6747	2.1238e-02	5.5414

Errors in L₂ and L_{inf} norms and convergence rate for fourth order x-derivative evaluated by the FDS with $O(h^2)$ and $O(h^6)$ approximation order

Runge's test, evaluating the fourth x-derivative of the solution, show that it converges numerically. Tests for other fourth order derivatives are similar and we do not present them here.

Best-Fitt Approximation formulae

$$w^{s}(x, y, t; c) = f(x, y) + c^{2}[(1 - \beta_{1})g_{a}(x, y) + \beta_{1}g_{b}(x, y)] + c^{2}[(1 - \beta_{1})h_{1}(x, y) + \beta_{1}h_{2}(x, y)\cos(2\theta)],$$

where

$$\begin{split} f(x,y) &= \frac{2.4(1+0.24r^2)}{\cosh(r)(1+0.095r^2)^{1.5}},\\ g_a(x,y) &= -\frac{1.2(1-0.177r^{2.4})}{\cosh(r)|1+0.11r^{2.1}|}, \quad g_b(x,y) = -\frac{1.2(1+0.22r^2)}{\cosh(r)|1+0.11r^{2.4}|},\\ h_l(x,y) &= \frac{a_lr^2 + b_lr^3 + c_lr^4 + v_lr^6}{1+d_lr + e_lr^2 + f_lr^3 + g_lr^4 + h_lr^5 + q_lr^6 + w_lr^8}. \end{split}$$

⁵C. I. Christov, J. Choudhury, Perturbation solution for the 2D Boussinesq equation, Mech. Res. Commun., 38 (2011) 274 - 281.

Comparison between the numerical solution \tilde{v} and the best fit formulae³

c=0.3 β = 1

c=0.3 $\beta = 3$

c=0.3 β = 5

Thank you for your attention