Finite Difference Schemes for Generalized Boussinesq Equation

Natalia Kolkovska

Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgaria, e-mail: natali@math.bas.bg

Mathematical Modeling and Computational Physics, DUBNA, 2013

Supported by Bulgarian National Science Fund Grant DDVU 02/71

Boussinesq Equation

- Introduction
- Properties to the Boussinesq equation

2 Finite difference schemes

- Finite difference schemes
- Discrete conservation law
- Convergence

3 Numerical results

- Numerical algorithms
- Tables
- Graphics, 1D, 2D

Introduction

We study the Cauchy problem for

Boussinesq Equation (BE)

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \Delta u + \beta_1 \Delta \frac{\partial^2 u}{\partial t^2} - \beta_2 \Delta^2 u + \Delta f(u), \quad x \in \mathbb{R}^n, \ t > 0, \\ u(x,0) &= u_0(x), \quad \frac{\partial u}{\partial t}(x,0) = u_1(x), \end{aligned}$$

on the unbounded region \mathbb{R}^n with asymptotic boundary conditions $u(x, t) \to 0$, $\Delta u(x, t) \to 0$ as $|x| \to \infty$, where Δ is the Laplace operator β and β are positive constants.

where Δ is the Laplace operator, β_1 and β_2 are positive constants.

This is a 4-th order differential equation in x and 2-nd order in t with non-linearity contained in the term f(u). f is a polynomial of u. Examples: $f(u) = \alpha u^2$; $f(u) = au^3 + bu^5$.

Numerical methods for BE, references

- finite difference methods (Ortega, Sanz Serna, 1990; Christov, 1994);
- finite element methods (Pani, 1997);
- spectral method with Christov functions (Christou, 2010);
- Godunov-type central-upwind scheme (Chertock, Christov, Kurganov, 2011)
- theoretical analysis, numerical implementation, comparison of several FDS (Kolkovska, 2010; Christov, Vasileva, Kolkovska, 2010; Kolkovska, Dimova, 2011, 2012);
- vector additive schemes (multicomponent alternating direction method) (Kolkovska, Angelow, 2013) $O(h^2 + \tau)$, non conservative method;

We assume that the initial data satisfy such regularity conditions that BE has a unique smooth enough solution.

Introduction Properties to the Boussinesq equation

Properties to the Boussinesq equation

Let $\|\cdot\|$ denote the standard norm in $L_2(\mathbb{R}^n)$. Define the energy functional

$$E(u(t)) = \left\| (-\Delta)^{-1/2} \frac{\partial u}{\partial t} \right\|^2 + \beta_1 \left\| \frac{\partial u}{\partial t} \right\|^2 + \|u\|^2 + \beta_2 \|\nabla u\|^2 + \int_{\mathbb{R}^n} F(u) du$$

with

$$F(u) = \int_0^u f(s) ds$$

Theorem (Conservation law)

The solution u to Boussinesq problem satisfies the following energy identity

$$E(u(t)) = E(u(0)) \quad \forall t \in [0, T].$$

We obtain similar energy identities for the solutions of the FDS employed in the discretization of BPE.

Finite difference schemes Discrete conservation law Convergence

Notations for case n = 2:

- Domain $\Omega = [-L_1, L_1] \times [-L_2, L_2]$, L_1, L_2 sufficiently large;
- a uniform mesh with steps h_1 , h_2 in Ω : $x_i = ih_1, i = -M_1, M_1$; $y_j = jh_2, j = -M_2, M_2$;
- au the time step, $t_k = k au, k = 0, 1, 2, ...;$

- $v_{(i,j)}^{(k)}$ denotes the discrete approximation $u(x_i, y_j, t_k)$;
- notations for some discrete derivatives of mesh functions:

• $v_{t,(i,j)}^{(k)} = (v_{(i,j)}^{(k+1)} - v_{(i,j)}^{(k)})/\tau;$ • $v_{\bar{x}x,(i,j)}^{(k)} = (v_{(i+1,j)}^{(k)} - 2v_{(i,j)}^{(k)} + v_{(i-1,j)}^{(k)})/h_1^2;$ • $v_{\bar{t}t,(i,j)}^{(k)} = (v_{(i,j)}^{(k+1)} - 2v_{(i,j)}^{(k)} + v_{(i,j)}^{(k-1)})/\tau^2;$ • $\Delta_h v = v_{\bar{x}x} + v_{\bar{y}y}$ - the 5-point discrete Laplacian. • $(\Delta_h)^2 v = v_{\bar{x}x\bar{x}x} + v_{\bar{y}y\bar{y}y} + 2v_{\bar{x}x\bar{y}y}$ - the discrete biLaplacian.

Boussinesq Equation Finite difference schemes Numerical results Discrete conservation law Convergence

In approximation of $\Delta_h v$ and $(\Delta_h)^2 v$ we use v^{θ} – the symmetric θ -weighted approximation to $v_{(i,j)}^k$: $v_{(i,j)}^{\theta,k} = \theta v_{(i,j)}^{k+1} + (1-2\theta) v_{(i,j)}^k + \theta v_{(i,j)}^{k-1}$, $\theta \in R$.

Three level FDS

$$v_{tt}^k - \Delta_h v_{tt}^k - \Delta_h v^{ heta,k} + (\Delta_h)^2 v^{ heta,k} = \Delta_h rac{F(v^{k+1}) - F(v^{k-1})}{v^{k+1} - v^{k-1}}$$

$$\begin{split} v_{(i,j)}^{0} &= u_{0}(x_{i}, y_{j}), \\ v_{(i,j)}^{1} &= u_{0}(x_{i}, y_{j}) + \tau u_{1}(x_{i}, y_{j}) \\ &+ 0.5\tau^{2}(I - \Delta_{h})^{-1} \left(\Delta_{h}u_{0} - (\Delta_{h})^{2}u_{0} + \Delta_{h}g(u_{0})\right)(x_{i}, y_{j}). \end{split}$$

The equations, boundary and initial conditions form a family of 3-levels finite difference schemes.

Boussinesq Equation Finite difference schemes Numerical results Discrete conservation law Convergence

The second time derivative at the time level $t^k + \tau/2$ is approximated with error $O(\tau^2)$ using four consecutive time levels (k + 2), (k + 1), (k) and (k - 1) as

$$v_{\hat{t}\hat{t}}^{(k)} = 0.5(v^{(k+2)} - v^{(k+1)} - v^{(k)} + v^{(k-1)})\tau^{-2}$$

For the approximation of $\Delta_h v$ and $(\Delta_h)^2 v$ we introduce two symmetric approximations to $u(\cdot, t^k + \tau/2)$ with real parameters θ and μ :

$$v^{\theta(k)} = \theta v^{(k+2)} + (0.5 - \theta) v^{(k+1)} + (0.5 - \theta) v^{(k)} + \theta v^{(k-1)},$$

$$v^{\mu(k)} = \mu v^{(k+2)} + (0.5 - \mu) v^{(k+1)} + (0.5 - \mu) v^{(k)} + \mu v^{(k-1)},$$

For the approximation of non-linear term we use

$$\frac{F(v^{(k+1)}) - F(v^{(k)})}{v^{(k+1)} - v^{(k)}}.$$

Note that function f(v) is a polynomial of v, thus the integrals F(v) could be explicitly evaluated!

Finite difference schemes Discrete conservation law Convergence

Four level FDS:

$$(I - \beta_1 \Delta_h)(v^{(k+2)} - v^{(k+1)} - v^{(k)} + v^{(k-1)})/(2\tau^2) - \Delta_h v^{\theta(k)} + \beta_2(\Delta_h)^2 v^{\mu(k)} = \Delta_h \frac{F(v^{(k+1)}) - F(v^{(k)})}{v^{(k+1)} - v^{(k)}}$$

Here *I* stands for the identity operator. Initial values $v^{(0)}$, $v^{(1)}$ and $v^{(-1)}$ on time levels t = 0, $t = \tau$ and $t = -\tau$ are evaluated by formulas

$$\begin{aligned} \mathbf{v}_{i,j}^{(0)} &= u_0(x_i, y_j), \\ \mathbf{v}_{i,j}^{(1)} &= u_0(x_i, y_j) + \tau u_1(x_i, y_j) \\ &+ 0.5\tau^2 (I - \beta_1 \Delta_h)^{-1} \left(\Delta_h u_0 - \beta_2 (\Delta_h)^2 u_0 + \Delta_h f(u_0) \right) (x_i, y_j), \\ \mathbf{v}_{\bar{t}t}^{(0)} &= \left(\mathbf{v}_{(i,j)}^{(1)} - 2\mathbf{v}_{(i,j)}^{(0)} + \mathbf{v}_{(i,j)}^{(-1)} \right) \tau^{-2} \\ &= (I - \beta_1 \Delta_h)^{-1} \left(\Delta_h u_0 - \beta_2 \Delta_h^2 u_0 + \Delta_h f(u_0) \right) (x_i, y_j). \end{aligned}$$

N. Kolkovska

FDS for Boussinesq Equation

Boussinesq Equation Finite difference schemes Numerical results Finite difference schemes Discrete conservation law Convergence

Consider the space of functions, which vanish on the boundary of Ω_h , with the scalar product

$$\langle v, w \rangle = \sum_{i,j} h_1 h_2 v_{(i,j)}^{(k)} w_{(i,j)}^{(k)};$$

We define operators

$$A = -\Delta_h$$

$$B = I - \beta_1 \Delta_h - 2\tau^2 \theta \Delta_h + 2\tau^2 \beta_2 \mu (\Delta_h)^2$$

A , B - self-adjoint and positive definite operators for $\theta \geq 0$ and $\mu \geq 0$

Boussinesq Equation Finite difference schemes Numerical results Discrete conservation law Convergence

The energy functional E_h^L (obtained from the linear part of the equation) at the k-th time level is $E_h^L(v^{(k)}) = \left\langle A^{-1}v_t^{(k)}, v_t^{(k)} \right\rangle + \left\langle v_t^{(k)}, v_t^{(k)} \right\rangle + \tau^2(\theta - 1/4) \left\langle (I+A)v_t^{(k)}, v_t^{(k)} \right\rangle \\ + 1/4 \left\langle v^{(k)} + v^{(k+1)} + A(v^{(k)} + v^{(k+1)}), v^{(k)} + v^{(k+1)} \right\rangle$

The full discrete energy functional is (including the non-linearity)

$$E_h(\mathbf{v}^{(k)}) = E_h^L(\mathbf{v}^{(k)}) + \left\langle F(\mathbf{v}^{(k+1)}), 1 \right\rangle + \left\langle F(\mathbf{v}^{(k)}), 1 \right\rangle$$

Theorem (Discrete conservation law, Three level FDS)

The solution to the iterative scheme (IM) satisfies the energy equalities ((k)) = ((k)) = (0)

$$E_h(v^{(k)}) = E_h(v^{(0)}), \qquad k = 1, 2, \dots$$

i.e. the discrete energy is conserved in time.

Boussinesq Equation Finite difference schemes Numerical results Discrete conservation law Convergence

We introduce the linear functional $E_{h,L}(v^{(k)})$ as

$$E_{h,L}(v^{(k)}) = 0.5 \left\langle A^{-1} B v_t^{(k)}, v_t^{(k-1)} \right\rangle + 0.5 \left\langle v^{(k)} + \beta_2 A v^{(k)}, v^{(k)} \right\rangle$$

and the full discrete energy functional $E_h(v^{(k)})$ as

$$E_h(v^{(k)}) = E_{h,L}(v^{(k)}) + \langle F(v^{(k)}), 1 \rangle.$$

Theorem (**Discrete conservation law, Four level FDS**)

The solution to the considered FDS satisfies the energy equalities

$$E_h(v^{(k)}) = E_h(v^{(0)}), \qquad k = 1, 2, \dots$$

i.e. the discrete energy is conserved in time.

Our calculations confirm that the discrete energy functional $E_h(v^{(k)})$ is preserved in time with a high accuracy (for $t \in (0, 20]$ - with 10^{-8} error)

Theorem (Convergence of the 3-level FDS)

Assume that the parameter θ satisfies

$$heta > rac{1+\epsilon}{4} - rac{1}{ au^2 ||A||}, \epsilon > 0$$

Assume that the solution u is in $C^{4,4}(\mathbb{R}^2 \times (0,T))$ and the solution v to the 3-level FDS is bounded in the maximal norm. Then v converges to the exact solution u as $|h|, \tau \to 0$ and the following estimate holds for the error z = y - u:

$$\begin{split} \max_{i} |z_{i}^{(k)}| &< Ce^{Mt_{k}}\sqrt{\frac{1+\epsilon}{\epsilon}}\left(|h|^{2}+\tau^{2}\right), \qquad n=1;\\ \max_{i,j} |z_{i,j}^{(k)}| &< Ce^{Mt_{k}}\sqrt{\ln N}\sqrt{\frac{1+\epsilon}{\epsilon}}\left(|h|^{2}+\tau^{2}\right), \qquad n=2. \end{split}$$

Finite difference schemes Discrete conservation law Convergence

Theorem (Convergence of the 4-level FDS)

Assume that f is a polynomial of u and that:

(i) parameters θ and μ satisfy the operator inequality

$$A^{-1} + \beta_1 I + \tau^2 (2\theta - 0.5)I + \tau^2 \beta_2 (2\mu - 0.5)A > \epsilon I, \ \epsilon > 0$$

with some positive real number ϵ independent on h, τ , u; (ii) $u \in C^{4,4}(\mathbb{R}^2 \times [0, T);$

(iii) the discrete solution v is bounded in the maximal norm. Then the discrete solution v converges to the exact solution u as $|h|, \tau \rightarrow 0$ and the following estimate holds for the error z = u - v:

$$\max_{i} |z_{i}^{(k)} + z_{i}^{(k+1)}| \leq Ce^{Mt^{k}} (|h|^{2} + \tau^{2}), n = 1;$$

$$\max_{i,j} |z_{i}^{(k)} + z_{i}^{(k+1)}| \leq Ce^{Mt^{k}} \sqrt{\ln(\max\{N_{1}, N_{2}\})} (|h|^{2} + \tau^{2}), n = 2.$$

Boussinesq Equation	
Finite difference schemes	Discrete conservation law
Numerical results	Convergence

Table: Restrictions on parameters $\theta,\,\mu$ for validity of condition (i) in the convergence Theorem

μ	θ	sufficient conditions
$\mu \geq$ 0.25	$ heta \geq 0.25$	no restrictions
$\mu \geq$ 0.25	heta < 0.25	$ au^2 < rac{eta_1 - \epsilon + au^2 (2\mu - 0.5) eta_2 4/L^2}{(0.5 - 2 heta)}$
$\mu < 0.25$	$ heta \geq 0.25$	$\tau^2 < h^2 \frac{\beta_1 - \epsilon}{4n(0.5 - 2\mu)\beta_2}$
$\mu < 0.25$	heta < 0.25	$ au^2 < h^2 rac{eta_1 - \epsilon + au^2 (2 heta - 0.5)}{4n(0.5 - 2\mu)eta_2}$

Here $L = \max(L_1, L_2)$ is the semi-length of the computational domain and n = 1, 2 is the dimension.

Numerical algorithms Tables Graphics, 1D, 2D

Algorithm for 3 level FDS

A. Evaluate
$$v^{(0)}$$
, $v^{(1)}$ from the initial conditions

B. For
$$k = 1, 2, ...$$
 do $(v^{(k-1)}, v^{(k)} \text{ are known})$

1 take
$$v^{(k+1)[0]} = v^{(k)}$$

● for
$$s = 1, 2, ...$$
 repeat steps (a), (b) below until $|v^{(k+1)[s+1]} - v^{(k+1)[s]}| < \epsilon |v^{(k+1)[s]}|$

(a) find w by standard elliptic solver

$$(I - \Delta_h)w = \Delta_h \frac{F(v^{(k+1)[s]}) - F(v^{(k-1)})}{v^{(k+1)[s]} - v^{(k-1)}},$$

 $w = 0$ (BC),
(b) obtain $v^{(k+1)[s+1]}$ from
 $(I - \theta \tau^2 \Delta_h) v^{(k)[s+1]}_{\bar{t}t} - \Delta_h v^{(k)[s+1]} = w,$
 $v^{(k+1)[s+1]} = 0$ (BC)
 $(k+1) = (k+1)[s+1]$

3 set $v^{(k+1)} = v^{(k+1)[s+1]}$

æ

<ロト <部ト < 注ト < 注ト

Numerical algorithms Tables Graphics, 1D, 2D

Numerical algorithm, 4-level FDS

1. Evaluate $v^{(0)}$, $v^{(1)}$, $v^{(-1)}$ from the initial conditions; 2. For k = 0, 1, 2, ... do $(v^{(k-1)}, v^{(k)}, v^{(k+1)}$ are known):

$$\begin{split} (I - \beta_1 \Delta_h) (\mathbf{v}^{(k+2)}) / (2\tau^2) &- \theta \Delta_h \mathbf{v}^{(k+2)} + \mu \beta_2 \Delta_h^2 \mathbf{v}^{(k+2)} \\ &= \Delta_h \frac{F(\mathbf{v}^{(k+1)}) - F(\mathbf{v}^{(k)})}{\mathbf{v}^{(k+1)} - \mathbf{v}^{(k)}} - (0.5 - \mu) \beta_2 (\Delta_h)^2 (\mathbf{v}^{(k+1)} + \mathbf{v}^{(k)}) \\ &- \mu \beta_2 \Delta_h^2 \mathbf{v}^{(k-1)} + (0.5 - \theta) \Delta_h (\mathbf{v}^{(k+1)} + \mathbf{v}^{(k)}) + \theta \Delta_h \mathbf{v}^{(k-1)} \\ &+ (I - \beta_1 \Delta_h) (\mathbf{v}^{(k+1)} + \mathbf{v}^{(k)} - \mathbf{v}^{(k-1)}) / (2\tau^2) \end{split}$$

Remarks:

if $\mu \neq 0$ - 4-th order elliptic equation for $v^{(k+2)} \Rightarrow$ choose $\mu = 0!$ for $\mu = 0$ - second order elliptic equation for $v^{(k+2)}$ - the numerical method is efficient!

No inner iterations are needed for evaluation of $v^{(k+2)}$. Despite this fact, this method is conservative!

Boussinesq EquationNumerical algorithmsFinite difference schemesTablesNumerical resultsGraphics, 1D, 2D

Preliminaries

• An analytical solution of the 1D equation (one solitary wave):

$$u(x, t; x_0, c) = \frac{3}{2} \frac{c^2 - 1}{\alpha} \operatorname{sech}^2 \left(\frac{x - x_0 - ct}{2} \sqrt{\frac{c^2 - 1}{\beta_1 c^2 - \beta_2}} \right),$$

where x_0 is the initial position of the peak of the solitary wave,

- Parameters: $\alpha = 3$, $\beta_1 = 1.5$, $\beta_2 = 0.5$, c is the wave speed.
- Initial conditions for one solitary wave or two solitary waves:

$$u(x,0) = u(x,0;-40,2) + u(x,0;50,-1.5)$$

$$\frac{du}{dt}(x,0) = u(x,0;-40,2)_t + u(x,0;50,-1.5)_t$$

• schemes with $\mu = 0$ and several θ : $\theta = 0.25$, $\theta = 0.5$, $\theta = 0$.

One solitary wave

Errors in uniform norm and rate of convergence for $t \in [0,20], \; \theta = 0.5$

	c=2		c=0.5	
h	Error	Rate	Error	Rate
0.1	0.0011424		0.0094145	
0.05	0.00028569	1.99954544	0.0022174	2.08601543
0.025	7.1534 e-005	1.99783019	0.0005475	2.01793817
0.0125	1.9402 e-005	1.88234306	0.0001359	2.01031351

•
$$\tau = h \sqrt{(eta_1/(8eta_2))}$$
, $\epsilon = 0.5eta_1$, $au^2 < 0.5eta_1$

- The error is the difference between the calculated and the exact solution in uniform norm for t = 20.
- The calculations confirm the schemes are of order $O(h^2 + \tau^2)$.

Interaction of two solitary waves with different speeds

Errors in uniform norm and rate of convergence for $t \in [0, 40]$

h	heta = 0.5		heta=0	
	error	rate	error	rate
0.08				
0.04	0.00231463		0.00034355	
0.02	0.00057865	2.00002063	8.55658155e-005	2.31582697
0.01	0.00013966	2.05076806	1.71856875e-005	2.00541487

- For every *h* the error is calculated by Runge method as $E_1^2/(E_1 E_2)$ with $E_1 = ||u_{[h]} u_{[h/2]}||$, $E_2 = ||u_{[h/2]} u_{[h/4]}||$, where $u_{[h]}$ is the calculated solution with step *h* for t = 40.
- The numerical rate of convergence is $(\log E_1 \log E_2)/\log 2$.
- The calculations confirm the schemes are of order $O(h^2 + \tau^2)$.
- For two solitary waves the scheme with $\theta = 0$ is 6 to 7 times more precise than the scheme with $\theta = 0.5!$

Comparison, 3-level and 4-level conservative schemes

Errors in uniform norm for one and two solitary waves

	1 soliton, T=40			2 solitons, T=80	
	4-level	3-level		4-level	3-level
h	$\theta = 0.25$	Con.FDS	h	$\theta = 0.25$	Con.FDS
0.2	0.01288	0.14412	0.2		
0.1	0.00324	0.03753	0.1	0.04019	
0.05	0.00081	0.00948	0.05	0.01907	0.102754
0.025	0.00020	0.00238	0.025	0.009212	0.026027
0.0125	5.25e-05	0.00059	0.0125	0.004010	0.006528

- for one solitary wave: the 4-level FDS is approximately 10 times more precise than the 3-level FDS;
- for two solitary waves: the 4-level FDS is approximately 2 times more precise than the 3-level FDS.

 Boussinesq Equation
 Numerical algorithms

 Finite difference schemes
 Tables

 Numerical results
 Graphics, 1D, 2D

With respect to the error magnitude the 'new' four-level scheme performs much better than the 'old' three-level schemes! *Justification*: Consider both FDS. We expand all terms in Taylor series about the point $(x_i, t^{(k)} + \tau/2)$ or (x_i, t^k) and get for the leading terms

$$R_{4-lev} = \frac{1}{8}\alpha\tau^2\Delta_h\frac{\partial f}{\partial u}(x_i, t^{(k)} + \tau/2)\frac{\partial^2 u}{\partial t^2}(x_i, t^{(k)} + \tau/2),$$

$$R_{3-lev} = \frac{1}{4}\alpha\tau^2\Delta_h\frac{\partial f}{\partial u}(x_i, t^k)\frac{\partial^2 u}{\partial t^2}(x_i, t^k).$$

Thus, $R_{3-lev} \approx 2 * R_{4-lev}$. This has essential impact on the total error, when the solution has large derivatives!

Boussinesq Equation	Numerical algorithms
Finite difference schemes	
Numerical results	Graphics, 1D, 2D

Movie

Interaction of two solitary waves with different speeds $x \in [-120, 120]$, $t \in [0, 35]$, $c_1 = 2$, $c_2 = -1.5$

-

Graphics, 1D

Interaction of two solitary waves with different speeds $x \in [-80, 120]$, $t \in [0, 35]$, $c_1 = 2$, $c_2 = -1.5$

Graphics, 1D

Interaction of two solitary waves with different speeds $x \in [-80, 120]$, $t \in [0, 35]$, $c_1 = 2$, $c_2 = -1.5$

Graphics, 2D

Figure: Evolution of the numerical solution in time For t < 5 the shape of the numerical solution is similar to the initial solution. For larger times the numerical solution changes its initial form and transforms into a diverging propagating wave.

Figure: Cross section x = 0 of the solution v with c = 0.2 at times t = 0, 2.4, 4.8, 7.2, 9.6, 12

Concluding remarks:

- We compare a three level FDS and a four level FDS for BE.
- Both schemes are conservative, i.e. the corresponding discrete energy of the numerical solution is preserved in time.
- Both schemes are second order accurate with respect to space and time steps in the uniform norm and in the first Sobolev norm.
- The numerical algorithm for evaluation of the discrete solution to 3 level FDS needs inner iterations and it is efficient.
- For $\mu = 0$ the numerical algorithm for evaluation of the discrete solution to 4 level FDS is efficient.
- The numerical experiments show good agreement with the theoretical results in 1D and 2D cases.

Thank you for your attention!

P

3