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Introduction

We study the Cauchy problem for

Boussinesq Equation (BE)

∂2u

∂t2
= ∆u + β1∆

∂2u

∂t2
− β2∆2u + ∆f (u), x ∈ Rn, t > 0,

u(x , 0) = u0(x),
∂u

∂t
(x , 0) = u1(x),

on the unbounded region Rn with asymptotic boundary conditions
u(x , t)→ 0, ∆u(x , t)→ 0 as |x | → ∞,

where ∆ is the Laplace operator, β1 and β2 are positive constants.

This is a 4-th order differential equation in x and 2-nd order in t
with non-linearity contained in the term f (u).
f is a polynomial of u. Examples: f (u) = αu2; f (u) = au3 + bu5.
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Numerical methods for BE, references

finite difference methods (Ortega, Sanz Serna, 1990; Christov,
1994);
finite element methods (Pani, 1997);
spectral method with Christov functions (Christou, 2010);
Godunov-type central-upwind scheme (Chertock, Christov,
Kurganov, 2011)

theoretical analysis, numerical implementation, comparison of
several FDS (Kolkovska, 2010; Christov, Vasileva, Kolkovska,
2010; Kolkovska, Dimova, 2011, 2012);
vector additive schemes (multicomponent alternating direction
method) (Kolkovska, Angelow, 2013) - O(h2 + τ), non
conservative method;

We assume that the initial data satisfy such regularity conditions
that BE has a unique smooth enough solution.
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Properties to the Boussinesq equation

Let ‖·‖ denote the standard norm in L2(Rn).
Define the energy functional

E (u(t)) =

∥∥∥∥(−∆)−1/2∂u

∂t

∥∥∥∥2

+β1

∥∥∥∥∂u

∂t

∥∥∥∥2

+‖u‖2+β2 ‖∇u‖2+

∫
Rn

F (u)du

with

F (u) =

∫ u

0
f (s)ds

Theorem (Conservation law)

The solution u to Boussinesq problem satisfies the following energy
identity

E (u(t)) = E (u(0)) ∀t ∈ [0,T ].

We obtain similar energy identities for the solutions of the FDS
employed in the discretization of BPE.
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Notations for case n = 2:

Domain Ω = [−L1, L1]× [−L2, L2], L1, L2 – sufficiently large;

a uniform mesh with steps h1, h2 in Ω:
xi = ih1, i = −M1,M1; yj = jh2, j = −M2,M2;

τ - the time step, tk = kτ, k = 0, 1, 2, ...;

mesh points (xi , yj , tk);

v
(k)
(i ,j) denotes the discrete approximation u(xi , yj , tk) ;

notations for some discrete derivatives of mesh functions:

v
(k)
t,(i,j) = (v

(k+1)
(i,j) − v

(k)
(i,j))/τ ;

v
(k)
x̄x,(i,j) =

(
v

(k)
(i+1,j) − 2v

(k)
(i,j) + v

(k)
(i−1,j)

)
/h2

1;

v
(k)
t̄t,(i,j) =

(
v

(k+1)
(i,j) − 2v

(k)
(i,j) + v

(k−1)
(i,j)

)
/τ 2;

∆hv = vx̄x + vȳy – the 5-point discrete Laplacian.
(∆h)2v = vx̄xx̄x + vȳy ȳy + 2vx̄x ȳy – the discrete biLaplacian
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In approximation of ∆hv and (∆h)2v we use vθ – the symmetric
θ-weighted approximation to vk

(i ,j):

vθ,k(i ,j) = θvk+1
(i ,j) + (1− 2θ)vk

(i ,j) + θvk−1
(i ,j) , θ ∈ R.

Three level FDS

vk
t̄t −∆hvk

t̄t −∆hvθ,k + (∆h)2vθ,k = ∆h
F (vk+1)− F (vk−1)

vk+1 − vk−1

v 0
(i ,j) = u0(xi , yj),

v 1
(i ,j) = u0(xi , yj) + τu1(xi , yj)

+ 0.5τ2(I −∆h)−1
(
∆hu0 − (∆h)2u0 + ∆hg(u0)

)
(xi , yj).

The equations, boundary and initial conditions form a family of
3-levels finite difference schemes.
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The second time derivative at the time level tk + τ/2 is
approximated with error O(τ2) using four consecutive time levels
(k + 2), (k + 1), (k) and (k − 1) as

v
(k)

t̂ t̂
= 0.5(v (k+2) − v (k+1) − v (k) + v (k−1))τ−2.

For the approximation of ∆hv and (∆h)2v we introduce two
symmetric approximations to u(·, tk + τ/2) with real parameters θ
and µ:

vθ(k) = θv (k+2) + (0.5− θ)v (k+1) + (0.5− θ)v (k) + θv (k−1),

vµ(k) = µv (k+2) + (0.5− µ)v (k+1) + (0.5− µ)v (k) + µv (k−1)

For the approximation of non-linear term we use

F (v (k+1))− F (v (k))

v (k+1) − v (k)
.

Note that function f (v) is a polynomial of v , thus the integrals
F (v) could be explicitly evaluated!
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Four level FDS:

(I − β1∆h)(v (k+2) − v (k+1) − v (k) + v (k−1))/(2τ2)

−∆hvθ(k) + β2(∆h)2vµ(k) = ∆h
F (v (k+1))− F (v (k))

v (k+1) − v (k)

Here I stands for the identity operator.
Initial values v (0), v (1) and v (−1) on time levels t = 0, t = τ and
t = −τ are evaluated by formulas

v
(0)
i ,j = u0(xi , yj),

v
(1)
i ,j = u0(xi , yj) + τu1(xi , yj)

+ 0.5τ2(I − β1∆h)−1
(
∆hu0 − β2(∆h)2u0 + ∆hf (u0)

)
(xi , yj),

v
(0)
t̄t(i ,j) =

(
v

(1)
(i ,j) − 2v

(0)
(i ,j) + v

(−1)
(i ,j)

)
τ−2

= (I − β1∆h)−1 (∆hu0 − β2∆2
hu0 + ∆hf (u0)

)
(xi , yj).
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Consider the space of functions, which vanish on the boundary of
Ωh, with the scalar product

〈v ,w〉 =
∑
i ,j

h1h2v
(k)
(i ,j)w

(k)
(i ,j);

We define operators

A = −∆h

B = I − β1∆h − 2τ2θ∆h + 2τ2β2µ(∆h)2

A , B - self-adjoint and positive definite operators for θ ≥ 0 and
µ ≥ 0
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The energy functional EL
h (obtained from the linear part of the

equation) at the k-th time level is

EL
h (v (k))

=
〈

A−1v
(k)
t , v

(k)
t

〉
+
〈

v
(k)
t , v

(k)
t

〉
+ τ2(θ − 1/4)

〈
(I + A)v

(k)
t , v

(k)
t

〉
+ 1/4

〈
v (k) + v (k+1) + A(v (k) + v (k+1)), v (k) + v (k+1)

〉
The full discrete energy functional is (including the non-linearity)

Eh(v (k)) = EL
h (v (k)) +

〈
F (v (k+1)), 1

〉
+
〈

F (v (k)), 1
〉

Theorem (Discrete conservation law, Three level FDS )

The solution to the iterative scheme (IM) satisfies the energy
equalities

Eh(v (k)) = Eh(v (0)), k = 1, 2, . . . .

i.e. the discrete energy is conserved in time.
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We introduce the linear functional Eh,L(v (k)) as

Eh,L(v (k)) =0.5
〈

A−1Bv
(k)
t , v

(k−1)
t

〉
+ 0.5

〈
v (k) + β2Av (k), v (k)

〉
and the full discrete energy functional Eh(v (k)) as

Eh(v (k)) =Eh,L(v (k)) +
〈

F (v (k)), 1
〉
.

Theorem (Discrete conservation law, Four level FDS )

The solution to the considered FDS satisfies the energy equalities

Eh(v (k)) = Eh(v (0)), k = 1, 2, . . . .

i.e. the discrete energy is conserved in time.

Our calculations confirm that the discrete energy functional
Eh(v (k)) is preserved in time with a high accuracy (for t ∈ (0, 20] -
with 10−8 error)
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Theorem (Convergence of the 3-level FDS)

Assume that the parameter θ satisfies

θ >
1 + ε

4
− 1

τ2||A||
, ε > 0

Assume that the solution u is in C 4,4
(
R2 × (0,T )

)
and the

solution v to the 3-level FDS is bounded in the maximal norm.
Then v converges to the exact solution u as |h|, τ → 0 and the
following estimate holds for the error z = y − u:

max
i
|z(k)
i | < CeMtk

√
1 + ε

ε

(
|h|2 + τ2

)
, n = 1;

max
i ,j
|z(k)
i ,j | < CeMtk

√
ln N

√
1 + ε

ε

(
|h|2 + τ2

)
, n = 2.
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Theorem (Convergence of the 4-level FDS)

Assume that f is a polynomial of u and that:

(i) parameters θ and µ satisfy the operator inequality

A−1 + β1I + τ2(2θ − 0.5)I + τ2β2(2µ− 0.5)A > εI , ε > 0

with some positive real number ε independent on h, τ , u;

(ii) u ∈ C 4,4(R2 × [0,T );

(iii) the discrete solution v is bounded in the maximal norm.

Then the discrete solution v converges to the exact solution u as
|h|, τ → 0 and the following estimate holds for the error z = u − v:

max
i
|z(k)
i + z

(k+1)
i | ≤ CeMtk

(
|h|2 + τ2

)
, n = 1;

max
i ,j
|z(k)
i + z

(k+1)
i | ≤ CeMtk

√
ln(max{N1,N2})

(
|h|2 + τ2

)
, n = 2.
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Table: Restrictions on parameters θ, µ for validity of condition (i) in the
convergence Theorem

µ θ sufficient conditions

µ ≥ 0.25 θ ≥ 0.25 no restrictions

µ ≥ 0.25 θ < 0.25 τ2 <
β1 − ε+ τ2(2µ− 0.5)β24/L2

(0.5− 2θ)

µ < 0.25 θ ≥ 0.25 τ2 < h2 β1 − ε
4n(0.5− 2µ)β2

µ < 0.25 θ < 0.25 τ2 < h2β1 − ε+ τ2(2θ − 0.5)

4n(0.5− 2µ)β2

Here L = max(L1, L2) is the semi-length of the computational
domain and n = 1, 2 is the dimension.
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Algorithm for 3 level FDS

A. Evaluate v (0), v (1) from the initial conditions

B. For k = 1, 2, . . . do (v (k−1), v (k) are known)

1 take v (k+1)[0] = v (k)

2 for s = 1, 2, ... repeat steps (a), (b) below until
|v (k+1)[s+1] − v (k+1)[s]| < ε|v (k+1)[s]|
(a) find w by standard elliptic solver

(I −∆h)w = ∆h
F (v (k+1)[s])− F (v (k−1))

v (k+1)[s] − v (k−1)
,

w = 0 (BC),
(b) obtain v (k+1)[s+1] from(

I − θτ2∆h

)
v

(k)[s+1]
t̄t −∆hv (k)[s+1] = w ,

v (k+1)[s+1] = 0 (BC)

3 set v (k+1) = v (k+1)[s+1]

N. Kolkovska FDS for Boussinesq Equation
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Numerical algorithm, 4-level FDS

1. Evaluate v (0), v (1), v (−1) from the initial conditions;
2. For k = 0, 1, 2, . . . do (v (k−1), v (k), v (k+1) are known):

(I − β1∆h)(v (k+2))/(2τ2)− θ∆hv (k+2) + µβ2∆2
hv (k+2)

= ∆h
F (v (k+1))− F (v (k))

v (k+1) − v (k)
− (0.5− µ)β2(∆h)2(v (k+1) + v (k))

− µβ2∆2
hv (k−1) + (0.5− θ)∆h(v (k+1) + v (k)) + θ∆hv (k−1)

+ (I − β1∆h)(v (k+1) + v (k) − v (k−1))/(2τ2)

Remarks:
if µ 6= 0 - 4-th order elliptic equation for v (k+2) ⇒ choose µ = 0!
for µ = 0 - second order elliptic equation for v (k+2) - the numerical
method is efficient!
No inner iterations are needed for evaluation of v (k+2).
Despite this fact, this method is conservative!
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Preliminaries

An analytical solution of the 1D equation (one solitary wave):

u(x , t; x0, c) =
3

2

c2 − 1

α
sech2

x − x0 − ct

2

√
c2 − 1

β1c2 − β2

 ,

where x0 is the initial position of the peak of the solitary wave,

Parameters: α = 3, β1 = 1.5, β2 = 0.5, c is the wave speed.

Initial conditions for one solitary wave or two solitary waves:

u(x , 0) = u(x , 0;−40, 2)+u(x , 0; 50,−1.5)

du

dt
(x , 0) = u(x , 0;−40, 2)t+u(x , 0; 50,−1.5)t

schemes with µ = 0 and several θ: θ = 0.25, θ = 0.5, θ = 0.
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One solitary wave

Errors in uniform norm and rate of convergence for
t ∈ [0, 20], θ = 0.5

c=2 c=0.5
h Error Rate Error Rate

0.1 0.0011424 0.0094145
0.05 0.00028569 1.99954544 0.0022174 2.08601543
0.025 7.1534 e-005 1.99783019 0.0005475 2.01793817
0.0125 1.9402 e-005 1.88234306 0.0001359 2.01031351

τ = h
√

(β1/(8β2)), ε = 0.5β1, τ2 < 0.5β1

The error is the difference between the calculated and the
exact solution in uniform norm for t = 20.

The calculations confirm the schemes are of order O(h2 + τ2).
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Interaction of two solitary waves with different speeds

Errors in uniform norm and rate of convergence for t ∈ [0, 40]

h θ = 0.5 θ = 0
error rate error rate

0.08
0.04 0.00231463 0.00034355
0.02 0.00057865 2.00002063 8.55658155e-005 2.31582697
0.01 0.00013966 2.05076806 1.71856875e-005 2.00541487

For every h the error is calculated by Runge method as
E 2

1 /(E1 − E2) with E1 = ‖u[h] − u[h/2]‖, E2 = ‖u[h/2] − u[h/4]‖,
where u[h] is the calculated solution with step h for t = 40.

The numerical rate of convergence is (log E1 − log E2)/ log 2.

The calculations confirm the schemes are of order O(h2 + τ2).

For two solitary waves the scheme with θ = 0 is 6 to 7 times
more precise than the scheme with θ = 0.5!
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Comparison, 3-level and 4-level conservative schemes

Errors in uniform norm for one and two solitary waves

1 soliton, T=40 2 solitons, T=80

4-level 3-level 4-level 3-level
h θ = 0.25 Con.FDS h θ = 0.25 Con.FDS

0.2 0.01288 0.14412 0.2
0.1 0.00324 0.03753 0.1 0.04019
0.05 0.00081 0.00948 0.05 0.01907 0.102754
0.025 0.00020 0.00238 0.025 0.009212 0.026027
0.0125 5.25e-05 0.00059 0.0125 0.004010 0.006528

for one solitary wave: the 4-level FDS is approximately 10
times more precise than the 3-level FDS;

for two solitary waves: the 4-level FDS is approximately 2
times more precise than the 3-level FDS.
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With respect to the error magnitude the ’new’ four-level scheme
performs much better than the ’old’ three-level schemes!
Justification: Consider both FDS. We expand all terms in Taylor
series about the point (xi , t

(k) + τ/2) or (xi , t
k) and get for the

leading terms

R4−lev =
1

8
ατ2∆h

∂f

∂u
(xi , t

(k) + τ/2)
∂2u

∂t2
(xi , t

(k) + τ/2),

R3−lev =
1

4
ατ2∆h

∂f

∂u
(xi , t

k)
∂2u

∂t2
(xi , t

k).

Thus, R3−lev ≈ 2 ∗ R4−lev . This has essential impact on the total
error, when the solution has large derivatives!
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Movie

Interaction of two solitary waves with different speeds
x ∈ [−120, 120], t ∈ [0, 35], c1 = 2, c2 = −1.5
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Graphics, 1D

Interaction of two solitary waves with different speeds
x ∈ [−80, 120], t ∈ [0, 35], c1 = 2, c2 = −1.5
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Interaction of two solitary waves with different speeds
x ∈ [−80, 120], t ∈ [0, 35], c1 = 2, c2 = −1.5
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Graphics, 2D

Figure: Evolution of the numerical solution in time
For t < 5 the shape of the numerical solution is similar to the
initial solution. For larger times the numerical solution changes its
initial form and transforms into a diverging propagating wave.
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Figure: Cross section x = 0 of the solution v with c = 0.2 at times
t = 0, 2.4, 4.8, 7.2, 9.6, 12
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Concluding remarks:

We compare a three level FDS and a four level FDS for BE.

Both schemes are conservative, i.e. the corresponding discrete
energy of the numerical solution is preserved in time.

Both schemes are second order accurate with respect to space
and time steps in the uniform norm and in the first Sobolev
norm.

The numerical algorithm for evaluation of the discrete solution
to 3 level FDS needs inner iterations and it is efficient.

For µ = 0 the numerical algorithm for evaluation of the
discrete solution to 4 level FDS is efficient.

The numerical experiments show good agreement with the
theoretical results in 1D and 2D cases.
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Thank you
for your attention!
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