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Problem Formulation: Equations

CNLSE is system of nonlinearly coupled Schrödinger equations
(called the Gross-Pitaevskii or Manakov-type system):

iψt = βψxx +
[
α1|ψ|2 + (α1 + 2α2)|φ|2

]
ψ(+Γφ),

(1)
iφt = βφxx +

[
α1|φ|2 + (α1 + 2α2)|ψ|2

]
φ(+Γψ),

where:
β is the dispersion coefficient;
α1 describes the self-focusing of a signal for pulses in birefringent
media;
Γ = Γr + iΓi is the magnitude of linear coupling. Γr governs the
oscillations between states termed as breathing solitons, while Γi

describes the gain behavior of soliton solutions.
α2 (called cross-modulation parameter) governs the nonlinear
coupling between the equations.
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Problem Formulation: Equations

When α2 = 0, no nonlinear coupling is present despite the fact
that “cross-terms” proportional to α1 appear in the equations. For
α2 = 0, the solutions of the two equations are identical, ψ ≡ φ,
and equal to the solution of single NLSE with nonlinearity
coefficient α = 2α1.
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Problem Formulation: Choice of Initial Conditions

We concern ourselves with the soliton solutions whose modulation
amplitude is of general form (non-sech) and which are localized
envelops on a propagating carrier wave. This allows us to play
various scenario of initial polarization. Unfortunately in sech-case
the initial polarization can be only linear. Then we assume that for
each of the functions φ, ψ the initial condition is of the form of a
single propagating soliton, namely{
ψ(x , t)
φ(x , t)

}
=

{
Aψ

Aφ

}
sech [b(x−X−ct)] exp

{
i
[

c

2β
(x−X )−nt

]}
.

b2 =
1

β

(
n +

c2

4β

)
, A = b

√
2β

α1
, uc =

2nβ

c
, (2)

where X is the spatial position (center of soliton), c is the phase
speed, n is the carrier frequency, and b−1 – a measure of the
support of the localized wave.
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Problem Formulation: Choice of Initial Conditions

We assume that for each of the functions φ, ψ the initial condition
has the general type

ψ = Aψ(x + X − cψt) exp
{
i
[
nψt − 1

2cψ(x−X−cψt)+ δψ
]}

(3)
φ = Aφ(x + X − cφt) exp

{
i
[
nφt − 1

2cφ(x−X−cφt)+ δφ
]}
,

where cψ, cφ are the phase speeds and X ’s are the initial positions
of the centers of the solitons; nψ, nφ are the carrier frequencies for
the two components; δψ and δφ are the phases of the two
components. Note that the phase speed must be the same for the
two components ψ and φ. If they propagate with different phase
speeds, after some time the two components will be in two
different positions in space, and will no longer form a single
structure. For the envelopes (Aψ,Aφ),
θ ≡ arctan(max |φ|/max |ψ|) is a polarization angle.
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Problem Formulation: Generation of Initial Conditions

Generally the carrier frequencies for the two components nψ 6= nφ
– elliptic polarization. When nψ = nφ – circular polarization. If one
of them vanishes – linear polarization (sech soliton, θ = 0; 90◦).
In general case the initial condition is solution of the following
system of nonlinear conjugated equations

A′′
ψ +

(
nψ + 1

4c2
ψ

)
Aψ +

[
α1A

2
ψ + (α1 + 2α2)A

2
φ

]
Aψ = 0

(4)
A′′
φ +

(
nφ + 1

4c2
φ

)
Aφ +

[
α1A

2
φ + (α1 + 2α2)A

2
ψ

]
Aφ = 0.

The system admits bifurcation solutions since the trivial solution
obviously is always present.
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Initial Conditions and Initial Polarization

We solve the auxiliary conjugated system (4) with asymptotic
boundary conditions using Newton method and the initial
approximation of sought nontrivial solution is sech-function. The
final solution, however, is not obligatory sech-function. It is a
two-component polarized soliton solution.

Figure: 1. Amplitudes Aψ and Aφ for cl = −cr = 1, α1 = 0.75, α2 = 0.2.
Left:nψ = −0.68; middle: nψ = −0.55; right: nψ = −0.395.
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Initial Conditions and Initial Phase Difference

Another dimension of complexity is introduced by the phases of the
different components. The initial difference in phases can have a
profound influence on the polarizations of the solitons after the
interaction and the magnitude of the full energy. The relative shift
of real and imaginary parts is what matters in this case.

Figure: 2. Real and imaginary parts of the amplitudes from the case
shown in the middle panel of Figure 1 and the dependence on phase
angle.
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Problem Formulation: Initial Conditions

After completing the initial conditions our aim is to understand
better the influence of the initial polarization and initial phase
difference on the particle-like behavior of the localized waves. We
call a localized wave a quasi-particle (QP) if it survives the
collision with other QPs (or some other kind of interactions)
without losing its identity.
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Linearly Coupled Problem Formulation: Equations and
Initial Conditions

For the linearly coupled system of NLSE the magnitude of linear
coupling Γr generates breathing the solitons although
noninteracting The initial conditions must be

Ψ = ψ cos(Γt) + iφ sin(Γt), Φ = φ cos(Γt) + iψ sin(Γt), (5)

where φ and ψ are assumed to be sech-solutions of (1) for α2 = 0.
Hence (1) posses solutions, which are combinations of interacting
solitons oscillating with frequency Γr and their motion gives rise to
the so-called rotational polarization.
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Problem Formulation: Conservation Laws

Define “mass”, M, (pseudo)momentum, P, and energy, E :

M
def
=

1

2β

∫ L2

−L1

(
|ψ|2 + |φ|2

)
dx , P

def
= −

∫ L2

−L1

I(ψψ̄x + φφ̄x)dx ,

E
def
=

∫ L2

−L1

Hdx , where (6)

H def
= β

(
|ψx |2 + |φx |2

)
− 1

2α1(|ψ|4 + |φ|4)
−(α1 + 2α2)

(
|φ|2|ψ|2

)
− 2Γ[<(ψ̄φ̄)]

is the Hamiltonian density of the system. Here −L1 and L2 are the
left end and the right end of the interval under consideration. For
the linear coupling case, α2 = 0 and Γ 6= 0 the functions ψ and φ
correspond to notations in (5). The following conservation/balance
laws hold, namely

dM

dt
= 0,

dP

dt
= H

∣∣
x=L2

−H
∣∣
x=−L1

,
dE

dt
= 0, (7)
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Problem Formulation: Conservation Laws

In all considered cases we found that a conservation of the total
polarization is present. Only for the linearly CNLSE (α2 = 0) the
total polarizations breathe with an amplitude evidently depending
on the initial phase difference but is conserved within one full
period of the breathing.

δr − δl θi
l θi

r θi
l + θi

r θf
l θf

r θf
l + θf

r

45◦ 45◦ 45◦ 90◦ 33◦48′ 56◦12′ 90◦

90◦ 45◦ 45◦ 90◦ 24◦06′ 65◦54′ 90◦

0◦ 20◦ 20◦ 40◦ 20◦00′ 20◦00′ 40◦

90◦ 20◦ 20◦ 40◦ 28◦48′ 2◦02′ 30◦50′

0◦ 36◦ 36◦ 72◦ 36◦00′ 36◦00′ 72◦

90◦ 36◦ 36◦ 72◦ 53◦00′ 13◦20′ 66◦20′

0◦ 10◦ 80◦ 90◦ 21◦05′ 68◦54′ 89◦59′

90◦ 10◦ 80◦ 90◦ 9◦27′ 80◦30′ 89◦57′
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Numerical Method

To solve the main problem numerically, we use an implicit
conservative scheme in complex arithmetic.

i
ψn+1

i − ψn
i

τ
=

β

2h2

(
ψn+1

i−1 − 2ψn+1
i + ψn+1

i+1 + ψn
i−1 − 2ψn

i + ψn
i+1

)
+
ψn+1

i + ψn
i

4

[
α1

(
|ψn+1

i |2 + |ψn
i |2

)
+ (α1 + 2α2)

(
|φn+1

i |2 + |φn
i |2

)]
− 1

2Γ
(
φn+1

i + φn
i

)
,

i
φn+1

i − φn
i

τ
=

β

2h2

(
φn+1

i−1 − 2φn+1
i + φn+1

i+1 + φn
i−1 − 2φn

i + φn
i+1

)
+
φn+1

i + φn
i

4

[
α1

(
|φn+1

i |2 + |φn
i |2

)
+ (α1 + 2α2)

(
|ψn+1

i |2 + |ψn
i |2

)]
− 1

2Γ
(
ψn+1

i + ψn
i

)
.
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Numerical Method: Internal Iterations

i
ψn+1,k+1

i − ψn
i

τ
=

β

2h2

(
ψn+1,k+1

i−1 − 2ψn+1,k+1
i + ψn+1,k+1

i+1

+ ψn
i−1 − 2ψn

i + ψn
i+1

)
+
ψn+1,k

i + ψn
i

4

[
α1

(
|ψn+1,k+1

i ||ψn+1,k
i |+ |ψn

i |2
)

+(α1 + 2α2)
(
|φn+1,k+1

i ||φn+1,k
i |+ |φn

i |2
)]

i
φn+1,k+1

i − φn
i

τ
=

β

2h2

(
φn+1,k+1

i−1 − 2φn+1,k+1
i + φn+1,k+1

i+1

+ φn
i−1 − 2φn

i + φn
i+1

)
+
φn+1,k

i + φn
i

4

[
α1

(
|φn+1,k+1

i ||φn+1,k
i |+ |φn

i |2
)

+(α1 + 2α2)
(
|ψn+1,k+1

i ||ψn+1,k
i |+ |ψn

i |2
)]
.
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Numerical Method: Conservation Properties

It is not only convergent (consistent and stable), but also
conserves mass and energy, i.e., there exist discrete analogs for (7),
which arise from the scheme.

Mn =
N−1∑
i=2

(
|ψn

i |2 + |φn
i |2

)
= const,

En =
N−1∑
i=2

−β
2h2

(
|ψ n

i+1 − ψ n
i |2 + |φ n

i+1 − φ n
i |2

)
+
α1

4

(
|ψn

i |4 + |φn
i |4

)
+ 1

2(α1 + 2α2)
(
|ψn

i |2|φn
i |2

)
− Γ<[φ̄n

i ψ
n
i ] = const,

for all n ≥ 0.

These values are kept constant during the time stepping. The
above scheme is of Crank-Nicolson type for the linear terms and
we employ internal iterations to achieve implicit approximation of
the nonlinear terms, i.e., we use its linearized implementation.
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Results and Discussion: Initial Circular Polarizations of
45◦, α2 = 0

Figure: 3. δl = 0◦, δr = 0◦
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Results and Discussion: Initial Circular Polarizations of
45◦, α2 = 0

Figure: 4. δl = 0◦, δr = 45◦
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Results and Discussion: Initial Circular Polarizations of
45◦, α2 = 0

—When both of QPs have zero phases (Fig. 3), the interaction
perfectly follows the analytical Manakov two-soliton solution.
—The surprise comes in Fig. 4 where is presented an interaction of
two QPs, the right one of which has a nonzero phase δr = 45◦.
After the interaction, the two QPs become different Manakov
solitons than the original two that entered the collision. The
outgoing QPs have polarizations 33◦48′ and 56◦12′. Something
that can be called a ‘shock in polarization’ takes place. All the
solutions are perfectly smooth, but because the property called
polarization cannot be defined in the cross-section of interaction
and for this reason, it appears as undergoing a shock.
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Results and Discussion: Initial Circular Polarizations of
45◦, α2 = 0

Here is to be mentioned that when rescaled the moduli of ψ and φ
from Fig. 4 perfectly match each other which means that the
resulting solitons have circular polarization (see left panel of Fig. 5
below). The Manakov solution is not unique. There exists a class
of Manakov solution and in the place of interaction becomes a
bifurcation between them.
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Results and Discussion: Initial Circular Polarization and
Nonuniqueness of the Manakov Solution

Figure: 5. Circular polarization (left); Elliptic Polarization (right).
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Equal Elliptic Initial Polarizations of 50◦08′ for α2 = 2

Figure: 6. δl = 0◦, δr = 0◦

Figure: 7. δl = 0◦, δr = 180◦

M. D. Todorov Polarization Dynamics and Coupling in CNLSE



Equal Elliptic Initial Polarizations of 50◦08′ for α2 = 2

Figure: 8. δl = 0◦, δr = 130◦

Figure: 9. δl = 0◦, δr = 135◦

Figure: 10. δl = 0◦, δr = 140◦
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Equal Elliptic Initial Polarizations of 50◦08′ for α2 = 2.

We choose nlψ = nrψ = −1.5, nlφ = nrφ = −1.1, cl = −cr = 1,

α1 = 0.75, and focus on the effects of α2 and ~δ.

One sees that the desynchronisations of the phases leads in the
final stage to a superposition of two one-soliton solutions but with
different polarizations from the initial polarization. Yet, for
δr = 130◦ ÷ 140◦ one of the QPs loses its energy contributing it to
the other QP during the collision and then virtually disappears:
kind of energy trapping (Figs.8, 9, 10).

For δr = 180◦ another interesting effect is seen, when the right
outgoing QP is circularly polarized (Fig. 7).

All these interactions are accompanied by changes of phase speeds.
The total polarization exhibits some kind of conservation.
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Strong Nonlinear Interaction: α2 = 10

Figure: 11. α2 = 10, cl = 1, cr = −0.5.
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Strong Nonlinear Interaction: α2 = 10

Two new solitons are born after the collision.

The kinetic energies of the newly created solitons correspond
their phase speeds and masses, but the internal energy is very
different for the different QP.

the total energy of the QPs is radically different from the total
energy of the initial wave profile. The differences are so drastic
that the sum of QPs energies can even become negative. This
means that the energy was carried away by the radiation.

The predominant part of the energy is concentrated in the left
and right forerunners because of the kinetic energies of the
latter are very large. This is due to the fact that the
forerunners propagate with very large phase speeds, and span
large portions of the region.

All four QPs have elliptic polarizations.

Energy transformation is a specific trait of the coupled system
considered here.
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

Figure: 12. δl = 0◦, δr = 0◦

Figure: 13. δl = 0◦, δr = 90◦
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

Figure: 14. Influence of the initial phase difference on the total energy:
δl = 0◦, δr = 0◦ – E = −0.262;
δl = 0◦, δr = 90◦ – E = −0.821;
δl = 0◦, δr = 135◦ – E = −0.206;
δl = 0◦, δr = 180◦ – E = 0.640
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

Figure: 15. δl = 0◦, δr = 90◦, P = 10−3 ÷ 10−5
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

Figure: 16. δl = 0◦, δr = 0◦

Figure: 17. δl = 0◦, δr = 90◦
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Linear Coupling: Initial Linear Polarizations: θl = 0◦,
θr = 90◦, α2 = 0, cl = 1.5, cr = 0.6, Γ = 0.175 + 0.005i

0.5
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1

Figure: 18. δl = 0◦, δr = 90◦
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

We have found that the phases of the components play an
essential role on the full energy of QPs. The magnitude of the
latter essentially depends on the choice of initial phase
difference (Figure 14);

The pseudomomentum is also conserved and it is trivial due
to the symmetry (Figure 15);

The individual masses, however, breathe together with the
individual (rotational) polarizations. Their amplitude and
period do not influenced from the initial phase difference
(Figure 15);
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

The total mass is constant while the total polarization
oscillates and suffers a ’shock in polarization ’ when QPs enter
the collision. The polarization amplitude evidently depends on
the initial phase difference (Figures 16,17);

Due to the real linear coupling the polarization angle of QPs
can change independently of the collision.

Complex parameter of linear coupling: Along with the
oscillations of the energy and masses the (negative) energy
decreases very fast, while the masses Mψ and Mφ increase all
of them oscillating. The pseudomomentum P increases
without appreciable oscillation (Figure 18).
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